WO2019022148A1 - Electric brake device - Google Patents

Electric brake device Download PDF

Info

Publication number
WO2019022148A1
WO2019022148A1 PCT/JP2018/027924 JP2018027924W WO2019022148A1 WO 2019022148 A1 WO2019022148 A1 WO 2019022148A1 JP 2018027924 W JP2018027924 W JP 2018027924W WO 2019022148 A1 WO2019022148 A1 WO 2019022148A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
electric
switch
motor
power supply
Prior art date
Application number
PCT/JP2018/027924
Other languages
French (fr)
Japanese (ja)
Inventor
唯 増田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019022148A1 publication Critical patent/WO2019022148A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/38Slack adjusters
    • F16D65/40Slack adjusters mechanical
    • F16D65/52Slack adjusters mechanical self-acting in one direction for adjusting excessive play
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage

Definitions

  • the present invention relates to an electric brake device used for vehicles such as automobiles and various devices.
  • Patent Document 1 an actuator for an electric brake provided with an electric motor, a linear motion mechanism, and a reduction gear has been proposed.
  • Patent Document 2 an electric actuator provided with a planetary roller mechanism and an electric motor has been proposed.
  • a half bridge circuit which converts DC power of a battery into AC power is used as a motor driver.
  • the half bridge circuit is composed of an H arm switch that performs connection with the positive side of the battery and an L arm switch that performs connection with the negative side.
  • the L arm switch when the L arm switch is turned on as a switching potential source of the H arm switch, charges are accumulated from a predetermined potential source and the H arm switch is turned on.
  • a charge circuit using a bootstrap capacitor that functions as a potential source applied to the gate is provided.
  • a digital arithmetic unit (microcomputer etc.) is generally used to mount complicated calculations at low cost, but when controlling the electric motor to a predetermined angle, it is used for resolution and sampling. There may be a minute oscillation caused by this.
  • deterioration of NHV (noise harshness vibration) due to the peristalsis may be a problem due to the influence of backlash or the like of the mechanical joint.
  • cost may be a problem.
  • manufacturing cost may become a problem.
  • An object of the present invention is to provide an electric brake system capable of reliably charging a switch power supply, operating promptly at the next braking operation, and improving noise and vibration at no load.
  • the electric brake device comprises a brake rotor 31, a friction member 32 for generating a braking force by coming into contact with the brake rotor 31, and a friction member operating means for operating the friction member 32 by driving the electric motor 6. And a control device 5 for controlling the output of the electric motor 6 to follow a given brake command value, and a DC power supply device 3 for applying electric power to the electric motor 6).
  • the control device 5 Switch means 21 for controlling the connection state between the coil end of the electric motor 6 and the power supply device 3;
  • a switch power supply 22 having a storage function and functioning as a power supply for switching at least a part of the switch means 21;
  • Charge means 24 for storing power in the switch power supply 22 in a predetermined switching pattern of the switch means 21;
  • a brake release request determination function unit 14 that determines that an operation for requesting a brake release has been performed when at least one of the brake force command value and its derivative value becomes smaller than a predetermined value; When it is determined that the operation for requesting the brake release has been performed, the friction material operating means (2) is driven to a predetermined brake release state, and the angle of the electric motor 6 at this time and its differential value At least one of a release completion determination function unit 15 that determines that the transition to the brake release state is completed; When it is determined that the transition to the release state is completed, at least the stationary electric motor 6 is not driven spontaneously and the switch means 21 is stored by the charge means 24 or the switch power
  • the brake standby function unit 16 does not spontaneously drive the electric motor 6 at least in the stationary state, and the switch unit 21 Are maintained in a predetermined switching pattern that can be stored in the switch power supply 22 by the charging means 24. Therefore, the switch power supply 22 is surely charged, and can be operated promptly at the next braking operation. Further, since the voltage condition is not driven spontaneously, noise and vibration at no load, so-called NHV can be improved.
  • the "predetermined value” is provided for each of the braking force command value and its differential value. Further, the above “predetermined value” and each of the following “predetermined value” and the "predetermined” values referred to in this specification are values appropriately determined by a test or a design.
  • the switch means 21 is a switch circuit provided with a pair of L-arm switch circuit 21L and H-arm switch circuit 21H for each coil end of the electric motor 6,
  • the L arm switch circuit 21L includes a first input / output terminal 25La connected to the coil end of the electric motor 6, a second input / output terminal 25Lb connected to the negative side of the power supply 3, and
  • the negative side of the power supply device 3 and the above-mentioned power supply device 3 are provided by a transistor element 25 having a switching terminal 25Lc to which both the input / output terminals 25La and 25Lb are connected by inputting a positive potential to the second input / output terminal 25Lb.
  • the H arm switch circuit 21H includes a first input / output terminal 25Ha connected to the positive side of the power supply device 3, a second input / output terminal 25Hb connected to a coil end of the electric motor 6, and The positive side of the power supply device 3 and the electric motor are provided by a transistor element 25H having a switching terminal 25Hc connecting the two input / output terminals 25Ha and 25Hb by inputting a positive potential to the two input / output terminals 25Hb.
  • the switch power supply 22 is a capacitor connected to the second input / output terminal 25Hb of the transistor element 25H in the H arm switch circuit 21H as an electrical reference potential
  • the charge means 24 is a charge circuit for storing charge in the switch power supply 22 composed of the capacitor when the L arm switch circuit 21L is in a connected state
  • the brake standby function unit 16 keeps all the L arm switches 21 L always connected and keeps all the H arm switches 21 H disconnected. You may do so.
  • the switch circuits 21H and 21L of the switch means 21 are kept in a constant state of on or off, the switching loss can be reduced and power consumption reduction can be expected.
  • the L arm switch circuit 21L turns on and the H arm switch circuit 21H turns off for the state of the switch means 21 consisting of a half bridge circuit in the motor driver 13 of the electric brake device.
  • the switch power supply 22 consisting of a bootstrap capacitor used as a voltage for switching the H arm switch circuit 21H is maintained in a charged state.
  • the brake release request judgment function unit 14 determines the brake release request from the brake command of the command means (brake pedal etc.) 4 and its variation amount, and the electric brake device stands by from the motor angle and motor angular velocity at that time.
  • the brake release completion determination function unit 15 determines whether the position has been shifted to the position, and in this state, the brake standby function unit 16 causes the brake standby function unit 16 to maintain the state of the switch means 21 composed of the half bridge circuit. .
  • the switch power supply 22 consisting of a bootstrap capacitor is always charged and a request to apply a brake is given, It can be made to respond promptly. Switching is not performed by always turning on all L arm switch circuits 21L and always turning off H arm switch circuits 21H, so that switching losses may occur due to stray capacitance of transistor elements 25H and 25L such as FET.
  • the standby power can be reduced. Since the motor terminal voltages u, v, w are all the same voltage, the electric motor 6 is not driven spontaneously, and minute chattering or the like due to sensor resolution or sampling does not occur. Quietness can be achieved. When the electric motor 6 is turned from the outside due to vibration or the like, regenerative torque due to power generation is generated in the electric motor 6 and the electric motor 6 can be prevented from separating rapidly from the standby position. It is easy to return to the standby position.
  • the release completion determination function unit 14 is configured to detect a deviation of the motor angle with respect to a motor angle target value at which a predetermined gap may be generated between the friction material 32 and the brake rotor 31. It may be determined that the release of the brake is completed in a state where the absolute value is equal to or less than the predetermined value and the absolute value of the motor angular velocity is equal to or less than the predetermined value.
  • the release completion determination function unit 14 sets a motor angle relative to a motor angle target value at which a predetermined gap can be generated between the friction member 32 and the brake rotor 31.
  • a counter 14a may be provided to measure the duration of the state in which the absolute value of the deviation is less than or equal to a predetermined value, and when the value of the counter 14a exceeds the predetermined value, it may be determined that the brake release is completed.
  • the brake standby function unit 16 releases the brake standby function to shift the friction state to a predetermined brake release state when the fluctuation of the motor angle becomes larger than a predetermined amount during execution.
  • the material 32 may be driven.
  • the control device 5 is an angle estimation means (9) for estimating the angle of the electric motor 6, a cogging torque estimation function unit 11a for estimating cogging torque from the estimated angle, and a brake
  • it may have a standby position adjusting function unit 11b that uses a motor angle at which the estimated cogging torque becomes substantially zero as an angle command value. If the function of the brake standby function unit 16 is executed at a phase where a relatively large cogging torque is generated, the motor is rotated by the cogging torque.
  • the motor is prevented from being rotated by the cogging torque by setting the cogging torque to stand by at a motor angle which is zero or sufficiently small in advance. can do.
  • FIG. 1 is a block diagram showing a conceptual configuration of an electric brake device according to a first embodiment of the present invention. It is an enlarged view of the upper part of FIG. It is an enlarged view of the lower part of FIG. It is a flowchart which shows the control operation example of the same electric brake device. It is sectional drawing which shows the specific example of the friction brake mechanism of the same electric brake device, and a direct-acting actuator. It is a block diagram which shows the conceptual structure of the electrically-driven brake device which concerns on other embodiment of this invention.
  • the electric brake device includes a friction brake mechanism 1, a direct acting actuator 2 which is a friction material operating means, a power supply device 3, and a direct acting actuator so as to follow command values given from a command means 4. And a control device 5 for controlling the output of the electric motor 6.
  • the friction brake mechanism 1 comprises a brake rotor 31 and a friction material 32 which is brought into contact with the brake rotor 31 to generate a braking force.
  • the friction brake mechanism 1 may be, for example, a disk brake device using a brake disk and a caliper as the brake rotor 31 and the friction material 32, or may be a drum brake device using a drum and a lining.
  • the linear actuator 2 is used as the friction material operation means for operating the friction material 32.
  • the friction material operation means may operate the friction material 32 along an arc locus, for example.
  • the friction material 32 may be in contact with the brake rotor 31 in operation.
  • the linear motion actuator 2 includes an electric motor 6 and a linear motion mechanism 7 for converting the rotational output of the electric motor 6 into a linear reciprocating motion.
  • the linear actuator 2 is provided with a reduction gear 33 consisting of a gear train or the like of a spur gear that decelerates the output of the electric motor 6, and the linear movement mechanism 7 reciprocates the rotational output of the reduction gear 33.
  • the reduction gear 33 may be a worm gear, a planetary gear, or the like, and may not necessarily be provided.
  • the linear actuator 2 also has a load sensor 8 for detecting an axial load of the linear motion mechanism 7 and an angle sensor for detecting a motor angle (rotational angle of the rotor) of the electric motor 6. And 9. Further, various sensors (not shown) such as a thermistor may be separately provided as necessary.
  • the electric motor 6 is preferably a permanent magnet synchronous motor, which can save space and increase torque, which is considered to be preferable.
  • a DC motor using a brush, a reluctance motor not using a permanent magnet, or an induction motor etc. can also be applied.
  • the linear motion mechanism 7 may use various types of screw mechanisms such as a planetary roller screw and a ball screw, and various mechanisms that convert rotational motion into linear motion by a circumferentially inclined portion formed on the rotary shaft, such as a ball lamp. it can.
  • the angle sensor 9 is, for example, a resolver or a magnetic encoder, which is considered to be suitable with high accuracy and high reliability and suitable, but various sensors such as an optical encoder can also be applied.
  • an angle sensorless estimation (not shown) in which the motor angle is estimated from the relationship between voltage and current in the control device 5 can be used.
  • the load sensor 8 can use, for example, a magnetic sensor that detects displacement or deformation, a strain sensor, a pressure sensor, or the like.
  • load sensorless estimation may be used in the control device 5 based on motor angle and motor brake device stiffness, motor current, linear actuator efficiency, and the like.
  • various sensors outside the electromotive brake device may be used, such as, for example, the wheel torque of the wheel on which the electromotive brake device is mounted, and a sensor that detects the longitudinal force of the vehicle equipped with the electromotive brake device.
  • the power supply device 3 has a function of storing DC power by storing electricity, such as a battery, and may be a device serving as a power supply of the whole vehicle or a device serving as a dedicated power supply of the electric brake device.
  • the command means 4 is a means for performing a request for brake on and brake release such as a brake pedal, and outputs a command from, for example, a pedal stroke sensor or the like provided on the brake pedal.
  • the command of the command means 4 may be given to the control device 5 of the electric brake device via a host ECU [Electronic Control Unit] such as VCU [Vehicle Control Unit] (not shown).
  • the command means 4 may be part of an automatic driving function unit in a vehicle having a function of performing automatic driving.
  • the control device 5 has, as a basic configuration, a main brake control function unit 11, a switching pattern determination function unit 12, and a motor driver 13, and in addition, a brake release request determination function unit 14 and a brake release completion determination function unit And a brake standby function unit 16.
  • Each of the functional units 11, 12, 14, 15, 16 having the control device 5 is constituted by an arithmetic unit such as a microcomputer, an FPGA, an ASIC or the like and a peripheral circuit, for example.
  • the main brake control function unit 11 performs control calculation to control the electric motor 6 so that the estimated braking force estimated by the load sensor 8 or the like follows the braking force command value requested by the command means 4 .
  • the control calculation may use, for example, feedback control that directly uses a braking force command value and an estimated value, or may convert the braking force into another physical quantity such as an angle to perform the control calculation.
  • the feedback control calculation may be a calculation structure in which a plurality of minor feedback loops are provided, for example, to provide a motor current control loop in a braking force control loop, and the motor operation amount is calculated in a single feedback loop. It may be a structure. In addition, feed forward control etc. can be used or used together suitably.
  • the main brake control function unit 11 in addition to the function of following control of the braking force in order to reduce drag torque at the time of releasing the brake, when releasing the braking force, the friction material of the friction brake mechanism 1 It is preferable to provide the function of controlling the linear actuator 2 at a position where a predetermined clearance is provided between the brake rotor 32 and the brake rotor 31 (see FIG. 3).
  • the above function may be, for example, a function of estimating the position of the linear actuator 2 from the motor angle and the equivalent lead of the linear actuator 2, etc. Although this is considered to be low cost and suitable, A position sensor (not shown) for detecting the position may be additionally provided.
  • the switching pattern determination function unit 12 is a connection / disconnection pattern (or switching pattern) between the coil end of the electric motor 6 and the power supply device 3 in the motor driver 13 mainly based on the motor operation amount calculated in the main brake control function unit 11
