WO2017026784A1 - 무선랜 시스템에서 제어 필드를 포함하는 제어 신호를 구성하는 방법 및 장치 - Google Patents

무선랜 시스템에서 제어 필드를 포함하는 제어 신호를 구성하는 방법 및 장치 Download PDF

Info

Publication number
WO2017026784A1
WO2017026784A1 PCT/KR2016/008767 KR2016008767W WO2017026784A1 WO 2017026784 A1 WO2017026784 A1 WO 2017026784A1 KR 2016008767 W KR2016008767 W KR 2016008767W WO 2017026784 A1 WO2017026784 A1 WO 2017026784A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
control
control field
ppdu
sig
Prior art date
Application number
PCT/KR2016/008767
Other languages
English (en)
French (fr)
Inventor
최진수
임동국
조한규
박은성
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to JP2017522008A priority Critical patent/JP6439042B2/ja
Priority to EP21206165.9A priority patent/EP3975463B1/en
Priority to EP20156126.3A priority patent/EP3668001B1/en
Priority to EP16835424.9A priority patent/EP3337074B1/en
Priority to CN201680003617.6A priority patent/CN107079458B/zh
Priority to US15/525,006 priority patent/US10667242B2/en
Priority to KR1020177008541A priority patent/KR102213184B1/ko
Priority to ES16835424T priority patent/ES2813724T3/es
Priority to PL16835424T priority patent/PL3337074T3/pl
Publication of WO2017026784A1 publication Critical patent/WO2017026784A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present disclosure relates to a technique for transmitting and receiving data in wireless communication, and more particularly, to a method and apparatus for configuring a control signal including a control field in a wireless LAN system.
  • next-generation WLANs 1) enhancements to the Institute of Electronics and Electronics Engineers (IEEE) 802.11 physical physical access (PHY) and medium access control (MAC) layers in the 2.4 GHz and 5 GHz bands, and 2) spectral efficiency and area throughput. aims to improve performance in real indoor and outdoor environments, such as in environments where interference sources exist, dense heterogeneous network environments, and high user loads.
  • IEEE Institute of Electronics and Electronics Engineers
  • PHY physical physical access
  • MAC medium access control
  • next-generation WLAN The environment mainly considered in the next-generation WLAN is a dense environment having many access points (APs) and a station (STA), and improvements in spectral efficiency and area throughput are discussed in such a dense environment.
  • next generation WLAN there is an interest in improving practical performance not only in an indoor environment but also in an outdoor environment, which is not much considered in a conventional WLAN.
  • next-generation WLAN there is a great interest in scenarios such as wireless office, smart home, stadium, hotspot, building / apartment, and AP based on the scenario.
  • STA are discussing about improving system performance in a dense environment with many STAs.
  • next-generation WLAN In addition, in the next-generation WLAN, there will be more discussion about improving system performance in outdoor overlapping basic service set (OBSS) environment, improving outdoor environment performance, and cellular offloading, rather than improving single link performance in one basic service set (BSS). It is expected.
  • the directionality of these next-generation WLANs means that next-generation WLANs will increasingly have a technology range similar to that of mobile communications. Considering the recent situation in which mobile communication and WLAN technology are discussed together in the small cell and direct-to-direct (D2D) communication area, the technical and business convergence of next-generation WLAN and mobile communication is expected to become more active.
  • D2D direct-to-direct
  • the present specification proposes a method of configuring a control field of a PPDU for a WLAN system.
  • This specification proposes a control field of a PPDU that exhibits improved performance with respect to resource allocation.
  • the method according to an example of the present specification is used in a WLAN system using an RU corresponding to a preset frequency band. Multiple fields of the PPDU are delivered to at least one receiving station or user station, depending on the RU.
  • a method includes: configuring a PPDU for a plurality of receiving devices, the first control field comprising a first control field, a second control field, and a data field; And transmitting the PPDU to a plurality of receiving apparatuses through a transmission frequency band.
  • the first control field may include control information required for interpreting the PPDU.
  • the first control field may include a control identifier indicating whether a single RU corresponding to the full bandwidth of the transmission frequency band is allocated.
  • the second control field may include identification information of the plurality of receiving devices.
  • the second control field may include allocation information for the resource unit (RU), but if the control identifier indicates that a single RU corresponding to the full bandwidth is allocated, the second The control field may not include allocation information for the resource unit (RU).
  • the method may be implemented through a transmitting device for transmitting a PPDU or a receiving device configuring a corresponding PPDU.
  • An example according to the present specification proposes an example of efficiently transmitting allocation information about an RU through a newly proposed control field.
  • An example according to the present specification proposes an example of achieving improved performance through a control field designed in consideration of the frequency band.
  • WLAN wireless local area network
  • FIG. 2 is a diagram illustrating an example of a PPDU used in the IEEE standard.
  • FIG. 3 is a diagram illustrating an example of a HE PPDU.
  • FIG. 4 is a diagram illustrating an arrangement of resource units (RUs) used on a 20 MHz band.
  • FIG. 5 is a diagram illustrating an arrangement of resource units (RUs) used on a 40 MHz band.
  • FIG. 6 is a diagram illustrating an arrangement of resource units (RUs) used on an 80 MHz band.
  • FIG. 7 is a diagram illustrating another example of the HE-PPDU.
  • FIG. 8 is a block diagram showing an example of the HE-SIG-B according to the present embodiment.
  • FIG. 9 shows an example of a trigger frame.
  • FIG. 10 illustrates an example of subfields included in a per user information field.
  • FIG. 11 is a block diagram showing an example of a control field and a data field constructed according to the present embodiment.
  • 16 illustrates an example in which the control signal and frequency mapping relationship are modified according to the present specification.
  • FIG 17 illustrates an example in which the control signal and frequency mapping relationship are modified according to the present specification.
  • control signal 18 illustrates a further example of a control signal and frequency mapping relationship in accordance with the present disclosure.
  • Fig. 19 is a diagram showing a relationship between SIG-A, SIG-B and data fields according to the present embodiment.
  • 20 is a block diagram illustrating a wireless device to which the present embodiment can be applied.
  • WLAN wireless local area network
  • BSS infrastructure basic service set
  • IEEE Institute of Electrical and Electronic Engineers
  • the WLAN system may include one or more infrastructure BSSs 100 and 105 (hereinafter, BSS).
  • BSSs 100 and 105 are a set of APs and STAs such as an access point 125 and a STA1 (station 100-1) capable of successfully synchronizing and communicating with each other, and do not indicate a specific area.
  • the BSS 105 may include one or more joinable STAs 105-1 and 105-2 to one AP 130.
  • the BSS may include at least one STA, APs 125 and 130 for providing a distribution service, and a distribution system (DS) 110 for connecting a plurality of APs.
  • STA STA
  • APs 125 and 130 for providing a distribution service
  • DS distribution system
  • the distributed system 110 may connect several BSSs 100 and 105 to implement an extended service set (ESS) 140 which is an extended service set.
  • ESS 140 may be used as a term indicating one network in which one or several APs 125 and 230 are connected through the distributed system 110.
  • APs included in one ESS 140 may have the same service set identification (SSID).
  • the portal 120 may serve as a bridge for connecting the WLAN network (IEEE 802.11) with another network (for example, 802.X).
  • a network between the APs 125 and 130 and a network between the APs 125 and 130 and the STAs 100-1, 105-1 and 105-2 may be implemented. However, it may be possible to perform communication by setting up a network even between STAs without the APs 125 and 130.
  • a network that performs communication by establishing a network even between STAs without APs 125 and 130 is defined as an ad-hoc network or an independent basic service set (BSS).
  • FIG. 1 is a conceptual diagram illustrating an IBSS.
  • the IBSS is a BSS operating in an ad-hoc mode. Since IBSS does not contain an AP, there is no centralized management entity. That is, in the IBSS, the STAs 150-1, 150-2, 150-3, 155-4, and 155-5 are managed in a distributed manner. In the IBSS, all STAs 150-1, 150-2, 150-3, 155-4, and 155-5 may be mobile STAs, and access to a distributed system is not allowed, thus making a self-contained network. network).
  • a STA is any functional medium that includes medium access control (MAC) conforming to the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard and a physical layer interface to a wireless medium. May be used to mean both an AP and a non-AP STA (Non-AP Station).
  • MAC medium access control
  • IEEE Institute of Electrical and Electronics Engineers
  • the STA may include a mobile terminal, a wireless device, a wireless transmit / receive unit (WTRU), a user equipment (UE), a mobile station (MS), a mobile subscriber unit ( It may also be called various names such as a mobile subscriber unit or simply a user.
  • WTRU wireless transmit / receive unit
  • UE user equipment
  • MS mobile station
  • UE mobile subscriber unit
  • It may also be called various names such as a mobile subscriber unit or simply a user.
  • FIG. 2 is a diagram illustrating an example of a PPDU used in the IEEE standard.
  • PPDUs PHY protocol data units
  • LTF and STF fields included training signals
  • SIG-A and SIG-B included control information for the receiving station
  • data fields included user data corresponding to the PSDU.
  • This embodiment proposes an improved technique for the signal (or control information field) used for the data field of the PPDU.
  • the signal proposed in this embodiment may be applied on a high efficiency PPDU (HE PPDU) according to the IEEE 802.11ax standard. That is, the signals to be improved in the present embodiment may be HE-SIG-A and / or HE-SIG-B included in the HE PPDU. Each of HE-SIG-A and HE-SIG-B may also be represented as SIG-A or SIG-B.
  • the improved signal proposed by this embodiment is not necessarily limited to the HE-SIG-A and / or HE-SIG-B standard, and controls / control of various names including control information in a wireless communication system for transmitting user data. Applicable to data fields.
  • FIG. 3 is a diagram illustrating an example of a HE PPDU.
  • the control information field proposed in this embodiment may be HE-SIG-B included in the HE PPDU as shown in FIG. 3.
  • the HE PPDU according to FIG. 3 is an example of a PPDU for multiple users.
  • the HE-SIG-B may be included only for the multi-user, and the HE-SIG-B may be omitted in the PPDU for the single user.
  • a HE-PPDU for a multiple user includes a legacy-short training field (L-STF), a legacy-long training field (L-LTF), a legacy-signal (L-SIG), High efficiency-signal A (HE-SIG-A), high efficiency-signal-B (HE-SIG-B), high efficiency-short training field (HE-STF), high efficiency-long training field (HE-LTF) It may include a data field (or MAC payload) and a PE (Packet Extension) field. Each field may be transmitted during the time period shown (ie, 4 or 8 ms, etc.).
  • FIG. 4 is a diagram illustrating an arrangement of resource units (RUs) used on a 20 MHz band.
  • resource units corresponding to different numbers of tones (ie, subcarriers) may be used to configure some fields of the HE-PPDU.
  • resources may be allocated in units of RUs shown for HE-STF, HE-LTF, and data fields.
  • 26-units ie, units corresponding to 26 tones
  • Six tones may be used as the guard band in the leftmost band of the 20 MHz band, and five tones may be used as the guard band in the rightmost band of the 20 MHz band.
  • seven DC tones are inserted into the center band, that is, the DC band, and 26-units corresponding to each of the 13 tones may exist to the left and right of the DC band.
  • other bands may be allocated 26-unit, 52-unit, 106-unit. Each unit can be assigned for a receiving station, i. E. A user.
  • the RU arrangement of FIG. 4 is utilized not only for the situation for a plurality of users (MU), but also for the situation for a single user (SU), in which case one 242-unit is shown as shown at the bottom of FIG. It is possible to use and in this case three DC tones can be inserted.
  • FIG. 5 is a diagram illustrating an arrangement of resource units (RUs) used on a 40 MHz band.
  • the example of FIG. 5 may also use 26-RU, 52-RU, 106-RU, 242-RU, 484-RU, and the like.
  • five DC tones can be inserted at the center frequency, 12 tones are used as the guard band in the leftmost band of the 40 MHz band, and 11 tones are in the rightmost band of the 40 MHz band. This guard band can be used.
  • the 484-RU may be used when used for a single user. Meanwhile, the specific number of RUs may be changed as in the example of FIG. 4.
  • FIG. 6 is a diagram illustrating an arrangement of resource units (RUs) used on an 80 MHz band.
  • the example of FIG. 6 may also use 26-RU, 52-RU, 106-RU, 242-RU, 484-RU, 996-RU, and the like. have.
  • seven DC tones can be inserted in the center frequency, 12 tones are used as the guard band in the leftmost band of the 80 MHz band, and 11 tones in the rightmost band of the 80 MHz band. This guard band can be used.
  • a 996-RU when used for a single user, a 996-RU may be used, in which case five DC tones may be inserted.
  • the specific number of RUs may be changed as in the example of FIGS. 4 and 5.
  • FIG. 7 is a diagram illustrating another example of the HE-PPDU.
  • FIG. 7 is another example illustrating the HE-PPDU block of FIG. 3 in terms of frequency.
  • the illustrated L-STF 700 may include a short training orthogonal frequency division multiplexing symbol.
  • the L-STF 700 may be used for frame detection, automatic gain control (AGC), diversity detection, and coarse frequency / time synchronization.
  • AGC automatic gain control
  • the L-LTF 710 may include a long training orthogonal frequency division multiplexing symbol.
  • the L-LTF 710 may be used for fine frequency / time synchronization and channel prediction.
  • L-SIG 720 may be used to transmit control information.
  • the L-SIG 720 may include information about a data rate and a data length.
  • the L-SIG 720 may be repeatedly transmitted. That is, the L-SIG 720 may be configured in a repeating format (for example, may be referred to as an R-LSIG).
  • the HE-SIG-A 730 may include control information common to the receiving station.
  • the HE-SIG-A 730 may include 1) a DL / UL indicator, 2) a BSS color field which is an identifier of a BSS, 3) a field indicating a remaining time of a current TXOP interval, 4) 20, Bandwidth field indicating whether 40, 80, 160, 80 + 80 MHz, 5) field indicating the MCS scheme applied to HE-SIG-B, 6) HE-SIB-B has dual subcarrier modulation for MCS ( field indicating whether it is modulated by dual subcarrier modulation), 7) field indicating the number of symbols used for HE-SIG-B, and 8) indicating whether HE-SIG-B is generated over the entire band.
  • PE packet extension
  • 13 a field indicating information on a CRC field of the HE-SIG-A.
  • the HE-SIG-B 740 may be included only when it is a PPDU for a multi-user (MU) as described above.
  • the HE-SIG-A 750 or the HE-SIG-B 760 may include resource allocation information (or virtual resource allocation information) for at least one receiving STA.
  • FIG. 8 is a block diagram showing an example of the HE-SIG-B according to the present embodiment.
  • the HE-SIG-B field includes a common field at the beginning, and the common field can be encoded separately from the following field. That is, as shown in FIG. 8, the HE-SIG-B field may include a common field including common control information and a user-specific field including user-specific control information.
  • the common field may include a corresponding CRC field and may be coded into one BCC block. Subsequent user-specific fields may be coded into one BCC block, including a "user-feature field" for two users and a corresponding CRC field, as shown.
  • the previous field of the HE-SIG-B 740 on the MU PPDU may be transmitted in duplicated form.
  • the HE-SIG-B 740 transmitted in a part of the frequency band (for example, the fourth frequency band) is the frequency band (that is, the fourth frequency band) of the Control information for a data field and a data field of another frequency band (eg, the second frequency band) except for the corresponding frequency band may be included.
  • the HE-SIG-B 740 of a specific frequency band (eg, the second frequency band) duplicates the HE-SIG-B 740 of another frequency band (eg, the fourth frequency band). It can be one format.
  • the HE-SIG-B 740 may be transmitted in an encoded form on all transmission resources.
  • the field after the HE-SIG-B 740 may include individual information for each receiving STA that receives the PPDU.
  • the HE-STF 750 may be used to improve automatic gain control estimation in a multiple input multiple output (MIMO) environment or an OFDMA environment.
  • MIMO multiple input multiple output
  • OFDMA orthogonal frequency division multiple access
  • the HE-LTF 760 may be used to estimate a channel in a MIMO environment or an OFDMA environment.
  • the size of the FFT / IFFT applied to the field after the HE-STF 750 and the HE-STF 750 may be different from the size of the FFT / IFFT applied to the field before the HE-STF 750.
  • the size of the FFT / IFFT applied to the fields after the HE-STF 750 and the HE-STF 750 may be four times larger than the size of the IFFT applied to the field before the HE-STF 750.
  • a field of s is called a first field
  • at least one of the data field 770, the HE-STF 750, and the HE-LTF 760 may be referred to as a second field.
  • the first field may include a field related to a legacy system
  • the second field may include a field related to a HE system.
  • 256 FFT / IFFT is applied for a bandwidth of 20 MHz
  • 512 FFT / IFFT is applied for a bandwidth of 40 MHz
  • 1024 FFT / IFFT is applied for a bandwidth of 80 MHz
  • 2048 FFT for a bandwidth of 160 MHz continuous or discontinuous 160 MHz.
  • / IFFT can be applied.
  • a subcarrier spacing of 312.5 kHz which is a conventional subcarrier spacing, may be applied to a first field of the HE PPDU, and a subcarrier space of 78.125 kHz may be applied to a second field of the HE PPDU.
  • the length of an OFDM symbol may be a value obtained by adding a length of a guard interval (GI) to an IDFT / DFT length.
  • the length of the GI can be various values such as 0.4 ⁇ s, 0.8 ⁇ s, 1.6 ⁇ s, 2.4 ⁇ s, 3.2 ⁇ s.
  • the frequency band used by the first field and the frequency band used by the second field are represented in FIG. 7, they may not exactly coincide with each other.
  • the main band of the first field L-STF, L-LTF, L-SIG, HE-SIG-A, HE-SIG-B
  • HE-STF the main band of the first field
  • HE-LTF, Data the second field
  • the interface may be inconsistent. 4 to 6, since a plurality of null subcarriers, DC tones, guard tones, etc. are inserted in the process of arranging the RU, it may be difficult to accurately match the interface.
  • the user may receive the HE-SIG-A 730 and may be instructed to receive the downlink PPDU based on the HE-SIG-A 730.
  • the STA may perform decoding based on the changed FFT size from the field after the HE-STF 750 and the HE-STF 750.
  • the STA may stop decoding and configure a network allocation vector (NAV).
  • NAV network allocation vector
  • the cyclic prefix (CP) of the HE-STF 750 may have a larger size than the CP of another field, and during this CP period, the STA may perform decoding on the downlink PPDU by changing the FFT size.
  • data (or frame) transmitted from the AP to the STA is called downlink data (or downlink frame), and data (or frame) transmitted from the STA to the AP is called uplink data (or uplink frame).
  • downlink data or downlink frame
  • uplink data or uplink frame
  • the transmission from the AP to the STA may be expressed in terms of downlink transmission
  • the transmission from the STA to the AP may be expressed in terms of uplink transmission.
  • each of the PHY protocol data units (PPDUs), frames, and data transmitted through downlink transmission may be expressed in terms of a downlink PPDU, a downlink frame, and downlink data.
  • the PPDU may be a data unit including a PPDU header and a physical layer service data unit (PSDU) (or MAC protocol data unit (MPDU)).
  • PSDU physical layer service data unit
  • MPDU MAC protocol data unit
  • the PPDU header may include a PHY header and a PHY preamble
  • the PSDU (or MPDU) may be a data unit including a frame (or an information unit of a MAC layer) or indicating a frame.
  • the PHY header may be referred to as a physical layer convergence protocol (PLCP) header in another term
  • the PHY preamble may be expressed as a PLCP preamble in another term.
  • each of the PPDUs, frames, and data transmitted through uplink transmission may be represented by the term uplink PPDU, uplink frame, and uplink data.
  • the entire bandwidth may be used for downlink transmission to one STA and uplink transmission of one STA based on single (or single) -orthogonal frequency division multiplexing (SUDM) transmission.
  • the AP may perform downlink (DL) multi-user (MU) transmission based on MU MIMO (multiple input multiple output), and such transmission is DL MU MIMO transmission. It can be expressed as.
  • an orthogonal frequency division multiple access (OFDMA) based transmission method is preferably supported for uplink transmission and / or downlink transmission. That is, uplink / downlink communication may be performed by allocating data units (eg, RUs) corresponding to different frequency resources to the user.
  • the AP may perform DL MU transmission based on OFDMA, and such transmission may be expressed by the term DL MU OFDMA transmission.
  • the AP may transmit downlink data (or downlink frame, downlink PPDU) to each of the plurality of STAs through the plurality of frequency resources on the overlapped time resources.
  • the plurality of frequency resources may be a plurality of subbands (or subchannels) or a plurality of resource units (RUs).
  • DL MU OFDMA transmission can be used with DL MU MIMO transmission. For example, DL MU MIMO transmission based on a plurality of space-time streams (or spatial streams) is performed on a specific subband (or subchannel) allocated for DL MU OFDMA transmission. Can be.
  • UL MU transmission uplink multi-user transmission
  • a plurality of STAs transmit data to the AP on the same time resource.
  • Uplink transmission on the overlapped time resource by each of the plurality of STAs may be performed in a frequency domain or a spatial domain.
  • different frequency resources may be allocated as uplink transmission resources for each of the plurality of STAs based on OFDMA.
  • the different frequency resources may be different subbands (or subchannels) or different resource units (RUs).
  • Each of the plurality of STAs may transmit uplink data to the AP through different allocated frequency resources.
  • the transmission method through these different frequency resources may be represented by the term UL MU OFDMA transmission method.
  • each of the plurality of STAs When uplink transmission by each of the plurality of STAs is performed in the spatial domain, different space-time streams (or spatial streams) are allocated to each of the plurality of STAs, and each of the plurality of STAs transmits uplink data through different space-time streams. Can transmit to the AP.
  • the transmission method through these different spatial streams may be represented by the term UL MU MIMO transmission method.
  • the UL MU OFDMA transmission and the UL MU MIMO transmission may be performed together.
  • UL MU MIMO transmission based on a plurality of space-time streams (or spatial streams) may be performed on a specific subband (or subchannel) allocated for UL MU OFDMA transmission.
  • a multi-channel allocation method was used to allocate a wider bandwidth (for example, a bandwidth exceeding 20 MHz) to one UE.
  • the multi-channel may include a plurality of 20 MHz channels when one channel unit is 20 MHz.
  • a primary channel rule is used to allocate a wide bandwidth to the terminal. If the primary channel rule is used, there is a constraint for allocating a wide bandwidth to the terminal. Specifically, according to the primary channel rule, when a secondary channel adjacent to the primary channel is used in an overlapped BSS (OBSS) and 'busy', the STA may use the remaining channels except the primary channel. Can not.
  • OBSS overlapped BSS
  • the STA can transmit the frame only through the primary channel, thereby being limited to the transmission of the frame through the multi-channel. That is, the primary channel rule used for multi-channel allocation in the existing WLAN system may be a big limitation in obtaining high throughput by operating a wide bandwidth in the current WLAN environment where there are not many OBSS.
  • a WLAN system supporting the OFDMA technology supporting the OFDMA technology. That is, the above-described OFDMA technique is applicable to at least one of downlink and uplink.
  • the above-described MU-MIMO technique may be additionally applied to at least one of downlink and uplink.
  • OFDMA technology is used, a plurality of terminals may be used simultaneously instead of one terminal without using a primary channel rule. Therefore, wide bandwidth operation is possible, and the efficiency of the operation of radio resources can be improved.
  • the AP when uplink transmission by each of a plurality of STAs (eg, non-AP STAs) is performed in the frequency domain, the AP has different frequency resources for each of the plurality of STAs based on OFDMA. It may be allocated as a link transmission resource. In addition, as described above, different frequency resources may be different subbands (or subchannels) or different resource units (RUs).
  • OFDMA orthogonal frequency division multiple access
  • Different frequency resources for each of the plurality of STAs are indicated through a trigger frame.
  • the trigger frame of FIG. 9 allocates resources for uplink multiple-user transmission and can be transmitted from the AP.
  • the trigger frame may consist of a MAC frame and may be included in a PPDU. For example, it may be transmitted through the PPDU shown in FIG. 3, through the legacy PPDU shown in FIG. 2, or through a PPDU specifically designed for the trigger frame. If transmitted through the PPDU of FIG. 3, the trigger frame may be included in the illustrated data field.
  • Each field shown in FIG. 9 may be partially omitted, and another field may be added. In addition, the length of each field may be varied as shown.
  • the frame control field 910 of FIG. 9 includes information on the version of the MAC protocol and other additional control information, and the duration field 920 may include time information for NAV configuration or an identifier of the terminal (eg, For example, information about AID may be included.