  • the switching pattern determination function unit 12 has a function of determining For example, in the case of using the power supply device 3 whose DC voltage is Vdc (plus side: + Vdc, minus side: GND), when the voltage of a predetermined motor terminal is Vn, the ratio is approximately Vn / Vdc within a predetermined time.
  • the time may be connected to the positive side (+ Vdc), and a pulse signal may be generated to connect the time when the ratio is approximately (1 ⁇ Vn / Vdc) to the negative side (GND).
  • the motor driver 13 has a switch means 21 for controlling the connection between the coil end of the electric motor 6 and the power supply device 3 and a switch having a storage function and functioning as a power source for switching at least a part of the switch means 21. Power is supplied to the switch power supply 21 in a predetermined switching pattern of the switch means 21.
  • the switch control circuit 23 applies switch control signals to the power supply 22 and the transistor elements 25H and 25L which are switch elements constituting the switch means 21.
  • charging means 24 for accumulating.
  • the switch control circuit 23 applies switch control signals to the transistor elements 25H and 25L in accordance with the switching pattern output from the switch pattern determination function unit 12.
  • the switch means 21 is a switch circuit provided with a pair of L-arm switch circuit 21L and H-arm switch circuit 21H at coil ends u, v, w of the electric motor 6, respectively.
  • the form is a half bridge circuit.
  • the L arm switch circuit 21L is a switch circuit unit that controls the connection state between the negative side of the power supply device 3 and the coil ends u, v, w of the electric motor 6 by a transistor element 25L such as an FET.
  • the transistor element 25L includes a first input / output terminal 25La connected to coil ends u, v, w of the electric motor 6, a second input / output terminal 25Lb connected to the negative side of the power supply 3, and It has switching terminal 25Lc which connects both input / output terminal 25La and 25Lb by inputting positive potential to the 2nd input / output terminal 25Lb.
  • the H arm switch circuit 21H is a switch circuit unit that controls the connection between the positive side of the power supply 3 and the coil ends u, v, w of the electric motor 6 by a transistor element 25H such as an FET.
  • the transistor element 25H includes a first input / output terminal 25Ha connected to the positive side of the power supply 3 and a second input / output terminal 25Hb connected to coil ends u, v, w of the electric motor 6. It has switching terminal 25Hc which connects both input / output terminals 25Ha and 25Hb by inputting positive potential to the second input / output terminal 25Hb.
  • the switch power supply 22 is a so-called bootstrap capacitor which is connected as the electric reference potential to the second input / output terminal 25Hb of the transistor element 25H in the H arm switch circuit 21H.
  • the charge means 24 is a charge circuit for storing charge in the switch power supply 22 composed of the capacitor when the L arm switch circuit 21L is in a connected state, and is used as a potential source (not shown) of a predetermined potential V2. It comprises a circuit connected to the switch power supply 22 via the diode 24a.
  • the potential V2 may be a potential sufficient to connect at least the terminals 25La and 25Lb and 25Ha and 25Hb of the transistor elements to at least the switching terminals 25Lc and 25Hc of the transistor elements 25L and 25H.
  • the potential V2 may be, for example, a potential equal to V1 applied from the power supply device 3 common to the potential V1 or, for example, when the power supply device 3 is a general vehicle low voltage power supply 12V, a circuit such as a microcomputer It may be a potential lower than V1, such as +5 V or +3.3 V, which has been stepped down.
  • the brake release request determination function unit 14 determines that “an operation for requesting release of the brake has been performed” when the magnitude of at least one of the brake force command value and the derivative thereof becomes smaller than a predetermined value. It is. For example, when the brake force command value falls below a predetermined value, or when the decrease change amount of the brake force command value falls below a predetermined value, the brake release request determination function unit 14 performs the brake based on a predetermined condition using both of them. It may be possible to have a function of determining whether or not cancellation of is required.
  • a host ECU for generating a braking force command value is provided, and the host ECU separately transmits a brake release request signal, and a request for releasing the brake upon reception of the brake release request. It can also be configured to judge.
  • the release completion determination function unit 15 drives the linear motion actuator 2 which is the friction material operating means to a predetermined brake release state, and the electric motor 6 at this time is From the angle and / or its derivative value, it is determined that the transition to the brake release state is completed.
  • the release completion determination function unit 15 has a predetermined position, for example, a position where a predetermined clearance can be provided between the friction material 32 of the friction brake mechanism 1 and the brake rotor 31 when, for example, the brake release is requested. It has a function to determine whether the brake release state has been achieved. For example, in the case where the motor angle is controlled to a position where a predetermined gap (clearance amount) can be obtained, the above determination is made when the magnitude of the deviation between the angle command value and the estimated motor angle falls below a predetermined value. May be determined on the basis of a predetermined condition in which these are used in combination or when the value of .beta.
  • the motor angular velocity may be estimated by, for example, a state estimation observer (not shown) or the like, and the transition of the motor angle within a predetermined time may be used as a physical quantity substantially equivalent to the angular velocity.
  • the release completion determination function unit 14 determines the absolute value of the motor angle deviation with respect to the motor angle target value at which a predetermined gap can be generated between the friction material 32 and the brake rotor 31. It may be determined that the brake release is completed in a state where the value is equal to or less than the predetermined value and the absolute value of the motor angular velocity is equal to or less than the predetermined value.
  • the cancellation completion determination function unit 14 is configured such that the absolute value of the deviation of the motor angle is a predetermined value with respect to the motor angle target value at which a predetermined gap can occur between the friction material 32 and the brake rotor 31.
  • a counter 14a (see FIG. 2) for measuring the duration of the following state may be provided, and when the value of the counter 14a exceeds a predetermined value, it may be determined that the brake release is completed.
  • ⁇ Brake standby function unit 16> When it is determined that the transition to the release state is completed, the brake standby function unit 16 does not drive the electric motor 6 at least in a standstill state spontaneously, and the switch means 21 is not operated by the charge means 24. A predetermined switching pattern that can be stored in the switch power supply 22 is maintained. Specifically, when the brake release request function unit 14 determines that the brake release request is requested and the brake release completion determination function unit 15 determines that the brake release is completed.
  • the switching pattern determination function unit 12 can be configured to have a function of generating a predetermined switching pattern.
  • the brake standby function unit 16 releases the brake standby function and drives the friction material 32 to a predetermined brake release state when the fluctuation of the motor angle becomes larger than a predetermined amount during execution. It is also good. With this configuration, when the gap amount at the time of standby changes due to the influence of vibration or the like, occurrence of unintended drag torque and response delay can be prevented by appropriately correcting and maintaining the gap amount.
  • the motor driver 13 is configured to have the switch means 21 composed of a half bridge circuit using the transistor elements 25H and 25L such as FET as switch elements as described above, and PWM which determines the motor applied voltage by a predetermined duty ratio, for example.
  • the configuration is to control. This is considered to be suitable because of its low cost and high performance.
  • a transformer circuit or the like may be provided to perform PAM control.
  • the switching pattern determination function unit 12 performs a switching pattern for performing the PWM control and the PAM control.
  • the L arm switch circuit 21L is turned on as a switching potential source of the transistor element 25H of the H arm switch circuit 21H which connects to the positive side of the power supply device 3 among the half bridge circuits constituting the switch means 21.
  • Charge means is a charge circuit using a switch power supply 22 consisting of a bootstrap capacitor that functions as a potential source to be applied to the gate when electric charge is accumulated from a predetermined potential source when turning on the H arm switch circuit 21H. 24 is preferable because the motor driver 13 can be driven at low cost.
  • the switching pattern determination function unit 12 performs switching such that the on time of the L arm switch circuit 21L is sufficiently long such that the charge state of the switch power supply 22 consisting of a bootstrap capacitor is sufficient for control of the H arm switch circuit 21H. It is preferable to set the pattern.
  • the switch power supply 22 composed of the bootstrap capacitor can be reliably maintained in a good charge state and accompanied by switching. It is considered particularly suitable because no loss occurs. Further, at this time, since the electric motor 6 is not driven spontaneously, the operation noise due to the motor oscillation does not occur, and the NHV can be improved. In particular, for example, when the linear actuator 2 has a mechanical joint such as a reduction gear 33 (see FIG. 3) made of parallel gears or the like, slight vibration may occur due to the influence of backlash or the like in the unloaded state where the brake is released. On the other hand, NHV may be greatly improved because a relatively large operation noise is generated.
  • the electric motor 6 When an external force is applied to the electric motor 6 due to, for example, vibration of a vehicle equipped with an electric brake when the constant switching pattern is in the above-mentioned state, the electric motor 6 generates power and generates load torque.
  • the electric motor 6 is less likely to be turned by an external force as compared with the case where it does. Therefore, for example, the motor can be prevented from deviating from the predetermined motor standby angle due to the motor external force or the like, and even if it is temporarily separated, it can be returned to the original standby position relatively easily.
  • FIG. 4 shows an example when the brake standby function unit 16 etc. execute in the example of FIG.
  • step S1 for example, when the braking force command value falls below a predetermined value, or when the decreasing change amount of the braking force command value falls below a predetermined value, or the release of the brake is requested based on a predetermined condition using both of them.
  • the brake release request determination function unit 14 determines whether it is present. If the release of the brake is not required, the process proceeds to step S5, the execution of the brake control is continued, and the determination of step S1 is performed again.
  • step S2 for example, when the magnitude of the deviation between the angle command value and the estimated motor angle falls below a predetermined value, or when the magnitude of the motor angular velocity falls below a predetermined value, or based on a predetermined condition using both of them.
  • the brake release determination function unit 15 determines whether the release is completed.
  • step S3 when the brake release is requested and the brake release is completed, all the H arm switch circuits 21H are turned off and all the L arm switch circuits 21L are turned on for the switching pattern of the motor driver 13.
  • the switching pattern may be a switching pattern capable of sufficiently charging at least the switch power supply 22 composed of the bootstrap capacitor of the motor driver 13 of FIG. 1, but if it is as shown in this figure, each of the swing circuit 21H and 21L is turned on. Since the off operation is not performed, the loss associated with switching can be reduced, which is considered preferable.
  • step S2 of the subsequent control cycle the brake release is not completed.
  • the electric motor is controlled to follow the control to the target angle promptly again in step S4.
  • the switch power supply 22 consisting of a bootstrap capacitor is always charged by keeping the L arm switch circuit 21 L on and the H arm switch circuit 21 H off in this manner.
  • Switching is not performed by always turning on all L arm switch circuits 21L and always turning off H arm switch circuits 21H, so that switching losses associated with stray capacitances of transistor elements 25H and 25L such as FETs do not occur.
  • the standby power can be reduced. Since all the motor terminal voltages become the same voltage, the electric motor 6 is not driven spontaneously, and minute chattering or the like due to sensor resolution or sampling does not occur, so that the operation noise can be suppressed.
  • the electric motor 6 is turned from the outside due to vibration or the like, regenerative torque due to power generation is generated in the electric motor 6 and the electric motor 6 can be prevented from separating rapidly from the standby position. It is easy to return to the standby position.
  • FIG. 6 shows another embodiment of the present invention.
  • This embodiment is the same as the first embodiment shown in FIGS. 1 to 5 except for the matters described particularly.
  • This embodiment shows an example of adjusting the brake standby position in accordance with the cogging torque of the electric motor 6 in addition to the configuration of the first embodiment.
  • the control device 5 includes a cogging torque estimation function unit 11a that estimates the value of cogging torque from the angle estimated by the angle estimation means including the angle sensor 9 and the like, and from the brake state to the brake release state.
  • a standby position adjusting function unit 11 is provided which uses a motor angle at which the estimated cogging torque becomes substantially zero when making a transition, as an angle command value.
  • the electric motor 6 rotates when an external force is applied. That is, when the brake standby state is established in a state where there is a rotational force in a predetermined direction by the cogging torque, the electric motor 6 may be rotated by a predetermined amount by the cogging torque. At that time, for example, according to the flow of FIG. 4, the case where the brake standby function is executed (step S3) and the case where it is not so (step S4) may be repeated, which may result in unnecessary swing.
  • the cogging torque of the electric motor 6 is estimated, and the motor position at which the cogging torque becomes zero is set in advance as the standby position by the standby position adjustment function unit 11b, whereby the control of the brake standby function unit 16 is performed. Can be maintained without the electric motor 6 being turned even if the controller 1 is executed.
  • the cogging torque may be estimated in advance by using an estimation LUT (look-up table) (not shown) or the like based on design or measurement, or from motor operation or the like when torque is zeroed. A method may be used.
  • Friction brake mechanism 2 ... Linear actuator (friction material operating means) 3 Power supply device 4 Command means 5 Control device 6 Electric motor 8 Load sensor 9 Angle sensor (angle estimation means) 11a ... cogging torque estimation function unit 11b ... standby position adjustment function unit 12 ... switching pattern determination function unit 13 ... motor driver 14 ... brake release request determination function unit 14a ... counter 15 ... release completion determination function unit 16 ... brake standby function unit 21 ... switch 21 L ... L arm switch circuit 21 H ... H arm switch circuit 22 ... switch power supply 24 ... charge 25 H, 25 L ... transistor element 25 Ha ... first input / output terminal 25 Hb ... second input / output terminal 25 Hc ... switching terminal 25 La ... second First input / output terminal 25Lb Second input / output terminal 25Lc Switching terminal 31 Brake rotor 32 Friction material

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Braking Arrangements (AREA)
  • Braking Systems And Boosters (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

Provided is an electric brake device with which a switch power supply can be reliably charged and caused to operate rapidly when a brake operation next occurs, and with which no-load noise and vibration can be improved. The electric brake device is provided with a switch means (21) such as a half bridge circuit for controlling a state of connection between a coil end of an electric motor (6) and a power supply device (3). The electric brake device is provided with a switch power supply (22) having an electric power storing function, comprising a capacitor or the like for switching the switch means (21). The electric brake device is provided with a charging means (24) such as a charging circuit which causes the switch means (22) to store electric power, in a predetermined switching pattern of the switch means (21). The electric brake device is provided with a brake standby function unit (16) with which, when it has been determined that a transition to a brake released state is complete, at least the electric motor (6) in a stationary state is not driven spontaneously, and the switch means (21) is maintained in a predetermined switching pattern capable of being caused to store electric power in the switch means (22) by means of the charging means (24).