  • the RA field 930 includes address information of the receiving STA of the corresponding trigger frame and may be omitted as necessary.
  • the TA field 940 includes address information of an STA (for example, an AP) that transmits a corresponding trigger frame, and the common information field 950 is common to be applied to a receiving STA that receives the corresponding trigger frame.
  • Contains control information For example, a field indicating the length of the L-SIG field of the uplink PPDU transmitted in response to the trigger frame, or the SIG-A field of the uplink PPDU transmitted in response to the trigger frame (that is, HE-SIG-A). Information to control the content of the field).
  • the common control information may include information about the length of the CP of the uplink PPDU transmitted in response to the trigger frame or information about the length of the LTF field.
  • the per user information field (960 # 1 to 960 # N) corresponding to the number of receiving STAs receiving the trigger frame of FIG.
  • the individual user information field may be called a “RU assignment field”.
  • the trigger frame of FIG. 9 may include a padding field 970 and a frame check sequence field 980.
  • Each of the per user information fields 960 # 1 to 960 # N shown in FIG. 9 preferably includes a plurality of subfields.
  • FIG. 10 shows an example of a subfield included in a per user information field. Some of the subfields of FIG. 10 may be omitted, and other subfields may be added. In addition, the length of each illustrated subfield may be modified.
  • the user identifier field 1010 of FIG. 10 indicates an identifier of an STA (ie, a receiving STA) to which per user information corresponds.
  • An example of the identifier may be all or part of an AID. have.
  • the RU Allocation field 1020 may be included. That is, when the receiving STA identified by the user identifier field 1010 transmits an uplink PPDU in response to the trigger frame of FIG. 9, the corresponding uplink PPDU through the RU indicated by the RU Allocation field 1020. Send.
  • the RU indicated by the RU Allocation field 1020 preferably indicates the RU shown in FIGS. 4, 5, and 6. The configuration of the specific RU allocation field 1020 will be described later.
  • the subfield of FIG. 10 may include a coding type field 1030.
  • the coding type field 1030 may indicate a coding type of an uplink PPDU transmitted in response to the trigger frame of FIG. 9. For example, when BCC coding is applied to the uplink PPDU, the coding type field 1030 is set to '1', and when LDPC coding is applied, the coding type field 1030 is set to '0'. Can be.
  • the subfield of FIG. 10 may include an MCS field 1040.
  • the MCS field 1040 may indicate an MCS scheme applied to an uplink PPDU transmitted in response to the trigger frame of FIG. 9. For example, when BCC coding is applied to the uplink PPDU, the coding type field 1030 is set to '1', and when LDPC coding is applied, the coding type field 1030 is set to '0'. Can be.
  • the present specification proposes an example of improving the control field included in the PPDU.
  • the control field improved by the present specification includes a first control field including control information required for interpreting the PPDU and a second control field including control information for demodulating the data field of the PPDU. do.
  • the first and second control fields may be various fields.
  • the first control field may be the HE-SIG-A 730 illustrated in FIG. 7
  • the second control field may be the HE-SIG-B 740 illustrated in FIGS. 7 and 8. Can be.
  • control identifier inserted into a first control field or a second control field is proposed.
  • the size of the control identifier may vary, for example, may be implemented with 1-bit information.
  • the control identifier may indicate whether 242-RU is allocated, for example when 20 MHz transmission is performed.
  • RUs of various sizes may be used. These RUs can be broadly divided into two types of RUs. For example, all of the RUs shown in FIGS. 4 to 6 may be classified into 26-type RUs and 242-type RUs.
  • a 26-type RU may include 26-RU, 52-RU, 106-RU, and the 242-type RU may include 242-RU, 484-RU, and larger RUs.
  • the control identifier may indicate that 242-type RU has been used. That is, it may indicate that 242-RU is included or 484-RU or 996-RU is included. If the transmission frequency band in which the PPDU is transmitted is a 20 MHz band, 242-RU is a single RU corresponding to the full bandwidth of the transmission frequency band (ie, 20 MHz) band. Accordingly, the control identifier (eg, 1 bit identifier) may indicate whether a single RU corresponding to the full bandwidth of the transmission frequency band is allocated.
  • the control identifier (eg, 1 bit identifier) is assigned a single RU corresponding to the entire band (ie, 40 MHz band) of the transmission frequency band. Can be indicated. That is, it may indicate whether the 484-RU has been allocated for the transmission of 40MHz.
  • the control identifier eg, 1-bit identifier
  • the control identifier is assigned a single RU corresponding to the entire band of the transmission frequency band (ie, 80 MHz band). Can be indicated. That is, it may indicate whether the 996-RU has been allocated for the transmission of 80MHz.
  • control identifier eg, 1 bit identifier
  • MU-MIMO multi-user full bandwidth MU-MIMO
  • MIMO multiple users may be allocated to the single RU. That is, signals for each user are not spatially and spatially distinct, but other techniques (eg, spatial multiplexing) may be used to multiplex the signals for multiple users in the same single RU.
  • the control identifier eg, 1 bit identifier
  • FIG. 11 is a block diagram showing an example of a control field and a data field constructed according to the present embodiment.
  • the block on the left side of FIG. 11 represents information included in the first and / or second control field of the PPDU, and the block on the right side of FIG. 11 represents information included in the data field of the PPDU.
  • the PPDU related to FIG. 11 may be a multi-user, that is, a PPDU for a plurality of receiving devices.
  • the structure of the fields of the PPDU may vary for multiple users and a single user, and the example of FIG. 11 may be a PPDU for multiple users.
  • the bandwidth of the transmission frequency band is not limited and may be applied to a 40 MHz, 80 MHz, and 160 MHz transmission.
  • the above-described control identifier may be included in the first and / or second control field.
  • the control identifier 1110 when the control identifier 1110 is included in the first control field, information about allocation information 1120 for the RU may be included in the second control field.
  • the second control field may include identification information 1130 of a receiving device that receives the PPDU of FIG. 11.
  • the identification information 1130 of the receiving device may indicate to which receiving device the data field 1140 corresponding to the second control field is allocated, and may be implemented as, for example, an AID.
  • allocation information for the RU may be omitted in the second control field according to a control identifier (eg, a 1-bit identifier). For example, when the control identifier is set to "1", the allocation information 1120 for the RU may be omitted in the second control field, and the identification information 1130 of the receiving device may be included. In addition, when the control identifier is set to "0", the second control field may include allocation information 1120 for the RU, and may also include identification information 1130 of the receiving device.
  • a control identifier eg, a 1-bit identifier
  • the allocation information 1120 for the RU of FIG. 11 may be included in a common field of the SIG-B illustrated in FIG. 8, and the identification information 1130 of FIG. 11 may be included in the SIG-B illustrated in FIG. 8. It may be included in the user-specific field of.
  • the common field of SIG-B may include common information such as RU signaling information and stream allocation related information for the user, and common to all users who receive the PPDU of FIG. 11. May contain information. If the above-mentioned allocation information 1120 for the RU is omitted, there is a technical effect that the overhead is reduced.
  • the above-described control identifier (eg, 1 bit identifier) may be omitted.
  • the operation may vary according to the first control field (eg, HE-SIG-A) SU / MU identification field. That is, when the SU / MU identification field included in the first control field indicates MU transmission, the control identifier is omitted and only an example of assigning 26-type RUs may be possible.
  • the left block of FIG. 12 indicates information corresponding to the first and / or second control field.
  • the left block of FIG. 12 corresponds to the second control field (ie, SIG-B)
  • the right block of FIG. 12 corresponds to the data field of the PPDU.
  • each control field and data field correspond to a 20 MHz band.
  • control identifier eg, 1-bit identifier
  • allocation information for the RU may be omitted.
  • a control identifier eg, 1 bit identifier
  • 242-RU or 242-type RU
  • control identifier is included in the front of the common field of the SIG-B.
  • the control identifier may be called “242 unit bitmap”.
  • the RU allocation information may be omitted according to the "242 unit bitmap" as in FIG. 11, and the effect of reducing overhead is also the same.
  • the “242 unit bitmap” can be set to “1”. Referring to FIG. 12B, if only 26-type RU is allocated in the 40MHz channel, the “242 unit bitmap” may be set to “00”. Referring to the sub-figure (c) of FIG. 12, when only 242-RU is allocated in all 40 MHz channels, the “242 unit bitmap” may be set to “11”. Since the last symbol of the SIG-B part must be aligned with the longest SIGB symbol of the 20 MHz channels, omitting RU allocation information in only one 20 MHz channel is less effective in reducing overhead. Accordingly, an example in which “242 unit bitmap” is set to “1” is possible when only 242-RU is allocated in all 20 MHz channels.
  • control identifier eg, 1-bit identifier
  • a first identifier indicating whether a 242-type RU is allocated to each 20MHz channel and a second identifier indicating whether a 484-RU (or another sized 242-type RU) is allocated to the corresponding 20MHz channel are proposed.
  • a first identifier 1310 is configured per 20 MHz channel. That is, four 1-bit identifiers indicating whether a 242-type RU is allocated to each 20MHz channel may be inserted. In this case, since the 484-RU may be allocated within the 80 MHz band, an additional identifier indicating whether a specific 20 MHz channel (ie, 242 chunk) is used for 242-RU or 484-RU, that is, the aforementioned
  • the second identifier 1320 may be further included. When both the first and second identifiers are used, a total of 8 bits of information may be used for the first / second identifiers in the 80 MHz band.
  • the first and second identifiers may also be indicated as “242 unit bitmap” and “484 unit assignment indication field”.
  • the first and second identifiers may be implemented as fields of two bits. For example, if the second identifier 1350 corresponding to the first channel and the second identifier 1360 corresponding to the second channel are set to “00”, this is not assigned 484-RU in the corresponding PPDU. For example, if the first and second identifiers are set to "1" and "0", it may be indicated that only 242-RU is allocated.
  • FIG. 13 is an example of the first identifier 1310 and the second identifier 1320 as shown. However, an example regarding a frequency mapping relationship between the second control field (ie, SIG-B) and the data field may be applied.
  • SIG-B second control field
  • the second control field (ie, SIG-B) may be configured separately for each 20MHz channel.
  • SIG-B the second control field
  • the present specification proposes an example of independently configuring the lower two 20 MHz channels 1330 and the upper two 20 MHz channels 1340.
  • SIG-B configuring the SIG-B corresponding to the upper or lower two 20 MHz channels, replicating the same, and using the same for the remaining two 20 MHz channels is proposed.
  • SIG-B is preferably configured according to the above-described replication method.
  • SIG-B included in the first and second channels is the third and fourth channels.
  • SIG-B included in the and the contents (contents) may be the same.
  • the first channel has the lowest frequency index and the second to fourth channels are located in increasing order.
  • SIG-B corresponding to the second channel first displays AID3 corresponding to STA3, and then displays AID corresponding to STA4.
  • the SIG-B corresponding to the second channel may allocate STA3 to a data field corresponding to the second channel and STA4 to a data field corresponding to the fourth channel. That is, the SIG-B corresponding to the second channel may first indicate STA identification information regarding the data field corresponding to the second channel, and then indicate STA identification information regarding the data field corresponding to the fourth channel. have.
  • the SIG-B corresponding to the first channel indicates a data field corresponding to the first channel, and indicates an STA (ie, STA 1) assigned to the data field corresponding to the first channel. And may indicate a data field corresponding to the third channel, and indicate an STA (ie, STA 2) allocated to the data field corresponding to the third channel. That is, the SIG-B included in the first channel may indicate STA identification information regarding the data field corresponding to the first channel and STA identification information regarding the data field corresponding to the third channel.
  • a first identifier 1410 is included at the beginning of a SIG-B field corresponding to each 20 MHz, followed by a second identifier 1420.
  • the first / second identifier of FIG. 14 may be used in the same manner as the first / second identifier of FIG. 13.
  • the example of FIG. 14 may have a predetermined mapping relationship between the SIG-B and the data field, similarly to the example of FIG. 13.
  • the SIG-B corresponding to the first channel is mapped to the data field corresponding to the first / second channel, and the SIG-B corresponding to the second channel is added. Mapped to the data field corresponding to the third / fourth channel.
  • a first identifier 1510 is included at the beginning of a SIG-B field corresponding to each 20 MHz, followed by a second identifier 1520.
  • the first / second identifier according to the example of FIG. 15 may correspond to the first / second identifier of FIGS. 13 and / or 14.
  • all or part of information of the SIG-B field corresponding to the first / second channel may be duplicated to the third / fourth channel. That is, as shown in FIG. 15, the SIG-B field corresponding to the first / second channel indicates ⁇ AID1, 2 ⁇ and ⁇ AID1, 3 ⁇ , and the SIG-B corresponding to the third / fourth channel. The field may also indicate ⁇ AID1, 2 ⁇ and ⁇ AID1, 3 ⁇ .
  • the second identifier 1550 corresponding to the first channel indicates "1"
  • the second identifier 1560 corresponding to the second channel indicates "0". This indicates that 484-RU is allocated for the first / second channel and 484-RU is not allocated for the third / fourth channel.
  • the first identifier 1510 is all set to 1, so that the data field of FIG. 15 is allocated 484-RU for the first / second channel, 242-RU for the third channel, 242-RU is also allocated for the fourth channel.
  • FIG. 15 Other features of the example of FIG. 15 are the same as those of FIGS. 13 to 14.
  • a first identifier 1610 is included at the beginning of a SIG-B field corresponding to each 20 MHz, followed by a second identifier 1620.
  • all or part of information of the SIG-B field corresponding to the first / second channel may be duplicated to the third / fourth channel. That is, as shown in FIG. 16, the SIG-B field corresponding to the first / second channel indicates ⁇ AID1, 2 ⁇ and ⁇ AID3, 2 ⁇ , and the SIG-B corresponding to the third / fourth channel. The field may also indicate ⁇ AID1, 2 ⁇ and ⁇ AID3, 2 ⁇ .
  • the second identifier 1650 corresponding to the first channel indicates “0”, and the second identifier 1660 corresponding to the second channel indicates “1”. This indicates that no 484-RU is allocated for the first / second channel and 484-RU is allocated for the third / fourth channel.
  • the first identifier 1610 is all set to 1, so that the data fields of FIG. 16 are allotted 242-RU for the first / second channel and 484- for the third / 4 channel. RU is allocated.
  • FIG. 16 Other features of the example of FIG. 16 are the same as those of FIGS. 13 to 15.
  • a first identifier 1710 is included in front of a SIG-B field corresponding to each 20 MHz, followed by a second identifier 1720.
  • all or part of information of the SIG-B field corresponding to the first / second channel may be duplicated to the third / fourth channel. That is, as shown in FIG. 17, the SIG-B field corresponding to the first / second channel indicates ⁇ AID1 ⁇ and ⁇ AID2 ⁇ , and the SIG-B field corresponding to the third / fourth channel is also ⁇ AID1. ⁇ And ⁇ AID2 ⁇ .
  • the second identifier 1750 corresponding to the first channel indicates “1”
  • the second identifier 1760 corresponding to the second channel indicates “1”. This indicates that 484-RU is allocated for the first / second channel and also 484-RU is allocated for the third / fourth channel.
  • FIG. 17 Other features of the example of FIG. 17 are the same as those of FIGS. 13 to 16.
  • a first identifier 1810 is included at the beginning of a SIG-B field corresponding to each 20 MHz, followed by a second identifier 1820.
  • all or part of information of the SIG-B field corresponding to the first / second channel may be duplicated to the third / fourth channel. That is, as shown in FIG. 18, the SIG-B field corresponding to the first / second channel indicates ⁇ AID1, 2 ⁇ and ⁇ AID1, 2 ⁇ , and the SIG-B corresponding to the third / fourth channel. The field may also indicate ⁇ AID1, 2 ⁇ and ⁇ AID1, 2 ⁇ .
  • the second identifier 1850 corresponding to the first channel indicates “1”
  • the second identifier 1860 corresponding to the second channel indicates “1”. This indicates that 484-RU is allocated for the first / second channel and also 484-RU is allocated for the third / fourth channel.
  • FIG. 18 Other features of the example of FIG. 18 are the same as those of FIGS. 13 to 17.
  • Fig. 19 is a diagram showing a relationship between SIG-A, SIG-B and data fields according to the present embodiment.
  • the example of FIG. 19 shows the above-mentioned content on one PPDU.
  • the PPDU 1901 of FIG. 19 may include all or part of the field illustrated in FIG. 7.
  • the first control field 1910, the second control field 1920 and 1930, and the data field 1940 may be included.
  • the first control field 1910 may correspond to the aforementioned SIG-A or HE-SIG A
  • the second control field 1920 may correspond to the aforementioned SIG-B or HE-SIG B.
  • the first control field 1910 may include the HE-SIG A 730 of FIG. 7 and the technical features illustrated in FIGS. 11 to 18.
  • the first control field 1910 may include control information for interpretation of the PPDU 1901.
  • the PPDU 1901 may include a subfield indicating the transmission frequency band to which the PPDU 1901 is transmitted (indicative of 20 MHz, 40 MHz, 80 MHz, 160 MHz, and the like).
  • the control identifier (eg, the first identifier and / or the second identifier) described with reference to FIGS. 11 to 18 may be included.
  • the first control field 1910 may include a 1-bit identifier indicating whether a single RU corresponding to the full bandwidth of the transmission frequency band is allocated.
  • the control identifier eg, 1-bit identifier
  • the 1-bit identifier has a technical effect that can be signaled for full-band multi-user full-width MU-MIMO (MIMO).
  • the first control field 1910 may be generated in a 20 MHz unit and then included in the PPDU 1901 in a form duplicated according to a transmission frequency band. That is, the first control field 1910 may be generated in units of 20 MHz and duplicated to fit the 80 MHz band.
  • the second control field may correspond to the HE-SIG B field including the common field and the user-specific field shown in FIG. 8. That is, the second control field may include the common field 1920 and the user-specific field 1930.
  • the common field 1920 of the SIG-B may include common information such as RU allocation information for the user. For example, RU allocation information in the form of a lookup-table including specific n-bit mapping information may be included.
  • the RU allocation information may indicate allocation or allocation information of the RU applied to the corresponding data field 1940. That is, as shown in Figures 4 to 6 may indicate a structure in which a plurality of RU is arranged. All STAs that have received the common field 1920 of the second control field may confirm to which RU the corresponding data field 1940 is configured.
  • the second control field generally includes allocation information for a resource unit (RU) through the common field 1920.
  • the control identifier eg, 1 bit identifier
  • allocation information for the RU is preferably omitted. That is, the common field 1920 may be omitted.
  • the common field 1920 can be omitted because it is not necessary to configure allocation information for the RU separately.
  • the control identifier eg, 1-bit identifier
  • the common field 1920 of the second control field is used for a resource unit (RU).
  • the control identifier (eg, 1-bit identifier) included in the first control field 1910 is set to “1”
  • the common field 1920 of the second control field includes a resource unit. May not include allocation information for
  • the user-specific field 1930 of the second field may include identification information (eg, AID) for the user STA, as shown in FIG. 8.
  • identification information eg, AID
  • the second control fields 1920 and 1930 are used for demodulation of the data field 1940.
  • the second control field and the data field 1940 may have a mapping relationship as shown in FIGS. 13 to 18.
  • the second control field may correspond to the first to fourth SIG-B channels. That is, it may be divided into four 20 MHz channels.
  • the contents of the second control fields 1921 and 1931 corresponding to the first SIG-B channel may be the same as the contents of the second control fields 1923 and 1933 corresponding to the third SIG-B channel.
  • part of the second control field may be duplicated in the PPDU 1901. Replication for the second control field may be variously implemented.
  • first, second, third, and fourth signal fields For convenience of description, four second control fields corresponding to the first to fourth SIG-B channels may be referred to as first, second, third, and fourth signal fields.
  • the second signal fields 1922 and 1932 may be duplicated to configure the fourth signal fields 1924 and 1934. That is, the contents of the second control fields 1922 and 1932 corresponding to the second SIG-B channel may be the same as the contents of the second control fields 1924 and 1934 corresponding to the fourth SIG-B channel. have.
  • the first signal fields 1921 and 1931 may correspond to the data field 1941 of the first data channel and the data field 1943 of the third data channel.
  • the second signal fields 1922 and 1932 may correspond to the data field 1942 of the second data channel and the data field 1944 of the fourth data channel.
  • the common field 1921 included in the first signal fields 1921 and 1931 may include allocation information about the RU applied to the data field 1941 of the first data channel and the data field 1943 of the third data channel. ) May indicate allocation information about the RU to be applied.
  • allocation information about the RU applied to the data field 1194 of the first data channel is first inserted in the form of one BCC block, and then the third data.
  • One BCC block for the data field 1943 of the channel is inserted.
  • the user specific field 1931 included in the first signal fields 1921 and 1931 may include identification information (for example, AID) and a third data channel of the STA allocated to the data field 1941 of the first data channel. May include identification information (eg, AID) of the STA allocated to the data field 1943 of the STA.
  • identification information e.g, AID
  • the two BCC blocks described above are inserted into the first signal fields 1921 and 1931, and then the BCC blocks for the STAs allocated to the data fields 1941 of the first data channel are inserted.
  • the BCC block for the STA allocated to the data field 1943 of the third data channel is inserted.
  • each SIG-B channel and data channel correspond to the four frequency bands described with reference to FIG. 7. That is, as described in the example of FIG. 7, each interface of the data channel and each interface of the SIG-B channel may not completely coincide. However, when the reference is made based on the corresponding 20 MHz frequency band, the interface corresponding to the first frequency band
  • the second control fields 1921 and 1931 correspond to two data fields 1941 and 1943 corresponding to the first and third frequency bands.
  • the second control fields 1922 and 1932 corresponding to the second frequency band correspond to two data fields 1942 and 1944 corresponding to the second / fourth frequency band.
  • 20 is a block diagram illustrating a wireless device to which the present embodiment can be applied.
  • the wireless device may be an AP 1900 or a non-AP station (STA) that may implement the above-described embodiment.
  • the wireless device may correspond to the above-described user or may correspond to a transmission device for transmitting a signal to the user.
  • the AP 2000 includes a processor 2010, a memory 2020, and an RF unit 2030.
  • the RF unit 2030 may be connected to the processor 2010 to transmit / receive a radio signal.
  • the processor 2010 may implement the functions, procedures, and / or methods proposed herein. For example, the processor 2010 may perform an operation according to the present embodiment described above. That is, the processor 2010 may perform an operation that may be performed by the AP during the operations disclosed in the embodiments of FIGS. 1 to 19.
  • the non-AP STA 2050 includes a processor 2060, a memory 2070, and a radio frequency unit 2080.
  • the RF unit 2080 may be connected to the processor 2060 to transmit / receive a radio signal.
  • the processor 2060 may implement the functions, processes, and / or methods proposed in this embodiment.
  • the processor 2060 may be implemented to perform the non-AP STA operation according to the present embodiment described above.
  • the processor may perform the operation of the non-AP STA in the embodiment of FIGS. 1 to 19.
  • the processors 2010 and 2060 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, data processing devices, and / or converters for interconverting baseband signals and wireless signals.
  • the memories 2020 and 2070 may include read-only memory (ROM), random access memory (RAM), flash memory, memory cards, storage media and / or other storage devices.
  • the RF unit 2030 and 2080 may include one or more antennas for transmitting and / or receiving a radio signal.
  • Modules may be stored in memories 2020 and 2070 and executed by processors 2010 and 2060.
  • the memories 2020 and 2070 may be inside or outside the processors 2010 and 2060, and may be connected to the processors 2010 and 2060 by various well-known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

다수의 RU를 지원하는 무선랜 시스템에서 PPDU에 사용되는 제어 필드에 관한 일례가 제안된다. PPDU의 제어 필드에는 추가적인 식별자가 포함될 수 있다. 제어 필드에 포함되는 식별자의 값은 송신 주파수 대역의 전 대역(full bandwidth)에 상응하는 RU가 하나만 배치되는 지 여부에 따라 결정되는 것이 바람직하다. 제어 필드에 포함되는 식별자 값에 따라 PPDU의 RU를 할당하는 정보가 포함될 지 여부가 결정될 수 있다.

Description

무선랜 시스템에서 제어 필드를 포함하는 제어 신호를 구성하는 방법 및 장치
본 명세서는 무선 통신에서 데이터를 송수신하는 기법에 관한 것으로, 보다 상세하게는, 무선 랜(Wireless LAN) 시스템에서 제어 필드를 포함하는 제어 신호를 구성하는 방법 및 장치에 관한 것이다.
차세대 WLAN(wireless local area network)를 위한 논의가 진행되고 있다. 차세대 WLAN에서는 1) 2.4GHz 및 5GHz 대역에서 IEEE(institute of electronic and electronics engineers) 802.11 PHY(physical) 계층과 MAC(medium access control) 계층의 향상, 2) 스펙트럼 효율성(spectrum efficiency)과 영역 쓰루풋(area through put)을 높이는 것, 3) 간섭 소스가 존재하는 환경, 밀집한 이종 네트워크(heterogeneous network) 환경 및 높은 사용자 부하가 존재하는 환경과 같은 실제 실내 환경 및 실외 환경에서 성능을 향상 시키는 것을 목표로 한다.
차세대 WLAN에서 주로 고려되는 환경은 AP(access point)와 STA(station)이 많은 밀집 환경이며, 이러한 밀집 환경에서 스펙트럼 효율(spectrum efficiency)과 공간 전송률(area throughput)에 대한 개선이 논의된다. 또한, 차세대 WLAN에서는 실내 환경뿐만 아니라, 기존 WLAN에서 많이 고려되지 않던 실외 환경에서의 실질적 성능 개선에 관심을 가진다.
구체적으로 차세대 WLAN에서는 무선 오피스(wireless office), 스마트 홈(smart home), 스타디움(Stadium), 핫스팟(Hotspot), 빌딩/아파트(building/apartment)와 같은 시나리오에 관심이 크며, 해당 시나리오 기반으로 AP와 STA이 많은 밀집 환경에서의 시스템 성능 향상에 대한 논의가 진행되고 있다.
또한, 차세대 WLAN에서는 하나의 BSS(basic service set)에서의 단일 링크 성능 향상보다는, OBSS(overlapping basic service set) 환경에서의 시스템 성능 향상 및 실외 환경 성능 개선, 그리고 셀룰러 오프로딩 등에 대한 논의가 활발할 것으로 예상된다. 이러한 차세대 WLAN의 방향성은 차세대 WLAN이 점점 이동 통신과 유사한 기술 범위를 갖게 됨을 의미한다. 최근 스몰셀 및 D2D(Direct-to-Direct) 통신 영역에서 이동 통신과 WLAN 기술이 함께 논의되고 있는 상황을 고려해 볼 때, 차세대 WLAN과 이동 통신의 기술적 및 사업적 융합은 더욱 활발해질 것으로 예측된다.
본 명세서는 무선랜 시스템을 위한 PPDU의 제어 필드를 구성하는 방법을 제안한다.
본 명세서는 자원할당에 관한 개선된 성능을 발휘하는 PPDU의 제어 필드를 제안한다.
본 명세서의 일례에 따른 방법은, 기 설정된 주파수 대역에 상응하는 RU를 사용하는 무선랜 시스템에서 사용된다. PPDU의 다수의 필드는 RU에 따라 적어도 하나의 수신 스테이션이나 사용자 스테이션에 전달된다.
본 명세서의 일례에 따른 방법은, 제1 제어 필드, 제2 제어 필드 및 데이터 필드를 포함하는, 복수의 수신 장치를 위한 PPDU를 구성하는 단계; 및 상기 PPDU를 송신 주파수 대역을 통해 복수의 수신 장치로 송신하는 단계를 포함한다.
상기 상기 제1 제어 필드는 상기 PPDU를 해석(interpret)하기 위해 요구되는 제어 정보를 포함할 수 있다.
상기 제1 제어 필드는 상기 송신 주파수 대역의 전 대역(full bandwidth)에 상응하는 단일의 RU가 할당되는지 여부를 지시하는 제어 식별자를 포함할 수 있다.
상기 제2 제어 필드는 상기 복수의 수신 장치에 대한 식별 정보를 포함할 수 있다.
상기 제2 제어 필드는 상기 RU(resource unit)를 위한 할당 정보를 포함할 수 있지만, 만약 상기 제어 식별자가 상기 전 대역(full bandwidth)에 상응하는 단일의 RU가 할당되었음을 지시하는 경우, 상기 제2 제어 필드는 상기 RU(resource unit)를 위한 할당 정보를 포함하지 않을 수 있다.
상기 방법은 PPDU를 송신하는 송신 장치나 해당 PPDU를 구성하는 수신 장치를 통해서 구현될 수 있다.
본 명세서에 따른 일례는, 새롭게 제안되는 제어 필드를 통해 RU에 대한 할당 정보를 효율적으로 전달하는 일례를 제안한다.
본 명세서에 따른 일례는, 주파수 대역을 고려하여 설계된 제어 필드를 통해 개선된 성능을 달성하는 일례를 제안한다.
도 1은 무선랜(wireless local area network, WLAN)의 구조를 나타낸 개념도이다.
도 2는 IEEE 규격에서 사용되는 PPDU의 일례를 도시한 도면이다.
도 3은 HE PPDU의 일례를 도시한 도면이다.
도 4는 20MHz 대역 상에서 사용되는 자원유닛(RU)의 배치를 나타내는 도면이다.
도 5는 40MHz 대역 상에서 사용되는 자원유닛(RU)의 배치를 나타내는 도면이다.
도 6은 80MHz 대역 상에서 사용되는 자원유닛(RU)의 배치를 나타내는 도면이다.
도 7은 HE-PPDU의 또 다른 일례를 나타낸 도면이다.
도 8은 본 실시예에 따른 HE-SIG-B의 일례를 나타내는 블록도이다.
도 9는 트리거 프레임의 일례를 나타낸다.
도 10은 개별 사용자 정보(per user information) 필드에 포함되는 서브 필드의 일례를 나타낸다
도 11은 본 실시예에 따라 구성된 제어 필드 및 데이터 필드의 일례를 나타내는 블록도이다.
도 12는 40MHz 송신을 위한 본 실시예의 일례를 나타낸다.
도 13은 본 명세서가 80MHz 송신에 적용된 일례를 나타낸다.
도 14는 본 명세서에 따라 제어 신호를 변형한 일례를 나타낸다.
도 15는 본 명세서에 따라 제어 신호를 변형한 추가적인 일례를 나타낸다.
도 16은 본 명세서에 따라 제어 신호 및 주파수 매핑 관계를 변형한 일례를 나타낸다.
도 17은 본 명세서에 따라 제어 신호 및 주파수 매핑 관계를 변형한 일례를 나타낸다.
도 18은 본 명세서에 따라 제어 신호 및 주파수 매핑 관계의 추가적인 일례를 나타낸다.
도 19는 본 실시예에 따른 SIG-A, SIG-B 및 데이터 필드의 관계를 나타내는 도면이다.
도 20은 본 실시예가 적용될 수 있는 무선 장치를 나타내는 블록도이다.
도 1은 무선랜(wireless local area network, WLAN)의 구조를 나타낸 개념도이다.
도 1의 상단은 IEEE(institute of electrical and electronic engineers) 802.11의 인프라스트럭쳐 BSS(basic service set)의 구조를 나타낸다.
도 1의 상단을 참조하면, 무선랜 시스템은 하나 또는 그 이상의 인프라스트럭쳐 BSS(100, 105)(이하, BSS)를 포함할 수 있다. BSS(100, 105)는 성공적으로 동기화를 이루어서 서로 통신할 수 있는 AP(access point, 125) 및 STA1(Station, 100-1)과 같은 AP와 STA의 집합으로서, 특정 영역을 가리키는 개념은 아니다. BSS(105)는 하나의 AP(130)에 하나 이상의 결합 가능한 STA(105-1, 105-2)을 포함할 수도 있다.
BSS는 적어도 하나의 STA, 분산 서비스(distribution Service)를 제공하는 AP(125, 130) 및 다수의 AP를 연결시키는 분산 시스템(distribution System, DS, 110)을 포함할 수 있다.
분산 시스템(110)는 여러 BSS(100, 105)를 연결하여 확장된 서비스 셋인 ESS(extended service set, 140)를 구현할 수 있다. ESS(140)는 하나 또는 여러 개의 AP(125, 230)가 분산 시스템(110)을 통해 연결되어 이루어진 하나의 네트워크를 지시하는 용어로 사용될 수 있다. 하나의 ESS(140)에 포함되는 AP는 동일한 SSID(service set identification)를 가질 수 있다.
포털(portal, 120)은 무선랜 네트워크(IEEE 802.11)와 다른 네트워크(예를 들어, 802.X)와의 연결을 수행하는 브리지 역할을 수행할 수 있다.
도 1의 상단과 같은 BSS에서는 AP(125, 130) 사이의 네트워크 및 AP(125, 130)와 STA(100-1, 105-1, 105-2) 사이의 네트워크가 구현될 수 있다. 하지만, AP(125, 130)가 없이 STA 사이에서도 네트워크를 설정하여 통신을 수행하는 것도 가능할 수 있다. AP(125, 130)가 없이 STA 사이에서도 네트워크를 설정하여 통신을 수행하는 네트워크를 애드-혹 네트워크(Ad-Hoc network) 또는 독립 BSS(independent basic service set, IBSS)라고 정의한다.
도 1의 하단은 IBSS를 나타낸 개념도이다.
도 1의 하단을 참조하면, IBSS는 애드-혹 모드로 동작하는 BSS이다. IBSS는 AP를 포함하지 않기 때문에 중앙에서 관리 기능을 수행하는 개체(centralized management entity)가 없다. 즉, IBSS에서 STA(150-1, 150-2, 150-3, 155-4, 155-5)들은 분산된 방식(distributed manner)으로 관리된다. IBSS에서는 모든 STA(150-1, 150-2, 150-3, 155-4, 155-5)이 이동 STA으로 이루어질 수 있으며, 분산 시스템으로의 접속이 허용되지 않아서 자기 완비적 네트워크(self-contained network)를 이룬다.
STA은 IEEE(Institute of Electrical and Electronics Engineers) 802.11 표준의 규정을 따르는 매체 접속 제어(medium access control, MAC)와 무선 매체에 대한 물리 계층(Physical Layer) 인터페이스를 포함하는 임의의 기능 매체로서, 광의로는 AP와 비-AP STA(Non-AP Station)을 모두 포함하는 의미로 사용될 수 있다.
STA은 이동 단말(mobile terminal), 무선 기기(wireless device), 무선 송수신 유닛(Wireless Transmit/Receive Unit; WTRU), 사용자 장비(User Equipment; UE), 이동국(Mobile Station; MS), 이동 가입자 유닛(Mobile Subscriber Unit) 또는 단순히 유저(user) 등의 다양한 명칭으로도 불릴 수 있다.
도 2는 IEEE 규격에서 사용되는 PPDU의 일례를 도시한 도면이다.
도시된 바와 같이, IEEE a/g/n/ac 등의 규격에서는 다양한 형태의 PPDU(PHY protocol data unit)가 사용되었다. 구체적으로, LTF, STF 필드는 트레이닝 신호를 포함하였고, SIG-A, SIG-B 에는 수신 스테이션을 위한 제어정보가 포함되었고, 데이터 필드에는 PSDU에 상응하는 사용자 데이터가 포함되었다.
본 실시예는 PPDU의 데이터 필드를 위해 사용되는 시그널(또는 제어정보 필드)에 관한 개선된 기법을 제안한다. 본 실시예에서 제안하는 시그널은 IEEE 802.11ax 규격에 따른 HE PPDU(high efficiency PPDU) 상에 적용될 수 있다. 즉, 본 실시예에서 개선하는 시그널은 HE PPDU에 포함되는 HE-SIG-A 및/또는 HE-SIG-B일 수 있다. HE-SIG-A 및 HE-SIG-B 각각은 SIG-A, SIG-B로도 표시될 수 있다. 그러나 본 실시예가 제안하는 개선된 시그널이 반드시 HE-SIG-A 및/또는 HE-SIG-B 규격에 제한되는 것은 아니며, 사용자 데이터를 전달하는 무선통신시스템에서 제어정보를 포함하는 다양한 명칭의 제어/데이터 필드에 적용 가능하다.
도 3은 HE PPDU의 일례를 도시한 도면이다.
본 실시예에서 제안하는 제어정보 필드는 도 3에 도시된 바와 같은 HE PPDU 내에 포함되는 HE-SIG-B일 수 있다. 도 3에 따른 HE PPDU는 다중 사용자를 위한 PPDU의 일례로, HE-SIG-B는 다중 사용자를 위한 경우에만 포함되고, 단일 사용자를 위한 PPDU에는 해당 HE-SIG-B가 생략될 수 있다.
도시된 바와 같이, 다중 사용자(Multiple User; MU)를 위한 HE-PPDU는 L-STF(legacy-short training field), L-LTF(legacy-long training field), L-SIG(legacy-signal), HE-SIG-A(high efficiency-signal A), HE-SIG-B(high efficiency-signal-B), HE-STF(high efficiency-short training field), HE-LTF(high efficiency-long training field), 데이터 필드(또는 MAC 페이로드) 및 PE(Packet Extension) 필드를 포함할 수 있다. 각각의 필드는 도시된 시간 구간(즉, 4 또는 8 ㎲ 등) 동안에 전송될 수 있다.
도 3의 각 필드에 대한 보다 상세한 설명은 후술한다.
도 4는 20MHz 대역 상에서 사용되는 자원유닛(RU)의 배치를 나타내는 도면이다.
도 4에 도시된 바와 같이, 서로 다른 개수의 톤(즉, 서브캐리어)에 대응되는 자원유닛(Resource Unit; RU)이 사용되어 HE-PPDU의 일부 필드를 구성할 수 있다. 예를 들어, HE-STF, HE-LTF, 데이터 필드에 대해 도시된 RU 단위로 자원이 할당될 수 있다.
도 4의 최상단에 도시된 바와 같이, 26-유닛(즉, 26개의 톤에 상응하는 유닛)이 배치될 수 있다. 20MHz 대역의 최좌측(leftmost) 대역에는 6개의 톤이 가드(Guard) 대역으로 사용되고, 20MHz 대역의 최우측(rightmost) 대역에는 5개의 톤이 가드 대역으로 사용될 수 있다. 또한 중심대역, 즉 DC 대역에는 7개의 DC 톤이 삽입되고, DC 대역의 좌우측으로 각 13개의 톤에 상응하는 26-유닛이 존재할 수 있다. 또한, 기타 대역에는 26-유닛, 52-유닛, 106-유닛이 할당될 수 있다. 각 유닛은 수신 스테이션, 즉 사용자를 위해 할당될 수 있다.
한편, 도 4의 RU 배치는 다수의 사용자(MU)를 위한 상황뿐만 아니라, 단일 사용자(SU)를 위한 상황에서도 활용되며, 이 경우에는 도 4의 최하단에 도시된 바와 같이 1개의 242-유닛을 사용하는 것이 가능하며 이 경우에는 3개의 DC 톤이 삽입될 수 있다.
도 4의 일례에서는 다양한 크기의 RU, 즉, 26-RU, 52-RU, 106-RU, 242-RU 등이 제안되었는바, 이러한 RU의 구체적인 크기는 확장 또는 증가할 수 있기 때문에, 본 실시예는 각 RU의 구체적인 크기(즉, 상응하는 톤의 개수)에 제한되지 않는다.
도 5는 40MHz 대역 상에서 사용되는 자원유닛(RU)의 배치를 나타내는 도면이다.
도 4의 일례에서 다양한 크기의 RU가 사용된 것과 마찬가지로, 도 5의 일례 역시 26-RU, 52-RU, 106-RU, 242-RU, 484-RU 등이 사용될 수 있다. 또한, 중심주파수에는 5개의 DC 톤이 삽입될 수 있고, 40MHz 대역의 최좌측(leftmost) 대역에는 12개의 톤이 가드(Guard) 대역으로 사용되고, 40MHz 대역의 최우측(rightmost) 대역에는 11개의 톤이 가드 대역으로 사용될 수 있다.
또한, 도시된 바와 같이, 단일 사용자를 위해 사용되는 경우, 484-RU가 사용될 수 있다. 한편, RU의 구체적인 개수가 변경될 수 있다는 점은 도 4의 일례와 동일하다.
도 6은 80MHz 대역 상에서 사용되는 자원유닛(RU)의 배치를 나타내는 도면이다.
도 4 및 도 5의 일례에서 다양한 크기의 RU가 사용된 것과 마찬가지로, 도 6의 일례 역시 26-RU, 52-RU, 106-RU, 242-RU, 484-RU, 996-RU 등이 사용될 수 있다. 또한, 중심주파수에는 7개의 DC 톤이 삽입될 수 있고, 80MHz 대역의 최좌측(leftmost) 대역에는 12개의 톤이 가드(Guard) 대역으로 사용되고, 80MHz 대역의 최우측(rightmost) 대역에는 11개의 톤이 가드 대역으로 사용될 수 있다. 또한 DC 대역 좌우에 위치하는 각각 13개의 톤을 사용한 26-RU를 사용할 수 있다.
또한, 도시된 바와 같이, 단일 사용자를 위해 사용되는 경우, 996-RU가 사용될 수 있으며 이 경우에는 5개의 DC 톤이 삽입될 수 있다.
한편, RU의 구체적인 개수가 변경될 수 있다는 점은 도 4 및 도 5의 일례와 동일하다.
도 7은 HE-PPDU의 또 다른 일례를 나타낸 도면이다.
도시된 도 7의 블록은 도 3의 HE-PPDU 블록을 주파수 측면에서 설명하는 또 다른 일례이다.
도시된 L-STF(700)는 짧은 트레이닝 OFDM 심볼(short training orthogonal frequency division multiplexing symbol)을 포함할 수 있다. L-STF(700)는 프레임 탐지(frame detection), AGC(automatic gain control), 다이버시티 탐지(diversity detection), 대략적인 주파수/시간 동기화(coarse frequency/time synchronization)을 위해 사용될 수 있다.