Description

電動ブレーキ装置Electric brake device 関連出願Related application
 本出願は、2017年7月27日出願の特願2017-145232の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 201-145232 filed on Jul. 27, 2017, which is incorporated by reference in its entirety.
 この発明は、自動車等の車両や各種の機器に用いられる電動ブレーキ装置に関する。 The present invention relates to an electric brake device used for vehicles such as automobiles and various devices.
 従来、電動モータ、直動機構、および減速機を備えた電動ブレーキ用アクチュエータが提案されている(特許文献1)。また、遊星ローラ機構および電動モータを備えた電動アクチュエータが提案されている(特許文献2)。 BACKGROUND Conventionally, an actuator for an electric brake provided with an electric motor, a linear motion mechanism, and a reduction gear has been proposed (Patent Document 1). In addition, an electric actuator provided with a planetary roller mechanism and an electric motor has been proposed (Patent Document 2).
特開平06-327190号公報Japanese Patent Application Publication No. 06-327190 特開2006-194356号公報JP, 2006-194356, A
 例えば文献1,2のような、電動式直動アクチュエータを用いた電動ブレーキ装置において、モータドライバにはバッテリの直流電力を交流電力に変換するハーフブリッジ回路が用いられる。前記ハーフブリッジ回路は、バッテリのプラス側との接続を行うHアームスイッチと、マイナス側との接続を行うLアームスイッチとで構成される。また、低コストで前記モータドライバを駆動するために、前記Hアームスイッチのスイッチング用電位源として、Lアームスイッチがオンになったときに所定の電位源から電荷が蓄積され、Hアームスイッチがオンとなるときにゲートに印加する電位源として機能するブートストラップコンデンサを用いたチャージ回路を設けることがある。 For example, in an electric brake device using an electric linear actuator as in the documents 1 and 2, a half bridge circuit which converts DC power of a battery into AC power is used as a motor driver. The half bridge circuit is composed of an H arm switch that performs connection with the positive side of the battery and an L arm switch that performs connection with the negative side. Also, in order to drive the motor driver at low cost, when the L arm switch is turned on as a switching potential source of the H arm switch, charges are accumulated from a predetermined potential source and the H arm switch is turned on. In some cases, a charge circuit using a bootstrap capacitor that functions as a potential source applied to the gate is provided.
 しかし、ブレーキ操作が解除されたときにブレーキ力を解除して電動ブレーキ装置を待機状態とするとき、ハーフブリッジ回路を駆動するブートストラップコンデンサが放電されてしまうとHアーム側のスイッチ素子をオンできなくなるため、次にブレーキ操作が入力された際に速やかにモータを駆動することができず、ブレーキの応答が遅れてしまう可能性がある。特に高速道路走行中のような、長時間ブレーキが踏まれない状況が考えられる場合、上記の問題が発生する可能性が高くなる。上記の課題の対策として、ブートストラップコンデンサの容量を増加させることや、放電を防止する絶縁構造を設けることは、コストや搭載スペースの増加が問題となる場合がある。 However, when the braking force is released to put the electric brake device in the standby state when the brake operation is released, if the boot strap capacitor for driving the half bridge circuit is discharged, the switch element on the H arm side can be turned on. Since it loses, when a brake operation is input next, it can not drive a motor promptly, and there is a possibility that a response of a brake may be overdue. The above problem is more likely to occur, particularly when traveling on a freeway, etc., where the brake can not be pressed for a long time. As measures against the above problems, increasing the capacitance of the bootstrap capacitor and providing an insulating structure for preventing discharge may cause problems in cost and an increase in mounting space.
 また、前記のような電動ブレーキ装置において、一般に複雑な演算を安価に実装する為ディジタル演算器(マイコン等)が用いられるが、電動モータを所定の角度に制御しようとする際に分解能やサンプリングに起因した微小な揺動が発生する場合がある。特に、前記のようなブレーキ解除時の無負荷状態において、機械結合部のバックラッシ等の影響で、前記搖動によるNHV(ノイズ ハーシュネス バイブレーション)悪化が問題となる場合がある。上記の課題の対策として、例えば極めて分解能及びサンプリングが微小な演算器や、あるいはサンプリング等を必要としないアナログ素子等を用いる場合、コストが問題になる場合がある。あるいは、機械結合部にバックラッシが無い構造とする場合、製造コストが問題となる場合がある。 In addition, in the above-mentioned electric brake device, a digital arithmetic unit (microcomputer etc.) is generally used to mount complicated calculations at low cost, but when controlling the electric motor to a predetermined angle, it is used for resolution and sampling. There may be a minute oscillation caused by this. In particular, in the no-load state at the time of releasing the brake as described above, deterioration of NHV (noise harshness vibration) due to the peristalsis may be a problem due to the influence of backlash or the like of the mechanical joint. As a countermeasure against the above-mentioned problems, for example, when using an arithmetic unit with extremely small resolution and sampling, or an analog element which does not require sampling or the like, cost may be a problem. Or when it is set as a structure without backlash in a mechanical coupling part, manufacturing cost may become a problem.
 もしくは、上記NHVの対策としてモータ制御を完全に停止する場合、前記のブートストラップコンデンサの放電が発生し易くなる問題がある。また、路面の凹凸による振動等の外力によって電動モータが回転させられた場合、本来のブレーキ待機状態から位置が変化してしまうことで、ブレーキ待機状態の摩擦材とブレーキロータのギャップが縮小して意図しない引き摺りトルクが発生するか、あるいは拡大して次のブレーキ操作時の応答遅延が発生する場合がある。 Alternatively, when the motor control is completely stopped as a countermeasure for the NHV, there is a problem that the discharge of the bootstrap capacitor tends to occur. In addition, when the electric motor is rotated by external force such as vibration due to the unevenness of the road surface, the position changes from the original brake standby state, and the gap between the friction material in the brake standby state and the brake rotor is reduced. Unintended drag torque may occur or may be expanded to cause a response delay at the time of the next brake operation.
 この発明の目的は、確実にスイッチ電源がチャージされ、次回のブレーキ動作時に速やかに動作させることができ、また無負荷時のノイズや振動を改善できる電動ブレーキ装置を提供することである。 SUMMARY OF THE INVENTION An object of the present invention is to provide an electric brake system capable of reliably charging a switch power supply, operating promptly at the next braking operation, and improving noise and vibration at no load.
 以下、本発明について、理解を容易にするために、便宜上実施形態の符号を参照して説明する。 Hereinafter, the present invention will be described with reference to the reference numerals of the embodiments for the sake of convenience to facilitate understanding.
 この発明の電動ブレーキ装置は、ブレーキロータ31と、このブレーキロータ31と接触して制動力を発生させる摩擦材32と、電動モータ6の駆動により前記摩擦材32を操作する摩擦材操作手段(2)と、与えられたブレーキ指令値に追従するように前記電動モータ6の出力を制御する制御装置5と、前記電動モータ6に電力を印加する直流の電源装置3とを備える電動ブレーキ装置であって、
 前記制御装置5が、
 前記電動モータ6のコイル端と前記電源装置3との接続状態を制御するスイッチ手段21と、
 蓄電機能を有し前記スイッチ手段21の少なくとも一部をスイッチングするための電源として機能するスイッチ電源22と、
 前記スイッチ手段21の所定のスイッチングパターンにおいて前記スイッチ電源22に電力を蓄積させるチャージ手段24と、
 前記ブレーキ力指令値およびその微分値のうち少なくとも何れかの大きさが所定値より小さくなったときに、ブレーキ解除を要求する操作がなされたことを判断するブレーキ解除要求判断機能部14と、
 前記ブレーキ解除を要求する操作がなされたことが判断されたとき、所定のブレーキ解除状態へと前記摩擦材操作手段(2)が駆動され、このときの前記電動モータ6の角度およびその微分値の少なくとも何れかよりブレーキ解除状態への移行が完了したことを判断する解除完了判断機能部15と、
 前記解除状態への移行が完了したと判断されたとき、少なくとも静止した状態の前記電動モータ6が自発的に駆動されず、かつ前記スイッチ手段21を前記チャージ手段24またはスイッチ電源22の蓄電により前記スイッチ電源22に蓄電され得る所定のスイッチングパターンに維持するブレーキ待機機能部16、とを有する。
The electric brake device according to the present invention comprises a brake rotor 31, a friction member 32 for generating a braking force by coming into contact with the brake rotor 31, and a friction member operating means for operating the friction member 32 by driving the electric motor 6. And a control device 5 for controlling the output of the electric motor 6 to follow a given brake command value, and a DC power supply device 3 for applying electric power to the electric motor 6). ,
The control device 5
Switch means 21 for controlling the connection state between the coil end of the electric motor 6 and the power supply device 3;
A switch power supply 22 having a storage function and functioning as a power supply for switching at least a part of the switch means 21;
Charge means 24 for storing power in the switch power supply 22 in a predetermined switching pattern of the switch means 21;
A brake release request determination function unit 14 that determines that an operation for requesting a brake release has been performed when at least one of the brake force command value and its derivative value becomes smaller than a predetermined value;
When it is determined that the operation for requesting the brake release has been performed, the friction material operating means (2) is driven to a predetermined brake release state, and the angle of the electric motor 6 at this time and its differential value At least one of a release completion determination function unit 15 that determines that the transition to the brake release state is completed;
When it is determined that the transition to the release state is completed, at least the stationary electric motor 6 is not driven spontaneously and the switch means 21 is stored by the charge means 24 or the switch power supply 22. And a brake standby function unit 16 for maintaining a predetermined switching pattern that can be stored in the switch power supply 22.
 この構成によると、前記ブレーキ待機機能部16は、前記解除状態への移行が完了したと判断されたとき、少なくとも静止した状態の前記電動モータ6が自発的に駆動されず、かつ前記スイッチ手段21を前記チャージ手段24により前記スイッチ電源22に蓄電され得る所定のスイッチングパターンに維持する。このため、確実にスイッチ電源22がチャージされ、次回のブレーキ動作時に速やかに動作させることができる。また、自発的に駆動されない電圧条件とするので、無負荷時のノイズや振動、いわゆるNHVを改善することができる。なお、上記「所定値」は、ブレーキ力指令値およびその微分値のそれぞれに対して設けられる。また、上記「所定値」およびこの明細書で言う以下の各「所定値」、および「所定の」とある値は、試験や設計により適宜に定められる値である。 According to this configuration, when it is determined that the transition to the release state is completed, the brake standby function unit 16 does not spontaneously drive the electric motor 6 at least in the stationary state, and the switch unit 21 Are maintained in a predetermined switching pattern that can be stored in the switch power supply 22 by the charging means 24. Therefore, the switch power supply 22 is surely charged, and can be operated promptly at the next braking operation. Further, since the voltage condition is not driven spontaneously, noise and vibration at no load, so-called NHV can be improved. The "predetermined value" is provided for each of the braking force command value and its differential value. Further, the above "predetermined value" and each of the following "predetermined value" and the "predetermined" values referred to in this specification are values appropriately determined by a test or a design.
 この構成の電動ブレーキ装置において、
 前記スイッチ手段21が、Lアームスイッチ回路21LとHアームスイッチ回路21Hを前記電動モータ6のコイル端それぞれに対して一対ずつ備えたスイッチ回路であって、
 前記Lアームスイッチ回路21Lは、前記電動モータ6のコイル端に接続された第一の入出力端子25Laと、前記電源装置3のマイナス側に接続された第二の入出力端子25Lbと、前記第二の入出力端子25Lbに対して正の電位が入力されることで前記両入出力端子25La,25Lbが接続されるスイッチング端子25Lcとを有するトランジスタ素子25によって、前記電源装置3のマイナス側と前記電動モータ6のコイル端との接続状態を制御するスイッチ回路部であり、
 前記Hアームスイッチ回路21Hは、前記電源装置3のプラス側に接続された第一の入出力端子25Haと、前記電動モータ6のコイル端に接続された第二の入出力端子25Hbと、前記第二の入出力端子25Hbに対して正の電位が入力されることで前記両入出力端子25Ha,25Hbを接続させるスイッチング端子25Hcとを有するトランジスタ素子25Hによって、前記電源装置3のプラス側と前記電動モータ6のコイル端との接続状態を制御するスイッチ回路部であり、
 前記スイッチ電源22が、前記Hアームスイッチ回路21Hにおけるトランジスタ素子25Hの前記第二の入出力端子25Hbを電気的な基準電位として接続されるコンデンサであり、
 前記チャージ手段24が、前記Lアームスイッチ回路21Lが接続状態となったときに前記コンデンサからなるスイッチ電源22に電荷を蓄積させるチャージ回路であり、
 前記ブレーキ待機機能部16は、前記Lアームスイッチ21Lを全て常時接続状態とし、前記Hアームスイッチ21Hを全て常時切断状態とする、
 ようにしてもよい。
In the electric brake device of this configuration,
The switch means 21 is a switch circuit provided with a pair of L-arm switch circuit 21L and H-arm switch circuit 21H for each coil end of the electric motor 6,
The L arm switch circuit 21L includes a first input / output terminal 25La connected to the coil end of the electric motor 6, a second input / output terminal 25Lb connected to the negative side of the power supply 3, and The negative side of the power supply device 3 and the above-mentioned power supply device 3 are provided by a transistor element 25 having a switching terminal 25Lc to which both the input / output terminals 25La and 25Lb are connected by inputting a positive potential to the second input / output terminal 25Lb. It is a switch circuit unit that controls the connection state with the coil end of the electric motor 6,
The H arm switch circuit 21H includes a first input / output terminal 25Ha connected to the positive side of the power supply device 3, a second input / output terminal 25Hb connected to a coil end of the electric motor 6, and The positive side of the power supply device 3 and the electric motor are provided by a transistor element 25H having a switching terminal 25Hc connecting the two input / output terminals 25Ha and 25Hb by inputting a positive potential to the two input / output terminals 25Hb. It is a switch circuit unit that controls the connection with the coil end of the motor 6,
The switch power supply 22 is a capacitor connected to the second input / output terminal 25Hb of the transistor element 25H in the H arm switch circuit 21H as an electrical reference potential,
The charge means 24 is a charge circuit for storing charge in the switch power supply 22 composed of the capacitor when the L arm switch circuit 21L is in a connected state,
The brake standby function unit 16 keeps all the L arm switches 21 L always connected and keeps all the H arm switches 21 H disconnected.
You may do so.
 この構成の場合、スイッチ手段21の全てのスイッチ回路21H,21Lがオンまたはオフの一定状態に保つため、スイッチングロスを低減でき、消費電力低減が期待できる。具体的には、ブレーキが解除された状態において、電動ブレーキ装置のモータドライバ13におけるハーフブリッジ回路からなるスイッチ手段21の状態を、Lアームスイッチ回路21Lがオン、Hアームスイッチ回路21Hがオフとなる一定の状態に維持し、Hアームスイッチ回路21Hのスイッチング用の電圧として使用するブートストラップコンデンサからなるスイッチ電源22を充電された状態に維持する。指令手段(ブレーキペダル等)4のブレーキ指令やその変化量からブレーキを解除する要求をブレーキ解除要求判断機能部14で判断し、さらにその際のモータ角度やモータ角速度から電動ブレーキ装置が所定の待機位置に移行したかどうかをブレーキ解除完了判断機能部15で判断し、その状態で前記のハーフブリッジ回路からなるスイッチ手段21の状態維持をブレーキ待機機能部16により実施させて、ブレーキ待機状態とする。 In the case of this configuration, since all the switch circuits 21H and 21L of the switch means 21 are kept in a constant state of on or off, the switching loss can be reduced and power consumption reduction can be expected. Specifically, when the brake is released, the L arm switch circuit 21L turns on and the H arm switch circuit 21H turns off for the state of the switch means 21 consisting of a half bridge circuit in the motor driver 13 of the electric brake device. Maintaining a constant state, the switch power supply 22 consisting of a bootstrap capacitor used as a voltage for switching the H arm switch circuit 21H is maintained in a charged state. The brake release request judgment function unit 14 determines the brake release request from the brake command of the command means (brake pedal etc.) 4 and its variation amount, and the electric brake device stands by from the motor angle and motor angular velocity at that time. The brake release completion determination function unit 15 determines whether the position has been shifted to the position, and in this state, the brake standby function unit 16 causes the brake standby function unit 16 to maintain the state of the switch means 21 composed of the half bridge circuit. .