L-LTF(710)는 긴 트레이닝 OFDM 심볼(long training orthogonal frequency division multiplexing symbol)을 포함할 수 있다. L-LTF(710)는 정밀한 주파수/시간 동기화(fine frequency/time synchronization) 및 채널 예측을 위해 사용될 수 있다.
L-SIG(720)는 제어 정보를 전송하기 위해 사용될 수 있다. L-SIG(720)는 데이터 전송률(rate), 데이터 길이(length)에 대한 정보를 포함할 수 있다. 또한, L-SIG(720)은 반복되어 전송될 수 있다. 즉, L-SIG(720)가 반복되는 포맷(예를 들어, R-LSIG라 칭할 수 있음)으로 구성될 수 있다.
HE-SIG-A(730)는 수신 스테이션에 공통되는 제어정보를 포함할 수 있다.
구체적으로, HE-SIG-A(730)는, 1) DL/UL 지시자, 2) BSS의 식별자인 BSS 칼라(color) 필드, 3) 현행 TXOP 구간의 잔여시간을 지시하는 필드, 4) 20, 40, 80, 160, 80+80 MHz 여부를 지시하는 대역폭 필드, 5) HE-SIG-B에 적용되는 MCS 기법을 지시하는 필드, 6) HE-SIB-B가 MCS 를 위해 듀얼 서브캐리어 모듈레이션(dual subcarrier modulation) 기법으로 모듈레이션되는지에 대한 지시 필드, 7) HE-SIG-B를 위해 사용되는 심볼의 개수를 지시하는 필드, 8) HE-SIG-B가 전 대역에 걸쳐 생성되는지 여부를 지시하는 필드, 9) HE-LTF의 심볼의 개수를 지시하는 필드, 10) HE-LTF의 길이 및 CP 길이를 지시하는 필드, 11) LDPC 코딩을 위해 추가의 OFDM 심볼이 존재하는지를 지시하는 필드, 12) PE(Packet Extension)에 관한 제어정보를 지시하는 필드, 13) HE-SIG-A의 CRC 필드에 대한 정보를 지시하는 필드 등에 관한 정보를 포함할 수 있다. 이러한 HE-SIG-A의 구체적인 필드는 추가되거나 일부가 생략될 수 있다. 또한, HE-SIG-A가 다중사용자(MU) 환경이 아닌 기타 환경에서는 일부 필드가 추가되거나 생략될 수 있다.
HE-SIG-B(740)는 상술한 바와 같이 다중 사용자(MU)를 위한 PPDU인 경우에만 포함될 수 있다. 기본적으로, HE-SIG-A(750) 또는 HE-SIG-B(760)는 적어도 하나의 수신 STA에 대한 자원 할당 정보(또는 가상 자원 할당 정보)를 포함할 수 있다.
도 8은 본 실시예에 따른 HE-SIG-B의 일례를 나타내는 블록도이다.
도시된 바와 같이, HE-SIG-B 필드는 맨 앞부분에 공통 필드를 포함하고, 해당 공통 필드는 그 뒤에 따라오는 필드와 분리하여 인코딩하는 것이 가능하다. 즉, 도 8에 도시된 바와 같이, HE-SIG-B 필드는 공통 제어정보를 포함하는 공통 필드와, 사용자-특정(user-specific) 제어정보를 포함하는 사용자-특정 필드를 포함할 수 있다. 이 경우, 공통 필드는 대응되는 CRC 필드 등을 포함하고 하나의 BCC 블록으로 코딩될 수 있다. 이후에 이어지는 사용자-특정 필드는, 도시된 바와 같이 두 사용자(2 users)를 위한 "사용자-특징 필드" 및 그에 대응되는 CRC 필드 등을 포함하여 하나의 BCC 블록으로 코딩될 수 있다.
MU PPDU 상에서 HE-SIG-B(740)의 이전 필드는 듀플리케이트된 형태로 전송될 수 있다. HE-SIG-B(740)의 경우, 일부의 주파수 대역(예를 들어, 제4 주파수 대역)에서 전송되는 HE-SIG-B(740)은, 해당 주파수 대역(즉, 제4 주파수 대역)의 데이터 필드 및 해당 주파수 대역을 제외한 다른 주파수 대역(예를 들어, 제2 주파수 대역)의 데이터 필드를 위한 제어정보도 포함할 수 있다. 또한, 특정 주파수 대역(예를 들어, 제2 주파수 대역)의 HE-SIG-B(740)은 다른 주파수 대역(예를 들어, 제4 주파수 대역)의 HE-SIG-B(740)을 듀플리케이트한 포맷일 수 있다. 또는 HE-SIG-B(740)는 전체 전송 자원 상에서 인코딩된 형태로 전송될 수 있다. HE-SIG-B(740) 이후의 필드는 PPDU를 수신하는 수신 STA 각각을 위한 개별 정보를 포함할 수 있다.
HE-STF(750)는 MIMO(multiple input multiple output) 환경 또는 OFDMA 환경에서 자동 이득 제어 추정(automatic gain control estimation)을 향상시키기 위하여 사용될 수 있다.
HE-LTF(760)는 MIMO 환경 또는 OFDMA 환경에서 채널을 추정하기 위하여 사용될 수 있다.
HE-STF(750) 및 HE-STF(750) 이후의 필드에 적용되는 FFT/IFFT의 크기와 HE-STF(750) 이전의 필드에 적용되는 FFT/IFFT의 크기는 서로 다를 수 있다. 예를 들어, HE-STF(750) 및 HE-STF(750) 이후의 필드에 적용되는 FFT/IFFT의 크기는 HE-STF(750) 이전의 필드에 적용되는 IFFT의 크기보다 4배 클 수 있다.
예를 들어, 도 7의 PPDU 상의 L-STF(700), L-LTF(710), L-SIG(720), HE-SIG-A(730), HE-SIG-B(740) 중 적어도 하나의 필드를 제1 필드라 칭하는 경우, 데이터 필드(770), HE-STF(750), HE-LTF(760) 중 적어도 하나를 제2 필드라 칭할 수 있다. 상기 제1 필드는 종래(legacy) 시스템에 관련된 필드를 포함할 수 있고, 상기 제2 필드는 HE 시스템에 관련된 필드를 포함할 수 있다. 이 경우, FFT(fast Fourier transform) 사이즈/IFFT(inverse fast Fourier transform) 사이즈는 기존의 무선랜 시스템에서 사용되던 FFT/IFFT 사이즈의 N배(N은 자연수, 예를 들어, N=1, 2, 4)로 정의될 수 있다. 즉, HE PPDU의 제1 필드에 비해 HE PPDU의 제2 필드에 N(=4)배 사이즈의 FFT/IFFT가 적용될 수 있다. 예를 들어, 20MHz의 대역폭에 대하여 256FFT/IFFT가 적용되고, 40MHz의 대역폭에 대하여 512FFT/IFFT가 적용되고, 80MHz의 대역폭에 대하여 1024FFT/IFFT가 적용되고, 연속 160MHz 또는 불연속 160MHz의 대역폭에 대하여 2048FFT/IFFT가 적용될 수 있다.
달리 표현하면, 서브캐리어 공간/스페이싱(subcarrier spacing)은 기존의 무선랜 시스템에서 사용되던 서브캐리어 공간의 1/N배(N은 자연수, 예를 들어, N=4일 경우, 78.125kHz)의 크기일 수 있다. 즉, HE PPDU의 제1 필드는 종래의 서브캐리어 스페이싱인 312.5kHz 크기의 서브캐리어 스페이싱이 적용될 수 있고, HE PPDU의 제2 필드는 78.125kHz 크기의 서브캐리어 공간이 적용될 수 있다.
또는, 상기 제1 필드의 각 심볼에 적용되는 IDFT/DFT 구간(IDFT/DFT period)은 상기 제2 필드의 각 데이터 심볼에 적용되는 IDFT/DFT 구간에 비해 N(=4)배 짧다고 표현할 수 있다. 즉, HE PPDU의 제1 필드의 각 심볼에 대해 적용되는 IDFT/DFT 길이는 3.2μs이고, HE PPDU의 제2 필드의 각 심볼에 대해 적용되는 IDFT/DFT 길이는 3.2μs *4(= 12.8μs)로 표현할 수 있다. OFDM 심볼의 길이는 IDFT/DFT 길이에 GI(guard interval)의 길이를 더한 값일 수 있다. GI의 길이는 0.4μs, 0.8μs, 1.6μs, 2.4μs, 3.2μs와 같은 다양한 값일 수 있다.
설명의 편의상, 도 7에서는 제1 필드가 사용하는 주파수 대역과 제2 필드가 사용하는 주파수 대역은 정확히 일치하는 것이 표현되어 있지만, 실제로는 서로 완전히 일치하지는 않을 수 있다. 예를 들어, 제1 주파수 대역에 상응하는 제1필드(L-STF, L-LTF, L-SIG, HE-SIG-A, HE-SIG-B)의 주요 대역이 제2 필드(HE-STF, HE-LTF, Data)의 주요 대역과 동일하지만, 각 주파수 대역에서는 그 경계면이 불일치할 수 있다. 도 4 내지 도 6에 도시된 바와 같이 RU를 배치하는 과정에서 다수의 널 서브캐리어, DC톤, 가드 톤 등이 삽입되므로, 정확히 경계면을 맞추는 것이 어려울 수 있기 때문이다.
사용자, 즉 수신스테이션은 HE-SIG-A(730)를 수신하고, HE-SIG-A(730)를 기반으로 하향링크 PPDU의 수신을 지시 받을 수 있다. 이러한 경우, STA은 HE-STF(750) 및 HE-STF(750) 이후 필드부터 변경된 FFT 사이즈를 기반으로 디코딩을 수행할 수 있다. 반대로 STA이 HE-SIG-A(730)를 기반으로 하향링크 PPDU의 수신을 지시받지 못한 경우, STA은 디코딩을 중단하고 NAV(network allocation vector) 설정을 할 수 있다. HE-STF(750)의 CP(cyclic prefix)는 다른 필드의 CP보다 큰 크기를 가질 수 있고, 이러한 CP 구간 동안 STA은 FFT 사이즈를 변화시켜 하향링크 PPDU에 대한 디코딩을 수행할 수 있다.
이하, 본 실시예에서는 AP에서 STA으로 전송되는 데이터(또는 프레임)는 하향링크 데이터(또는 하향링크 프레임), STA에서 AP로 전송되는 데이터(또는 프레임)는 상향링크 데이터(또는 상향링크 프레임)라는 용어로 표현될 수 있다. 또한, AP에서 STA으로의 전송은 하향링크 전송, STA에서 AP로의 전송은 상향링크 전송이라는 용어로 표현할 수 있다.
또한, 햐향링크 전송을 통해 전송되는 PPDU(PHY protocol data unit), 프레임 및 데이터 각각은 하향링크 PPDU, 하향링크 프레임 및 하향링크 데이터라는 용어로 표현될 수 있다. PPDU는 PPDU 헤더와 PSDU(physical layer service data unit)(또는 MPDU(MAC protocol data unit))를 포함하는 데이터 단위일 수 있다. PPDU 헤더는 PHY 헤더와 PHY 프리앰블을 포함할 수 있고, PSDU(또는 MPDU)는 프레임(또는 MAC 계층의 정보 단위)을 포함하거나 프레임을 지시하는 데이터 단위일 수 있다. PHY 헤더는 다른 용어로 PLCP(physical layer convergence protocol) 헤더, PHY 프리앰블은 다른 용어로 PLCP 프리앰블로 표현될 수도 있다.
또한, 상향링크 전송을 통해 전송되는 PPDU, 프레임 및 데이터 각각은 상향링크 PPDU, 상향링크 프레임 및 상향링크 데이터라는 용어로 표현될 수 있다.
본 실시예가 적용되는 무선랜 시스템에서는 SU(single)-OFDM(orthogonal frequency division multiplexing) 전송을 기반으로 전체 대역폭이 하나의 STA으로의 하향링크 전송 및 하나의 STA의 상향링크 전송을 위해 사용되는 것이 가능하다. 또한, 본 실시예가 적용되는 무선랜 시스템에서 AP는 MU MIMO(multiple input multiple output)를 기반으로 DL(downlink) MU(multi-user) 전송을 수행할 수 있고, 이러한 전송은 DL MU MIMO 전송이라는 용어로 표현될 수 있다.
또한, 본 실시예에 따른 무선랜 시스템에서는 OFDMA(orthogonal frequency division multiple access) 기반의 전송 방법이 상향링크 전송 및/또는 하향링크 전송을 위해 지원되는 것이 바람직하다. 즉, 사용자에게 서로 다른 주파수 자원에 해당하는 데이터 유닛(예를 들어, RU)을 할당하여 상향링크/하향링크 통신을 수행할 수 있다. 구체적으로 본 실시예에 따른 무선랜 시스템에서는 AP가 OFDMA를 기반으로 DL MU 전송을 수행할 수 있고, 이러한 전송은 DL MU OFDMA 전송이라는 용어로 표현될 수 있다. DL MU OFDMA 전송이 수행되는 경우, AP는 중첩된 시간 자원 상에서 복수의 주파수 자원 각각을 통해 복수의 STA 각각으로 하향링크 데이터(또는 하향링크 프레임, 하향링크 PPDU)를 전송할 수 있다. 복수의 주파수 자원은 복수의 서브밴드(또는 서브채널) 또는 복수의 RU(resource unit)일 수 있다. DL MU OFDMA 전송은 DL MU MIMO 전송과 함께 사용될 수 있다. 예를 들어, DL MU OFDMA 전송을 위해 할당된 특정 서브 밴드(또는 서브 채널) 상에서 복수의 시공간 스트림(space-time stream)(또는 공간적 스트림(spatial stream))을 기반으로 한 DL MU MIMO 전송이 수행될 수 있다.
또한, 본 실시예에 따른 무선랜 시스템에서는 복수의 STA이 동일한 시간 자원 상에서 AP로 데이터를 전송하는 것을 UL MU 전송(uplink multi-user transmission)이 지원될 수 있다. 복수의 STA 각각에 의한 중첩된 시간 자원 상에서의 상향링크 전송은 주파수 도메인(frequency domain) 또는 공간 도메인(spatial domain) 상에서 수행될 수 있다.
복수의 STA 각각에 의한 상향링크 전송이 주파수 도메인 상에서 수행되는 경우, OFDMA를 기반으로 복수의 STA 각각에 대해 서로 다른 주파수 자원이 상향링크 전송 자원으로 할당될 수 있다. 서로 다른 주파수 자원은 서로 다른 서브밴드(또는 서브채널) 또는 서로 다른 RU(resource unit))일 수 있다. 복수의 STA 각각은 할당된 서로 다른 주파수 자원을 통해 AP로 상향링크 데이터를 전송할 수 있다. 이러한 서로 다른 주파수 자원을 통한 전송 방법은 UL MU OFDMA 전송 방법이라는 용어로 표현될 수도 있다.
복수의 STA 각각에 의한 상향링크 전송이 공간 도메인 상에서 수행되는 경우, 복수의 STA 각각에 대해 서로 다른 시공간 스트림(또는 공간적 스트림)이 할당되고 복수의 STA 각각이 서로 다른 시공간 스트림을 통해 상향링크 데이터를 AP로 전송할 수 있다. 이러한 서로 다른 공간적 스트림을 통한 전송 방법은 UL MU MIMO 전송 방법이라는 용어로 표현될 수도 있다.
UL MU OFDMA 전송과 UL MU MIMO 전송은 함께 수행될 수 있다. 예를 들어, UL MU OFDMA 전송을 위해 할당된 특정 서브 밴드(또는 서브 채널) 상에서 복수의 시공간 스트림(또는 공간적 스트림)을 기반으로 한 UL MU MIMO 전송이 수행될 수 있다.
MU OFDMA 전송을 지원하지 않았던 종래의 무선랜 시스템에서 하나의 단말에게 넓은 대역폭(wider bandwidth)(예를 들어, 20MHz 초과 대역폭)을 할당하기 위해 멀티 채널 할당 방법이 사용되었다. 멀티 채널은 하나의 채널 단위를 20MHz라고 할 경우, 복수개의 20MHz 채널을 포함할 수 있다. 멀티 채널 할당 방법에서는 단말에게 넓은 대역폭을 할당하기 위해 프라이머리 채널 규칙(primary channel rule)이 사용되었다. 프라이머리 채널 규칙이 사용되는 경우, 단말로 넓은 대역폭을 할당하기 위한 제약이 존재한다. 구체적으로, 프라이머리 채널 룰에 따르면, 프라이머리 채널에 인접한 세컨더리 채널(secondary channel)이 OBSS(overlapped BSS)에서 사용되어 ‘비지(busy)’ 한 경우, STA은 프라이머리 채널을 제외한 나머지 채널을 사용할 수 없다. 따라서, STA은 프라이머리 채널로만 프레임을 전송할 수 있어 멀티 채널을 통한 프레임의 전송에 대한 제약을 받는다. 즉, 기존의 무선랜 시스템에서 멀티 채널 할당을 위해 사용되던 프라이머리 채널 룰은 OBSS가 적지 않은 현재 무선랜 환경에서 넓은 대역폭을 운용하여 높은 처리량을 얻고자 함에 있어 큰 제약이 될 수 있다.
이러한 문제점을 해결하고자 본 실시예에서는 OFDMA 기술을 지원하는 무선랜 시스템이 개시된다. 즉, 하향링크 및 상향링크 중 적어도 하나에 대해 상술한 OFDMA 기술이 적용 가능하다. 또한 하향링크 및 상향링크 중 적어도 하나에 대해 상술한 MU-MIMO이 기법이 추가적으로 적용 가능하다. OFDMA 기술이 사용되는 경우, 프라이머리 채널 룰에 의한 제한 없이 멀티 채널을 하나의 단말이 아닌 다수의 단말이 동시에 사용할 수 있다. 따라서, 넓은 대역폭 운용이 가능하여 무선 자원의 운용의 효율성이 향상될 수 있다.
상술한 바와 같이, 복수의 STA(예를 들어, non-AP STA) 각각에 의한 상향링크 전송이 주파수 도메인 상에서 수행되는 경우, AP는 OFDMA를 기반으로 복수의 STA 각각에 대해 서로 다른 주파수 자원이 상향링크 전송 자원으로 할당될 수 있다. 또한, 상술한 바와 같이, 서로 다른 주파수 자원은 서로 다른 서브밴드(또는 서브채널) 또는 서로 다른 RU(resource unit))일 수 있다.
복수의 STA 각각에 대해 서로 다른 주파수 자원은 트리거 프레임(trigger frame)을 통해 지시된다.
도 9는 트리거 프레임의 일례를 나타낸다. 도 9의 트리거 프레임은 상향링크 MU 전송(Uplink Multiple-User transmission)을 위한 자원을 할당하고, AP로부터 송신될 수 있다. 트리거 프레임은 MAC 프레임으로 구성될 수 있으며, PPDU에 포함될 수 있다. 예를 들어, 도 3에 도시된 PPDU를 통해 송신되거나, 도 2에 도시된 레거시 PPDU를 통해 송신되거나 해당 트리거 프레임을 위해 특별히 설계된 PPDU를 통해 송신될 수 있다. 만약, 도 3의 PPDU를 통해 송신되는 경우, 도시된 데이터 필드에 상기 트리거 프레임이 포함될 수 있다.
도 9에 도시된 각각의 필드는 일부 생략될 수 있고, 다른 필드가 추가될 수 있다. 도한 필드 각각의 길이는 도시된 바와 다르게 변화될 수 있다.
도 9의 프레임 컨트롤(frame control) 필드(910)는 MAC 프로토콜의 버전에 관한 정보 정보 및 기타 추가적인 제어 정보가 포함되며, 듀레이션 필드(920)는 NAV 설정을 위한 시간 정보나 단말의 식별자(예를 들어, AID)에 관한 정보가 포함될 수 있다.
또한, RA 필드(930)는 해당 트리거 프레임의 수신 STA의 주소 정보가 포함되며, 필요에 따라 생략될 수 있다. TA 필드(940)는 해당 트리거 프레임을 송신하는 STA(예를 들어, AP)의 주소 정보가 포함되며, 공통 정보(common information) 필드(950)는 해당 트리거 프레임을 수신하는 수신 STA에게 적용되는 공통 제어 정보를 포함한다. 예를 들어, 해당 트리거 프레임에 대응하여 송신되는 상향 PPDU의 L-SIG 필드의 길이를 지시하는 필드나, 해당 트리거 프레임에 대응하여 송신되는 상향 PPDU의 SIG-A 필드(즉, HE-SIG-A 필드)의 내용(content)을 제어하는 정보가 포함될 수 있다. 또한, 공통 제어 정보로서, 해당 트리거 프레임에 대응하여 송신되는 상향 PPDU의 CP의 길이에 관한 정보나 LTF 필드의 길이에 관한 정보가 포함될 수 있다.
또한, 도 9의 트리거 프레임을 수신하는 수신 STA의 개수에 상응하는 개별 사용자 정보(per user information) 필드(960#1 내지 960#N)를 포함하는 것이 바람직하다. 상기 개별 사용자 정보 필드는, “RU 할당 필드”라 불릴 수도 있다.
또한, 도 9의 트리거 프레임은 패딩 필드(970)와, 프레임 체크 시퀀스 필드(980)을 포함할 수 있다.
도 9에 도시된, 개별 사용자 정보(per user information) 필드(960#1 내지 960#N) 각각은 다시 다수의 서브 필드를 포함하는 것이 바람직하다.
도 10은 개별 사용자 정보(per user information) 필드에 포함되는 서브 필드의 일례를 나타낸다. 도 10의 서브 필드 중 일부는 생략될 수 있고, 기타 서브 필드가 추가될 수도 있다. 또한 도시된 서브 필드 각각의 길이는 변형될 수 있다.
도 10의 사용자 식별자(User Identifier) 필드(1010)는 개별 사용자 정보(per user information)가 대응되는 STA(즉, 수신 STA)의 식별자를 나타내는 것으로, 식별자의 일례는 AID의 전부 또는 일부가 될 수 있다.
또한, RU 할당(RU Allocation) 필드(1020)가 포함될 수 있다. 즉 사용자 식별자 필드(1010)로 식별된 수신 STA가, 도 9의 트리거 프레임에 대응하여 상향링크 PPDU를 송신하는 경우, RU 할당(RU Allocation) 필드(1020)가 지시한 RU를 통해 해당 상향링크 PPDU를 송신한다. 이 경우, RU 할당(RU Allocation) 필드(1020)에 의해 지시되는 RU는 도 4, 도 5, 도 6에 도시된 RU를 지시하는 것이 바람직하다. 구체적인 RU 할당 필드(1020)의 구성은 후술한다.
도 10의 서브 필드는 코딩 타입 필드(1030)를 포함할 수 있다. 코딩 타입 필드(1030)는 도 9의 트리거 프레임에 대응하여 송신되는 상향링크 PPDU의 코딩 타입을 지시할 수 있다. 예를 들어, 상기 상향링크 PPDU에 BCC 코딩이 적용되는 경우 상기 코딩 타입 필드(1030)는 ‘1’로 설정되고, LDPC 코딩이 적용되는 경우 상기 코딩 타입 필드(1030)는 ‘0’으로 설정될 수 있다.
또한, 도 10의 서브 필드는 MCS 필드(1040)를 포함할 수 있다. MCS 필드(1040)는 도 9의 트리거 프레임에 대응하여 송신되는 상향링크 PPDU에 적요되는 MCS 기법을 지시할 수 있다. 예를 들어, 상기 상향링크 PPDU에 BCC 코딩이 적용되는 경우 상기 코딩 타입 필드(1030)는 ‘1’로 설정되고, LDPC 코딩이 적용되는 경우 상기 코딩 타입 필드(1030)는 ‘0’으로 설정될 수 있다.
이하 본 명세서는 PPDU에 포함되는 제어 필드를 개선하는 일례를 제안한다. 본 명세서에 의해 개선되는 제어 필드는 상기 PPDU를 해석(interpret)하기 위해 요구되는 제어 정보를 포함하는 제1 제어 필드와 상기 PPDU의 데이터 필드를 복조하기 위한 제어 정보를 포함하는 제2 제어 필드를 포함한다. 상기 제1 및 제2 제어 필드는 다양한 필드가 될 수 있다. 예를 들어, 상기 제1 제어 필드는 도 7에 도시된 HE-SIG-A(730)일 수 있고, 상기 제2 제어 필드는 도 7 및 도 8에 도시된 HE-SIG-B(740)일 수 있다.
이하, 제1 또는 제2 제어 필드를 개선하는 구체적인 일례를 설명한다.
이하의 일례에서는 제1 제어 필드 또는 제2 제어 필드에 삽입되는 제어 식별자를 제안한다. 상기 제어 식별자의 크기는 다양할 수 있으며, 예를 들어 1비트 정보로 구현될 수 있다.
상기 제어 식별자(예를 들어, 1 비트 식별자)는, 예를 들어 20MHz 송신이 수행되는 경우, 242-RU가 할당되는지 여부를 지시할 수 있다. 도 4 내지 도 6에 도시된 바와 같이 다양한 크기의 RU가 사용될 수 있다. 이러한 RU는 크게 2가지 유형(type)의 RU로 구분될 수 있다. 예를 들어, 도 4 내지 도 6에 도시된 모든 RU는, 26-type의 RU와 242-type의 RU로 구분될 수 있다. 예를 들어, 26-type RU는 26-RU, 52-RU, 106-RU를 포함하고, 242-type RU는 242-RU, 484-RU, 및 그보다 더 큰 RU를 포함할 수 있다.
상기 제어 식별자(예를 들어, 1 비트 식별자)는 242-type RU가 사용되었음을 지시할 수 있다. 즉, 242-RU가 포함되거나 484-RU나, 996-RU가 포함됨을 지시할 수 있다. 만약 PPDU가 송신되는 송신 주파수 대역이 20MHz 대역인 경우, 242-RU는 송신 주파수 대역(즉, 20MHz) 대역의 전 대역(full bandwidth)에 상응하는 단일(single)의 RU이다. 이에 따라, 상기 제어 식별자(예를 들어, 1 비트 식별자)는 송신 주파수 대역의 전 대역(full bandwidth)에 상응하는 단일(single)의 RU가 할당되는지 여부를 지시할 수도 있다.
예를 들어, 송신 주파수 대역이 40MHz 대역이라면, 상기 제어 식별자(예를 들어, 1 비트 식별자)는 송신 주파수 대역의 전 대역(즉, 40MHz 대역)에 상응하는 단일(single)의 RU가 할당되었는지 여부를 지시할 수 있다. 즉, 40MHz의 송신을 위해 484-RU가 할당되었는지 여부를 지시할 수 있다.
예를 들어, 송신 주파수 대역이 80MHz 대역이라면, 상기 제어 식별자(예를 들어, 1 비트 식별자)는 송신 주파수 대역의 전 대역(즉, 80MHz 대역)에 상응하는 단일(single)의 RU가 할당되었는지 여부를 지시할 수 있다. 즉, 80MHz의 송신을 위해 996-RU가 할당되었는지 여부를 지시할 수 있다.
상기 제어 식별자(예를 들어, 1 비트 식별자)를 통해 다양한 기술적 효과를 달성할 수 있다.
우선, 상기 제어 식별자(예를 들어, 1 비트 식별자)를 통해, 송신 주파수 대역의 전 대역에 상응하는 단일의 RU가 할당되는 경우, RU의 할당 정보가 생략되는 것이 가능하다. 즉, 복수 개의 RU가 아니라 송신 주파수 대역의 전 대역에 오직 1개의 RU만이 할당되므로, RU의 할당 정보가 생략되는 것이 가능하다.
또한, 전 대역 다중사용자 MIMO(Full Bandwidth MU-MIMO)를 위한 시그널링으로도 활용 가능하다. 예를 들어, 송신 주파수 대역의 전 대역(full bandwidth)에 걸쳐 단일의 RU가 할당되는 경우, 해당 단일의 RU에 다중 사용자를 할당할 수 있다. 즉, 각 사용자에 대한 신호는 시간과 공간적으로는 구별되지 않지만, 기타 기법(예를 들어, 공간 다중화)을 이용하여 동일한 단일의 RU에 여러 사용자를 위한 신호를 다중화할 수 있다. 이에 따라, 상기 제어 식별자(예를 들어, 1 비트 식별자)는 위와 같은 전 대역 다중사용자 MIMO의 사용 여부를 지시하기 위해서도 사용될 수 있다.
도 11은 본 실시예에 따라 구성된 제어 필드 및 데이터 필드의 일례를 나타내는 블록도이다.
도 11의 좌측의 블록은 PPDU의 제1 및/또는 제2 제어 필드에 포함되는 정보를 나타내며, 도 11의 우측 블록은 PPDU의 데이터 필드에 포함되는 정보를 타낸다. 도 11에 관련된 PPDU는 다중 사용자(multi-user), 즉, 복수의 수신 장치를 위한 PPDU일 수 있다. 구체적으로 PPDU는 다중 사용자 및 단일 사용자를 위해 필드의 구조가 달라질 수 있고, 도 11의 일례는 다중 사용자를 위한 PPDU일 수 있다.
도 11의 일례는 20MHz 송신을 위해 사용되는 것으로 도시되어 있으나, 송신 주파수 대역의 대역폭에는 제한이 없으며, 40MHz, 80MHz, 160MHz 송신에도 적용될 수 있다.
도 11의 좌측의 블록에 표시된 바와 같이, 상술한 제어 식별자(예를 들어, 1 비트 식별자)가 제1 및/또는 제2 제어 필드에 포함될 수 있다. 예를 들어, 상기 제어 식별자(1110)가 제1 제어 필드에 포함되는 경우, RU에 대한 할당 정보(1120)에 대한 정보는 제2 제어 필드에 포함될 수 있다. 또한 상기 제2 제어 필드에는 도 11의 PPDU를 수신하는 수신 장치의 식별 정보(1130)가 포함될 수 있다. 상기 수신 장치의 식별 정보(1130)는 제2 제어 필드에 상응하는 데이터 필드(1140)가 어느 수신 장치에 할당된 것인지를 지시할 수 있고, 예를 들어 AID로 구현될 수 있다.
도 11에 도시된 바와 같이, 제어 식별자(예를 들어, 1 비트 식별자)에 따라 RU에 대한 할당 정보가 제2 제어 필드에서 생략될 수 있다. 예를 들어, 제어 식별자가 “1”로 설정되면 제2 제어 필드에서는 RU에 대한 할당 정보(1120)는 생략되고, 수신 장치의 식별 정보(1130)가 포함될 수 있다. 또한, 제어 식별자가 “0”으로 설정되면 제2 제어 필드에서는 RU에 대한 할당 정보(1120)가 포함되고, 수신 장치의 식별 정보(1130)도 포함될 수 있다.
상기 도 11의 RU에 대한 할당 정보(1120)는 도 8에 도시된 SIG-B의 공통 필드(common field)에 포함될 수 있고, 도 11의 식별 정보(1130)는 도 8에 도시된 SIG-B의 사용자-특정(user-specific) 필드에 포함될 수 있다.
추가적으로 설명하면, 도 11을 참조하면, SIG-B의 공통 필드에는, 사용자에 대한 RU signaling 정보, stream 할당 관련 정보 등의 공통 정보가 포함될 수 있고, 도 11의 PPDU를 수신하는 모든 사용자에 대한 공통 정보를 포함할 수 있다. 상술한 RU에 대한 할당 정보(1120)가 생략되는 경우, 오버헤드가 감소하는 기술적 효과가 있다.
또 다른 일례에 따르면, 20MHz 전송이 사용되는 경우, 242-RU가 할당되는 것은 단일사용자(SU) 전송으로 볼 수 있기 때문에, 상술한 제어 식별자(예를 들어, 1 비트 식별자)가 생략될 수 있다. 이 경우, 제1 제어 필드(예를 들어 HE-SIG-A) SU/MU 식별 필드에 따라 동작이 달라 질 수 있다. 즉, 제1, 제어 필드에 포함된 SU/MU 식별 필드가 MU 송신을 지시하는 경우, 상기 제어 식별자는 생략되고, 오로지 26-type의 RU만을 할당하는 일례도 가능하다.
이하 본 실시예의 또 다른 일례를 설명한다.
도 12는 40MHz 송신을 위한 본 실시예의 일례를 나타낸다.
도 12의 좌측 블록은 제1 및/또는 제2 제어 필드에 상응하는 정보를 표시한다. 이하 설명의 편의를 위해 도 12의 좌측 블록은 제2 제어 필드(즉, SIG-B)에 상응하고, 도 12의 우측 블록은 PPDU의 데이터 필드에 상응한 것으로 설명한다.
도시된 바와 같이 각각의 제어 필드 및 데이터 필드는 20MHz 대역에 상응한다.
도 12의 일례에서, 상술한 제어 식별자(예를 들어, 1 비트 식별자)가 “1”로 설정되면, RU에 대한 할당 정보가 생략될 수 있다. 도 12의 일례에서, 제어 식별자(예를 들어, 1 비트 식별자)는 242-RU(또는 242-type RU)가 사용되는지 여부를 지시할 수 있다.
도 12를 참조하면, SIG-B의 공통 필드의 앞부분에 제어 식별자가 포함된다. 도 12의 일례에서 제어 식별자는 “242 unit bitmap”이라 불릴 수 있다. “242 unit bitmap”에 에 따라 RU 할당 정보가 생략될 수 있는 점은 도 11과 동일하며, 오버헤드 감소의 효과가 발생하는 점도 동일하다.
전체 40MHz의 채널에서 242-RU만 할당되면, “242 unit bitmap”은 “1”로 설정 될 수 있다. 도 12의 부도면 (b)를 참고하면, 40MHz 채널에서 26-type RU만 할당되면 “242 unit bitmap”은 “00”으로 설정될 수 있다. 도 12의 부도면 (c)를 참고하면, 40MHz 채널에서 모두 242-RU만 할당되면 “242 unit bitmap”은 “11”로 설정될 수 있다. SIG-B 파트의 마지막 심볼은 20MHz 채널 중 가장 긴 SIGB 심볼에 정렬(align)이 맞아야 하기 때문에, 어느 하나의 20MHz 채널에서만 RU 할당 정보가 생략되는 것은 오버헤드 감소의 효과가 작다. 이에 따라, 모든 20MHz 채널에서 242-RU만이 할당되는 경우, “242 unit bitmap”이 “1”로 설정되는 일례도 가능하다.
이하의 일례에서는 상술한 제어 식별자(예를 들어, 1 비트 식별자)에 대한 또 다른 일례를 제안한다. 구체적으로, 상술한 제어 식별자를 2개의 식별자로 구분하는 일례를 제안한다. 즉, 각 20MHz 채널마다 242-type의 RU가 할당되는지를 지시하는 제1 식별자와 해당 20MHz 채널에서 484-RU(또는 다른 크기의 242-type RU)이 할당되는지를 지시하는 제2 식별자를 제안한다.
또한, 제2 제어 필드(즉, SIG-B)와 데이터 필드 간의 주파수 매핑 관계에 관한 개선된 일례를 제안한다. 제2 제어 필드(즉, SIG-B)와 데이터 필드 간의 주파수 매핑에 관한 추가적인 일례는, 상술한 일례(즉, 도 11이나 도 12의 일례)에도 적용 가능하지만, 이하 설명의 편의를 위해 도 13의 일례를 기초로 설명한다.
도 13은 본 명세서가 80MHz 송신에 적용된 일례를 나타낸다.
도 13의 일례는 20MHz 채널 당 제1 식별자(1310)가 구성된다. 즉, 20MHz 채널마다 242-type의 RU가 할당되는지를 지시하는 1비트 식별자가 4개 삽입될 수 있다. 이때, 80MHz 대역 내에서는 484-RU이 할당될 수 있기 때문에, 특정 20MHz 채널(즉, 242 chunk)이 242-RU를 위해 사용되는지, 484-RU를 위해 사용되는지를 지시하는 추가적인 식별자, 즉 상술한 제2 식별자(1320)가 추가로 포함될 수 있다. 제1 및 제2 식별자가 모두 사용되는 경우, 80MHz 대역에서는 총 8 비트의 정보가 제1/제2 식별자를 위해 사용될 수 있다.
상기 제1 및 제2 식별자는 “242 unit bitmap” 및 “484 unit assignment indication field”로도 표시될 수 있다. 제1 및 제2 식별자는 2비트의 필드로 구현될 수 있다. 예를 들어, 제1 채널에 상응하는 제2 식별자(1350) 및 제2 채널에 상응하는 제2 식별자(1360)이 “00”으로 설정되면, 이는 해당 PPDU에서는 484-RU가 할당되지 않는다. 예를 들어, 제1 및 제2 식별자가 “1” 과 “0”으로 설정되면, 오직 242-RU 만으로 할당됨이 지시될 수 있다.
도 13의 일례는, 도시된 바와 같은 제1 식별자(1310)과 제2 식별자(1320)에 관한 일례이다. 그러나 추가적으로 제2 제어 필드(즉, SIG-B)와 데이터 필드 간의 주파수 매핑 관계에 관한 일례가 적용될 수 있다.
구체적으로, 제2 제어 필드(즉, SIG-B)는 각 20MHz 채널마다 별도로 구성할 수 있다. 그러나, 본 명세서는 하위 2개의 20MHz 채널(1330)과 상위 2개의 20MHz 채널(1340)을 독립적으로 구성하는 일례를 제안한다. 구체적으로, 상위 또는 하위 2개의 20MHz 채널에 대응되는 SIG-B를 구성하고, 이를 복제(duplication) 시켜서 나머지 2개의 20MHz 채널을 위해 사용하는 일례를 제안한다.
본 명세서에서 제안하는 필드 전부 또는 일부, 예를 들어, SIG-B는, 상술한 복제 방법에 따라 구성되는 것이 바람직하다. 예를 들어, 도 13의 일례에 도시된 4개의 20MHz 채널을, 아래부터 차례로 제1 내지 제4 채널로 구분하는 경우, 제1 및 제2 채널에 포함되는 SIG-B는 제3 및 제4 채널에 포함되는 SIG-B와 그 내용(contents)이 동일할 수 있다. 이때, 제1 채널은 가장 낮은 주파수 인덱스를 가지며, 증가순으로 제2 내지 제4 채널이 위치함을 가정한다. 또한, 도시된 바와 같이, 제2 채널에 상응하는 SIG-B는 STA3에 상응하는 AID3을 먼저 표시하고, 그 다음에 STA4에 상응하는 AID를 4를 표시한다. 이에 따라, 제2 채널에 상응하는 SIG-B는, STA3을 제2 채널에 상응하는 데이터 필드에 할당하고, STA4를 제4 채널에 상응하는 데이터 필드에 할당할 수 있다. 즉, 제2 채널에 상응하는 SIG-B은 제2 채널에 상응하는 데이터 필드에 관한 STA 식별 정보를 먼저 지시하고, 그 다음에 제4 채널에 상응하는 데이터 필드에 관한 STA 식별 정보를 지시할 수 있다.