 上記のようにLアームスイッチ回路21Lをオン、Hアームスイッチ回路21Hをオフの状態に維持することで、ブートストラップコンデンサからなるスイッチ電源22が常に充電され、ブレーキをかける要求がされた場合において、速やかに応答させることができる。全てのLアームスイッチ回路21Lを常時オン、Hアームスイッチ回路21Hを常時オフとすることで、スイッチングを行わないため、例えばFET等のトランジスタ素子25H,25Lの浮遊容量等に伴うスイッチング損失が発生せず、待機電力を低減することができる。モータ端子電圧u,v,wが全て同じ電圧となる為、電動モータ6が自発的に駆動されることが無く、またセンサ分解能やサンプリングに起因する微小なチャタリング等が発生しないため、作動音の静粛化が図れる。振動等により外部から電動モータ6が回される場合、電動モータ6に発電による回生トルクが発生して待機位置から急激に電動モータ6が離反することを防止することができ、再度追従制御を実行して待機位置へと戻すことが容易となる。 By keeping the L arm switch circuit 21 L on and the H arm switch circuit 21 H off as described above, the switch power supply 22 consisting of a bootstrap capacitor is always charged and a request to apply a brake is given, It can be made to respond promptly. Switching is not performed by always turning on all L arm switch circuits 21L and always turning off H arm switch circuits 21H, so that switching losses may occur due to stray capacitance of transistor elements 25H and 25L such as FET. The standby power can be reduced. Since the motor terminal voltages u, v, w are all the same voltage, the electric motor 6 is not driven spontaneously, and minute chattering or the like due to sensor resolution or sampling does not occur. Quietness can be achieved. When the electric motor 6 is turned from the outside due to vibration or the like, regenerative torque due to power generation is generated in the electric motor 6 and the electric motor 6 can be prevented from separating rapidly from the standby position. It is easy to return to the standby position.
 この発明の電動ブレーキ装置において、前記解除完了判断機能部14は、前記摩擦材32と前記ブレーキロータ31との間に所定の空隙が発生し得るモータ角度目標値に対して、モータ角度の偏差の絶対値が所定値以下であり、かつモータ角速度の絶対値が所定値以下である状態を以て、ブレーキ解除が完了したと判断するようにしてもよい。 In the electric brake device according to the present invention, the release completion determination function unit 14 is configured to detect a deviation of the motor angle with respect to a motor angle target value at which a predetermined gap may be generated between the friction material 32 and the brake rotor 31. It may be determined that the release of the brake is completed in a state where the absolute value is equal to or less than the predetermined value and the absolute value of the motor angular velocity is equal to or less than the predetermined value.
 また、この発明の電動ブレーキ装置において、前記解除完了判断機能部14は、前記摩擦材32と前記ブレーキロータ31との間に所定の空隙が発生し得るモータ角度目標値に対して、モータ角度の偏差の絶対値が所定値以下である状態の継続時間を計測するカウンタ14aを備え、このカウンタ14aの値が所定値を超過した場合にブレーキ解除が完了したと判断するようにしてもよい。 Further, in the electric brake device according to the present invention, the release completion determination function unit 14 sets a motor angle relative to a motor angle target value at which a predetermined gap can be generated between the friction member 32 and the brake rotor 31. A counter 14a may be provided to measure the duration of the state in which the absolute value of the deviation is less than or equal to a predetermined value, and when the value of the counter 14a exceeds the predetermined value, it may be determined that the brake release is completed.
 この発明の電動ブレーキ装置において、前記ブレーキ待機機能部16は、実行中にモータ角度の変動が所定量より大きくなった場合に、前記ブレーキ待機機能を解除して所定のブレーキ解除状態へと前記摩擦材32を駆動するようにしてもよい。この構成であると、振動等の影響で待機時のギャップ量が変動した場合、適宜是正してギャップ量を保つことで、意図しない引き摺りトルクの発生や応答遅れを防止することができる。 In the electric brake device according to the present invention, the brake standby function unit 16 releases the brake standby function to shift the friction state to a predetermined brake release state when the fluctuation of the motor angle becomes larger than a predetermined amount during execution. The material 32 may be driven. With this configuration, when the gap amount at the time of standby changes due to the influence of vibration or the like, occurrence of unintended drag torque and response delay can be prevented by appropriately correcting and maintaining the gap amount.
 この発明の電動ブレーキ装置において、前記制御装置5が、前記電動モータ6の角度を推定する角度推定手段(9)と、推定された角度からコギングトルクを推定するコギングトルク推定機能部11aと、ブレーキ状態からブレーキ解除状態へと移行するときに、前記推定コギングトルクが略零となるモータ角度を角度指令値とする待機位置調整機能部11bとを有していてもよい。比較的大きなコギングトルクが発生している位相で、前記ブレーキ待機機能部16の機能を実行すると、コギングトルクによってモータが回されてしまう。しかし、前記コギングトルク推定機能部11aおよび前記待機位置調整機能部11bを有する場合、あらかじめコギングトルクが零または十分小さいモータ角度に待機させることで前記のコギングトルクによってモータが回されてしまう問題を防止することができる。 In the electric brake system according to the present invention, the control device 5 is an angle estimation means (9) for estimating the angle of the electric motor 6, a cogging torque estimation function unit 11a for estimating cogging torque from the estimated angle, and a brake When transitioning from the state to the brake release state, it may have a standby position adjusting function unit 11b that uses a motor angle at which the estimated cogging torque becomes substantially zero as an angle command value. If the function of the brake standby function unit 16 is executed at a phase where a relatively large cogging torque is generated, the motor is rotated by the cogging torque. However, when the cogging torque estimation function unit 11a and the standby position adjustment function unit 11b are provided, the motor is prevented from being rotated by the cogging torque by setting the cogging torque to stand by at a motor angle which is zero or sufficiently small in advance. can do.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。 Any combination of the at least two configurations disclosed in the claims and / or the description and / or the drawings is included in the invention. In particular, any combination of two or more of the claims is included in the invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。 The invention will be more clearly understood from the following description of the preferred embodiments with reference to the accompanying drawings. However, the embodiments and the drawings are for the purpose of illustration and description only and are not to be taken as limiting the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in multiple drawings indicate the same or corresponding parts.
この発明の第1の実施形態に係る電動ブレーキ装置の概念構成を示すブロック図である。FIG. 1 is a block diagram showing a conceptual configuration of an electric brake device according to a first embodiment of the present invention. 図1の上部の拡大図である。It is an enlarged view of the upper part of FIG. 図1の下部の拡大図である。It is an enlarged view of the lower part of FIG. 同電動ブレーキ装置の制御動作例を示す流れ図である。It is a flowchart which shows the control operation example of the same electric brake device. 同電動ブレーキ装置の摩擦ブレーキ機構および直動アクチュエータの具体例を示す断面図である。It is sectional drawing which shows the specific example of the friction brake mechanism of the same electric brake device, and a direct-acting actuator. この発明の他の実施形態に係る電動ブレーキ装置の概念構成を示すブロック図である。It is a block diagram which shows the conceptual structure of the electrically-driven brake device which concerns on other embodiment of this invention.
 この発明の第1の実施形態を図1ないし図5と共に説明する。図2,図3は、それぞれ図1の上部および下部を拡大して示す。図1において、この電動ブレーキ装置は、摩擦ブレーキ機構1と、摩擦材操作手段である直動アクチュエータ2と、電源装置3と、指令手段4から与えられた指令値に追従するように直動アクチュエータ2の電動モータ6の出力を制御する制御装置5とを備える。 A first embodiment of the present invention will be described in conjunction with FIGS. 2 and 3 show the upper and lower portions of FIG. 1 in an enlarged manner, respectively. In FIG. 1, the electric brake device includes a friction brake mechanism 1, a direct acting actuator 2 which is a friction material operating means, a power supply device 3, and a direct acting actuator so as to follow command values given from a command means 4. And a control device 5 for controlling the output of the electric motor 6.
 <<摩擦ブレーキ機構1>>
 摩擦ブレーキ機構1は、例えば図5に示すようにブレーキロータ31と、このブレーキロータ31に接触させて制動力を発生させる摩擦材32とからなる。摩擦ブレーキ機構1は、ブレーキロータ31および摩擦材32として、例えばブレーキディスクおよびキャリパを用いたディスクブレーキ装置であってもよく、あるいはドラムおよびライニングを用いたドラムブレーキ装置であってもよい。なお、この実施形態では、摩擦材32を操作する摩擦材操作手段として直動アクチュエータ2を用いているが、摩擦材操作手段は、例えば摩擦材32を円弧軌跡で動作させるなど、直線動作以外の動作で摩擦材32をブレーキロータ31に接触させる構成であってもよい。
<< Friction brake mechanism 1 >>
For example, as shown in FIG. 5, the friction brake mechanism 1 comprises a brake rotor 31 and a friction material 32 which is brought into contact with the brake rotor 31 to generate a braking force. The friction brake mechanism 1 may be, for example, a disk brake device using a brake disk and a caliper as the brake rotor 31 and the friction material 32, or may be a drum brake device using a drum and a lining. In this embodiment, the linear actuator 2 is used as the friction material operation means for operating the friction material 32. However, the friction material operation means may operate the friction material 32 along an arc locus, for example. The friction material 32 may be in contact with the brake rotor 31 in operation.
 <<直動アクチュエータ2>>
 直動アクチュエータ2は、電動モータ6と、この電動モータ6の回転出力を直線往復動作に変換する直動機構7とを備える。図5の例では、直動アクチュエータ2は、電動モータ6の出力を減速する平歯車のギヤ列等からなる減速機33を備え、この減速機33の回転出力を直動機構7により直線往復動作に変換する。減速機33は、この他にウォーム歯車や、遊星歯車等であってもよく、また必ずしも設けなくてもよい。
<< Linear actuator 2 >>
The linear motion actuator 2 includes an electric motor 6 and a linear motion mechanism 7 for converting the rotational output of the electric motor 6 into a linear reciprocating motion. In the example of FIG. 5, the linear actuator 2 is provided with a reduction gear 33 consisting of a gear train or the like of a spur gear that decelerates the output of the electric motor 6, and the linear movement mechanism 7 reciprocates the rotational output of the reduction gear 33. Convert to Besides, the reduction gear 33 may be a worm gear, a planetary gear, or the like, and may not necessarily be provided.
 図1に示すように、直動アクチュエータ2は、上記の他に、直動機構7の軸荷重を検出する荷重センサ8と、電動モータ6のモータ角度(ロータの回転角度)を検出する角度センサ9とを有する。また、サーミスタ等の各種センサ類(図示せず)を必要に応じて別途設けてもよい。 As shown in FIG. 1, in addition to the above, the linear actuator 2 also has a load sensor 8 for detecting an axial load of the linear motion mechanism 7 and an angle sensor for detecting a motor angle (rotational angle of the rotor) of the electric motor 6. And 9. Further, various sensors (not shown) such as a thermistor may be separately provided as necessary.
 電動モータ6は、永久磁石同期電動機とすることが好ましく、これにより省スペースで高トルクとなり好適と考えられるが、例えばブラシを用いたDCモータや、永久磁石を用いないリラクタンスモータ、あるいは誘導モータ等を適用することもできる。 The electric motor 6 is preferably a permanent magnet synchronous motor, which can save space and increase torque, which is considered to be preferable. For example, a DC motor using a brush, a reluctance motor not using a permanent magnet, or an induction motor etc. Can also be applied.
 直動機構7は、遊星ローラねじ、ボールねじ等の各種のねじ機構や、ボールランプ等、回転軸に形成された周方向の傾斜部分により回転運動を直進運動に変換する各種機構を用いることができる。 The linear motion mechanism 7 may use various types of screw mechanisms such as a planetary roller screw and a ball screw, and various mechanisms that convert rotational motion into linear motion by a circumferentially inclined portion formed on the rotary shaft, such as a ball lamp. it can.
 角度センサ9は、例えばレゾルバや磁気エンコーダ等が用いられ、これらによると高精度かつ高信頼性であり好適と考えられるが、光学式エンコーダ等の各種センサを適用することもできる。もしくは、角度推定手段として角度センサ9を用いずに、例えば制御装置5において電圧と電流との関係等からモータ角度を推定するような角度センサレス推定(図示せず)を用いることもできる。 The angle sensor 9 is, for example, a resolver or a magnetic encoder, which is considered to be suitable with high accuracy and high reliability and suitable, but various sensors such as an optical encoder can also be applied. Alternatively, instead of using the angle sensor 9 as the angle estimation means, for example, an angle sensorless estimation (not shown) in which the motor angle is estimated from the relationship between voltage and current in the control device 5 can be used.
 荷重センサ8は、例えば変位や変形を検出する磁気センサ、歪センサ、圧力センサ、等を用いることができる。もしくは、荷重推定として荷重センサ8を設けずに、制御装置5においてモータ角度および電動ブレーキ装置剛性や、モータ電流および直動アクチュエータ効率等から荷重センサレス推定を用いてもよい。あるいは、例えばこの電動ブレーキ装置を実装する車輪のホイールトルクや、電動ブレーキ装置搭載車両の前後力を検出するセンサ等、電動ブレーキ装置外部の各種センサ類を用いてもよい。 The load sensor 8 can use, for example, a magnetic sensor that detects displacement or deformation, a strain sensor, a pressure sensor, or the like. Alternatively, without providing the load sensor 8 as load estimation, load sensorless estimation may be used in the control device 5 based on motor angle and motor brake device stiffness, motor current, linear actuator efficiency, and the like. Alternatively, various sensors outside the electromotive brake device may be used, such as, for example, the wheel torque of the wheel on which the electromotive brake device is mounted, and a sensor that detects the longitudinal force of the vehicle equipped with the electromotive brake device.
 <<電源装置3および指令手段4>>
 電源装置3は、例えばバッテリ等の、蓄電して直流電力を供給する機能を有し、車両全体の電源となる装置であっても、電動ブレーキ装置の専用の電源となる装置であってもよい。指令手段4は、ブレーキペダル等のブレーキ入およびブレーキ解除の要求の操作を行う手段であり、例えばブレーキペダルに設けられたペダルストロークセンサ等から指令を出力する。指令手段4の指令は、VCU[Vehicle Control Unit](図示せず)等の上位ECU[Electronic Control Unit]を介して電動ブレーキ装置の制御装置5に与えられるものであってもよい。指令手段4は、自動運転を行う機能を備えた車両では、その自動運転機能部の一部であってもよい。
<< Power supply device 3 and command means 4 >>
The power supply device 3 has a function of storing DC power by storing electricity, such as a battery, and may be a device serving as a power supply of the whole vehicle or a device serving as a dedicated power supply of the electric brake device. . The command means 4 is a means for performing a request for brake on and brake release such as a brake pedal, and outputs a command from, for example, a pedal stroke sensor or the like provided on the brake pedal. The command of the command means 4 may be given to the control device 5 of the electric brake device via a host ECU [Electronic Control Unit] such as VCU [Vehicle Control Unit] (not shown). The command means 4 may be part of an automatic driving function unit in a vehicle having a function of performing automatic driving.
 <<制御装置5の構成>>
 制御装置5は、基本的な構成として、主ブレーキ制御機能部11、スイッチングパターン決定機能部12、およびモータドライバ13を有し、この他にブレーキ解除要求判断機能部14、ブレーキ解除完了判断機能部15、およびブレーキ待機機能部16を有している。制御装置5を有する前記各機能部11,12,14,15,16は、例えばマイコン、FPGA、ASIC等の演算器および周辺回路により構成され、これにより安価で高性能となり好適と考えられる。
<< Configuration of Control Device 5 >>
The control device 5 has, as a basic configuration, a main brake control function unit 11, a switching pattern determination function unit 12, and a motor driver 13, and in addition, a brake release request determination function unit 14 and a brake release completion determination function unit And a brake standby function unit 16. Each of the functional units 11, 12, 14, 15, 16 having the control device 5 is constituted by an arithmetic unit such as a microcomputer, an FPGA, an ASIC or the like and a peripheral circuit, for example.
   <主ブレーキ制御機能部11>
 主ブレーキ制御機能部11は、指令手段4より要求されるブレーキ力指令値に対して、前記荷重センサ8等より推定される推定ブレーキ力が追従するように電動モータ6を制御する制御演算を行う。前記の制御演算は、例えばブレーキ力指令値及び推定値を直接用いるフィードバック制御を用いてもよく、ブレーキ力を角度等の他の物理量に変換して制御演算を行ってもよい。また、前記フィードバック制御演算は、例えばブレーキ力制御ループ内にモータ電流制御ループを設けるように、複数のマイナーフィードバックループを設ける演算構造としてもよく、単一のフィードバックループにてモータ操作量を演算する構造としてもよい。その他、フィードフォワード制御等を用いるか、または適宜併用することもできる。
<Main brake control function unit 11>
The main brake control function unit 11 performs control calculation to control the electric motor 6 so that the estimated braking force estimated by the load sensor 8 or the like follows the braking force command value requested by the command means 4 . The control calculation may use, for example, feedback control that directly uses a braking force command value and an estimated value, or may convert the braking force into another physical quantity such as an angle to perform the control calculation. Further, the feedback control calculation may be a calculation structure in which a plurality of minor feedback loops are provided, for example, to provide a motor current control loop in a braking force control loop, and the motor operation amount is calculated in a single feedback loop. It may be a structure. In addition, feed forward control etc. can be used or used together suitably.