또한, 도 13을 참고하면, 제1 채널에 상응하는 SIG-B는, 제1 채널에 상응하는 데이터 필드를 지시하고, 제1 채널에 상응하는 데이터 필드에 할당된 STA(즉, STA 1)를 지시하고, 또한 제3 채널에 상응하는 데이터 필드를 지시하고, 제3 채널에 상응하는 데이터 필드에 할당된 STA(즉, STA 2)를 지시할 수 있다. 즉, 제1 채널에 포함된 SIG-B은 제1 채널에 상응하는 데이터 필드에 관한 STA 식별 정보 및 제3 채널에 상응하는 데이터 필드에 관한 STA 식별 정보를 지시할 수 있다.
도 14는 본 명세서에 따른 또 다른 일례를 나타낸다.
도 14을 참조하면, 각 20MHz에 상응하는 SIG-B 필드의 맨 앞에는 제1 식별자(1410)가 포함되고, 그 다음에 제2 식별자(1420)가 포함된다.
도 14의 제1/제2 식별자는 도 13의 제1/제2 식별자와 동일하게 사용될 수 있다. 또한, 도 14의 일례는, 도 13의 일례와 마찬가지로, SIG-B와 데이터 필드간에 기설정된 매핑 관계를 가질 수 있다. 다만, 도 13의 일례와 다르게, 도 14의 일례는 제1 채널에 상응하는 SIG-B가 제1/제2 채널에 상응하는 데이터 필드에 매핑되고, 제2 채널에 상응하는 SIG-B가 제3/제4 채널에 상응하는 데이터 필드에 매핑된다.
도 15는 본 명세서에 따른 또 다른 일례를 나타낸다.
도 15를 참조하면, 각 20MHz에 상응하는 SIG-B 필드의 맨 앞에는 제1 식별자(1510)가 포함되고, 그 다음에 제2 식별자(1520)가 포함된다. 도 15의 일례에 따른 제1/제2 식별자는 도 13 및/또는 도 14의 제1/제2 식별자에 대응될 수 있다.
도 15에 도시된 바와 같이 제1/제2 채널에 대응되는 SIG-B 필드의 정보 전부 또는 일부는 제3/제4 채널에 복제(duplicate)될 수 있다. 즉, 도 15에 도시된 바와 같이 제1/제2 채널에 대응되는 SIG-B 필드는 {AID1, 2} 및 {AID1, 3}를 지시하는데, 제3/제4 채널에 대응되는 SIG-B 필드 역시 {AID1, 2} 및 {AID1, 3}를 지시할 수 있다.
도 15를 참고하면, 제1 채널에 대응하는 제2 식별자(1550)은 “1”을 지시하고, 제2 채널에 대응되는 제2 식별자(1560)은 “0”을 지시한다. 이는 제1/제2 채널에 대해서는 484-RU가 할당되고, 제3/제4 채널에 대해서는 484-RU가 할당되지 않음을 지시한다. 도 15의 일례에서 제1 식별자(1510)는 모두 1로 설정되므로, 결국 도 15의 데이터 필드는 제1/제2 채널에 대해서는 484-RU가 할당되고, 제3 채널에 대해서는 242-RU가, 제4 채널에 대해서도 242-RU가 할당된다.
도 15의 일례의 기타 다른 특징은 도 13 내지 도 14의 일례와 동일하다.
도 16은 본 명세서에 따른 또 다른 일례를 나타낸다.
도 16을 참조하면, 각 20MHz에 상응하는 SIG-B 필드의 맨 앞에는 제1 식별자(1610)가 포함되고, 그 다음에 제2 식별자(1620)가 포함된다.
도 16에 도시된 바와 같이 제1/제2 채널에 대응되는 SIG-B 필드의 정보 전부 또는 일부는 제3/제4 채널에 복제(duplicate)될 수 있다. 즉, 도 16에 도시된 바와 같이 제1/제2 채널에 대응되는 SIG-B 필드는 {AID1, 2} 및 {AID3, 2}를 지시하는데, 제3/제4 채널에 대응되는 SIG-B 필드 역시 {AID1, 2} 및 {AID3, 2}를 지시할 수 있다.
도 16을 참고하면, 제1 채널에 대응하는 제2 식별자(1650)은 “0”을 지시하고, 제2 채널에 대응되는 제2 식별자(1660)은 “1”을 지시한다. 이는 제1/제2 채널에 대해서는 484-RU가 할당되지 않고, 제3/제4 채널에 대해서는 484-RU가 할당됨을 지시한다. 도 16의 일례에서 제1 식별자(1610)는 모두 1로 설정되므로, 결국 도 16의 데이터 필드는 제1/제2 채널에 대해서는 모두 242-RU가 할당되고, 제3/4 채널에 대해서는 484-RU가 할당된다.
도 16의 일례의 기타 다른 특징은 도 13 내지 도 15의 일례와 동일하다.
도 17은 본 명세서에 따른 또 다른 일례를 나타낸다.
도 17을 참조하면, 각 20MHz에 상응하는 SIG-B 필드의 맨 앞에는 제1 식별자(1710)가 포함되고, 그 다음에 제2 식별자(1720)가 포함된다.
도 17에 도시된 바와 같이 제1/제2 채널에 대응되는 SIG-B 필드의 정보 전부 또는 일부는 제3/제4 채널에 복제(duplicate)될 수 있다. 즉, 도 17에 도시된 바와 같이 제1/제2 채널에 대응되는 SIG-B 필드는 {AID1} 및 {AID2}를 지시하는데, 제3/제4 채널에 대응되는 SIG-B 필드 역시 {AID1} 및 {AID2}를 지시할 수 있다.
도 17을 참고하면, 제1 채널에 대응하는 제2 식별자(1750)은 “1”을 지시하고, 제2 채널에 대응되는 제2 식별자(1760)은 “1”을 지시한다. 이는 제1/제2 채널에 대해서 484-RU가 할당되고, 또한 제3/제4 채널에 대해서도 484-RU가 할당됨을 지시한다.
도 17의 일례의 기타 다른 특징은 도 13 내지 도 16의 일례와 동일하다.
도 18은 본 명세서에 따른 또 다른 일례를 나타낸다.
도 18을 참조하면, 각 20MHz에 상응하는 SIG-B 필드의 맨 앞에는 제1 식별자(1810)가 포함되고, 그 다음에 제2 식별자(1820)가 포함된다.
도 18에 도시된 바와 같이 제1/제2 채널에 대응되는 SIG-B 필드의 정보 전부 또는 일부는 제3/제4 채널에 복제(duplicate)될 수 있다. 즉, 도 18에 도시된 바와 같이 제1/제2 채널에 대응되는 SIG-B 필드는 {AID1, 2} 및 {AID1, 2}를 지시하는데, 제3/제4 채널에 대응되는 SIG-B 필드 역시 {AID1, 2} 및 {AID1, 2}를 지시할 수 있다.
도 18을 참고하면, 제1 채널에 대응하는 제2 식별자(1850)은 “1”을 지시하고, 제2 채널에 대응되는 제2 식별자(1860)은 “1”을 지시한다. 이는 제1/제2 채널에 대해서 484-RU가 할당되고, 또한 제3/제4 채널에 대해서도 484-RU가 할당됨을 지시한다.
도 18의 일례의 기타 다른 특징은 도 13 내지 도 17의 일례와 동일하다.
도 19는 본 실시예에 따른 SIG-A, SIG-B 및 데이터 필드의 관계를 나타내는 도면이다. 도 19의 일례는 상술한 내용을 하나의 PPDU 상에 표시한 내용이다.
도 19의 PPDU(1901)는, 도 7에 도시된 필드의 전부 또는 일부를 포함할 수 있다. 구체적으로, 도시된 바와 같이 제1 제어 필드(1910), 제2 제어 필드(1920, 1930) 및 데이터 필드(1940)를 포함할 수 있다. 제1 제어 필드(1910)는 상술한 SIG-A 또는 HE-SIG A에 대응되고, 제2 제어 필드(1920)는 상술한 SIG-B 또는 HE-SIG B에 대응될 수 있다.
상기 제1 제어 필드(1910)는 도 7의 HE-SIG A(730) 및 도 11 내지 도 18에 도시된 기술적 특징을 포함할 수 있다. 구체적으로, 제1 제어 필드(1910)는 PPDU(1901)의 해석을 위한 제어 정보를 포함할 수 있다. 예를 들어, 도 7의 일례에서 설명한 바와 같이, PPDU(1901)가 송신되는 송신 주파수 대역을 지시하는 서브 필드(20MHz, 40MHz, 80MHz, 160MHz 등을 지시)를 포함할 수 있다.
또한, 도 11 내지 도 18에서 설명한 제어 식별자(예를 들어, 제1 식별자 및/또는 제2 식별자)를 포함할 수 있다. 구체적으로, 제1 제어 필드(1910)는 송신 주파수 대역의 전 대역(full bandwidth)에 상응하는 단일(single)의 RU가 할당되는지 여부를 지시하는 1 비트 식별자를 포함할 수 있다. 상기 제1 제어 필드(1910)의 제어 식별자(예를 들어, 1 비트 식별자)가 “1”로 설정되면, 송신 주파수 대역의 전 대역(full bandwidth)에 상응하는 단일(single)의 RU가 할당되는 것이 지시된다. 즉, 송신 주파수 대역이 20MHz 대역인 경우, 단일의 242-RU가 할당됨이 지시되고, 예를 들어, 송신 주파수 대역이 80MHz 대역인 경우 단일의 996-RU가 할당됨이 지시된다. 한편, 상술한 바와 같이, 상기 1비트 식별자는, 전 대역 다중사용자 MIMO(Full Bandwidth MU-MIMO)를 위한 시그널링할 수 있는 기술적 효과가 있다.
도 19의 일례가 80MHz 송신에 적용되는 경우, 상기 제1 제어 필드(1910)는 20MHz 단위로 생성된 이후, 송신 주파수 대역에 따라 복제(duplicate)되는 형태로 PPDU(1901)에 포함될 수 있다. 즉, 제1 제어 필드(1910)는 20MHz 단위로 생성되고, 80MHz 대역에 맞게 복제될 수 있다.
제2 제어 필드는 도 8에 도시된 공통 필드 및 사용자-특정 필드를 포함하는 HE-SIG B 필드에 대응될 수 있다. 즉, 제2 제어 필드는 공통 필드(1920) 및 사용자-특정 필드(1930)를 포함할 수 있다. 상술한 바와 같이, SIG-B의 공통 필드(1920)에는, 사용자에 대한 RU 할당 정보와 같은 공통 정보가 포함될 수 있다. 예를 들어, 특정한 n-비트 매핑 정보를 포함하는 룩업-테이블 형태의 RU 할당 정보가 포함될 수 있다. RU 할당 정보는 대응되는 데이터 필드(1940)에 적용되는 RU의 배치 또는 할당 정보를 지시할 수 있다. 즉, 도 4 내지 도 6과 같이 다수의 RU가 배치되는 구조를 지시할 수 있다. 제2 제어 필드의 공통 필드(1920)를 수신한 모든 STA은, 대응되는 데이터 필드(1940)가 어떤 RU로 구성되는지를 확인할 수 있다.
정리하면, 제2 제어 필드는, 공통 필드(1920)를 통해, RU(resource unit)를 위한 할당 정보를 포함하는 것이 일반적이다. 그러나 만약 제1 제어 필드(1910)에 포함되는 제어 식별자(예를 들어, 1 비트 식별자)가 “1”로 설정되면, 상기 RU를 위한 할당 정보는 생략되는 것이 바람직하다. 즉, 공통 필드(1920)가 생략될 수 있다. 상기 제어 식별자가 “1”로 설정되면, 오직 1개의 RU가 사용되므로, 별도로 RU를 위한 할당 정보를 구성할 필요가 없기 때문에 공통 필드(1920)는 생략 가능하다. 달리 표현하면, 제1 제어 필드(1910)에 포함되는 제어 식별자(예를 들어, 1 비트 식별자)가 “0”으로 설정되면 제2 제어 필드의 공통 필드(1920)는 RU(resource unit)를 위한 할당 정보를 포함하고, 만약 제1 제어 필드(1910)에 포함되는 제어 식별자(예를 들어, 1 비트 식별자)가 “1”로 설정되면 제2 제어 필드의 공통 필드(1920)는 RU(resource unit)를 위한 할당 정보를 포함하지 않을 수 있다.
한편, 상기 제2 필드의 사용자-특정 필드(1930)는 도 8에 도시된 바와 같이 사용자 STA에 대한 식별 정보(예를 들어, AID)를 포함할 수 있다.
제2 제어 필드(1920, 1930)는 데이터 필드(1940)의 복조를 위해 사용된다. 이 경우, 제2 제어 필드 및 데이터 필드(1940)는 도 13 내지 도 18에 도시된 바와 같은 매핑 관계를 가질 수 있다.
예를 들어, 도 19의 일례가 80MHz 송신에 관련되는 경우, 제2 제어 필드는, 제1 내지 제4 SIG-B 채널에 대응될 수 있다. 즉, 4개의 20MHz 단위의 채널로 구분될 수 있다.
이 경우, 제1 SIG-B 채널에 대응되는 제2 제어 필드(1921, 1931)의 내용(contents)은 제3 SIG-B 채널에 대응되는 제2 제어 필드(1923, 1933)의 내용과 동일할 수 있다. 달리 표현하면, 상기 PPDU(1901)는, 제2 제어 필드의 일부는 복제될 수 있다. 제2 제어 필드에 대한 복제는 다양하게 구현될 수 있다.
설명의 편의를 위해 제1 내지 제4 SIG-B 채널에 대응되는 4개의 제2 제어 필드는, 제1, 제2, 제3, 제4 시그널 필드라 칭할 수 있다. 이 경우, 제2 시그널 필드(1922, 1932)가 복제되어 제4 시그널 필드(1924, 1934)가 구성될 수 있다. 즉, 제2 SIG-B 채널에 대응되는 제2 제어 필드(1922, 1932)의 내용(contents)은 제4 SIG-B 채널에 대응되는 제2 제어 필드(1924, 1934)의 내용과 동일할 수 있다.
이와 같은 복제가 수행되는 경우, 제1 시그널 필드(1921, 1931)는 제1 데이터 채널의 데이터 필드(1941) 및 제3 데이터 채널의 데이터 필드(1943)에 대응될 수 있다. 또한, 제2 시그널 필드(1922, 1932)는 제2 데이터 채널의 데이터 필드(1942) 및 제4 데이터 채널의 데이터 필드(1944)에 대응될 수 있다.
달리 표현하면, 제1 시그널 필드(1921, 1931)에 포함되는 공통 필드(1921)는 제1 데이터 채널의 데이터 필드(1941)에 적용되는 RU에 관한 할당 정보와 제3 데이터 채널의 데이터 필드(1943)에 적용되는 RU에 관한 할당 정보를 지시할 수 있다. 이 경우, 제1 시그널 필드(1921, 1931) 내에는, 제1 데이터 채널의 데이터 필드(1941)에 적용되는 RU에 관한 할당 정보가 1개의 BCC 블록 형태로 먼저 삽입되며, 그 다음에 제3 데이터 채널의 데이터 필드(1943)을 위한 1개의 BCC 블록이 삽입된다.
또한, 제1 시그널 필드(1921, 1931)에 포함되는 사용자 특정 필드(1931)는 제1 데이터 채널의 데이터 필드(1941)에 할당되는 STA의 식별 정보(예를 들어, AID) 및 제3 데이터 채널의 데이터 필드(1943)에 할당되는 STA의 식별 정보(예를 들어, AID)를 포함할 수 있다. 이 경우, 제1 시그널 필드(1921, 1931) 내에는, 상술한 2개의 BCC 블록이 삽입된 다음에, 제1 데이터 채널의 데이터 필드(1941)에 할당되는 STA에 대한 BCC 블록이 삽입되고, 이후 제3 데이터 채널의 데이터 필드(1943)에 할당되는 STA에 대한 BCC 블록이 삽입된다.
도 19에서, 제2 제어 필드(1920, 1930)가 전송되는 주파수 대역은 4개의 “SIG-B 채널”로 표시되었고, 데이터 필드(1940)가 전송되는 주파수 대역은 4개의 “데이터 채널”로 표시되었지만, 각 SIG-B 채널 및 데이터 채널은, 도 7에서 설명한 4개의 주파수 대역에 대응되는 것으로 이해될 수 있다. 즉, 도 7의 일례에서 설명한 바와 같이, 데이터 채널의 각 경계면과 SIG-B 채널의 각 경계면이 완전히 일치하지 않을 수 있지만, 대응되는 20MHz 주파수 대역을 기준으로 설명하면, 제1 주파수 대역에 대응되는 제2 제어 필드(1921, 1931)는, 제1/제3 주파수 대역에 대응되는 2 개의 데이터 필드(1941, 1943)에 대응된다. 또한, 제2 주파수 대역에 대응되는 제2 제어 필드(1922, 1932)는, 제2/제4 주파수 대역에 대응되는 2 개의 데이터 필드(1942, 1944)에 대응된다.
도 20은 본 실시예가 적용될 수 있는 무선 장치를 나타내는 블록도이다.
도 20을 참조하면, 무선 장치는 상술한 실시예를 구현할 수 있는 STA로서, AP(1900) 또는 비AP STA(non-AP station)일 수 있다. 상기 무선 장치는 상술한 사용자에 대응되거나, 상기 사용자에 신호를 송신하는 송신 장치에 대응될 수 있다.
AP(2000)는 프로세서(2010), 메모리(2020) 및 RF부(radio frequency unit, 2030)를 포함한다.
RF부(2030)는 프로세서(2010)와 연결하여 무선신호를 송신/수신할 수 있다.
프로세서(2010)는 본 명세서에서 제안된 기능, 과정 및/또는 방법을 구현할 수 있다. 예를 들어, 프로세서(2010)는 전술한 본 실시예에 따른 동작을 수행할 수 있다. 즉, 프로세서(2010)는 도 1 내지 19의 실시예에서 개시된 동작 중 AP가 수행할 수 있는 동작을 수행할 수 있다.
비AP STA(2050)는 프로세서(2060), 메모리(2070) 및 RF부(radio frequency unit, 2080)를 포함한다.
RF부(2080)는 프로세서(2060)와 연결하여 무선신호를 송신/수신할 수 있다.
프로세서(2060)는 본 실시예에서 제안된 기능, 과정 및/또는 방법을 구현할 수 있다. 예를 들어, 프로세서(2060)는 전술한 본 실시예에 따른 non-AP STA동작을 수행하도록 구현될 수 있다. 프로세서는 도 1 내지 19의 실시예에서 non-AP STA의 동작을 수행할 수 있다.
프로세서(2010, 2060)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 데이터 처리 장치 및/또는 베이스밴드 신호 및 무선 신호를 상호 변환하는 변환기를 포함할 수 있다. 메모리(2020, 2070)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(2030, 2080)는 무선 신호를 전송 및/또는 수신하는 하나 이상의 안테나를 포함할 수 있다.
실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(2020, 2070)에 저장되고, 프로세서(2010, 2060)에 의해 실행될 수 있다. 메모리(2020, 2070)는 프로세서(2010, 2060) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(2010, 2060)와 연결될 수 있다.