 また、主ブレーキ制御機能部11は、ブレーキ解除時の引き摺りトルクを低減する為に、前記のブレーキ力を追従制御する機能に加え、ブレーキ力を解除する際に、前記摩擦ブレーキ機構1の摩擦材32(図3参照)とブレーキロータ31との間に所定のクリアランスを設ける位置に直動アクチュエータ2を制御する機能を設けることが好ましい。前記の機能は、例えば前記モータ角度および直動アクチュエータ2の等価リード等から直動アクチュエータ2の位置を推定する機能としてもよく、これにより低コストとなり好適と考えられるが、直動アクチュエータ2の進退位置を検出する位置センサ(図示せず)を別途設けることもできる。 Further, the main brake control function unit 11, in addition to the function of following control of the braking force in order to reduce drag torque at the time of releasing the brake, when releasing the braking force, the friction material of the friction brake mechanism 1 It is preferable to provide the function of controlling the linear actuator 2 at a position where a predetermined clearance is provided between the brake rotor 32 and the brake rotor 31 (see FIG. 3). The above function may be, for example, a function of estimating the position of the linear actuator 2 from the motor angle and the equivalent lead of the linear actuator 2, etc. Although this is considered to be low cost and suitable, A position sensor (not shown) for detecting the position may be additionally provided.
   <スイッチングパターン決定機能部12>
 スイッチングパターン決定機能部12は、主に主ブレーキ制御機能部11において演算されたモータ操作量に基づき、モータドライバ13における電動モータ6のコイル端と電源装置3との接続/切断パターン(またはスイッチングパターン)を決定する機能を有する。例えば、直流電圧がVdc(プラス側:+Vdc、マイナス側:GND)である電源装置3を用いた場合において、所定のモータ端子の電圧をVnとする場合、所定時間内において比率が概ねVn/Vdcとなる時間をプラス側(+Vdc)に接続し、比率が概ね(1-Vn/Vdc)となる時間をマイナス側(GND)と接続するパルス信号を生成する機能を有するとしてもよい。
<Switching Pattern Determination Function Unit 12>
The switching pattern determination function unit 12 is a connection / disconnection pattern (or switching pattern) between the coil end of the electric motor 6 and the power supply device 3 in the motor driver 13 mainly based on the motor operation amount calculated in the main brake control function unit 11 Have a function of determining For example, in the case of using the power supply device 3 whose DC voltage is Vdc (plus side: + Vdc, minus side: GND), when the voltage of a predetermined motor terminal is Vn, the ratio is approximately Vn / Vdc within a predetermined time. The time may be connected to the positive side (+ Vdc), and a pulse signal may be generated to connect the time when the ratio is approximately (1−Vn / Vdc) to the negative side (GND).
   <モータドライバ13>
 モータドライバ13は、電動モータ6のコイル端と電源装置3との接続状態を制御するスイッチ手段21と、蓄電機能を有し前記スイッチ手段21の少なくとも一部をスイッチングするための電源として機能するスイッチ電源22と、前記スイッチ手段21を構成する各スイッチ素子であるトランジスタ素子25H,25Lにスイッチ制御信号を与えるスイッチ制御回路23と、前記スイッチ手段21の所定のスイッチングパターンにおいて前記スイッチ電源21に電力を蓄積させるチャージ手段24とを有する。前記スイッチ制御回路23は、前記スイッチパターン決定機能部12から出力されたスイッチングパターンに従って前記トランジスタ素子25H,25Lにスイッチ制御信号を与える。
<Motor driver 13>
The motor driver 13 has a switch means 21 for controlling the connection between the coil end of the electric motor 6 and the power supply device 3 and a switch having a storage function and functioning as a power source for switching at least a part of the switch means 21. Power is supplied to the switch power supply 21 in a predetermined switching pattern of the switch means 21. The switch control circuit 23 applies switch control signals to the power supply 22 and the transistor elements 25H and 25L which are switch elements constituting the switch means 21. And charging means 24 for accumulating. The switch control circuit 23 applies switch control signals to the transistor elements 25H and 25L in accordance with the switching pattern output from the switch pattern determination function unit 12.
   <スイッチ手段21>
 前記スイッチ手段21は、具体的には、Lアームスイッチ回路21LとHアームスイッチ回路21Hを電動モータ6のコイル端u,v,wにそれぞれに対して一対ずつ備えたスイッチ回路であり、この実施形態ではハーフブリッジ回路とされている。
<Switching means 21>
Specifically, the switch means 21 is a switch circuit provided with a pair of L-arm switch circuit 21L and H-arm switch circuit 21H at coil ends u, v, w of the electric motor 6, respectively. The form is a half bridge circuit.
 Lアームスイッチ回路21Lは、FET等のトランジスタ素子25Lによって、電源装置3のマイナス側と電動モータ6のコイル端u,v,wとの接続状態を制御するスイッチ回路部である。前記トランジスタ素子25Lは、電動モータ6のコイル端u,v,wに接続された第一の入出力端子25Laと、電源装置3のマイナス側に接続された第二の入出力端子25Lbと、前記第二の入出力端子25Lbに対して正の電位が入力されることで両入出力端子25La,25Lbを接続するスイッチング端子25Lcとを有する。 The L arm switch circuit 21L is a switch circuit unit that controls the connection state between the negative side of the power supply device 3 and the coil ends u, v, w of the electric motor 6 by a transistor element 25L such as an FET. The transistor element 25L includes a first input / output terminal 25La connected to coil ends u, v, w of the electric motor 6, a second input / output terminal 25Lb connected to the negative side of the power supply 3, and It has switching terminal 25Lc which connects both input / output terminal 25La and 25Lb by inputting positive potential to the 2nd input / output terminal 25Lb.
 前記Hアームスイッチ回路21Hは、FET等のトランジスタ素子25Hによって、前記電源装置3のプラス側と前記電動モータ6のコイル端u,v,wとの接続状態を制御するスイッチ回路部である。前記トランジスタ素子25Hは、電源装置3のプラス側に接続された第一の入出力端子25Haと、前記電動モータ6のコイル端u,v,wに接続された第二の入出力端子25Hbと、前記第二の入出力端子25Hbに対して正の電位が入力されることで両入出力端子25Ha,25Hbを接続するスイッチング端子25Hcとを有する。 The H arm switch circuit 21H is a switch circuit unit that controls the connection between the positive side of the power supply 3 and the coil ends u, v, w of the electric motor 6 by a transistor element 25H such as an FET. The transistor element 25H includes a first input / output terminal 25Ha connected to the positive side of the power supply 3 and a second input / output terminal 25Hb connected to coil ends u, v, w of the electric motor 6. It has switching terminal 25Hc which connects both input / output terminals 25Ha and 25Hb by inputting positive potential to the second input / output terminal 25Hb.
   <スイッチ電源22とチャージ手段24>
 前記スイッチ電源22は、前記Hアームスイッチ回路21Hにおけるトランジスタ素子25Hの前記第二の入出力端子25Hbを電気的な基準電位として接続されるコンデンサ、いわゆるブートストラップコンデンサである。前記チャージ手段24は、前記Lアームスイッチ回路21Lが接続状態となったときに前記コンデンサからなるスイッチ電源22に電荷を蓄積させるチャージ回路であり、所定の電位V2の電位源(図示せず)にダイオード24aを介して前記スイッチ電源22に接続された回路により構成される。前記電位V2は、少なくとも前記トランジスタ素子25L、25Hのスイッチング端子25Lc,25Hcに、前記トランジスタ素子の端子25Laと25Lb、および25Haと25Hbを接続せしめる十分な電位であればよい。前記電位V2は、例えば電位V1と共通の電源装置3から印加されるV1と等しい電位であってもよく、或いは、例えば電源装置3が一般的な車両低圧電源12Vである場合、マイコン等の回路用に降圧された+5Vや+3.3V等の、V1より低い電位であってもよい。
<Switch power supply 22 and charge means 24>
The switch power supply 22 is a so-called bootstrap capacitor which is connected as the electric reference potential to the second input / output terminal 25Hb of the transistor element 25H in the H arm switch circuit 21H. The charge means 24 is a charge circuit for storing charge in the switch power supply 22 composed of the capacitor when the L arm switch circuit 21L is in a connected state, and is used as a potential source (not shown) of a predetermined potential V2. It comprises a circuit connected to the switch power supply 22 via the diode 24a. The potential V2 may be a potential sufficient to connect at least the terminals 25La and 25Lb and 25Ha and 25Hb of the transistor elements to at least the switching terminals 25Lc and 25Hc of the transistor elements 25L and 25H. The potential V2 may be, for example, a potential equal to V1 applied from the power supply device 3 common to the potential V1 or, for example, when the power supply device 3 is a general vehicle low voltage power supply 12V, a circuit such as a microcomputer It may be a potential lower than V1, such as +5 V or +3.3 V, which has been stepped down.
   <ブレーキ解除要求判断機能部14>
 ブレーキ解除要求判断機能部14は、ブレーキ力指令値およびその微分値のうち少なくとも何れかの大きさが所定値より小さくなったときに、「ブレーキ解除を要求する操作がされた」と判断する手段である。ブレーキ解除要求判断機能部14は、例えばブレーキ力指令値が所定値を下回った場合や、ブレーキ力指令値の減少変化量が所定値を下回る場合、あるいはこれらを併用する所定条件に基づいて、ブレーキの解除が要求されているか否かを判断する機能を有するとしてもよい。もしくは、例えば車両におけるVCUのように、ブレーキ力指令値を生成する上位ECUが設けられ、前記の上位ECUよりブレーキ解除要求信号を別途発信し、前記ブレーキ解除要求の受信を以てブレーキを解除する要求と判断する構成とすることもできる。
<Brake Release Request Determination Function Unit 14>
The brake release request determination function unit 14 determines that “an operation for requesting release of the brake has been performed” when the magnitude of at least one of the brake force command value and the derivative thereof becomes smaller than a predetermined value. It is. For example, when the brake force command value falls below a predetermined value, or when the decrease change amount of the brake force command value falls below a predetermined value, the brake release request determination function unit 14 performs the brake based on a predetermined condition using both of them. It may be possible to have a function of determining whether or not cancellation of is required. Alternatively, for example, as with a VCU in a vehicle, a host ECU for generating a braking force command value is provided, and the host ECU separately transmits a brake release request signal, and a request for releasing the brake upon reception of the brake release request. It can also be configured to judge.
   <解除完了判断機能部15>
 解除完了判断機能部15は、前記ブレーキ解除が要求されたと判断されたとき、所定のブレーキ解除状態へと前記摩擦材操作手段である直動アクチュエータ2が駆動され、このときの前記電動モータ6の角度およびその微分値の少なくとも何れかよりブレーキ解除状態への移行が完了したことを判断する。
<Cancel Completion Determination Function Unit 15>
When it is determined that the brake release is requested, the release completion determination function unit 15 drives the linear motion actuator 2 which is the friction material operating means to a predetermined brake release state, and the electric motor 6 at this time is From the angle and / or its derivative value, it is determined that the transition to the brake release state is completed.
 解除完了判断機能部15は、例えばブレーキ解除が要求されている場合において、例えば前記摩擦ブレーキ機構1の摩擦材32とブレーキロータ31との間に所定のクリアランスを設け得る位置のような、所定のブレーキ解除状態が達成されたかどうかを判断する機能を有する。前記判断は、例えば所定の空隙(クリアランス量)となり得る位置にモータ角度を制御する場合において、角度指令値と推定モータ角度との偏差の大きさが所定値を下回る場合や、モータ角速度の大きさが所定値を下回る場合、あるいはこれらを併用する所定条件に基づいて、ブレーキ解除が完了したことを判断してもよい。前記モータ角速度は、例えば状態推定オブザーバ(図示せず)等で推定されるものであってもよく、所定時間内でのモータ角度の推移を角速度と概ね等価な物理量として用いてもよい。 The release completion determination function unit 15 has a predetermined position, for example, a position where a predetermined clearance can be provided between the friction material 32 of the friction brake mechanism 1 and the brake rotor 31 when, for example, the brake release is requested. It has a function to determine whether the brake release state has been achieved. For example, in the case where the motor angle is controlled to a position where a predetermined gap (clearance amount) can be obtained, the above determination is made when the magnitude of the deviation between the angle command value and the estimated motor angle falls below a predetermined value. May be determined on the basis of a predetermined condition in which these are used in combination or when the value of .beta. The motor angular velocity may be estimated by, for example, a state estimation observer (not shown) or the like, and the transition of the motor angle within a predetermined time may be used as a physical quantity substantially equivalent to the angular velocity.
 具体的例を示すと、前記解除完了判断機能部14は、前記摩擦材32と前記ブレーキロータ31との間に所定の空隙が発生し得るモータ角度目標値に対して、モータ角度の偏差の絶対値が所定値以下であり、かつモータ角速度の絶対値が所定値以下である状態を以て、ブレーキ解除が完了したと判断するようにしてもよい。 As a specific example, the release completion determination function unit 14 determines the absolute value of the motor angle deviation with respect to the motor angle target value at which a predetermined gap can be generated between the friction material 32 and the brake rotor 31. It may be determined that the brake release is completed in a state where the value is equal to or less than the predetermined value and the absolute value of the motor angular velocity is equal to or less than the predetermined value.
 この他に前記解除完了判断機能部14は、前記摩擦材32と前記ブレーキロータ31との間に所定の空隙が発生し得るモータ角度目標値に対して、モータ角度の偏差の絶対値が所定値以下である状態の継続時間を計測するカウンタ14a(図2参照)を備え、このカウンタ14aの値が所定値を超過した場合にブレーキ解除が完了したと判断するようにしてもよい。 In addition to the above, the cancellation completion determination function unit 14 is configured such that the absolute value of the deviation of the motor angle is a predetermined value with respect to the motor angle target value at which a predetermined gap can occur between the friction material 32 and the brake rotor 31. A counter 14a (see FIG. 2) for measuring the duration of the following state may be provided, and when the value of the counter 14a exceeds a predetermined value, it may be determined that the brake release is completed.
   <ブレーキ待機機能部16>
 ブレーキ待機機能部16は、前記解除状態への移行が完了したと判断されたとき、少なくとも静止した状態の電動モータ6が自発的に駆動されず、かつ前記スイッチ手段21を前記チャージ手段24により前記スイッチ電源22に蓄電され得る所定のスイッチングパターンに維持する。ブレーキ待機機能部16は、具体的には、前記ブレーキ解除要求機能部14によりブレーキ解除が要求されたことが判断され、ブレーキ解除完了判断機能部15によりブレーキ解除が完了したことが判断された場合、前記スイッチングパターン決定機能部12において所定のスイッチングパターンを生成させる機能を有する構成とすることができる。
<Brake standby function unit 16>
When it is determined that the transition to the release state is completed, the brake standby function unit 16 does not drive the electric motor 6 at least in a standstill state spontaneously, and the switch means 21 is not operated by the charge means 24. A predetermined switching pattern that can be stored in the switch power supply 22 is maintained. Specifically, when the brake release request function unit 14 determines that the brake release request is requested and the brake release completion determination function unit 15 determines that the brake release is completed. The switching pattern determination function unit 12 can be configured to have a function of generating a predetermined switching pattern.
 前記ブレーキ待機機能部16は、実行中にモータ角度の変動が所定量より大きくなった場合に、前記ブレーキ待機機能を解除して所定のブレーキ解除状態へと前記摩擦材32を駆動するようにしてもよい。この構成であると、振動等の影響で待機時のギャップ量が変動した場合、適宜是正してギャップ量を保つことで、意図しない引き摺りトルクの発生や応答遅れを防止することができる。 The brake standby function unit 16 releases the brake standby function and drives the friction material 32 to a predetermined brake release state when the fluctuation of the motor angle becomes larger than a predetermined amount during execution. It is also good. With this configuration, when the gap amount at the time of standby changes due to the influence of vibration or the like, occurrence of unintended drag torque and response delay can be prevented by appropriately correcting and maintaining the gap amount.
 <<上記構成の作用の概要>>
 ブレーキが解除された状態において、電動ブレーキ装置のモータドライバ13におけるハーフブリッジ回路からなるスイッチ手段21の状態を、Lアームスイッチ回路21Lがオン、Hアームスイッチ回路21Hがオフとなる一定の状態に維持し、Hアームスイッチ21Hのスイッチング用の電圧として使用するブートストラップコンデンサからなるスイッチ電源22を充電された状態に維持する。指令手段(ブレーキペダル等)4のブレーキ指令やその変化量からブレーキを解除する要求をブレーキ解除要求判断機能部14で判断し、さらにその際のモータ角度や角速度から電動ブレーキ装置が所定の待機位置に移行したかどうかをブレーキ解除完了判断機能部15で判断し、その状態で前記のハーフブリッジ回路からなるスイッチ手段21の状態維持をブレーキ待機機能部16により実行させて、ブレーキ待機状態とする。
<< Outline of the operation of the above configuration >>
When the brake is released, the state of the switch means 21 consisting of a half bridge circuit in the motor driver 13 of the electric brake device is maintained in a constant state in which the L arm switch circuit 21L is on and the H arm switch circuit 21H is off. The switch power supply 22 consisting of a bootstrap capacitor used as a voltage for switching the H arm switch 21H is maintained in a charged state. The brake release request determination function unit 14 determines the brake release request from the brake command of the command means (brake pedal etc.) 4 and its change amount by the brake release request determination function unit 14, and the motor brake device determines a predetermined standby position based on the motor angle and angular velocity at that time. The brake release completion judging function unit 15 judges whether or not the state has been shifted to and the state maintenance of the switch means 21 composed of the above-mentioned half bridge circuit is executed by the brake standby function unit 16 in this state to make the brake standby state.
 <<上記構成の作用および各部の構成の詳細>>
 前記モータドライバ13は、前記のようにFET等のトランジスタ素子25H,25Lをスイッチ素子として用いたハーフブリッジ回路からなるスイッチ手段21を有する構成とし、例えば所定のデューティ比によりモータ印加電圧を決定するPWM制御を行う構成とする。これにより安価で高性能となり好適と考えられる。あるいは、変圧回路等を設け、PAM制御を行う構成とすることもできる。前記PWM制御やPAM制御を行うスイッチングパターンは、前記スイッチングパターン決定機能部12で行う。
<< Operation of the above configuration and details of the configuration of each part >>
The motor driver 13 is configured to have the switch means 21 composed of a half bridge circuit using the transistor elements 25H and 25L such as FET as switch elements as described above, and PWM which determines the motor applied voltage by a predetermined duty ratio, for example. The configuration is to control. This is considered to be suitable because of its low cost and high performance. Alternatively, a transformer circuit or the like may be provided to perform PAM control. The switching pattern determination function unit 12 performs a switching pattern for performing the PWM control and the PAM control.
 また、前記スイッチ手段21を構成するハーフブリッジ回路のうち、電源装置3のプラス側との接続を行うHアームスイッチ回路21Hのトランジスタ素子25Hのスイッチング用電位源として、Lアームスイッチ回路21Lがオンとなった際に所定の電位源から電荷が蓄積され、Hアームスイッチ回路21Hをオンせしめる際にゲートに印加する電位源として機能するブートストラップコンデンサからなるスイッチ電源22を用いたチャージ回路であるチャージ手段24を設けるため、低コストでモータドライバ13を駆動できて好適である。 The L arm switch circuit 21L is turned on as a switching potential source of the transistor element 25H of the H arm switch circuit 21H which connects to the positive side of the power supply device 3 among the half bridge circuits constituting the switch means 21. Charge means is a charge circuit using a switch power supply 22 consisting of a bootstrap capacitor that functions as a potential source to be applied to the gate when electric charge is accumulated from a predetermined potential source when turning on the H arm switch circuit 21H. 24 is preferable because the motor driver 13 can be driven at low cost.
 このとき、モータドライバ13がスイッチングされないか、またはLアームスイッチ21Lのオン時間が短い状態が継続すると、前記ブートストラップコンデンサからなるスイッチ電源22のチャージ状態が不十分となり、Hアームスイッチ回路21Hがオンできない問題が発生する可能性がある。よって、前記スイッチングパターン決定機能部12は、ブートストラップコンデンサからなるスイッチ電源22のチャージ状態がHアームスイッチ回路21Hの制御に十分な状態となるよう、Lアームスイッチ回路21Lのオン時間が十分長いスイッチングパターンに設定することが好ましい。特に、Lアームスイッチ回路21を常にオン、Hアームスイッチ回路21Hを常にオフの状態に維持すると、前記ブートストラップコンデンサからなるスイッチ電源22が確実に良好なチャージ状態に維持可能で、かつスイッチングに伴う損失も発生しないため、特に好適と考えられる。また、このとき電動モータ6は自発的に駆動されないため、モータ搖動にともなう作動音が発生せず、NHVが改善できる。特に、例えば直動アクチュエータ2が平行歯車等からなる減速機33(図3参照)等の機械結合部を有する場合、ブレーキを解除した無負荷の状態においてはバックラッシ等の影響で僅かな揺動に対しても比較的大きな作動音が発生する為、NHVが大きく改善する場合がある。 At this time, if the motor driver 13 is not switched or the on-time of the L-arm switch 21L continues to be short, the charge state of the switch power supply 22 consisting of the bootstrap capacitor becomes insufficient and the H-arm switch circuit 21H is turned on. There may be problems that can not be Therefore, the switching pattern determination function unit 12 performs switching such that the on time of the L arm switch circuit 21L is sufficiently long such that the charge state of the switch power supply 22 consisting of a bootstrap capacitor is sufficient for control of the H arm switch circuit 21H. It is preferable to set the pattern. In particular, when the L-arm switch circuit 21 is always on and the H-arm switch circuit 21H is always off, the switch power supply 22 composed of the bootstrap capacitor can be reliably maintained in a good charge state and accompanied by switching. It is considered particularly suitable because no loss occurs. Further, at this time, since the electric motor 6 is not driven spontaneously, the operation noise due to the motor oscillation does not occur, and the NHV can be improved. In particular, for example, when the linear actuator 2 has a mechanical joint such as a reduction gear 33 (see FIG. 3) made of parallel gears or the like, slight vibration may occur due to the influence of backlash or the like in the unloaded state where the brake is released. On the other hand, NHV may be greatly improved because a relatively large operation noise is generated.
 また、前記の一定スイッチングパターン状態にあるとき、例えば電動ブレーキ搭載車両の振動等によって電動モータ6に外力が加えられた場合、電動モータ6が発電して負荷トルクが発生する為、例えばスイッチングを停止するような場合と比較して外力によって電動モータ6が回され難い状態となる。このため、例えば前記のモータ外力等により所定のモータ待機角度から離反することを抑制でき、仮に離反した場合でも比較的容易に元の待機位置へと復帰することができる。 When an external force is applied to the electric motor 6 due to, for example, vibration of a vehicle equipped with an electric brake when the constant switching pattern is in the above-mentioned state, the electric motor 6 generates power and generates load torque. The electric motor 6 is less likely to be turned by an external force as compared with the case where it does. Therefore, for example, the motor can be prevented from deviating from the predetermined motor standby angle due to the motor external force or the like, and even if it is temporarily separated, it can be returned to the original standby position relatively easily.
 <<ブレーキ待機機能部16等の動作フロー例>>
 図4は、図1の例において、ブレーキ待機機能部16等が実行する際の例を示す。ステップS1では、例えばブレーキ力指令値が所定値を下回った場合や、ブレーキ力指令値の減少変化量が所定値を下回る場合、あるいはこれらを併用する所定条件に基づいて、ブレーキの解除が要求されているかをブレーキ解除要求判断機能部14で判断する。ブレーキの解除が要求されていない場合は、ステップS5に進み、ブレーキ制御の実行を続け、再度ステップS1の判断を行う。
<< Operation flow example of brake standby function unit 16 etc. >>
FIG. 4 shows an example when the brake standby function unit 16 etc. execute in the example of FIG. In step S1, for example, when the braking force command value falls below a predetermined value, or when the decreasing change amount of the braking force command value falls below a predetermined value, or the release of the brake is requested based on a predetermined condition using both of them. The brake release request determination function unit 14 determines whether it is present. If the release of the brake is not required, the process proceeds to step S5, the execution of the brake control is continued, and the determination of step S1 is performed again.
 ステップS2では、例えば角度指令値と推定モータ角度との偏差の大きさが所定値を下回る場合や、モータ角速度の大きさが所定値を下回る場合、あるいはこれらを併用する所定条件に基づいて、ブレーキ解除が完了しているかをブレーキ解除判断機能部15で判断する。 In step S2, for example, when the magnitude of the deviation between the angle command value and the estimated motor angle falls below a predetermined value, or when the magnitude of the motor angular velocity falls below a predetermined value, or based on a predetermined condition using both of them. The brake release determination function unit 15 determines whether the release is completed.
 ステップS2でブレーキ解除完了と判断された場合は、ステップS3に進む。ステップS3では、ブレーキ解除が要求されており、かつブレーキ解除が完了している場合において、モータドライバ13のスイッチングパターンにつき、Hアームスイッチ回路21Hを全てオフし、Lアームスイッチ回路21Lを全てオンの状態に設定する。前記スイッチングパターンは、少なくとも図1のモータドライバ13のブートストラップコンデンサからなるスイッチ電源22が十分に充電可能なスイッチングパターンであればよいが、本図のようにすると各スアームイッチ回路21H,21Lがオン-オフ動作を行わないため、スイッチングに伴う損失が低減できて好適と考えられる。このとき、ステップS3の処理を実行中、例えば電動ブレーキ装置搭載車両の振動等の外力により電動モータ6が回転させられた場合、その後の制御サイクルのステップS2において、ブレーキ解除が完了していないと判断され、ステップS4に進んで速やかに再度目標角度へと電動モータが追従制御される。 If it is determined in step S2 that the brake release is completed, the process proceeds to step S3. In step S3, when the brake release is requested and the brake release is completed, all the H arm switch circuits 21H are turned off and all the L arm switch circuits 21L are turned on for the switching pattern of the motor driver 13. Set to state. The switching pattern may be a switching pattern capable of sufficiently charging at least the switch power supply 22 composed of the bootstrap capacitor of the motor driver 13 of FIG. 1, but if it is as shown in this figure, each of the swing circuit 21H and 21L is turned on. Since the off operation is not performed, the loss associated with switching can be reduced, which is considered preferable. At this time, if the electric motor 6 is rotated by an external force such as vibration of the vehicle equipped with the electric brake device, for example, during the process of step S3, then in step S2 of the subsequent control cycle, the brake release is not completed. The electric motor is controlled to follow the control to the target angle promptly again in step S4.
 この実施形態の電動ブレーキ装置によると、このように、Lアームスイッチ回路21Lをオン、Hアームスイッチ回路21Hをオフの状態に維持することで、ブートストラップコンデンサからなるスイッチ電源22が常に充電され、ブレーキをかける要求がされた場合において、速やかに応答させることができる。全てのLアームスイッチ回路21Lを常時オン、Hアームスイッチ回路21Hを常時オフとすることで、スイッチングを行わないため、例えばFET等のトランジスタ素子25H,25Lの浮遊容量に伴うスイッチング損失が発生せず、待機電力を低減することができる。モータ端子電圧が全て同じ電圧となる為、電動モータ6が自発的に駆動されることが無く、センサ分解能やサンプリングに起因する微小なチャタリング等が発生しないため、作動音の静粛化が図れる。振動等により外部から電動モータ6が回される場合、電動モータ6に発電による回生トルクが発生して待機位置から急激に電動モータ6が離反することを防止することができ、再度追従制御を実行して待機位置へと戻すことが容易となる。 According to the electric brake device of this embodiment, the switch power supply 22 consisting of a bootstrap capacitor is always charged by keeping the L arm switch circuit 21 L on and the H arm switch circuit 21 H off in this manner. When a request to apply a brake is made, it is possible to promptly respond. Switching is not performed by always turning on all L arm switch circuits 21L and always turning off H arm switch circuits 21H, so that switching losses associated with stray capacitances of transistor elements 25H and 25L such as FETs do not occur. The standby power can be reduced. Since all the motor terminal voltages become the same voltage, the electric motor 6 is not driven spontaneously, and minute chattering or the like due to sensor resolution or sampling does not occur, so that the operation noise can be suppressed. When the electric motor 6 is turned from the outside due to vibration or the like, regenerative torque due to power generation is generated in the electric motor 6 and the electric motor 6 can be prevented from separating rapidly from the standby position. It is easy to return to the standby position.
 <<他の実施形態>>
 図6はこの発明の他の実施形態を示す。この実施形態は、特に説明した事項の他は、図1~図5に示した第1の実施形態同様である。この実施形態は、第1の実施形態の構成に加え、電動モータ6のコギングトルクに合わせてブレーキ待機位置を調整する例を示す。この実施形態では、前記制御装置5に、前記角度センサ9等からなる角度推定手段で推定された角度からコギングトルクの値を推定するコギングトルク推定機能部11aと、ブレーキ状態からブレーキ解除状態へと移行するときに、前記推定コギングトルクが略零となるモータ角度を角度指令値とする待機位置調整機能部11とが設けられている。
<< Other Embodiments >>
FIG. 6 shows another embodiment of the present invention. This embodiment is the same as the first embodiment shown in FIGS. 1 to 5 except for the matters described particularly. This embodiment shows an example of adjusting the brake standby position in accordance with the cogging torque of the electric motor 6 in addition to the configuration of the first embodiment. In this embodiment, the control device 5 includes a cogging torque estimation function unit 11a that estimates the value of cogging torque from the angle estimated by the angle estimation means including the angle sensor 9 and the like, and from the brake state to the brake release state. A standby position adjusting function unit 11 is provided which uses a motor angle at which the estimated cogging torque becomes substantially zero when making a transition, as an angle command value.
 ブレーキ待機機能部16の機能によって電動ブレーキ装置が待機状態となったとき、外力が加わると電動モータ6が回転する。すなわち、コギングトルクによって所定方向の回転力がある状態でブレーキ待機状態となった場合、コギングトルクによって電動モータ6が所定量回転させられることがある。その際、例えば図4のフローに従えば、ブレーキ待機機能が実行される場合(ステップS3)とそうでない場合(ステップS4)が繰り返される可能性があり、不要な揺動となる場合がある。 When the electric brake device enters the standby state by the function of the brake standby function unit 16, the electric motor 6 rotates when an external force is applied. That is, when the brake standby state is established in a state where there is a rotational force in a predetermined direction by the cogging torque, the electric motor 6 may be rotated by a predetermined amount by the cogging torque. At that time, for example, according to the flow of FIG. 4, the case where the brake standby function is executed (step S3) and the case where it is not so (step S4) may be repeated, which may result in unnecessary swing.
 そこで、電動モータ6のコギングトルクを推定し、待機位置調整機能部11bによって予めコギングトルクが零となるモータ角度を待機位置に設定するようにしており、これにより、前記ブレーキ待機機能部16の制御を実行しても電動モータ6が回されることなく、所定のブレーキ待機状態が維持できる。なお、コギングトルク推定は、設計や実測に基づいて予め推定用LUT(ルックアップテーブル)(図示せず)等を用いてもよく、あるいはトルクを零にした際のモータ動作等からリアルタイムで推定する方法を用いてもよい。 Therefore, the cogging torque of the electric motor 6 is estimated, and the motor position at which the cogging torque becomes zero is set in advance as the standby position by the standby position adjustment function unit 11b, whereby the control of the brake standby function unit 16 is performed. Can be maintained without the electric motor 6 being turned even if the controller 1 is executed. The cogging torque may be estimated in advance by using an estimation LUT (look-up table) (not shown) or the like based on design or measurement, or from motor operation or the like when torque is zeroed. A method may be used.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更、削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。 As described above, although the preferred embodiments have been described with reference to the drawings, various additions, modifications, and deletions can be made without departing from the spirit of the present invention. Therefore, such is also included in the scope of the present invention.
1…摩擦ブレーキ機構
2…直動アクチュエータ(摩擦材操作手段)
3…電源装置
4…指令手段
5…制御装置
6…電動モータ
8…荷重センサ
9…角度センサ(角度推定手段)
11a…コギングトルク推定機能部
11b…待機位置調整機能部
12…スイッチングパターン決定機能部
13…モータドライバ
14…ブレーキ解除要求判断機能部
14a…カウンタ
15…解除完了判断機能部
16…ブレーキ待機機能部
21…スイッチ
21L…Lアームスイッチ回路
21H…Hアームスイッチ回路
22…スイッチ電源
24…チャージ
25H,25L…トランジスタ素子
25Ha…第一の入出力端子
25Hb…第二の入出力端子
25Hc…スイッチング端子
25La…第一の入出力端子
25Lb…第二の入出力端子
25Lc…スイッチング端子
31…ブレーキロータ
32…摩擦材
1 ... Friction brake mechanism 2 ... Linear actuator (friction material operating means)
3 Power supply device 4 Command means 5 Control device 6 Electric motor 8 Load sensor 9 Angle sensor (angle estimation means)
11a ... cogging torque estimation function unit 11b ... standby position adjustment function unit 12 ... switching pattern determination function unit 13 ... motor driver 14 ... brake release request determination function unit 14a ... counter 15 ... release completion determination function unit 16 ... brake standby function unit 21 ... switch 21 L ... L arm switch circuit 21 H ... H arm switch circuit 22 ... switch power supply 24 ... charge 25 H, 25 L ... transistor element 25 Ha ... first input / output terminal 25 Hb ... second input / output terminal 25 Hc ... switching terminal 25 La ... second First input / output terminal 25Lb Second input / output terminal 25Lc Switching terminal 31 Brake rotor 32 Friction material

Claims (6)

  1.  ブレーキロータと、このブレーキロータと接触して制動力を発生させる摩擦材と、電動モータの駆動により前記摩擦材を操作する摩擦材操作手段と、与えられたブレーキ指令値に追従するように前記電動モータの出力を制御する制御装置と、前記電動モータに電力を印加する直流の電源装置とを備える電動ブレーキ装置であって、
     前記制御装置が、
     前記電動モータのコイル端と前記電源装置との接続状態を制御するスイッチ手段と、
     蓄電機能を有し前記スイッチ手段の少なくとも一部をスイッチングするための電源として機能するスイッチ電源と、
     前記スイッチ手段の所定のスイッチングパターンにおいて前記スイッチ電源に電力を蓄積させるチャージ手段と、
     前記ブレーキ力指令値およびその微分値のうち少なくとも何れかの大きさが所定値より小さくなったときに、ブレーキ解除を要求する操作がなされたことを判断するブレーキ解除要求判断機能部と、
     前記ブレーキ解除を要求する操作がなされたことが判断されたとき、所定のブレーキ解除状態へと前記摩擦材操作手段が駆動され、このときの前記電動モータの角度およびその微分値の少なくとも何れかよりブレーキ解除状態への移行が完了したことを判断する解除完了判断機能部と、
     前記解除状態への移行が完了したと判断されたとき、少なくとも静止した状態の前記電動モータが自発的に駆動されず、かつ前記スイッチ手段を前記チャージ手段により前記スイッチ電源に蓄電され得る所定のスイッチングパターンに維持するブレーキ待機機能部、とを有する、
     電動ブレーキ装置。
    The electric motor so as to follow a brake rotor, a friction material which contacts the brake rotor to generate a braking force, a friction material operating means which operates the friction material by driving an electric motor, and a given brake command value. An electric brake apparatus comprising: a control device that controls an output of a motor; and a direct current power supply device that applies electric power to the electric motor,
    The controller
    Switch means for controlling the connection between the coil end of the electric motor and the power supply device;
    A switch power supply having a storage function and functioning as a power supply for switching at least a part of the switch means;
    Charge means for storing power in the switch power supply in a predetermined switching pattern of the switch means;
    A brake release request determination function unit that determines that an operation for requesting a brake release has been performed when at least one of the brake force command value and its derivative value becomes smaller than a predetermined value;
    When it is determined that the operation for requesting the brake release has been performed, the friction material operating means is driven to a predetermined brake release state, and at least one of the angle of the electric motor and the derivative thereof at this time. A release completion determination function unit that determines that the transition to the brake release state is completed;
    When it is determined that the transition to the release state is completed, at least the stationary state electric motor is not driven spontaneously and predetermined switching may be performed to charge the switch means by the charge means by the charge means. And a brake standby function to maintain a pattern;
    Electric brake device.
  2.  請求項1に記載の電動ブレーキ装置において、
     前記スイッチ手段が、LアームスイッチとHアームスイッチを前記電動モータのコイル端それぞれに対して一対ずつ備えたスイッチ回路であって、
     前記Lアームスイッチは、前記電動モータのコイル端に接続された第一の入出力端子と、前記電源装置のマイナス側に接続された第二の入出力端子と、前記第二の入出力端子に対して正の電位が入力されることで前記両入出力端子を接続させるスイッチング端子とを有するトランジスタ素子によって、前記電源装置のマイナス側と前記電動モータのコイル端との接続状態を制御するスイッチ回路部であり、
     前記Hアームスイッチは、前記電源装置のプラス側に接続された第一の入出力端子と、前記電動モータのコイル端に接続された第二の入出力端子と、前記第二の入出力端子に対して正の電位が入力されることで前記両入出力端子を接続させるスイッチング端子とを有するトランジスタ素子によって、前記電源装置のプラス側と前記電動モータのコイル端との接続状態を制御するスイッチ回路部であり、
     前記スイッチ電源が、前記Hアームスイッチの前記第二の入出力端子を電気的な基準電位として接続されるコンデンサであり、
     前記チャージ手段が、前記Lアームスイッチが接続状態となったときに前記コンデンサからなるスイッチ電源に電荷を蓄積するチャージ回路であり、
     前記ブレーキ待機機能部は、前記Lアームスイッチを全て常時接続状態とし、前記Hアームスイッチを全て常時切断状態とする、
     電動ブレーキ装置。
    In the electric brake device according to claim 1,
    The switch means is a switch circuit provided with a pair of L-arm switch and H-arm switch for each coil end of the electric motor,
    The L arm switch includes a first input / output terminal connected to the coil end of the electric motor, a second input / output terminal connected to the negative side of the power supply device, and the second input / output terminal. Switch circuit for controlling the connection state between the negative side of the power supply and the coil end of the electric motor by a transistor element having a switching terminal for connecting the input / output terminals by inputting a positive potential. Is a department,
    The H arm switch includes a first input / output terminal connected to the positive side of the power supply device, a second input / output terminal connected to a coil end of the electric motor, and the second input / output terminal. Switch circuit for controlling the connection state between the positive side of the power supply device and the coil end of the electric motor by a transistor element having a switching terminal for connecting the two input / output terminals when a positive potential is input. Is a department,
    The switch power supply is a capacitor connected to the second input / output terminal of the H arm switch as an electrical reference potential,
    The charge means is a charge circuit that stores charge in a switch power supply composed of the capacitor when the L arm switch is in a connected state,
    The brake standby function unit always keeps all the L arm switches connected and always keeps all the H arm switches disconnected.
    Electric brake device.
  3.  請求項1または請求項2に記載の電動ブレーキ装置において、前記解除完了判断機能部は、前記摩擦材と前記ブレーキロータとの間に所定の空隙が発生し得るモータ角度目標値に対して、モータ角度の偏差の絶対値が所定値以下であり、かつモータ角速度の絶対値が所定値以下である状態を以て、ブレーキ解除が完了したと判断する電動ブレーキ装置。 The electric brake device according to claim 1 or 2, wherein the release completion determination function unit sets a motor with respect to a motor angle target value at which a predetermined gap can be generated between the friction material and the brake rotor. An electric brake device that determines that the brake release is completed in a state where the absolute value of the deviation of the angle is equal to or less than a predetermined value and the absolute value of the motor angular velocity is equal to or less than a predetermined value.
  4.  請求項1または請求項2に記載の電動ブレーキ装置において、前記解除完了判断機能部は、前記摩擦材と前記ブレーキロータとの間に所定の空隙が発生し得るモータ角度目標値に対して、モータ角度の偏差の絶対値が所定値以下である状態の継続時間を計測するカウンタを備え、このカウンタの値が所定値を超過した場合にブレーキ解除が完了したと判断する電動ブレーキ装置。 The electric brake device according to claim 1 or 2, wherein the release completion determination function unit sets a motor with respect to a motor angle target value at which a predetermined gap can be generated between the friction material and the brake rotor. An electric brake device comprising: a counter that measures a duration of a state in which the absolute value of the deviation of the angle is equal to or less than a predetermined value, and judging that the brake release is completed when the value of the counter exceeds the predetermined value.
  5.  請求項1ないし請求項4のいずれか1項に記載の電動ブレーキ装置において、前記ブレーキ待機機能部は、実行中にモータ角度の変動が所定量より大きくなった場合に、前記ブレーキ待機機能を解除して所定のブレーキ解除状態へと前記摩擦材を駆動する電動ブレーキ装置。 The electric brake device according to any one of claims 1 to 4, wherein the brake standby function unit releases the brake standby function when the variation of the motor angle becomes larger than a predetermined amount during execution. And an electric brake device for driving the friction material to a predetermined brake release state.
  6.  請求項1ないし請求項4のいずれか1項に記載の電動ブレーキ装置において、前記制御装置が、前記電動モータの角度を推定する角度推定手段と、この推定した角度からコギングトルクを推定するコギングトルク推定機能部と、ブレーキ状態からブレーキ解除状態へと移行するときに、前記推定コギングトルクが略零となるモータ角度を角度指令値とする待機位置調整機能部とを有する電動ブレーキ装置。 The electric brake system according to any one of claims 1 to 4, wherein the control device is an angle estimating means for estimating an angle of the electric motor, and a cogging torque for estimating a cogging torque from the estimated angle. An electric brake apparatus comprising: an estimation function unit; and a standby position adjustment function unit that sets a motor angle at which the estimated cogging torque becomes substantially zero when the brake state is shifted to the brake release state.
PCT/JP2018/027924 2017-07-27 2018-07-25 Electric brake device WO2019022148A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-145232 2017-07-27
JP2017145232A JP6952528B2 (en) 2017-07-27 2017-07-27 Electric brake device

Publications (1)

Publication Number Publication Date
WO2019022148A1 true WO2019022148A1 (en) 2019-01-31

Family

ID=65040306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027924 WO2019022148A1 (en) 2017-07-27 2018-07-25 Electric brake device

Country Status (2)

Country Link
JP (1) JP6952528B2 (en)
WO (1) WO2019022148A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022085673A1 (en) * 2020-10-23 2022-04-28 株式会社アイシン Shift device and electronic control unit for vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792786B (en) * 2021-12-21 2023-02-11 致揚科技股份有限公司 Motor brake system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058445A (en) * 2009-09-11 2011-03-24 Daikin Industries Ltd Method for operating compressor and device for driving compressor
US20120062011A1 (en) * 2010-09-09 2012-03-15 Midmark Corporation Brushless dc motor starts for a barrier free medical table
JP2016064815A (en) * 2014-09-25 2016-04-28 Ntn株式会社 Electric brake system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058445A (en) * 2009-09-11 2011-03-24 Daikin Industries Ltd Method for operating compressor and device for driving compressor
US20120062011A1 (en) * 2010-09-09 2012-03-15 Midmark Corporation Brushless dc motor starts for a barrier free medical table
JP2016064815A (en) * 2014-09-25 2016-04-28 Ntn株式会社 Electric brake system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022085673A1 (en) * 2020-10-23 2022-04-28 株式会社アイシン Shift device and electronic control unit for vehicle
JPWO2022085673A1 (en) * 2020-10-23 2022-04-28
JP7380909B2 (en) 2020-10-23 2023-11-15 株式会社アイシン Shift devices and vehicle electronic control units

Also Published As

Publication number Publication date
JP2019025990A (en) 2019-02-21
JP6952528B2 (en) 2021-10-20

Similar Documents

Publication Publication Date Title
US10576952B2 (en) Electric brake system
CN109789858B (en) Electric brake device
JP5971265B2 (en) Boost converter controller
CN104080645A (en) Electric vehicle
US10377355B2 (en) Electric brake device
WO2017026472A1 (en) Electric brake system
WO2019022148A1 (en) Electric brake device
JP7017940B2 (en) Electric actuators and electric braking devices
US20220105919A1 (en) Electric brake device
US11001166B2 (en) Electric brake apparatus and electric brake system
CN110249522B (en) Electric linear motion actuator and electric brake device
JP7066408B2 (en) Electric linear actuator and electric brake device
CN109789869B (en) Electric brake device
WO2019159813A1 (en) Electric brake device and electric brake system
WO2019054376A1 (en) Electric brake device
WO2022181469A1 (en) Electric linear motion actuator
WO2019049971A1 (en) Electric actuator and electric motor device
JP6986903B2 (en) Electric linear actuator and electric brake device
JP7250191B2 (en) Electric linear actuator and electric brake device
JP2019018693A (en) Electric linear actuator and electric brake device
WO2022270382A1 (en) Electric linear actuator
JP2009124890A (en) Motor control apparatus
JP2002070900A (en) Electric disk brake device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838390

Country of ref document: EP

Kind code of ref document: A1