Claims (9)

  1. 기 설정된 주파수 대역에 상응하는 RU를 사용하는 무선랜 시스템에서,
    제1 제어 필드, 제2 제어 필드 및 데이터 필드를 포함하는, 복수의 수신 장치를 위한 PPDU를 구성하는 단계; 및
    상기 PPDU를 송신 주파수 대역을 통해 복수의 수신 장치로 송신하는 단계
    를 포함하되,
    상기 제1 제어 필드는 상기 PPDU를 해석(interpret)하기 위해 요구되는 제어 정보를 포함하고,
    상기 제1 제어 필드는 상기 송신 주파수 대역의 전 대역(full bandwidth)에 상응하는 단일의 RU가 할당되는지 여부를 지시하는 제어 식별자를 포함하고,
    상기 제2 제어 필드는 상기 복수의 수신 장치에 대한 식별 정보를 포함하고,
    상기 제2 제어 필드는 상기 RU(resource unit)를 위한 할당 정보를 포함하되, 만약 상기 제어 식별자가 상기 전 대역(full bandwidth)에 상응하는 단일의 RU가 할당되었음을 지시하는 경우, 상기 제2 제어 필드는 상기 RU(resource unit)를 위한 할당 정보를 포함하지 않는
    방법.
  2. 제1항에 있어서,
    상기 제1 제어 필드는 HE SIG-A 필드이고, 상기 제2 제어 필드는 HE SIG-B 필드인
    방법.
  3. 제1항에 있어서,
    상기 송신 주파수 대역은 20MHz, 40MHz, 80MHz, 160MHz 대역 중 적어도 하나인
    방법.
  4. 제1항에 있어서,
    상기 제1 제어 필드는 상기 송신 주파수 대역을 지시하는 서브 필드를 포함하는
    방법.
  5. 제1항에 있어서,
    상기 제어 식별자는 1-비트 식별자인
    방법.
  6. 제1항에 있어서,
    상기 RU에 상응하는 주파수 대역은 상기 송신 주파수 대역 내에 포함되는
    방법.
  7. 제1항에 있어서,
    상기 RU는 26, 52, 106, 242, 484, 996 개의 서브캐리어 중 어느 하나에 대응되는
    방법.
  8. 기 설정된 주파수 대역에 상응하는 RU를 사용하는 무선랜 시스템에서,
    복수의 수신 장치를 위해 생성된 PPDU를 수신하되, 상기 PPDU는 제1 제어 필드, 제2 제어 필드 및 데이터 필드를 포함하는, 단계; 및
    상기 PPDU를 처리하는 단계
    를 포함하되,
    상기 제1 제어 필드는 상기 PPDU를 해석(interpret)하기 위해 요구되는 제어 정보를 포함하고,
    상기 제1 제어 필드는 상기 송신 주파수 대역의 전 대역(full bandwidth)에 상응하는 단일의 RU가 할당되는지 여부를 지시하는 제어 식별자를 포함하고,
    상기 제2 제어 필드는 상기 복수의 수신 장치에 대한 식별 정보를 포함하고,
    상기 제2 제어 필드는 상기 RU(resource unit)를 위한 할당 정보를 포함하되, 만약 상기 제어 식별자가 상기 전 대역(full bandwidth)에 상응하는 단일의 RU가 할당되었음을 지시하는 경우, 상기 제2 제어 필드는 상기 RU(resource unit)를 위한 할당 정보를 포함하지 않는
    방법.
  9. 무선랜 시스템의 수신 장치에 있어서,
    무선 신호를 수신하는 RF 유닛; 및
    상기 RF 유닛에 연결되는 프로세서를 포함하되,
    상기 프로세서는, 상기 RF 유닛을 제어하여, 복수의 수신 장치를 위해 생성된 PPDU를 수신하고, 상기 PPDU는 제1 제어 필드, 제2 제어 필드 및 데이터 필드를 포함하고,
    상기 PPDU를 처리하도록 설정되되,
    상기 제1 제어 필드는 상기 PPDU를 해석(interpret)하기 위해 요구되는 제어 정보를 포함하고,
    상기 제1 제어 필드는 상기 송신 주파수 대역의 전 대역(full bandwidth)에 상응하는 단일의 RU가 할당되는지 여부를 지시하는 제어 식별자를 포함하고,
    상기 제2 제어 필드는 상기 복수의 수신 장치에 대한 식별 정보를 포함하고,
    상기 제2 제어 필드는 상기 RU(resource unit)를 위한 할당 정보를 포함하되, 만약 상기 제어 식별자가 상기 전 대역(full bandwidth)에 상응하는 단일의 RU가 할당되었음을 지시하는 경우, 상기 제2 제어 필드는 상기 RU(resource unit)를 위한 할당 정보를 포함하지 않는
    장치.
PCT/KR2016/008767 2015-08-10 2016-08-10 무선랜 시스템에서 제어 필드를 포함하는 제어 신호를 구성하는 방법 및 장치 WO2017026784A1 (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2017522008A JP6439042B2 (ja) 2015-08-10 2016-08-10 無線lanシステムにおける制御フィールドを含む制御信号を構成する方法及び装置
EP21206165.9A EP3975463B1 (en) 2015-08-10 2016-08-10 Method and device for forming control signal comprising control field in wireless lan system
EP20156126.3A EP3668001B1 (en) 2015-08-10 2016-08-10 Method and device for forming control signal comprising control field in wireless lan system
EP16835424.9A EP3337074B1 (en) 2015-08-10 2016-08-10 Method and device for forming control signal comprising control field in wireless lan system
CN201680003617.6A CN107079458B (zh) 2015-08-10 2016-08-10 用于在无线lan系统中形成包括控制字段的控制信号的方法和装置
US15/525,006 US10667242B2 (en) 2015-08-10 2016-08-10 Method and device for forming control signal comprising control field in wireless LAN system
KR1020177008541A KR102213184B1 (ko) 2015-08-10 2016-08-10 무선랜 시스템에서 제어 필드를 포함하는 제어 신호를 구성하는 방법 및 장치
ES16835424T ES2813724T3 (es) 2015-08-10 2016-08-10 Método y dispositivo para formar la señal de control, que comprende el campo de control en un sistema de LAN inalámbrica
PL16835424T PL3337074T3 (pl) 2015-08-10 2016-08-10 Sposób i urządzenie do tworzenia sygnału sterującego zawierającego pole sterowania w układzie bezprzewodowej sieci lan

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562202922P 2015-08-10 2015-08-10
US62/202,922 2015-08-10

Publications (1)

Publication Number Publication Date
WO2017026784A1 true WO2017026784A1 (ko) 2017-02-16

Family

ID=57983295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008767 WO2017026784A1 (ko) 2015-08-10 2016-08-10 무선랜 시스템에서 제어 필드를 포함하는 제어 신호를 구성하는 방법 및 장치

Country Status (8)

Country Link
US (1) US10667242B2 (ko)
EP (3) EP3975463B1 (ko)
JP (1) JP6439042B2 (ko)
KR (1) KR102213184B1 (ko)
CN (1) CN107079458B (ko)
ES (2) ES2904516T3 (ko)
PL (1) PL3337074T3 (ko)
WO (1) WO2017026784A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106487489B (zh) * 2015-09-01 2022-05-06 华为技术有限公司 传输信息的方法、无线局域网装置
WO2016201739A1 (zh) 2015-06-16 2016-12-22 华为技术有限公司 资源调度的方法、装置和设备
WO2017030404A1 (ko) * 2015-08-20 2017-02-23 엘지전자 주식회사 무선랜 시스템에서 데이터 필드를 지시하는 제어 필드를 포함하는 프레임 유닛을 구성하는 방법 및 장치
US10356784B2 (en) * 2016-06-14 2019-07-16 Lg Electronics Inc. Method and apparatus for constructing control field including information regarding resource unit in wireless local area network system
CN107846423B (zh) * 2017-12-25 2020-07-10 上海物麒科技有限公司 用于电力线载波通信系统传输中带宽自适应的方法
WO2020009425A1 (ko) * 2018-07-03 2020-01-09 엘지전자 주식회사 무선랜 시스템에서 패킷을 식별하는 방법 및 장치
CN110730050A (zh) * 2018-07-17 2020-01-24 华为技术有限公司 一种通信方法及装置
US11902864B2 (en) * 2019-02-01 2024-02-13 Lg Electronics Inc. Method and device for identifying packet in wireless communication system
JP2020141327A (ja) * 2019-02-28 2020-09-03 キヤノン株式会社 通信装置、情報処理装置、制御方法、およびプログラム
JP2020141301A (ja) * 2019-02-28 2020-09-03 キヤノン株式会社 通信装置、通信装置の通信方法、及び、プログラム
WO2021235780A1 (ko) * 2020-05-20 2021-11-25 엘지전자 주식회사 무선랜 시스템에서 mru에 대한 할당 정보를 포함하는 eht-sig를 구성하는 방법 및 장치
EP4181603A4 (en) * 2020-09-03 2024-01-24 Lg Electronics Inc METHOD AND DEVICE FOR ALLOCATING RESOURCES BY LIMITING RU AND MRU FOR A STA OPERATING AT ONLY 20 MHZ IN A WIRELESS LAN SYSTEM
EP4255091A4 (en) * 2021-01-08 2024-05-15 Lg Electronics Inc METHOD AND DEVICE FOR RECEIVING A MAC ADDRESS OF ANOTHER STA WITHIN THE RECEIVING MLD IN A WLAN SYSTEM
WO2023200283A1 (ko) * 2022-04-14 2023-10-19 엘지전자 주식회사 무선랜 시스템에서 새로운 뉴머롤로지에 대한 톤 할당 기반 송신 또는 수신 방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016684A1 (ko) * 2013-08-02 2015-02-05 엘지전자 주식회사 데이터 유닛을 수신하는 방법 및 장치
WO2015068968A1 (ko) * 2013-11-07 2015-05-14 엘지전자 주식회사 무선랜에서 멀티 유저 상향링크 수신 방법 및 장치
WO2015076856A1 (en) * 2013-11-19 2015-05-28 Intel IP Corporation Hew packet structure and method for high-efficiency wi-fi (hew) communication

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011050324A1 (en) 2009-10-23 2011-04-28 Marvell World Trade Ltd. Training sequence indication for wlan
HUE042610T2 (hu) 2009-12-03 2019-07-29 Lg Electronics Inc Eljárás és berendezés keretnek vezeték nélküli LAN rendszerben való adására
KR102087656B1 (ko) * 2013-04-29 2020-03-11 삼성전자주식회사 디바이스 대 디바이스 통신 시스템에서 자원의 분산 스케줄링 방법 및 장치
KR20150016684A (ko) * 2013-08-05 2015-02-13 삼성전자주식회사 전자펜 탈부착 장치 및 이를 구비하는 휴대 장치
US9998185B2 (en) * 2015-03-27 2018-06-12 Newracom, Inc. Aggregation methods and systems for multi-user MIMO or OFDMA operation
EP3295571B1 (en) * 2015-05-08 2021-09-08 Newracom, Inc. Pilot transmission and reception for orthogonal frequency division multiple access
US20170048844A1 (en) * 2015-08-12 2017-02-16 Xiaogang Chen Device, method and system using the he sig-b field spatial resource indication
WO2017112818A1 (en) * 2015-12-21 2017-06-29 Qualcomm Incorporated Preamble design aspects for high efficiency wireless local area networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016684A1 (ko) * 2013-08-02 2015-02-05 엘지전자 주식회사 데이터 유닛을 수신하는 방법 및 장치
WO2015068968A1 (ko) * 2013-11-07 2015-05-14 엘지전자 주식회사 무선랜에서 멀티 유저 상향링크 수신 방법 및 장치
WO2015076856A1 (en) * 2013-11-19 2015-05-28 Intel IP Corporation Hew packet structure and method for high-efficiency wi-fi (hew) communication

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HE, SHIWEN ET AL.: "PPDU Format for IEEE 802.11 aj (45GHz", 19 May 2015 (2015-05-19), XP068094323, Retrieved from the Internet <URL:https://meator.ieee.org/802.11/den/14/11-14-1082-05-00aj-ppdu-format-for- ieee -802-11-aj- 45ghz.ppt> *
KWON, YOUNG HOON ET AL.: "SIG-B Field for HEW PPDU", IEEE 802.11-15/0805R2, 13 July 2015 (2015-07-13), XP055363690, Retrieved from the Internet <URL:https://mentor.ieee.org/802.11/der/15/11-15-0805-02-00ax-sig-b-field-for-hew-ppdu.pptx> *
See also references of EP3337074A4 *

Also Published As

Publication number Publication date
EP3668001A1 (en) 2020-06-17
CN107079458B (zh) 2020-08-11
EP3337074B1 (en) 2020-06-17
US10667242B2 (en) 2020-05-26
ES2904516T3 (es) 2022-04-05
JP6439042B2 (ja) 2018-12-19
ES2813724T3 (es) 2021-03-24
CN107079458A (zh) 2017-08-18
EP3668001B1 (en) 2021-12-22
EP3975463A1 (en) 2022-03-30
JP2017538323A (ja) 2017-12-21
EP3975463B1 (en) 2023-05-31
PL3337074T3 (pl) 2021-01-11
US20180288754A1 (en) 2018-10-04
EP3337074A4 (en) 2019-03-20
EP3337074A1 (en) 2018-06-20
KR102213184B1 (ko) 2021-02-05
KR20180030457A (ko) 2018-03-23

Similar Documents

Publication Publication Date Title
WO2017026782A1 (ko) 무선랜 시스템에서 자원 유닛에 관한 정보를 포함하는 제어 필드를 구성하는 방법 및 장치
WO2017026784A1 (ko) 무선랜 시스템에서 제어 필드를 포함하는 제어 신호를 구성하는 방법 및 장치
WO2020013594A1 (ko) 무선랜 시스템에서 데이터를 전송하는 방법 및 장치
WO2016072766A1 (ko) 무선랜에서 컨테이너를 기반으로 자원 단위를 할당하는 방법 및 장치
WO2016060448A1 (ko) 무선랜에서 버퍼 상태 정보를 기반으로 상향링크 전송 자원을 할당하는 방법 및 장치
WO2016060504A1 (ko) 무선랜에서 서로 다른 크기의 대역폭 상에서 무선 자원을 할당하는 방법 및 장치
WO2016167561A1 (ko) 무선랜 시스템에서 다수의 자원 유닛을 위해 사용되는 시그널 필드를 구성하는 방법 및 장치
WO2016175517A1 (ko) 무선 랜 시스템에서 다수의 자원 배치 기법을 사용하여 통신을 수행하는 방법 및 장치
WO2016068669A1 (ko) 무선랜에서 자원 단위를 할당하는 방법 및 장치
WO2019194516A1 (ko) 무선랜 시스템에서 fdr을 기반으로 ppdu를 송신하는 방법 및 장치
WO2016159737A1 (ko) 무선랜 시스템에서 시그널 필드를 구성하는 방법 및 장치
WO2020032430A1 (ko) 무선랜 시스템에서 ppdu를 전송하는 방법 및 장치
WO2016056830A1 (ko) 무선랜에서 파일롯 톤을 포함하는 자원 단위 상에서 데이터를 전송하는 방법 및 장치
WO2016137201A1 (ko) 다수의 서브캐리어를 포함하는 자원유닛을 사용하여 신호를 송신하는 방법 및 장치
WO2016056878A1 (ko) 무선랜에서 자원 할당 설정에 따라 무선 자원을 할당하는 방법 및 장치
WO2016085286A1 (ko) 무선랜에서 서로 다른 파일롯 톤 패턴을 기반으로 한 데이터 전송 방법 및 장치
WO2017119759A1 (ko) 무선랜 시스템에서 전력 관리를 위한 방법 및 이를 이용한 단말
WO2019225986A1 (ko) 무선랜 시스템에서 fdd를 기반으로 ppdu를 송수신하는 방법 및 장치
WO2020022814A1 (ko) 무선랜 시스템에서 ul 데이터를 수신하는 방법 및 장치
WO2019190151A1 (ko) 무선랜 시스템에서 s-tdma를 기반으로 ppdu를 전송하는 방법 및 장치
WO2016039603A1 (ko) 무선랜에서 자원 단위를 할당하는 방법 및 장치
WO2017183868A1 (ko) 무선랜 시스템에서 상향링크 전송을 위한 방법 및 이를 이용한 무선 단말
WO2020050541A1 (ko) 무선랜 시스템에서 프레임을 송수신하는 방법 및 장치
WO2018084404A1 (ko) 무선 랜 시스템에서 ppdu를 송신하기 위한 공간 재사용을 수행하는 방법 및 장치
WO2016036016A1 (ko) 무선랜에서 트레이닝 필드를 전송하는 방법 및 장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20177008541

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835424

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017522008

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15525006

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016835424

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE