WO2019159813A1 - Electric brake device and electric brake system - Google Patents

Electric brake device and electric brake system Download PDF

Info

Publication number
WO2019159813A1
WO2019159813A1 PCT/JP2019/004471 JP2019004471W WO2019159813A1 WO 2019159813 A1 WO2019159813 A1 WO 2019159813A1 JP 2019004471 W JP2019004471 W JP 2019004471W WO 2019159813 A1 WO2019159813 A1 WO 2019159813A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
load
electric
brake load
target
Prior art date
Application number
PCT/JP2019/004471
Other languages
French (fr)
Japanese (ja)
Inventor
唯 増田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019159813A1 publication Critical patent/WO2019159813A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors

Definitions

  • the present invention relates to an electric brake device and an electric brake system installed in an automobile or the like, and relates to a technique for reducing power consumption.
  • Patent Document 1 an electric actuator including an electric motor, a speed reducer, and a linear motion mechanism, and an electric brake device including the control device.
  • an electric brake device using an electric actuator as in Patent Document 1 when it is mainly mounted on a vehicle such as an automobile, an independent power supply system such as a battery is used except for charging from a charging facility. Must work. For this reason, power consumption that is as low as possible is often required.
  • the power consumption ratio due to copper loss of an electric motor or the like may be relatively large. Since the copper loss is basically proportional to the square of the current, it is generally proportional to the square of the torque that is approximately proportional to the current. That is, there are many cases where the power consumption tends to increase as a large brake load that can require a large torque is exhibited.
  • the brake force is determined by the vehicle operator, and the brake load based on the basically required brake force must be generated by the electric brake device.
  • the copper loss it is difficult to reduce the copper loss.
  • the copper loss is reduced by the electric motor design, it is necessary to increase the size of the electric motor, and there may be a problem in mountability and cost.
  • An object of the present invention is to provide an electric brake device and an electric brake system that can reduce power consumption without increasing the size of the electric motor.
  • the electric brake device 1 includes a brake rotor 8, a friction material 9 that contacts the brake rotor 8 to generate a braking force, an electric motor 4, and a rotational operation of the electric motor 4.
  • the friction material operating means for example, the linear motion actuator 5 that converts the contact operation to the brake rotor 8 and the electric motor 4 based on the required brake force Brk of the brake force command means 21 are used to control the friction material 9.
  • an electric brake control device 2 that controls a brake load that is a pressing force to the brake rotor 8, and is mounted on a vehicle,
  • the electric brake control device 2 is A stop determination means 23d for determining the distinction between the stop state and the travel state of the vehicle from the rotational movement of the wheel 15 on which the brake rotor 8 is disposed;
  • a brake load command device 22 that outputs a target brake load Fr that is a control target value of the brake load based on the required brake force;
  • a brake load controller 24 for outputting a command value Ar of brake load holding power to be applied to the electric motor 4 in accordance with the target brake load;
  • a brake power reducer 23 that reduces the command value Ar of the brake load holding power to be given to the electric motor 4 based on the required brake force Brk when the vehicle is in a stopped state, as compared to when the vehicle is in the running state. 23A.
  • the brake power required by the vehicle operator is increased depending on whether the vehicle is running or the vehicle is stopped by providing the brake power reducers 23 and 23A. (Pedal operation amount, etc.)
  • the brake load actually generated with respect to Brk has a different relationship, and when the vehicle is stopped, the target brake load Fr with respect to the required brake force Brk is made relatively low.
  • the brake force is a value obtained by multiplying the brake load, which is the pressing force of the friction material 9 against the brake rotor 8, by the friction coefficient and the effective brake diameter.
  • the friction coefficient is larger than the dynamic friction coefficient.
  • the coefficient works. Therefore, even when the same brake load is applied, a larger braking force acts in the stopped state than in the traveling state. Therefore, in the control in which a brake load that is always proportional to the required brake force Brk is generated, an excessive frictional force, that is, an excessive brake force is generated with respect to the required brake force Brk when the vehicle is stopped. Therefore, when the vehicle is stopped, the required braking force for the required brake force Brk is maintained by relatively reducing the target brake load Fr with respect to the required brake force Brk within the excessive range.
  • the power consumption of the electric motor 4 by reducing the brake load can be reduced. By reducing unnecessary power supply through control in this way, it is possible to reduce power consumption by suppressing copper loss without increasing the size of the electric motor 4.
  • the brake power reducer 23 calculates a stationary state target brake load Fst that is a target brake load with respect to the required brake force Brk when the vehicle is in the stopped state (for example, a determination result of the stop determining unit 23d).
  • a load command unit 23b, and a travel brake load command unit 23a that calculates a travel state target brake load Fdy that is a target brake load for the required brake force Brk in the travel state The stationary brake load command unit 3b may make the stationary state target brake load Fst smaller than the traveling state target brake load Fdy with respect to the required brake force Brk.
  • the brake force (friction coefficient x brake load x brake effective diameter) can be kept substantially constant, while the brake load decreases to reduce the copper loss. Can be reduced.
  • Vehicle speed estimation for estimating the vehicle speed of the vehicle equipped with the electric brake device based on predetermined information including at least the rotational movement of the wheel 15 as a component of the electric brake control device 1 or separately from the electric brake control device 1 Having a container 29,
  • the brake power reducer 23 finally determines a target brake load Fr that is determined as the estimated vehicle speed transitions to a value that can be regarded as zero when the estimated vehicle speed is less than a predetermined value. May have a function of transitioning from the travel state target brake load Fdy to the stop state target brake load Fst. In this way, by switching the target brake load Fr gently to some extent according to the vehicle speed, when the vehicle is not in a strict stop state when the target brake load Fr is switched, the vibration of the vehicle due to a sudden change in the brake load, etc. Can be prevented.
  • the stationary brake load command unit 23b calculates the stop state target brake load Fst to a value that can be regarded as the same as the travel state target brake load Fdy,
  • the stop state target brake load Fst may be calculated to a value smaller than the travel state target brake load Fdy.
  • the brake power reducer 23 is A first predetermined value of the required brake force Brk at which the stop state target brake load Fst and the traveling state target brake load Fdy are not substantially the same, and a second predetermined value of the required brake force greater than the first predetermined value. Value is set, From the first predetermined value to the second predetermined value, the stop state target brake load Fst and the travel state target brake load Fdy may be gradually separated. The first predetermined value and the second predetermined value are set to appropriate values by testing or simulation. In the case of this configuration, it is possible to prevent feeling deterioration such as an unintended braking shock.
  • the brake power reducer 23 sets the target brake load Fr as time elapses within the predetermined time within a predetermined time after the switching from the running state target brake load Fdy to the stop state target brake load Fst.
  • the travel state target brake load Fdy may be changed to the stop state target brake load Fst. Also in this configuration, it is possible to prevent unintended feeling deterioration such as braking shock.
  • the electric brake system of the present invention is an electric brake system including a plurality of electric brake devices 1 having any one of the above-described configurations of the present invention, A brake integrated control device 20 that integrally controls the plurality of electric brake devices 1;
  • the brake power reducers 23 of at least two electric brake devices 1 in the plurality of electric brake devices 1 are integrated into one and provided in the brake integrated control device 20,
  • the brake power reducer 23 integrated into this one is that the stationary brake load command unit 23b and the travel brake load command unit 23a in the brake power reducer 23 are integrated with the target in each electric brake device 1 related to integration. Output the total brake load.
  • each electric brake device related to integration is, for example, “each electric brake device related to integration” or “electric brake device corresponding to each integrated brake power reducer”.
  • the brake integrated control device 20 may be provided in the host control device 19 of the vehicle.
  • the configuration is simple.
  • any one of the electric brake control devices 2 in each electric brake device 1 related to integration may be used.
  • the electric brake control device 2 can be configured independently of the host control device 19.
  • 1 is a block diagram showing a conceptual configuration of an electric brake device according to a first embodiment of the present invention. It is explanatory drawing which mainly shows the linear motion actuator of the same electric brake device. It is a control flowchart of the same electric brake device. It is a time chart which shows the change of each physical quantity of the electric brake device. It is a time chart which shows the change of each physical quantity of the electric brake device of a prior art example. It is a block diagram which shows the conceptual structure of the electric brake device which concerns on other embodiment.
  • 1 is a block diagram showing a conceptual configuration of an electric brake system according to an embodiment of the present invention. It is a block diagram which shows the conceptual structure of each electric brake device in the same electric brake system. It is a block diagram which shows the conceptual structure of the electric brake system which concerns on other embodiment. It is a block diagram which shows the conceptual structure of the electric brake device which concerns on other embodiment.
  • FIGS. 1 to 4B An electric brake device according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 4B.
  • This electric brake device is mounted on a vehicle such as an automobile.
  • the electric brake device 1 includes a brake mechanism portion 1A composed of a friction brake 7 and a direct acting actuator 5, an electric brake control device 2 that controls the brake mechanism portion 1A, and a power supply device 3.
  • the friction brake 7 is mounted on the wheel 15.
  • the friction brake 7 includes a brake rotor 8 and a friction material 9 that is brought into contact with the brake rotor 8 to generate a braking force.
  • the friction brake 7 is, for example, a disc brake device using a brake disc and a caliper as the brake rotor 8 and the friction material 9.
  • the friction brake 7 may be a drum brake device using a drum and a lining.
  • the linear motion actuator 5 includes an electric motor 4 and a linear motion mechanism 6 which is a friction material operating means for converting the rotation operation of the electric motor 4 into a contact operation of the friction material 9 to the brake rotor 8.
  • the linear motion actuator 5 further includes a speed reducer 10 (not shown in FIG. 1) in the example of FIG.
  • the electric motor 4 is composed of, for example, a permanent magnet synchronous motor.
  • the space-saving, high-efficiency and high-torque is considered suitable, but for example, a DC motor using a brush, a reluctance motor not using a permanent magnet, or An induction motor or the like can also be applied.
  • the linear motion mechanism 6 various screw mechanisms such as a planetary roller screw and a ball screw, and various mechanisms capable of converting a rotational motion into a straight motion such as a ball ramp can be used.
  • the speed reducer 10 is a mechanism that decelerates the rotation of the electric motor 4, and includes a primary gear 12, an intermediate (secondary) gear 13, and a tertiary gear 11 in this example.
  • the speed reducer 10 decelerates the rotation of the primary gear 12 attached to the rotor shaft 4 a of the electric motor 4 by the intermediate gear 13, and generates the tertiary gear 11 fixed to the end of the rotating shaft 6 a of the linear motion mechanism 6. It can be transmitted.
  • the speed reducer 10 may use a worm gear, a planetary gear, or the like instead of the configuration using the spur gear of FIG.
  • the linear actuator 5 is provided with an angle sensor Sa for detecting the motor angle of the electric motor 4 and a load sensor Sb for detecting the axial load of the linear motion mechanism 6.
  • the angle sensor Sa for example, using a resolver, a magnetic encoder, or the like is considered to be preferable because it is highly accurate and reliable, but various sensors such as an optical encoder may be applied.
  • angle sensorless estimation in which the motor angle is estimated from the relationship between voltage and current in the electric brake control device 2 described later, for example, can be used without using the angle sensor Sa.
  • the load sensor Sb can be, for example, a magnetic sensor, a strain sensor, a pressure sensor, or the like that detects displacement or deformation.
  • the load sensor Sb is not provided, and the load sensorless estimation is performed in the electric brake control device 2 described later from the motor angle and the electric brake device rigidity, the motor current, the linear actuator efficiency, and the like. May be.
  • various sensors such as a thermistor may be separately provided as necessary.
  • the wheel 15 can be provided with a wheel speed sensor Sd.
  • a wheel speed sensor Sd for example, a magnetic pole sensor that detects a magnetic pole of a magnetic encoder that rotates integrally with the wheel 2, a coil that detects an inductance fluctuation of a rotor provided with unevenness, and the like can be used.
  • another type of rotation sensor such as an angle sensor that detects the rotational position of the wheel 2 may be used.
  • the wheel speed sensor Sd and the like may be used in, for example, anti-skid control for preventing the wheel 15 from being locked, in addition to the power consumption reduction used in this embodiment.
  • the power supply device 3 is a direct current power supply, and may be a battery provided exclusively for the electric brake device 1 or a battery used for driving other devices of the vehicle.
  • the electric brake control device 2 controls the brake load which is the pressing force of the friction material 9 against the brake rotor 8 in the friction brake 7 by controlling the electric motor 4 based on the required brake force Brk of the brake force command means 21. It is a means to perform, and is comprised from the various control arithmetic units which perform a control calculation, a motor driver, various estimators, and sensors.
  • FIG. 1 shows the concept of the functional configuration, and elements not shown are appropriately provided according to requirements. Each functional block is provided for convenience, and can be appropriately integrated or divided according to mounting convenience. In addition, each of the following embodiments is not limited to any one example, and may be configured to be partially or wholly merged as necessary as long as there is no contradiction in mounting.
  • the brake force command means 21 is a means for instructing the required brake force Brk to the electric brake control device 2, and may be a means for the vehicle operator to instruct a brake operation, such as a brake pedal and a stroke sensor, for example. Also, it may be a host ECU such as a vehicle integrated control unit (VCU). In the case of a host ECU (Electronic Control Unit), the host ECU may be configured to detect the operation of a brake pedal or the like by the vehicle operator, and the braking force is applied by the host ECU such as automatic driving. It may be configured as required.
  • VCU vehicle integrated control unit
  • Each of the angle estimator 27 and the load estimator 28 has a function of estimating an angle and a brake load used for control calculation from the outputs of the angle sensor Sa and the load sensor Sb.
  • the angle estimator 27 and the load estimator 28 may be means having an angle sensorless estimation function and a load sensorless estimation function without using sensors such as the angle sensor Sa and the load sensor Sb. it can.
  • the angle estimator 27 has a function of appropriately obtaining necessary physical quantities based on the configuration of the brake load controller 24 such as an electrical angle phase used for current control and an integrated value of angles used for position control.
  • the angle estimator 27 may have a function of estimating differential amounts such as angular velocity and angular acceleration, disturbances that can be estimated based on angles, and the like.
  • the estimation of the other physical quantity may use, for example, a state estimation observer or the like, or may be a direct calculation such as a back calculation based on differentiation or an inertia equation.
  • the current sensor Sc is a sensor that detects a current applied to the electric motor 4 from the motor driver 25.
  • a sensor that includes an amplifier that detects a voltage across the shunt resistor, and a non-contact sensor that detects a magnetic flux around the energization path. Etc. can be used. Or it is good also as a structure which detects the terminal voltage etc. of the element etc. which comprise the motor driver 25, for example.
  • the current estimator 26 has a function of estimating a current used for control calculation from the current sensor output.
  • the estimation of the current may be performed by, for example, a plurality of current sensors provided in the motor phase current supply path, or may be estimated by one current sensor provided on the low side (low voltage side circuit) or the high side (high voltage side circuit).
  • a method of estimating the secondary current and obtaining the phase current based on the motor characteristics or the like may be used. Or you may make it perform feedforward control based on a motor characteristic etc., without providing any current sensor.
  • the brake load command device 22 has a function of deriving a target brake force Fr that is a brake load command value as a control target value based on the required brake force Brk input from the brake force command means 21.
  • the required brake force Brk input from the brake force command means 21 may be a physical quantity considered on the vehicle base such as vehicle deceleration, deceleration torque, braking force, etc., or may be a predetermined brake effective diameter, brake It may be a physical quantity considered on the basis of an actuator such as a brake load derived based on a friction coefficient or the like.
  • the brake load command device 22 determines a target brake load Fr that is finally set as a target value for the required brake force Brk.
  • the brake load controller 24 calculates a command value Ar of the brake load holding power, which is an operation amount of the electric motor 4 so that the estimated brake load follows the target brake load Fr obtained by the brake load command device 22.
  • the command value Ar for the brake load holding power may be, for example, a motor voltage, or may be a value calculated by providing one or more minor feedbacks for controlling the motor current and the motor angle.
  • the physical quantity used during the calculation is appropriately selected according to the design convenience such as the actuator position calculated from the motor angle and the actuator equivalent lead, the motor torque obtained from the motor current, and the like.
  • feedforward control or the like can be used or used in combination as appropriate.
  • the brake load controller 24 includes a friction material 9 of the friction brake 7 and a brake rotor 8 when releasing the brake in order to reduce drag torque. It is preferable to provide a function of controlling the linear actuator 5 at a position where a predetermined clearance is provided therebetween.
  • the function is a function for estimating the position of the linear motion actuator 5 from the motor angle and the equivalent lead of the linear motion actuator 5.
  • a sensor may be provided separately.
  • the motor driver 25 controls a brake load holding power that is supplied from the power supply device 3 and applied to the electric motor 4 according to the command value Ar of the brake load holding power output from the brake load controller 24. It is. Since the power supply device 3 is a direct current power supply, the motor driver 25 includes an inverter (not shown) that converts direct current power into alternating current power and control means (not shown). The motor driver 25 constitutes the inverter composed of a half-bridge circuit using a switching element such as an FET, for example, and is configured to perform PWM control for determining a motor applied voltage or a motor current according to a predetermined duty ratio. This is preferable because it is inexpensive and has high performance. The motor driver 25 may be configured to perform a PAM control by providing a transformer circuit or the like.
  • the brake power reducer 23 is a means for performing processing for reducing the brake power consumption in the stopped state from the running state, and the brake load applied to the electric motor 4 based on the required brake force Brk in the stopped state.
  • the command value Ar of the holding power is reduced as compared with the case of the traveling state.
  • the brake power reducer 23 is provided as a part of the brake load command device 22, and includes a travel brake load command unit 23a, a stationary brake load command unit 23b, and a brake load command determination unit 23c. .
  • the traveling brake load command unit 23a derives a traveling state target brake load Fdy that is a brake load command value based on the required braking force a of the braking force command means 21 in the traveling state.
  • the stationary brake load command unit 23b derives a stop state target brake load Fsy that is a similar brake load command value in the stop state.
  • the stop state target brake load Fsy is set to be a relatively small brake load with respect to the travel state target brake load Fdy. By using a small brake load, the motor current can be made relatively small at the same time, and the motor copper loss when holding the brake is reduced. Therefore, power consumption can be reduced.
  • the brake load command determination unit 23c is a function for determining which of the travel brake load command unit 23a and the stationary brake load command unit 23b is valid based on the vehicle running state estimated by the vehicle speed estimator 29. Or a function for determining an effective ratio or the like.
  • the braking force generated by the contact between the brake rotor 8 and the friction material 9 is generated based on the dynamic friction coefficient with the brake rotor 8 when the vehicle is running, that is, when the brake rotor is sliding relative to the vehicle.
  • the braking force in the stopped state is generated based on the static friction coefficient. Therefore, even when the same brake load is exhibited, a relatively large braking force is generated in the stopped state relative to the traveling state. In other words, if the same brake load is exerted with respect to the same required brake force Brk, an excessive braking force is generated when the vehicle is stopped. That is, switching the brake load command value Fr between the stop state and the stop state and setting the brake load to a relatively small brake load in the stop state is considered reasonable for reducing power consumption while keeping the braking force constant.
  • the ratio between the static friction coefficient and the dynamic friction coefficient can vary depending on, for example, the wear state and temperature of the friction material, it may be difficult to set the accurate friction coefficient ratio.
  • a conversion coefficient or a conversion table or the like in the static brake load command unit 23b and the travel brake load command unit 23a is set based on a condition that the difference between the static friction coefficient and the dynamic friction coefficient is the smallest.
  • a braking force larger than that in the traveling state is generated at least in a stopped state. For this reason, it is thought that there is no problem in the safety as a vehicle.
  • the brake load command determination unit 23c recognizes, for example, whether the vehicle is stopped or running, and in the stopped state, only the stationary brake load command unit 23b is enabled and is running. In a state, the function which makes only the traveling brake load instruction
  • the stop determination unit 23d may be configured to determine whether the vehicle is in the stopped state or the traveling state from the rotational motion of the wheel 15 on which the brake rotor 8 is disposed, and is provided as a part of the brake load command determination unit 23c.
  • the vehicle speed estimator 29 may also serve as the stoppage determination unit 23d, or may be provided separately from either the brake load command determination unit 23c or the vehicle speed estimator 29.
  • the stop determination unit 23d may determine, for example, that the wheel speed is detected as zero for a certain period of time as a stop state, and perform a relatively slow deceleration that is clearly not a wheel lock toward the wheel speed of zero. The determination may be made when zero is reached.
  • the vehicle speed estimator 29 does not need to be configured to perform continuous speed estimation, and may have a function capable of determining whether or not the vehicle is in a stopped state. Even in such a case, the function can be sufficiently exerted even under conditions where it is difficult to accurately estimate the vehicle speed only by the wheel speed of one wheel due to, for example, the slip state with the road surface.
  • the brake load command determination unit 23c is a stationary state target brake load Fst, which is a stationary brake load command value output by the stationary brake load command unit 3b until the vehicle speed becomes low to zero.
  • the vehicle brake load command unit 23a may have a function of adjusting the effective ratio with the travel state target brake load Fdy, which is the travel brake load command value output by the travel brake command unit 23a, according to the vehicle speed.
  • the conversion coefficient ⁇ may be, for example, a linear coefficient proportional to the vehicle speed, or a curved nonlinear coefficient that changes in a curve with respect to the vehicle speed.
  • the brake load command determination unit 23c outputs the stop state target brake load Fst output from the stationary brake load command unit 23a and the travel brake load command unit 23b within a predetermined time after the stop state is determined.
  • a similar relational expression can be used by replacing the coupling coefficient ⁇ in the previous expression from the vehicle speed to time. Or you may use the relational expression which uses the said vehicle speed and time together.
  • the brake power reducer 23 may perform a process of switching between the stop state target brake load Fst and the travel state target brake load Fdy only when the required brake force Brk is larger than a predetermined value.
  • the smaller the braking force the more sensitive the vehicle operator is to changes in the braking force that accompany changes in the brake load. Therefore, when the brake load is small, the switching of the brake load occurs before the vehicle strictly stops. The demerit of feeling worsening due to this will increase.
  • the greater the braking force that is, the greater the brake load, the greater the copper loss reduction effect by reducing the brake load. Therefore, when the brake load is large, the merit of switching the brake load increases. Therefore, it is reasonable to switch the target brake load only when the required brake force Brk is larger than a predetermined value.
  • the stationary brake load command unit 23b and the traveling brake load command unit 23a have a predetermined required brake when the brake load is small.
  • the stationary state target brake load Fst and the traveling state target brake load Fdy which are relatively equal to the force Brk, are respectively calculated, and when the required braking force Brk is large, the stationary state target brake load Fst and the traveling state target brake that are relatively separated from each other.
  • a function for calculating the load Fdy may be used. In this case, the stop state target brake load Fst and the travel state target brake load Fdy may be set so as to deviate as the required brake force Brk increases.
  • the brake power reducer 23 also includes a first predetermined value and a first predetermined value of the required brake force Brk at which the stop state target brake load Fst and the traveling state target brake load Fdy are not substantially the same.
  • a second predetermined value of a larger required brake force is set, and the stationary state target brake load Fst and the traveling state target brake load Fdy are set from the first predetermined value to the second predetermined value. You may make it diverge gradually.
  • Each predetermined value is set to an appropriate value by testing or simulation.
  • the above-described various calculation means (brake load command device 22, brake power reducer, brake load control device 24) in the electric brake control device 1 are configured by a calculation unit such as a microcomputer, FPGA, ASIC, and peripheral circuits, for example. It is considered to be suitable because of its low cost and high performance.
  • FIG. 3 shows an execution example of the brake load command unit 22 in FIG.
  • a required brake force Brk based on a predetermined specification is acquired.
  • the required brake force Brk can be information corresponding to, for example, vehicle deceleration, braking force derived from vehicle deceleration based on a predetermined correlation including vehicle weight or the like, or brake torque.
  • it may be a brake load that can be derived based on a predetermined brake frictional force calculation formula based on any of the above information.
  • Step S. 2 it is determined by the stop determination means 23 d whether the vehicle is in a stopped state or a traveling state.
  • the determination may be performed by estimating the vehicle speed using, for example, the wheel speed and longitudinal acceleration of a plurality of wheels, vehicle position information, and the like, and determining the vehicle speed by providing a predetermined threshold.
  • the predetermined wheel speed sensor It may be a simple one that is determined based on the case where the pulse has not changed for a certain time or the like, or a method in which these are used together as appropriate.
  • the stop state may include, for example, a low-speed state that can be regarded as almost stopped, or conversely, the travel state may be immediately after the stop, for example, when the time elapsed after the stop is less than a predetermined time. It may be included.
  • the calculation coefficient kst can be a predetermined coefficient determined based on, for example, a static friction coefficient in the characteristics of the friction material 9 and the brake rotor 8.
  • the derived stop state target brake load Fst is set as a target brake load Fr which is a control target value (step S.4).
  • Step S. If it is determined in step 2 that the vehicle is in a running state, step S. 5, the running state target brake load Fdy is derived based on the running state calculation coefficient kdy.
  • the calculation coefficient kdy may be a predetermined coefficient determined based on, for example, a dynamic friction coefficient in the characteristics of the friction material and the brake rotor.
  • the derived traveling state target brake load Fdy is set as a target brake load Fr that is a control target value (step S.6).
  • the target brake load Fr is determined as the stop state target brake load Fst or the traveling state target brake load Fdy (steps S.4 and S.6), and the brake load controller is used by using the determined target brake load Fr. 24 (FIG. 1) controls the brake load by controlling the electric motor 4 (FIG. 3, step S.7).
  • step S. 2 when the driving state at the previous time changes to the stopping state at the current time, the calculated target brake load is not a discrete change such as a step change but a continuous change that gradually changes The state transition may be performed so that
  • the continuous change in this case means that the change between predetermined control sample steps is relatively smoother than a simple binary change, for example, when the target brake load changes stepwise in a plurality of steps. It also includes discrete changes complemented to
  • the continuous change may be, for example, due to a process in which the coupling coefficient changes from kdy to kst according to the vehicle speed in a predetermined section from the vehicle speed of zero to a predetermined low speed state.
  • the brake load can be prevented from changing suddenly. Ring deterioration can be prevented.
  • the continuous change is a process in which the coupling coefficient changes from kdy to kst within a predetermined time after the judgment change occurs. It may be due to. Also in this case, as described above, it is possible to prevent feeling deterioration such as unintended braking shock by preventing the brake load from changing suddenly.
  • FIG. 4A shows an operation example of the electric brake device 1 to which the configuration of FIG. 1 is applied
  • FIG. 4B shows an operation example of a conventional electric brake device to which the configuration is not applied.
  • the brake load is reduced when the vehicle speed (second from the top in the figure) becomes zero, compared to the example (non-application example) in FIG. Th).
  • the friction coefficient between the friction material 9 and the brake rotor 8 increases by changing from the dynamic friction state to the static friction state, and is offset with the decrease in the brake load.
  • each parameter in the figure may be, for example, that of the electric brake device 1 in FIG. 1, or may be the sum of a plurality of electric brake devices 1 in FIG.
  • ⁇ Other embodiments> 5 to 9 show other embodiments of the present invention.
  • the matters to be specifically described are the same as those in the first embodiment, and the corresponding parts are denoted by the same reference numerals and redundant description is omitted.
  • FIG. 5 shows an example in which the vehicle speed estimation means 28 is provided outside the electric brake control device 2.
  • the vehicle speed estimation means 28 is a means for estimating the vehicle speed based on, for example, the wheel speed of a plurality of wheels, or an acceleration sensor, GPS (not shown), or the like.
  • the vehicle speed estimation means 28 may be provided in a host ECU such as a vehicle integrated control unit (VCU) or may be provided in another one of the plurality of electric brake control devices 1. It may be.
  • VCU vehicle integrated control unit
  • the output of the wheel speed sensor Sd is shown as an example of input to the vehicle speed estimation means 28.
  • the output of the wheel speed sensor Sd is input to the electric brake control device 2, and the electric brake control device
  • the wheel speed may be output to the vehicle speed estimator 28 via 2.
  • wheel speed control such as anti-skid control (not shown) in the electric brake control device 1
  • FIG. 6 shows an example of an electric brake system in which a plurality of electric brake devices 1 (1 1 , 1 2 ,...) Are integrated and controlled by the brake integrated control device 20.
  • one brake load command device 22 provided in the brake integrated control device 20 becomes the brake load command device 22 in the plurality of electric brake devices 1 (1 1 , 1 2 , etc .
  • the brake integrated control device 20 is provided in a host control device 19 such as a vehicle integrated control device (VCU) that performs integrated control of the vehicle.
  • VCU vehicle integrated control device
  • Each block of the first, second,..., Electric brake devices 1 1 1 , 1 2 ,... Shown in FIG. 6 shows the components that omit the brake load command device 22 from the electric brake device 1 shown in FIG. , Each of the first, second,... Electric brake devices 1 1 , 1 2 ,... Constitutes the electric brake device 1 including the brake load command device 22 provided in the brake integrated control device 20. To do.
  • the parts indicated by the blocks of the first, second,... Electric brake devices 1 1 , 1 2 ,... In FIG. 6 are brake loads in the electric brake device 1 of FIG. All components other than the command device 22, for example, the electric brake control device 2, the electric actuator 5, the friction brake 7, and the like are provided.
  • the brake power reducer 23 integrated with one of the brake load command devices 22 provided in the brake integrated control device 20 of FIG. 6 includes a stationary brake load command unit 23b and a travel brake load command unit 23a that are related to the integration.
  • the total values of the stationary state target brake load Fst and the traveling state target brake load Fdy in the electric brake device 1 (1 1 , 1 2 ,...) Are output.
  • the brake load command determination unit 23c selects the stop state target brake load Fst and the travel state target brake load Fdy or totals a predetermined ratio, and then selects or totals the predetermined ratio.
  • the total target brake load performed is applied to each electric brake device 1 (1 1 , 1 2 , etc And the brake force sharing ratio determined by these electric brake devices 1 (1 1 , 1 2 , etc To output.
  • the brake force sharing ratio the own brake force sharing ratio is set in the electric brake control device 2 in each electric brake device, and the total target brake load is output from the brake integrated control device 20. Also good.
  • the brake load on the front wheel side becomes relatively large with respect to the rear wheel side because the front-wheel load distribution on the front wheel side becomes relatively strong at the time of braking. Often set.
  • the relationship between the motor copper loss, that is, the brake power consumption with respect to the brake load may be different between the front wheel side electric brake device and the rear wheel side electric brake device.
  • the brake power consumption in the total sum of the four wheels can be reduced, or conversely, the brake load on the rear wheel side is more actively reduced.
  • the brake power consumption in the wheel sum may be reduced.
  • the target brake load is distributed so that the power consumption can be further reduced. Fr can be transmitted to the plurality of electric brake devices 1.
  • the distribution that can reduce the power consumption from the above is an appropriate distribution obtained by a test, simulation, or the like, and is determined in the brake load command determination unit 23c of the brake power reducer 23.
  • the brake integrated control device 20 may be any one of the plurality of electric brake devices 1 (1 1 , 1 2 , etc 8, the electric brake control unit 2 of the first electric braking device 1 1 shows an example of a brake integrated control apparatus 20 of FIG.
  • FIG. 9 shows an example in which the brake power reducer 23A is implemented in the brake load estimation for the electric brake device 1 of FIG.
  • the brake load command device 22 outputs the target brake load Fr corresponding to the required brake force Brk regardless of whether the vehicle is running or stopped.
  • the brake power reducer 23A is a load sensor when the brake load controller 24 calculates and outputs a command value Ar of brake load holding power corresponding to the target brake load Fr by feeding back the detection value of the load sensor Sb.
  • the estimated value of the load according to the detected value of Sb is set to a larger value in the stopped state of the vehicle than in the traveling state.
  • the traveling brake load estimating unit 23Aa obtains an estimated value of the load from the detected value of the load sensor Sb in the traveling state, and the stationary brake load estimating unit 23Ab calculates the estimated value of the load from the detected value of the load sensor Sb in the stopped state.
  • the brake state estimation determination unit 23Ac includes a stop determination unit 23d, and depending on whether the vehicle is in a traveling state or a stopped state, which load estimated value of the traveling brake load estimation unit 23Aa and the stationary brake load estimation unit 23Ab is determined. Is transmitted to the brake load controller 24.
  • the brake load in the stopped state is estimated to be large, and the brake load in the traveling state is estimated to be small, thereby obtaining the same power saving effect as that of the first embodiment shown in FIG. be able to.
  • SYMBOLS 1 ... Electric brake device, 1A ... Brake mechanism part, 2 ... Electric brake control device, 3 ... Power supply device, 4 ... Electric motor, 5 ... Linear actuator, 7 ... Friction brake, 9 ... Friction material, 0 ... Reduction gear, DESCRIPTION OF SYMBOLS 15: Wheel, 19 ... High-order control apparatus of vehicle, 20 ... Brake integrated control apparatus, 21 ... Brake force command means, 22 ... Brake load command device, 23 ... Brake power reducer, 23a ... Travel brake load command part, 23b ... Static brake load command section, 23c ... brake load command determination section, 23d ... stop determination means, 24 ... brake load controller, 25 ... motor driver, 26 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

The present invention provides an electric brake device and an electric brake system in which power consumption can be reduced without increasing the size of an electric motor. In the present invention, an electric brake control device (2) is provided with a vehicle stop determination means (23d), a brake load commander (22), a brake load controller (24), and a brake power reducer (23). The brake load commander (22) outputs a target brake load Fr on the basis of a required brake force. The brake load controller (24) outputs a command value Ar of brake load retaining power applied to an electric motor (4) according to the target brake load Fr. The brake power reducer (23) reduces the command value Ar of the brake load retaining power, applied to the electric motor (4) on the basis of the required brake force Brk, compared to that in a vehicle stopped state.

Description

電動ブレーキ装置および電動ブレーキシステムElectric brake device and electric brake system 関連出願Related applications
 本出願は、2018年2月13日出願の特願2018-022836の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2018-022836 filed on Feb. 13, 2018, which is incorporated herein by reference in its entirety.
 この発明は、自動車等に装備される電動ブレーキ装置および電動ブレーキシステムに関し、消費電力を節減する技術に係る。 The present invention relates to an electric brake device and an electric brake system installed in an automobile or the like, and relates to a technique for reducing power consumption.
 従来、電動モータ、減速機、および直動機構を含む電動アクチュエータと、その制御装置を備えた電動ブレーキ装置が提案されている(例えば、特許文献1)。 Conventionally, an electric actuator including an electric motor, a speed reducer, and a linear motion mechanism, and an electric brake device including the control device have been proposed (for example, Patent Document 1).
特開2003-247576号公報JP 2003-247576 A
 特許文献1のような電動アクチュエータを使用した電動ブレーキ装置において、主に自動車等の車両に搭載される場合、充電用設備から充電される場合を除けば、バッテリ等の独立した電源系統を用いて動作しなければならない。そのため、極力少ない消費電力が求められる場合が多い。前記電動ブレーキ装置において、電動モータ等の銅損による電力の消費割合が比較的多くなる場合がある。前記銅損は、基本的に電流の二乗に比例することから、電流と概ね比例関係となるトルクの二乗に概ね比例する。すなわち、大きなトルクが必要となり得る大きなブレーキ荷重を発揮する場合ほど、消費電力が増加する傾向を示す場合が多い。 In an electric brake device using an electric actuator as in Patent Document 1, when it is mainly mounted on a vehicle such as an automobile, an independent power supply system such as a battery is used except for charging from a charging facility. Must work. For this reason, power consumption that is as low as possible is often required. In the electric brake device, the power consumption ratio due to copper loss of an electric motor or the like may be relatively large. Since the copper loss is basically proportional to the square of the current, it is generally proportional to the square of the torque that is approximately proportional to the current. That is, there are many cases where the power consumption tends to increase as a large brake load that can require a large torque is exhibited.
 一方、前記のような車両に搭載された電動ブレーキ装置の場合、ブレーキ力は車両操縦者が決定し、基本的に要求されたブレーキ力に基づくブレーキ荷重を電動ブレーキ装置によって発生させなければならず、前記銅損の低減が困難である場合がある。このとき、電動モータ設計によって前記銅損を低減する場合、電動モータのサイズを大きくする必要があり、搭載性やコストが問題となる場合がある。 On the other hand, in the case of the electric brake device mounted on the vehicle as described above, the brake force is determined by the vehicle operator, and the brake load based on the basically required brake force must be generated by the electric brake device. In some cases, it is difficult to reduce the copper loss. At this time, when the copper loss is reduced by the electric motor design, it is necessary to increase the size of the electric motor, and there may be a problem in mountability and cost.
 この発明の目的は、電動モータのサイズを大きくすることなく消費電力の節減が図れる電動ブレーキ装置および電動ブレーキシステムを提供することである。 An object of the present invention is to provide an electric brake device and an electric brake system that can reduce power consumption without increasing the size of the electric motor.
 以下、本発明について、理解を容易にするために、便宜上実施形態の符号を参照して説明する。 Hereinafter, in order to facilitate understanding, the present invention will be described with reference to the reference numerals of the embodiments for convenience.
 この発明の電動ブレーキ装置1は、ブレーキロータ8と、このブレーキロータ8に接触してブレーキ力を発生させる摩擦材9と、電動モータ4と、この電動モータ4の回転動作を前記摩擦材9の前記ブレーキロータ8への接触動作に変換する摩擦材操作手段(例えば直動アクチュエータ5)と、ブレーキ力指令手段21の要求ブレーキ力Brkに基づき前記電動モータ4を制御することにより前記摩擦材9の前記ブレーキロータ8への押付力であるブレーキ荷重を制御する電動ブレーキ制御装置2とを備え、車両に搭載される電動ブレーキ装置であって、
 前記電動ブレーキ制御装置2が、
 前記車両の停車状態と走行状態の区別を、前記ブレーキロータ8の配置された車輪15の回転運動から判断する停車判断手段23dと、
 前記要求ブレーキ力に基づき前記ブレーキ荷重の制御目標値となる目標ブレーキ荷重Frを出力するブレーキ荷重指令器22と、
 前記目標ブレーキ荷重に応じて前記電動モータ4に与えるブレーキ荷重保持電力の指令値Arを出力するブレーキ荷重制御器24と、
 前記停車状態であるときに、前記要求ブレーキ力Brkに基づき前記電動モータ4に与える前記ブレーキ荷重保持電力の指令値Arを、前記走行状態であるときと比較して低減するブレーキ電力低減器23,23Aと備える。
The electric brake device 1 according to the present invention includes a brake rotor 8, a friction material 9 that contacts the brake rotor 8 to generate a braking force, an electric motor 4, and a rotational operation of the electric motor 4. The friction material operating means (for example, the linear motion actuator 5) that converts the contact operation to the brake rotor 8 and the electric motor 4 based on the required brake force Brk of the brake force command means 21 are used to control the friction material 9. And an electric brake control device 2 that controls a brake load that is a pressing force to the brake rotor 8, and is mounted on a vehicle,
The electric brake control device 2 is
A stop determination means 23d for determining the distinction between the stop state and the travel state of the vehicle from the rotational movement of the wheel 15 on which the brake rotor 8 is disposed;
A brake load command device 22 that outputs a target brake load Fr that is a control target value of the brake load based on the required brake force;
A brake load controller 24 for outputting a command value Ar of brake load holding power to be applied to the electric motor 4 in accordance with the target brake load;
A brake power reducer 23 that reduces the command value Ar of the brake load holding power to be given to the electric motor 4 based on the required brake force Brk when the vehicle is in a stopped state, as compared to when the vehicle is in the running state. 23A.
 この構成の電動ブレーキ装置1によると、前記ブレーキ電力低減器23,23Aを設けたことにより、車両が走行している場合と、車両が停車している場合とで、車両操縦者の要求ブレーキ力(ペダル操作量等)Brkに対して実際に発生させるブレーキ荷重を異なる関係とし、車両が停車している場合は要求ブレーキ力Brkに対する目標ブレーキ荷重Frを比較的低くする。 According to the electric brake device 1 having this configuration, the brake power required by the vehicle operator is increased depending on whether the vehicle is running or the vehicle is stopped by providing the brake power reducers 23 and 23A. (Pedal operation amount, etc.) The brake load actually generated with respect to Brk has a different relationship, and when the vehicle is stopped, the target brake load Fr with respect to the required brake force Brk is made relatively low.
 ブレーキ力は、ブレーキロータ8への摩擦材9の押付力であるブレーキ荷重に摩擦係数とブレーキ有効径を乗じた値となるが、車両停車時は前記摩擦係数として、動摩擦係数よりも大きな静止摩擦係数が作用する。そのため、同じブレーキ荷重を与えても、停車状態では走行状態よりも大きなブレーキ力が作用する。したがって、要求ブレーキ力Brkに対して常に比例するブレーキ荷重を生じさせる制御では、停車状態では要求ブレーキ力Brkに対して過剰な摩擦力、つまり過剰なブレーキ力が発生する。そのため、車両が停車している場合は、前記の過剰となる範囲内で、要求ブレーキ力Brkに対する目標ブレーキ荷重Frを比較的低くすることで、要求ブレーキ力Brkに対して必要なブレーキ力を維持しつつ、ブレーキ荷重の低減による電動モータ4の消費電力を低減させることができる。このように制御によって無駄な電力供給を低減させることで、電動モータ4のサイズを大きくすることなく銅損を抑えて消費電力の節減を図ることができる。 The brake force is a value obtained by multiplying the brake load, which is the pressing force of the friction material 9 against the brake rotor 8, by the friction coefficient and the effective brake diameter. When the vehicle is stopped, the friction coefficient is larger than the dynamic friction coefficient. The coefficient works. Therefore, even when the same brake load is applied, a larger braking force acts in the stopped state than in the traveling state. Therefore, in the control in which a brake load that is always proportional to the required brake force Brk is generated, an excessive frictional force, that is, an excessive brake force is generated with respect to the required brake force Brk when the vehicle is stopped. Therefore, when the vehicle is stopped, the required braking force for the required brake force Brk is maintained by relatively reducing the target brake load Fr with respect to the required brake force Brk within the excessive range. However, the power consumption of the electric motor 4 by reducing the brake load can be reduced. By reducing unnecessary power supply through control in this way, it is possible to reduce power consumption by suppressing copper loss without increasing the size of the electric motor 4.
 前記ブレーキ電力低減器23は、(例えば、前記停車判断手段23dの判断結果が)前記停車状態である場合の前記要求ブレーキ力Brkに対する目標ブレーキ荷重である停車状態目標ブレーキ荷重Fstを演算する静止ブレーキ荷重指令部23bと、前記走行状態である場合の前記要求ブレーキ力Brkに対する目標ブレーキ荷重である走行状態目標ブレーキ荷重Fdyを演算する走行ブレーキ荷重指令部23aとを有する構成とし、
 前記静止ブレーキ荷重指令部3bは、前記要求ブレーキ力Brkに対して、前記停車状態目標ブレーキ荷重Fstを前記走行状態目標ブレーキ荷重Fdyに比べて小さな値とするようにしてもよい。
 このように静止ブレーキ荷重指令部23bと走行ブレーキ荷重指令部23aとを設けることで、制御が簡素に行える。
The brake power reducer 23 calculates a stationary state target brake load Fst that is a target brake load with respect to the required brake force Brk when the vehicle is in the stopped state (for example, a determination result of the stop determining unit 23d). A load command unit 23b, and a travel brake load command unit 23a that calculates a travel state target brake load Fdy that is a target brake load for the required brake force Brk in the travel state,
The stationary brake load command unit 3b may make the stationary state target brake load Fst smaller than the traveling state target brake load Fdy with respect to the required brake force Brk.
Thus, by providing the stationary brake load command unit 23b and the traveling brake load command unit 23a, the control can be performed simply.
 前記静止ブレーキ荷重指令部23bと走行ブレーキ荷重指令部23aとを設ける場合に、前記静止ブレーキ荷重指令部23bは、前記要求ブレーキ力Brkに対して演算する前記停車状態目標ブレーキ荷重Fstを、前記走行状態目標ブレーキ荷重Fdyに比べて小さな値とする割合につき、
 前記摩擦材9とブレーキロータ8との接触における動摩擦係数に対する静止摩擦係数の所定の比率kfrに基づき、前記走行状態目標ブレーキ荷重Fdyに対して、Fst=Fdy/kfrとなるように決定するようにしてもよい。
 このように動摩擦係数と静止摩擦係数に基づいて目標ブレーキ荷重を切替えれば、ブレーキ力(摩擦係数×ブレーキ荷重×ブレーキ有効径)は概ね一定に保たれつつ、ブレーキ荷重が低下することで銅損を低減できる。
When the stationary brake load command unit 23b and the travel brake load command unit 23a are provided, the stationary brake load command unit 23b uses the stop state target brake load Fst calculated for the required brake force Brk as the travel. For the ratio to be smaller than the state target brake load Fdy,
Based on a predetermined ratio kfr of the static friction coefficient to the dynamic friction coefficient in contact between the friction material 9 and the brake rotor 8, the driving state target brake load Fdy is determined so that Fst = Fdy / kfr. May be.
In this way, if the target brake load is switched based on the dynamic friction coefficient and the static friction coefficient, the brake force (friction coefficient x brake load x brake effective diameter) can be kept substantially constant, while the brake load decreases to reduce the copper loss. Can be reduced.
 前記電動ブレーキ制御装置1の構成要素として、または前記電動ブレーキ制御装置1とは別に、少なくとも前記車輪15の回転運動を含む所定の情報に基づいて前記電動ブレーキ装置搭載車両の車速を推定する車速推定器29を有し、
 前記ブレーキ電力低減器23は、推定車速の大きさが所定値を下回る場合において、前記推定車速の大きさが零と見做せる値まで推移するにしたがって、最終的に決定される目標ブレーキ荷重Frを、前記走行状態目標ブレーキ荷重Fdyから前記停車状態目標ブレーキ荷重Fstへと推移させる機能を有するようにしてもよい。
 このように目標ブレーキ荷重Frを車速に応じてある程度緩やかに切替えることで、目標ブレーキ荷重Frの切替時に車両が厳密な停車状態で無かった場合等において、急なブレーキ荷重の変化による車両の振動等が発生することを防止することができる。
Vehicle speed estimation for estimating the vehicle speed of the vehicle equipped with the electric brake device based on predetermined information including at least the rotational movement of the wheel 15 as a component of the electric brake control device 1 or separately from the electric brake control device 1 Having a container 29,
The brake power reducer 23 finally determines a target brake load Fr that is determined as the estimated vehicle speed transitions to a value that can be regarded as zero when the estimated vehicle speed is less than a predetermined value. May have a function of transitioning from the travel state target brake load Fdy to the stop state target brake load Fst.
In this way, by switching the target brake load Fr gently to some extent according to the vehicle speed, when the vehicle is not in a strict stop state when the target brake load Fr is switched, the vibration of the vehicle due to a sudden change in the brake load, etc. Can be prevented.
 前記静止ブレーキ荷重指令部23bは、前記要求ブレーキ力Brkが所定値よりも小さい場合においては、前記停車状態目標ブレーキ荷重Fstを前記走行状態目標ブレーキ荷重Fdyと同一と見做せる値に演算し、前記要求ブレーキ力Brkが前記所定値よりも大きい場合においては、前記停車状態目標ブレーキ荷重Fstを前記走行状態目標ブレーキ荷重Fdyよりも小さな値に演算してもよい。ブレーキ力が小さい場合は微小な変化を操縦者が感じやすく、例えば厳密な車速零の検知が求められる等、この発明の実装上の難易度が上がる場合がある。一方、ブレーキ力が小さい場合の銅損は極めて軽微である為、実装することによるメリットは比較的小さい。よって、ブレーキ力が所定値より大きい場合のみ停車状態時のブレーキ荷重低減を実行することにより、実装時の難易度を下げつつ、発明の効果を発揮できる。 When the required brake force Brk is smaller than a predetermined value, the stationary brake load command unit 23b calculates the stop state target brake load Fst to a value that can be regarded as the same as the travel state target brake load Fdy, When the required brake force Brk is larger than the predetermined value, the stop state target brake load Fst may be calculated to a value smaller than the travel state target brake load Fdy. When the braking force is small, it is easy for the operator to feel a minute change, and there are cases where the difficulty in implementation of the present invention increases, for example, when strict detection of the vehicle speed is required. On the other hand, the copper loss when the braking force is small is very small, so the merit of mounting is relatively small. Therefore, the effect of the invention can be exhibited while reducing the difficulty in mounting by executing the brake load reduction in the stopped state only when the brake force is greater than the predetermined value.
 この構成の場合に、前記ブレーキ電力低減器23は、
 前記停車状態目標ブレーキ荷重Fstと、前記走行状態目標ブレーキ荷重Fdyが略同一でなくなる前記要求ブレーキ力Brkの第一の所定値と、この第一の所定値より大きい要求ブレーキ力の第二の所定値とが設定され、
 前記第一の所定値から第二の所定値に至るまで、前記停車状態目標ブレーキ荷重Fstと、前記走行状態目標ブレーキ荷重Fdyとを徐々に乖離させるようにしてもよい。
 前記第一の所定値および第二の所定値は、試験またはシミュレーション等により適宜の値とする。この構成の場合、意図しない制動ショック等のフィーリング悪化を防止することができる。
In the case of this configuration, the brake power reducer 23 is
A first predetermined value of the required brake force Brk at which the stop state target brake load Fst and the traveling state target brake load Fdy are not substantially the same, and a second predetermined value of the required brake force greater than the first predetermined value. Value is set,
From the first predetermined value to the second predetermined value, the stop state target brake load Fst and the travel state target brake load Fdy may be gradually separated.
The first predetermined value and the second predetermined value are set to appropriate values by testing or simulation. In the case of this configuration, it is possible to prevent feeling deterioration such as an unintended braking shock.
 前記ブレーキ電力低減器23は、前記走行状態目標ブレーキ荷重Fdyから前記停車状態目標ブレーキ荷重Fstへの切替が発生してから所定時間内において、前記所定時間内における時間経過に従って、目標ブレーキ荷重Frを、前記走行状態目標ブレーキ荷重Fdyから前記停車状態目標ブレーキ荷重Fstへと推移させるようにしてもよい。
 この構成の場合も、意図しない制動ショック等のフィーリング悪化を防止することができる。
The brake power reducer 23 sets the target brake load Fr as time elapses within the predetermined time within a predetermined time after the switching from the running state target brake load Fdy to the stop state target brake load Fst. The travel state target brake load Fdy may be changed to the stop state target brake load Fst.
Also in this configuration, it is possible to prevent unintended feeling deterioration such as braking shock.
 この発明の電動ブレーキシステムは、この発明の上記いずれかの構成の電動ブレーキ装置1を複数備える電動ブレーキシステムであって、
 前記複数の電動ブレーキ装置1を統合制御するブレーキ統合制御装置20を備え、
 前記複数の電動ブレーキ装置1における少なくとも二つの電動ブレーキ装置1の前記ブレーキ電力低減器23が一つに統合されて前記ブレーキ統合制御装置20に設けられ、
 この一つに統合された前記ブレーキ電力低減器23は、このブレーキ電力低減器23における前記静止ブレーキ荷重指令部23bおよび前記走行ブレーキ荷重指令部23aが、統合に係る各電動ブレーキ装置1における前記目標ブレーキ荷重の合計値を出力する。
 この構成の場合、車両の前輪であるか後輪であるかなどによる、各電動ブレーキの負担割合、位置に応じた制御が行える。ここで、「統合に係る各電動ブレーキ装置」とは、例えば、「統合に関係する各電動ブレーキ装置」または「統合された各ブレーキ電力低減器に対応する電動ブレーキ装置」のことである。
The electric brake system of the present invention is an electric brake system including a plurality of electric brake devices 1 having any one of the above-described configurations of the present invention,
A brake integrated control device 20 that integrally controls the plurality of electric brake devices 1;
The brake power reducers 23 of at least two electric brake devices 1 in the plurality of electric brake devices 1 are integrated into one and provided in the brake integrated control device 20,
The brake power reducer 23 integrated into this one is that the stationary brake load command unit 23b and the travel brake load command unit 23a in the brake power reducer 23 are integrated with the target in each electric brake device 1 related to integration. Output the total brake load.
In the case of this configuration, it is possible to perform control according to the load ratio and position of each electric brake depending on whether the vehicle is a front wheel or a rear wheel. Here, “each electric brake device related to integration” is, for example, “each electric brake device related to integration” or “electric brake device corresponding to each integrated brake power reducer”.
 この電動ブレーキシステムにおいて、前記ブレーキ統合制御装置20が、前記車両の上位制御装置19に設けられていてもよい。この場合、構成が簡単である。 In this electric brake system, the brake integrated control device 20 may be provided in the host control device 19 of the vehicle. In this case, the configuration is simple.
 また、前記ブレーキ統合制御装置20を前記上位制御装置19に設ける代わりに、統合に係る各電動ブレーキ装置1におけるいずれかの前記電動ブレーキ制御装置2としてもよい。この構成の場合、電動ブレーキ制御装置2を、上位制御装置19とは独立して構成することができる。 Further, instead of providing the brake integrated control device 20 in the host control device 19, any one of the electric brake control devices 2 in each electric brake device 1 related to integration may be used. In the case of this configuration, the electric brake control device 2 can be configured independently of the host control device 19.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or the drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。 The present invention will be understood more clearly from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
この発明の第1の実施形態に係る電動ブレーキ装置の概念構成を示すブロック図である。1 is a block diagram showing a conceptual configuration of an electric brake device according to a first embodiment of the present invention. 同電動ブレーキ装置の直動アクチュエータを主に示す説明図である。It is explanatory drawing which mainly shows the linear motion actuator of the same electric brake device. 同電動ブレーキ装置の制御フロー図である。It is a control flowchart of the same electric brake device. 同電動ブレーキ装置の各物理量の変化を示すタイムチャートである。It is a time chart which shows the change of each physical quantity of the electric brake device. 従来例の電動ブレーキ装置の各物理量の変化を示すタイムチャートである。It is a time chart which shows the change of each physical quantity of the electric brake device of a prior art example. 他の実施形態に係る電動ブレーキ装置の概念構成を示すブロック図である。It is a block diagram which shows the conceptual structure of the electric brake device which concerns on other embodiment. この発明の一実施形態に係る電動ブレーキシステムの概念構成を示すブロック図である。1 is a block diagram showing a conceptual configuration of an electric brake system according to an embodiment of the present invention. 同電動ブレーキシステムにおける個々の電動ブレーキ装置の概念構成を示すブロック図である。It is a block diagram which shows the conceptual structure of each electric brake device in the same electric brake system. さらに他の実施形態に係る電動ブレーキシステムの概念構成を示すブロック図である。It is a block diagram which shows the conceptual structure of the electric brake system which concerns on other embodiment. さらに他の実施形態に係る電動ブレーキ装置の概念構成を示すブロック図である。It is a block diagram which shows the conceptual structure of the electric brake device which concerns on other embodiment.
 この発明の第1の実施形態に係る電動ブレーキ装置を図1ないし図4Bと共に説明する。この電動ブレーキ装置は例えば自動車等の車両に搭載される。図1に示すように、この電動ブレーキ装置1は、摩擦ブレーキ7および直動アクチュエータ5により構成されるブレーキ機構部1Aと、このブレーキ機構部1Aを制御する電動ブレーキ制御装置2と、電源装置3とからなり、摩擦ブレーキ7は車輪15に搭載されている。 An electric brake device according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 4B. This electric brake device is mounted on a vehicle such as an automobile. As shown in FIG. 1, the electric brake device 1 includes a brake mechanism portion 1A composed of a friction brake 7 and a direct acting actuator 5, an electric brake control device 2 that controls the brake mechanism portion 1A, and a power supply device 3. The friction brake 7 is mounted on the wheel 15.
 <<摩擦ブレーキ7および直動アクチュエータ5の構成>>
 図2に示すように、摩擦ブレーキ7は、ブレーキロータ8と、このブレーキロータ8に接触させて制動力を発生させる摩擦材9とからなる。前記摩擦ブレーキ7は、例えば、ブレーキロータ8および摩擦材9としてブレーキディスクおよびキャリパを用いたディスクブレーキ装置である。摩擦ブレーキ7は、ドラムおよびライニングを用いたドラムブレーキ装置であってもよい。
<< Configuration of Friction Brake 7 and Linear Actuator 5 >>
As shown in FIG. 2, the friction brake 7 includes a brake rotor 8 and a friction material 9 that is brought into contact with the brake rotor 8 to generate a braking force. The friction brake 7 is, for example, a disc brake device using a brake disc and a caliper as the brake rotor 8 and the friction material 9. The friction brake 7 may be a drum brake device using a drum and a lining.
 直動アクチュエータ5は、電動モータ4と、この電動モータ4の回転動作を前記摩擦材9のブレーキロータ8への接触動作に変換する摩擦材操作手段である直動機構6とを有する。直動アクチュエータ5は、図2の例ではさらに減速機10(図1には図示せず)を備えている。 The linear motion actuator 5 includes an electric motor 4 and a linear motion mechanism 6 which is a friction material operating means for converting the rotation operation of the electric motor 4 into a contact operation of the friction material 9 to the brake rotor 8. The linear motion actuator 5 further includes a speed reducer 10 (not shown in FIG. 1) in the example of FIG.
 電動モータ4は、例えば永久磁石同期電動機により構成され、その場合、省スペースで高効率かつ高トルクとなり好適と考えられるが、例えばブラシを用いたDCモータや、永久磁石を用いないリラクタンスモータ、あるいは誘導モータ等を適用することもできる。直動機構6は、遊星ローラねじ、ボールねじ等の各種ねじ機構や、ボールランプ等、回転運動を直進運動に変換可能な各種機構を用いることができる。 The electric motor 4 is composed of, for example, a permanent magnet synchronous motor. In that case, the space-saving, high-efficiency and high-torque is considered suitable, but for example, a DC motor using a brush, a reluctance motor not using a permanent magnet, or An induction motor or the like can also be applied. As the linear motion mechanism 6, various screw mechanisms such as a planetary roller screw and a ball screw, and various mechanisms capable of converting a rotational motion into a straight motion such as a ball ramp can be used.
 減速機10は、電動モータ4の回転を減速する機構であり、この例では一次歯車12、中間(二次)歯車13、および三次歯車11を含む。減速機10は、電動モータ4のロータ軸4aに取り付けられた一次歯車12の回転を、中間歯車13により減速して、直動機構6の回転軸6aの端部に固定された三次歯車11に伝達可能としている。減速機10は、図2の平歯車による構成に代えて、ウォーム歯車、遊星歯車等を用いてもよい。 The speed reducer 10 is a mechanism that decelerates the rotation of the electric motor 4, and includes a primary gear 12, an intermediate (secondary) gear 13, and a tertiary gear 11 in this example. The speed reducer 10 decelerates the rotation of the primary gear 12 attached to the rotor shaft 4 a of the electric motor 4 by the intermediate gear 13, and generates the tertiary gear 11 fixed to the end of the rotating shaft 6 a of the linear motion mechanism 6. It can be transmitted. The speed reducer 10 may use a worm gear, a planetary gear, or the like instead of the configuration using the spur gear of FIG.
 図1に示すように、直動アクチュエータ5は、電動モータ4のモータ角度を検出する角度センサSaと、直動機構6の軸荷重を検出する荷重センサSbとが設けられている。角度センサSaは、例えばレゾルバや磁気エンコーダ等を用いると高精度かつ高信頼性であり好適と考えられるが、光学式エンコーダ等の各種センサを適用することもできる。もしくは図1の他の構成として、角度センサSaを用いずに、例えば後述する電動ブレーキ制御装置2において電圧と電流との関係等からモータ角度を推定するような角度センサレス推定を用いることもできる。 As shown in FIG. 1, the linear actuator 5 is provided with an angle sensor Sa for detecting the motor angle of the electric motor 4 and a load sensor Sb for detecting the axial load of the linear motion mechanism 6. As the angle sensor Sa, for example, using a resolver, a magnetic encoder, or the like is considered to be preferable because it is highly accurate and reliable, but various sensors such as an optical encoder may be applied. Alternatively, as another configuration of FIG. 1, angle sensorless estimation in which the motor angle is estimated from the relationship between voltage and current in the electric brake control device 2 described later, for example, can be used without using the angle sensor Sa.
 荷重センサSbは、例えば変位や変形を検出する磁気センサ、歪センサ、圧力センサ、等を用いることができる。もしくは本図の他の構成として、荷重センサSbを設けずに、後述する電動ブレーキ制御装置2においてモータ角度および電動ブレーキ装置剛性や、モータ電流および直動アクチュエータ効率等から荷重センサレス推定を行うようにしてもよい。直動アクチュエータ5には、その他にサーミスタ等の各種センサ類を必要に応じて別途設けてもよい。 The load sensor Sb can be, for example, a magnetic sensor, a strain sensor, a pressure sensor, or the like that detects displacement or deformation. Alternatively, as another configuration of the figure, the load sensor Sb is not provided, and the load sensorless estimation is performed in the electric brake control device 2 described later from the motor angle and the electric brake device rigidity, the motor current, the linear actuator efficiency, and the like. May be. In addition to the linear motion actuator 5, various sensors such as a thermistor may be separately provided as necessary.
 車輪15には、車輪速センサSdを備えることができる。車輪速センサSdは、例えば車輪2と一体回転する磁気エンコーダの磁極を検出する磁極センサや、凹凸を設けたロータのインダクタンス変動を検出するコイル等を用いることができる。或いは、車輪2の回転位置を検出する角度センサ等、他の方式の回転センサを用いてもよい。前記車輪速センサSd等は、この実施形態で用いる消費電力の節減の他に、例えば車輪15のロックを防止するアンチスキッド制御等において用いられてもよい。 The wheel 15 can be provided with a wheel speed sensor Sd. As the wheel speed sensor Sd, for example, a magnetic pole sensor that detects a magnetic pole of a magnetic encoder that rotates integrally with the wheel 2, a coil that detects an inductance fluctuation of a rotor provided with unevenness, and the like can be used. Alternatively, another type of rotation sensor such as an angle sensor that detects the rotational position of the wheel 2 may be used. The wheel speed sensor Sd and the like may be used in, for example, anti-skid control for preventing the wheel 15 from being locked, in addition to the power consumption reduction used in this embodiment.
 <<電源装置3>>
 電源装置3は、直流電源であり、電動ブレーキ装置1に対して専用に設けられたバッテリであっても、また車両の他の機器の駆動に用いるバッテリであってもよい。
<< Power supply 3 >>
The power supply device 3 is a direct current power supply, and may be a battery provided exclusively for the electric brake device 1 or a battery used for driving other devices of the vehicle.
 <制御系の構成>
 電動ブレーキ制御装置2は、ブレーキ力指令手段21の要求ブレーキ力Brkに基づき前記電動モータ4を制御することにより、摩擦ブレーキ7における摩擦材9のブレーキロータ8への押付力であるブレーキ荷重を制御する手段であり、制御演算を行う各種制御演算器と、モータドライバと、各種の推定器と、センサ類から構成される。なお図1は、機能構成の概念を示したものであり、図示外要素は要件に応じて適宜設けられるものとする。また、各機能ブロックは便宜上設けているものであり、実装上の都合に伴い適宜統合ないし分割可能であるものとする。また、以下の各実施形態は、何れか一例に限定されるものではなく、実装上において矛盾が生じなければ、必要に応じて一部または全体を併合した構成としてもよい。
<Control system configuration>
The electric brake control device 2 controls the brake load which is the pressing force of the friction material 9 against the brake rotor 8 in the friction brake 7 by controlling the electric motor 4 based on the required brake force Brk of the brake force command means 21. It is a means to perform, and is comprised from the various control arithmetic units which perform a control calculation, a motor driver, various estimators, and sensors. FIG. 1 shows the concept of the functional configuration, and elements not shown are appropriately provided according to requirements. Each functional block is provided for convenience, and can be appropriately integrated or divided according to mounting convenience. In addition, each of the following embodiments is not limited to any one example, and may be configured to be partially or wholly merged as necessary as long as there is no contradiction in mounting.
 <<ブレーキ力指令手段21>>
 ブレーキ力指令手段21は、電動ブレーキ制御装置2に対して要求ブレーキ力Brkを指令する手段であり、例えばブレーキペダルおよびストロークセンサ等の、車両操縦者がブレーキ操作を指令する手段であってもよく、また車両統合制御装置(VCU:Vehicle Control Unit)のような上位ECUであってもよい。上位ECU(Electronic Control Unit:電気制御ユニット)である場合、車両操縦者によるブレーキペダル等の操作を上位ECUが検出する構成であってもよく、また自動運転のような、上位ECUによってブレーキ力を要求する構成であってもよい。
<< braking force command means 21 >>
The brake force command means 21 is a means for instructing the required brake force Brk to the electric brake control device 2, and may be a means for the vehicle operator to instruct a brake operation, such as a brake pedal and a stroke sensor, for example. Also, it may be a host ECU such as a vehicle integrated control unit (VCU). In the case of a host ECU (Electronic Control Unit), the host ECU may be configured to detect the operation of a brake pedal or the like by the vehicle operator, and the braking force is applied by the host ECU such as automatic driving. It may be configured as required.
 <<各種推定器類、センサ類>>
 角度推定器27および荷重推定器28は、それぞれ、前述の角度センサSaおよび荷重センサSbの出力から、制御演算に用いる角度およびブレーキ荷重を推定する機能を有する。角度推定器27および荷重推定器28は、この他に前述の通り、角度センサSaや荷重センサSb等のセンサ類を用いずに、角度センサレス推定機能や荷重センサレス推定機能を持つ手段とすることもできる。また、角度推定器27は、例えば電流制御に用いる電気角位相や、位置制御に用いる角度の積算値等、ブレーキ荷重制御器24の構成に基づいて、必要な物理量を適宜求める機能を有する。角度推定器27は、その他に例えば、角速度や角加速度等の微分量や、角度に基づいて推定し得る外乱等を推定する機能を有していてもよい。前記他の物理量の推定は、例えば状態推定オブザーバ等を用いてもよく、微分や慣性方程式に基づく逆算等の直接的な演算であってもよい。
<< Various estimators and sensors >>
Each of the angle estimator 27 and the load estimator 28 has a function of estimating an angle and a brake load used for control calculation from the outputs of the angle sensor Sa and the load sensor Sb. In addition, as described above, the angle estimator 27 and the load estimator 28 may be means having an angle sensorless estimation function and a load sensorless estimation function without using sensors such as the angle sensor Sa and the load sensor Sb. it can. Further, the angle estimator 27 has a function of appropriately obtaining necessary physical quantities based on the configuration of the brake load controller 24 such as an electrical angle phase used for current control and an integrated value of angles used for position control. In addition, the angle estimator 27 may have a function of estimating differential amounts such as angular velocity and angular acceleration, disturbances that can be estimated based on angles, and the like. The estimation of the other physical quantity may use, for example, a state estimation observer or the like, or may be a direct calculation such as a back calculation based on differentiation or an inertia equation.
 電流センサScは、モータドライバ25から電動モータ4に与える電流を検出するセンサであり、例えばシャント抵抗両端の電圧を検出するアンプからなるセンサや、通電経路周囲の磁束等を検出する非接触式センサ等を用いることができる。あるいは、例えばモータドライバ25を構成する素子等の端子電圧等を検出する構成としてもよい。 The current sensor Sc is a sensor that detects a current applied to the electric motor 4 from the motor driver 25. For example, a sensor that includes an amplifier that detects a voltage across the shunt resistor, and a non-contact sensor that detects a magnetic flux around the energization path. Etc. can be used. Or it is good also as a structure which detects the terminal voltage etc. of the element etc. which comprise the motor driver 25, for example.
 電流推定器26は、前記電流センサ出力から、制御演算に用いる電流を推定する機能を有する。前記電流の推定は、例えばモータ相電流の通電経路に複数設けた電流センサによって推定してもよく、あるいはローサイド(低圧側電路)ないしハイサイド(高圧側電路)に1つ設けた電流センサにより1次電流を推定し、モータ特性等に基づいて相電流を求める手法であってもよい。もしくは、一切の電流センサを設けずに、モータ特性等に基づいてフィードフォワード制御を行うようにしてもよい。 The current estimator 26 has a function of estimating a current used for control calculation from the current sensor output. The estimation of the current may be performed by, for example, a plurality of current sensors provided in the motor phase current supply path, or may be estimated by one current sensor provided on the low side (low voltage side circuit) or the high side (high voltage side circuit). A method of estimating the secondary current and obtaining the phase current based on the motor characteristics or the like may be used. Or you may make it perform feedforward control based on a motor characteristic etc., without providing any current sensor.
 <<ブレーキ荷重指令器22>>
 ブレーキ荷重指令器22は、ブレーキ力指令手段21から入力される要求ブレーキ力Brkに基づき、制御目標値とするブレーキ荷重指令値である目標ブレーキ力Frを導出する機能を有する。ブレーキ力指令手段21から入力される要求ブレーキ力Brkは、例えば車両減速度や、減速トルク、制動力、等の車両ベースで考慮された物理量であってもよく、あるいは所定のブレーキ有効径、ブレーキ摩擦係数、等に基づいて導出されたブレーキ荷重等のアクチュエータベースで考慮された物理量であってもよい。ブレーキ荷重指令器22において、前記の要求ブレーキ力Brkに対し、最終的に目標値とする目標ブレーキ荷重Frを決定する。
<< Brake load commander 22 >>
The brake load command device 22 has a function of deriving a target brake force Fr that is a brake load command value as a control target value based on the required brake force Brk input from the brake force command means 21. The required brake force Brk input from the brake force command means 21 may be a physical quantity considered on the vehicle base such as vehicle deceleration, deceleration torque, braking force, etc., or may be a predetermined brake effective diameter, brake It may be a physical quantity considered on the basis of an actuator such as a brake load derived based on a friction coefficient or the like. The brake load command device 22 determines a target brake load Fr that is finally set as a target value for the required brake force Brk.
 <<ブレーキ荷重制御器24>>
 ブレーキ荷重制御器24は、ブレーキ荷重指令器22により求められる目標ブレーキ荷重Frに対して、前記推定ブレーキ荷重が追従するよう電動モータ4の操作量であるブレーキ荷重保持電力の指令値Arを演算する。前記ブレーキ荷重保持電力の指令値Arは、例えばモータ電圧であってもよく、さらにモータ電流やモータ角度を制御するマイナーフィードバックを一つまたは複数設けて演算された値であってもよい。また、演算中に用いる物理量は、例えばモータ角度及びアクチュエータ等価リードから算出されるアクチュエータ位置や、モータ電流から求められるモータトルク等、設計都合に応じて適宜選択されるものとする。その他、フィードフォワード制御等を用いるか、または適宜併用することもできる。
<< Brake load controller 24 >>
The brake load controller 24 calculates a command value Ar of the brake load holding power, which is an operation amount of the electric motor 4 so that the estimated brake load follows the target brake load Fr obtained by the brake load command device 22. . The command value Ar for the brake load holding power may be, for example, a motor voltage, or may be a value calculated by providing one or more minor feedbacks for controlling the motor current and the motor angle. In addition, the physical quantity used during the calculation is appropriately selected according to the design convenience such as the actuator position calculated from the motor angle and the actuator equivalent lead, the motor torque obtained from the motor current, and the like. In addition, feedforward control or the like can be used or used in combination as appropriate.
 また、ブレーキ荷重制御器24には、ブレーキ解除時の引き摺りトルクを低減する為、前記のブレーキ荷重制御機能に加え、ブレーキを解除する際に前記摩擦ブレーキ7の摩擦材9とブレーキロータ8との間に所定のクリアランスを設ける位置に直動アクチュエータ5を制御する機能を持たせることが好ましい。前記の機能は、例えば前記モータ角度および直動アクチュエータ5の等価リード等から直動アクチュエータ5の位置を推定する機能とすると低コストとなり好適と考えられるが、直動アクチュエータ5の位置を検出する位置センサを別途設けてもよい。 In addition to the brake load control function, the brake load controller 24 includes a friction material 9 of the friction brake 7 and a brake rotor 8 when releasing the brake in order to reduce drag torque. It is preferable to provide a function of controlling the linear actuator 5 at a position where a predetermined clearance is provided therebetween. For example, it is considered that the function is a function for estimating the position of the linear motion actuator 5 from the motor angle and the equivalent lead of the linear motion actuator 5. A sensor may be provided separately.
 <<モータドライバ25>>
 モータドライバ25は、電源装置3から供給されて電動モータ4に与える電力であるブレーキ荷重保持電力を、ブレーキ荷重制御器24から出力された前記ブレーキ荷重保持電力の指令値Arに応じて制御する手段である。電源装置3は直流電源であるため、モータドライバ25は、直流電力を交流電力に変換するインバータ(図示せず)と、その制御手段(図示せず)とで構成される。モータドライバ25は、例えばFET等のスイッチ素子を用いたハーフブリッジ回路からなる前記インバータを構成し、所定のデューティ比によりモータ印加電圧またはモータ電流を決定するPWM制御を行う構成とされ、この構成とすると、安価で高性能となり好適である。モータドライバ25は、変圧回路等を設け、PAM制御を行う構成としてもよい。
<< Motor driver 25 >>
The motor driver 25 controls a brake load holding power that is supplied from the power supply device 3 and applied to the electric motor 4 according to the command value Ar of the brake load holding power output from the brake load controller 24. It is. Since the power supply device 3 is a direct current power supply, the motor driver 25 includes an inverter (not shown) that converts direct current power into alternating current power and control means (not shown). The motor driver 25 constitutes the inverter composed of a half-bridge circuit using a switching element such as an FET, for example, and is configured to perform PWM control for determining a motor applied voltage or a motor current according to a predetermined duty ratio. This is preferable because it is inexpensive and has high performance. The motor driver 25 may be configured to perform a PAM control by providing a transformer circuit or the like.
 <<ブレーキ電力低減器23、停車判断手段23d>>
 ブレーキ電力低減器23は、停車状態のブレーキ消費電力を走行状態より低減するための処理を行う手段であり、前記停車状態である場合の前記要求ブレーキ力Brkに基づき電動モータ4に与える前記ブレーキ荷重保持電力の指令値Arを、前記走行状態である場合と比較して低減させる。この実施形態においては、ブレーキ電力低減器23は、ブレーキ荷重指令器22の一部として設けられ、走行ブレーキ荷重指令部23aと、静止ブレーキ荷重指令部23bと、ブレーキ荷重指令判断部23cとを備える。
<< Brake power reducer 23, stop determination means 23d >>
The brake power reducer 23 is a means for performing processing for reducing the brake power consumption in the stopped state from the running state, and the brake load applied to the electric motor 4 based on the required brake force Brk in the stopped state. The command value Ar of the holding power is reduced as compared with the case of the traveling state. In this embodiment, the brake power reducer 23 is provided as a part of the brake load command device 22, and includes a travel brake load command unit 23a, a stationary brake load command unit 23b, and a brake load command determination unit 23c. .
 走行ブレーキ荷重指令部23aは、走行状態におけるブレーキ力指令手段21の要求ブレーキ力aに基づくブレーキ荷重指令値である走行状態目標ブレーキ荷重Fdyを導出する。静止ブレーキ荷重指令部23bは、停車状態における同様のブレーキ荷重指令値である停車状態目標ブレーキ荷重Fsyを導出する。前記停車状態目標ブレーキ荷重Fsyは、前記走行状態目標ブレーキ荷重Fdyに対して比較的小さなブレーキ荷重となるよう設定される。小さなブレーキ荷重とすることで、モータ電流も同時に比較的小さくでき、ブレーキ保持時のモータ銅損が低減する。そのため消費電力を低減することができる。 The traveling brake load command unit 23a derives a traveling state target brake load Fdy that is a brake load command value based on the required braking force a of the braking force command means 21 in the traveling state. The stationary brake load command unit 23b derives a stop state target brake load Fsy that is a similar brake load command value in the stop state. The stop state target brake load Fsy is set to be a relatively small brake load with respect to the travel state target brake load Fdy. By using a small brake load, the motor current can be made relatively small at the same time, and the motor copper loss when holding the brake is reduced. Therefore, power consumption can be reduced.
 ブレーキ荷重指令判断部23cは、車速推定器29によって推定された車両の走行状態に基づき、前記走行ブレーキ荷重指令部23aと、静止ブレーキ荷重指令部23bとの何れを有効とするかを決定する機能、または有効比率等を決定する機能を有する。 The brake load command determination unit 23c is a function for determining which of the travel brake load command unit 23a and the stationary brake load command unit 23b is valid based on the vehicle running state estimated by the vehicle speed estimator 29. Or a function for determining an effective ratio or the like.
 車両の走行状態、すなわちブレーキロータが相対摺動している状態において、ブレーキロータ8と摩擦材9との接触により発生する制動力は、ブレーキロータ8との動摩擦係数に基づき発生する。一方、停車状態における制動力は静止摩擦係数に基づき発生する。そのため、同じブレーキ荷重を発揮する場合においても、停車状態は走行状態に対して比較的大きな制動力が発生する。換言すれば、同じ要求ブレーキ力Brkに対して同じブレーキ荷重を発揮すると、車両停車状態においては過剰な制動力が発生することとなる。即ち、停車状態と停車状態でブレーキ荷重指令値Frを切替え、停車状態において比較的小さなブレーキ荷重に設定することは、制動力を一定に保ちつつ消費電力を低減する上で合理的と考えられる。 The braking force generated by the contact between the brake rotor 8 and the friction material 9 is generated based on the dynamic friction coefficient with the brake rotor 8 when the vehicle is running, that is, when the brake rotor is sliding relative to the vehicle. On the other hand, the braking force in the stopped state is generated based on the static friction coefficient. Therefore, even when the same brake load is exhibited, a relatively large braking force is generated in the stopped state relative to the traveling state. In other words, if the same brake load is exerted with respect to the same required brake force Brk, an excessive braking force is generated when the vehicle is stopped. That is, switching the brake load command value Fr between the stop state and the stop state and setting the brake load to a relatively small brake load in the stop state is considered reasonable for reducing power consumption while keeping the braking force constant.
 ただし、前記静止摩擦係数と動摩擦係数の比率は、例えば摩擦材の摩耗状態や温度等によって変化し得るため、正確な摩擦係数比率の設定は困難な場合がある。そのような場合であっても、例えば最も静止摩擦係数と動摩擦係数の違いが少なくなる条件に基づき、前記静止ブレーキ荷重指令部23bと走行ブレーキ荷重指令部23aにおける変換係数あるいは変換テーブル等を設定して用いることで、少なくとも停車状態において走行状態より大きなブレーキ力が発生する。このため、車両としての安全性に支障はないと考えられる。 However, since the ratio between the static friction coefficient and the dynamic friction coefficient can vary depending on, for example, the wear state and temperature of the friction material, it may be difficult to set the accurate friction coefficient ratio. Even in such a case, for example, a conversion coefficient or a conversion table or the like in the static brake load command unit 23b and the travel brake load command unit 23a is set based on a condition that the difference between the static friction coefficient and the dynamic friction coefficient is the smallest. As a result, a braking force larger than that in the traveling state is generated at least in a stopped state. For this reason, it is thought that there is no problem in the safety as a vehicle.
 ブレーキ荷重指令判断部23cは、例えば車両が停車している状態か、走行している状態かを認識し、停車している状態においては静止ブレーキ荷重指令部23bのみを有効とし、走行している状態においては走行ブレーキ荷重指令部23aのみを有効とする機能であってもよい。 The brake load command determination unit 23c recognizes, for example, whether the vehicle is stopped or running, and in the stopped state, only the stationary brake load command unit 23b is enabled and is running. In a state, the function which makes only the traveling brake load instruction | command part 23a effective may be sufficient.
 車両が停車状態であるか走行状態であるかの判断は、停車判断手段23dが行う。停車判断手段23dは、前記ブレーキロータ8の配置された車輪15の回転運動から前記停車状態であるか走行状態かを判断する構成であればよく、前記ブレーキ荷重指令判断部23cの一部として設けられていても、また車速推定器29が停車判断手段23dを兼ねる構成であっても、またブレーキ荷重指令判断部23cおよび車速推定器29のいずれとも別に設けられていてもよい。 Whether the vehicle is in a stopped state or in a traveling state is determined by the stop determination unit 23d. The stop determination means 23d may be configured to determine whether the vehicle is in the stopped state or the traveling state from the rotational motion of the wheel 15 on which the brake rotor 8 is disposed, and is provided as a part of the brake load command determination unit 23c. The vehicle speed estimator 29 may also serve as the stoppage determination unit 23d, or may be provided separately from either the brake load command determination unit 23c or the vehicle speed estimator 29.
 停車判断手段23dは、例えば、車輪速が一定時間零として検出された場合を停車状態として判断してもよく、車輪速が零に向かって明らかに車輪ロックではない比較的緩やかな減速をして零に到達した場合において判断してもよい。この場合、車速推定器29は、連続的な速度推定を行う構成である必要はなく、停車状態であるか否かを判別できる機能を有すればよい。その場合でも、例えば路面とのスリップ状態等の影響によって一輪の車輪速のみでは正確な車速推定が困難である条件下においても、十分に機能を発揮することができる。 The stop determination unit 23d may determine, for example, that the wheel speed is detected as zero for a certain period of time as a stop state, and perform a relatively slow deceleration that is clearly not a wheel lock toward the wheel speed of zero. The determination may be made when zero is reached. In this case, the vehicle speed estimator 29 does not need to be configured to perform continuous speed estimation, and may have a function capable of determining whether or not the vehicle is in a stopped state. Even in such a case, the function can be sufficiently exerted even under conditions where it is difficult to accurately estimate the vehicle speed only by the wheel speed of one wheel due to, for example, the slip state with the road surface.
 ブレーキ荷重指令判断部23cは、上記機能に加え、車速が低速から零となるまでの間において、前記静止ブレーキ荷重指令部3bが出力する静止時ブレーキ荷重指令値である停車状態目標ブレーキ荷重Fstと、走行ブレーキ荷重指令部23aが出力する走行時ブレーキ荷重指令値である走行状態目標ブレーキ荷重Fdyとの有効比率を、車速に応じて調整する機能を有していてもよい。具体例として、例えば最終的な目標ブレーキ荷重(ブレーキ荷重指令値)Frを、前記停車状態目標ブレーキ荷重Fst、走行状態目標ブレーキ荷重Fdy、および車速に依存した結合係数αを用いて、次式のように導出してもよい。
 Fr=α・Fst+(1-α)・Fdy
 ただし、0≦α≦1(車速零でα1、切替開始の低速でα=0)
In addition to the above function, the brake load command determination unit 23c is a stationary state target brake load Fst, which is a stationary brake load command value output by the stationary brake load command unit 3b until the vehicle speed becomes low to zero. The vehicle brake load command unit 23a may have a function of adjusting the effective ratio with the travel state target brake load Fdy, which is the travel brake load command value output by the travel brake command unit 23a, according to the vehicle speed. As a specific example, for example, a final target brake load (brake load command value) Fr is expressed by the following equation using a stop state target brake load Fst, a travel state target brake load Fdy, and a coupling coefficient α depending on the vehicle speed. It may be derived as follows.
Fr = α · Fst + (1−α) · Fdy
However, 0 ≦ α ≦ 1 (α1 at zero vehicle speed, α = 0 at low speed of switching start)
 この場合、ある程度積極的に目標ブレーキ荷重(ブレーキ荷重指令値)Frの切替を行いつつ、急激なブレーキ荷重の切替わりを防止することで、操縦者の違和感を低減することができる。但し、車速をある程度精度よく推定する必要が生じる。変換係数αは、例えば車速に比例的な直線的係数であってもよく、車速に対してカーブ状に推移する曲線的な非線形係数であってもよい。 In this case, it is possible to reduce the driver's uncomfortable feeling by switching the target brake load (brake load command value) Fr aggressively to some extent and preventing sudden switching of the brake load. However, it is necessary to estimate the vehicle speed with a certain degree of accuracy. The conversion coefficient α may be, for example, a linear coefficient proportional to the vehicle speed, or a curved nonlinear coefficient that changes in a curve with respect to the vehicle speed.
 また、ブレーキ荷重指令判断部23cは、停車状態と判断された後の所定時間内において、前記静止ブレーキ荷重指令部23aが出力する停車状態目標ブレーキ荷重Fstと、走行ブレーキ荷重指令部23bが出力する走行状態目標ブレーキ荷重Fdyとの有効比率を、経過時間に応じて調整する機能を有していてもよい。この場合も、前式の結合係数αを車速から時間に置き換え、同様の関係式を用いることができる。あるいは、前記車速と時間とを併用するような関係式を用いてもよい。 Further, the brake load command determination unit 23c outputs the stop state target brake load Fst output from the stationary brake load command unit 23a and the travel brake load command unit 23b within a predetermined time after the stop state is determined. You may have a function which adjusts an effective ratio with driving state target brake load Fdy according to elapsed time. In this case as well, a similar relational expression can be used by replacing the coupling coefficient α in the previous expression from the vehicle speed to time. Or you may use the relational expression which uses the said vehicle speed and time together.
 ブレーキ電力低減器23について、要求ブレーキ力Brkが所定値より大きい場合のみにおいて、停車状態目標ブレーキ荷重Fstと、走行状態目標ブレーキ荷重Fdyとを切替える処理を行ってもよい。一般に、制動力が小さい場合ほど車両操縦者はブレーキ荷重変化に伴う制動力変化に敏感であるため、ブレーキ荷重が小さい場合において、車両が厳密に停車する前に前記ブレーキ荷重の切替が発生してしまうことによるフィーリング悪化のデメリットが大きくなる。また一方で、制動力が大きい場合すなわちブレーキ荷重が大きい場合ほどブレーキ荷重を低下させることによる銅損低減効果が大きいため、ブレーキ荷重が大きい場合において前記ブレーキ荷重の切替によるメリットが大きくなる。したがって、前記の要求ブレーキ力Brkが所定値より大きい場合のみ前記目標ブレーキ荷重の切替を行うことは合理的である。 The brake power reducer 23 may perform a process of switching between the stop state target brake load Fst and the travel state target brake load Fdy only when the required brake force Brk is larger than a predetermined value. In general, the smaller the braking force, the more sensitive the vehicle operator is to changes in the braking force that accompany changes in the brake load. Therefore, when the brake load is small, the switching of the brake load occurs before the vehicle strictly stops. The demerit of feeling worsening due to this will increase. On the other hand, the greater the braking force, that is, the greater the brake load, the greater the copper loss reduction effect by reducing the brake load. Therefore, when the brake load is large, the merit of switching the brake load increases. Therefore, it is reasonable to switch the target brake load only when the required brake force Brk is larger than a predetermined value.
 また、前記要求ブレーキ力Brkが所定値より大きい場合において切替える機能を設けるとき、前記静止ブレーキ荷重指令部23bと、前記走行ブレーキ荷重指令部23aとにおいて、ブレーキ荷重が小さい場合においては所定の要求ブレーキ力Brkに対して比較的等しい停車状態目標ブレーキ荷重Fstおよび走行状態目標ブレーキ荷重Fdyがそれぞれ演算され、要求ブレーキ力Brkが大きい場合においては比較的乖離した停車状態目標ブレーキ荷重Fstおよび走行状態目標ブレーキ荷重Fdyがそれぞれ演算される機能であってもよい。この場合、要求ブレーキ力Brkが大きくなるほど停車状態目標ブレーキ荷重Fstと走行状態目標ブレーキ荷重Fdyとが乖離するように設定されていてもよい。 In addition, when the function of switching when the required brake force Brk is larger than a predetermined value is provided, the stationary brake load command unit 23b and the traveling brake load command unit 23a have a predetermined required brake when the brake load is small. The stationary state target brake load Fst and the traveling state target brake load Fdy, which are relatively equal to the force Brk, are respectively calculated, and when the required braking force Brk is large, the stationary state target brake load Fst and the traveling state target brake that are relatively separated from each other. A function for calculating the load Fdy may be used. In this case, the stop state target brake load Fst and the travel state target brake load Fdy may be set so as to deviate as the required brake force Brk increases.
 また、前記ブレーキ電力低減器23は、前記停車状態目標ブレーキ荷重Fstと、前記走行状態目標ブレーキ荷重Fdyが略同一でなくなる前記要求ブレーキ力Brkの第一の所定値と、この第一の所定値より大きい要求ブレーキ力の第二の所定値とが設定され、前記第一の所定値から第二の所定値に至るまで、前記停車状態目標ブレーキ荷重Fstと、前記走行状態目標ブレーキ荷重Fdyとを徐々に乖離させるようにしてもよい。前記各所定値は、試験またはシミュレーション等により適宜の値とする。 The brake power reducer 23 also includes a first predetermined value and a first predetermined value of the required brake force Brk at which the stop state target brake load Fst and the traveling state target brake load Fdy are not substantially the same. A second predetermined value of a larger required brake force is set, and the stationary state target brake load Fst and the traveling state target brake load Fdy are set from the first predetermined value to the second predetermined value. You may make it diverge gradually. Each predetermined value is set to an appropriate value by testing or simulation.
 なお、電動ブレーキ制御装置1における以上の各種の演算手段(ブレーキ荷重指令器22、ブレーキ電力低減器、ブレーキ荷重制御器24)は、例えばマイコン、FPGA、ASIC等の演算器および周辺回路により構成すると、安価で高性能となり好適と考えられる。 The above-described various calculation means (brake load command device 22, brake power reducer, brake load control device 24) in the electric brake control device 1 are configured by a calculation unit such as a microcomputer, FPGA, ASIC, and peripheral circuits, for example. It is considered to be suitable because of its low cost and high performance.
  <ブレーキ荷重指令器22の実行フロー>
 図3は、図1におけるブレーキ荷重指令器22の実行例を示す。ステップS.1で所定の仕様に基づく要求ブレーキ力Brkを取得する。要求ブレーキ力Brkは、例えば車両減速度や、車両減速度から車両重量等を含む所定相関に基づいて導出される制動力、ないしブレーキトルク等、に相当する情報とすることができる。あるいは、前記何れかの情報に基づき、所定のブレーキ摩擦力演算式に基づいて導出され得るブレーキ荷重であってもよい。
<Execution flow of brake load commander 22>
FIG. 3 shows an execution example of the brake load command unit 22 in FIG. In step S.1, a required brake force Brk based on a predetermined specification is acquired. The required brake force Brk can be information corresponding to, for example, vehicle deceleration, braking force derived from vehicle deceleration based on a predetermined correlation including vehicle weight or the like, or brake torque. Alternatively, it may be a brake load that can be derived based on a predetermined brake frictional force calculation formula based on any of the above information.
 ステップS.2で、車両が停車状態或いは走行状態のいずれの状態にあるかを、停車判断手段23dによって判断する。前記判断は、例えば複数輪の車輪速および前後加速度や車両位置情報等を用いて車速を推定し、前記車速に所定の閾値を設けて判断するものであってもよく、例えば所定の車輪速センサのパルスが一定時間以上変化しなかった場合等から判断する簡易的なものであってもよく、あるいはこれらを適宜併用する方法であってもよい。また、前記停車状態は、例えばほぼ停車していると見なせるような低速状態を含むものであってもよく、あるいは逆に、前記走行状態は、停車後から時間経過が所定より少ない停車直後などを含むものであってもよい。 Step S. 2, it is determined by the stop determination means 23 d whether the vehicle is in a stopped state or a traveling state. The determination may be performed by estimating the vehicle speed using, for example, the wheel speed and longitudinal acceleration of a plurality of wheels, vehicle position information, and the like, and determining the vehicle speed by providing a predetermined threshold. For example, the predetermined wheel speed sensor It may be a simple one that is determined based on the case where the pulse has not changed for a certain time or the like, or a method in which these are used together as appropriate. Further, the stop state may include, for example, a low-speed state that can be regarded as almost stopped, or conversely, the travel state may be immediately after the stop, for example, when the time elapsed after the stop is less than a predetermined time. It may be included.
 ステップS.2で車両が停車状態であると判断された場合は、ステップS.3において停車状態目標ブレーキ荷重Fstを、停車状態の演算係数kstに基づき、Fst=kst・Brkとして導出する。前記演算係数kstは、例えば摩擦材9とブレーキロータ8との特性における静止摩擦係数に基づいて決定される所定係数とすることができる。前記導出された停車状態目標ブレーキ荷重Fstを、制御目標値である目標ブレーキ荷重Frとして設定する(ステップS.4)。 Step S. 2, if it is determined that the vehicle is in a stopped state, step S. 3, the stop state target brake load Fst is derived as Fst = kst · Brk based on the stop state calculation coefficient kst. The calculation coefficient kst can be a predetermined coefficient determined based on, for example, a static friction coefficient in the characteristics of the friction material 9 and the brake rotor 8. The derived stop state target brake load Fst is set as a target brake load Fr which is a control target value (step S.4).
 ステップS.2で車両が走行状態と判断された場合は、ステップS.5において走行状態目標ブレーキ荷重Fdyを、走行状態の演算係数kdyに基づき導出する。前記演算係数kdyは、例えば摩擦材とブレーキロータとの特性における動摩擦係数に基づいて決定される所定係数とすることができる。前記導出された走行状態目標ブレーキ荷重Fdyを、制御目標値である目標ブレーキ荷重Frとして設定する(ステップS.6)。 Step S. If it is determined in step 2 that the vehicle is in a running state, step S. 5, the running state target brake load Fdy is derived based on the running state calculation coefficient kdy. The calculation coefficient kdy may be a predetermined coefficient determined based on, for example, a dynamic friction coefficient in the characteristics of the friction material and the brake rotor. The derived traveling state target brake load Fdy is set as a target brake load Fr that is a control target value (step S.6).
 このように目標ブレーキ荷重Frを停車状態目標ブレーキ荷重Fstまたは走行状態目標ブレーキ荷重Fdyに決定し(ステップS.4、S.6)、その決定された目標ブレーキ荷重Frを用い、ブレーキ荷重制御器24(図1)により電動モータ4の制御によるブレーキ荷重の制御が行われる(図3、ステップS.7)。 In this way, the target brake load Fr is determined as the stop state target brake load Fst or the traveling state target brake load Fdy (steps S.4 and S.6), and the brake load controller is used by using the determined target brake load Fr. 24 (FIG. 1) controls the brake load by controlling the electric motor 4 (FIG. 3, step S.7).
 図示外の構成要素として、例えばステップS.2において、前の時間において走行状態であったものが現時間において停車状態に変化する場合に、演算される目標ブレーキ荷重がステップ状変化等の離散的変化ではなく、徐々に変化する連続的変化をするよう、状態遷移が行われるものであってもよい。ただし、この場合の連続的変化とは、例えば目標ブレーキ荷重が複数のステップにおいて階段状に変化する場合のような、所定の制御サンプルステップ間の変化が単純な2値変化よりも比較的滑らかとなるように補完された離散的変化も含むものとする。 For example, step S. 2, when the driving state at the previous time changes to the stopping state at the current time, the calculated target brake load is not a discrete change such as a step change but a continuous change that gradually changes The state transition may be performed so that However, the continuous change in this case means that the change between predetermined control sample steps is relatively smoother than a simple binary change, for example, when the target brake load changes stepwise in a plurality of steps. It also includes discrete changes complemented to
 前記連続的変化は、例えば、車速が零から所定の低速状態までの所定区間において、結合係数がkdyからkstへと車速に応じて変化する処理によるものであってもよい。この場合、例えば前記の走行状態から停車状態への判断の変化が、車両が厳密に停車する前に起こったとしても、ブレーキ荷重が急激に変化することを防げるため、意図しない制動ショック等のフィーリング悪化を防止することができる。前記連続的変化は、例えば、判断が走行状態から停車状態へと変化した場合、前記判断の変化が発生してから所定時間内において、結合係数がkdyからkstへと時間に応じて変化する処理によるものであってもよい。この場合においても前記と同様、ブレーキ荷重が急激に変化することを防げることで、意図しない制動ショック等のフィーリング悪化を防止することができる。 The continuous change may be, for example, due to a process in which the coupling coefficient changes from kdy to kst according to the vehicle speed in a predetermined section from the vehicle speed of zero to a predetermined low speed state. In this case, for example, even if the change in the judgment from the running state to the stopped state occurs before the vehicle strictly stops, the brake load can be prevented from changing suddenly. Ring deterioration can be prevented. For example, when the judgment changes from a running state to a stopped state, the continuous change is a process in which the coupling coefficient changes from kdy to kst within a predetermined time after the judgment change occurs. It may be due to. Also in this case, as described above, it is possible to prevent feeling deterioration such as unintended braking shock by preventing the brake load from changing suddenly.
 前記とは逆に、判断が停車状態から走行状態に変化する場合においても、前記と同様の手段をとることができる。但し、ブレーキをかける状況で、車両が停車状態から走行状態へと変化するケースは極めて稀であると考えられる為、前記の連続的変化処理は走行状態から停車状態へと変化する場合のみとしてもよい。 Contrary to the above, when the judgment changes from the stopped state to the traveling state, the same means as described above can be taken. However, since it is considered extremely rare that the vehicle changes from the stopped state to the traveling state in the brake application situation, the continuous change process described above may be performed only when the vehicle changes from the traveling state to the stopped state. Good.
  <上記動作における各物理量の変化のタイムチャート>
 図4Aは、図1の構成を適用した電動ブレーキ装置1の動作例を示し、図4Bは、適用しない従来の電動ブレーキ装置の動作例を示す。図4Aの例(適用例)において、図4Bの例(非適用例)と比較して、車速(図の上から2番目)が零になるとき、ブレーキ荷重を低下させる(図の上から3番目)。このときブレーキ荷重は低下するものの、摩擦材9とブレーキロータ8との摩擦係数は動摩擦状態から静止摩擦状態へと変化することで上昇し、ブレーキ荷重の低下分と相殺される。そのため、発生するブレーキロータ8の摩擦力は低下することなく概ね一定に保たれる(図の上から4番目)。このとき、ブレーキ荷重が低下することで、ブレーキ保持に必要なモータトルクが低下し、モータ銅損が低減する(図の上から5番目)。同図の各パラメータは、例えば図1における電動ブレーキ装置1のものであってもよく、後述する図6の複数の電動ブレーキ装置1の総和のものであってもよい。
<Time chart of change of each physical quantity in the above operation>
4A shows an operation example of the electric brake device 1 to which the configuration of FIG. 1 is applied, and FIG. 4B shows an operation example of a conventional electric brake device to which the configuration is not applied. In the example (application example) of FIG. 4A, the brake load is reduced when the vehicle speed (second from the top in the figure) becomes zero, compared to the example (non-application example) in FIG. Th). At this time, although the brake load decreases, the friction coefficient between the friction material 9 and the brake rotor 8 increases by changing from the dynamic friction state to the static friction state, and is offset with the decrease in the brake load. Therefore, the generated frictional force of the brake rotor 8 is kept substantially constant without decreasing (fourth from the top in the figure). At this time, when the brake load decreases, the motor torque necessary for holding the brake decreases, and the motor copper loss decreases (fifth from the top in the figure). Each parameter in the figure may be, for example, that of the electric brake device 1 in FIG. 1, or may be the sum of a plurality of electric brake devices 1 in FIG.
   <他の実施形態>
 図5ないし図9は、この発明の他の各実施形態を示す。これらの実施形態において、特に説明する事項の他は、第1の実施形態と同様であり、対応部分に同一符号を付して重複する説明を省略する。
<Other embodiments>
5 to 9 show other embodiments of the present invention. In these embodiments, the matters to be specifically described are the same as those in the first embodiment, and the corresponding parts are denoted by the same reference numerals and redundant description is omitted.
 図5は、電動ブレーキ制御装置2の外部に車速推定手段28を設ける例を示す。車速推定手段28は、例えば複数輪の車輪速や、あるいは加速度センサやGPS(図示せず)等に基づいて車速の推定を行う手段である。前記車速推定手段28は、例えば車両統合制御装置(VCU)等の上位ECUに設けられたものであってもよく、あるいは複数の電動ブレーキ制御装置1のうちの他の一つに設けられたものであってもよい。 FIG. 5 shows an example in which the vehicle speed estimation means 28 is provided outside the electric brake control device 2. The vehicle speed estimation means 28 is a means for estimating the vehicle speed based on, for example, the wheel speed of a plurality of wheels, or an acceleration sensor, GPS (not shown), or the like. The vehicle speed estimation means 28 may be provided in a host ECU such as a vehicle integrated control unit (VCU) or may be provided in another one of the plurality of electric brake control devices 1. It may be.
 ブロック図の矢印は、最終的な信号の到達先に基づいて記載したものであり、その途中の伝送経路は適宜選択できるものとする。例えば、図5の例において、車輪速センサSdの出力を車速推定手段28に入力する例として示しているが、例えば電動ブレーキ制御装置2に車輪速センサSdの出力を入力し、電動ブレーキ制御装置2を経由して車輪速を車速推定器28に出力する構成としてもよい。例えば電動ブレーキ制御装置1においてアンチスキッド制御(図示せず)等の車輪速制御を行う場合、電動ブレーキ制御装置1にて車輪速制御演算を行う必要が生じる場合があるため、図5の構成にする方が好ましい場合がある。 The arrows in the block diagram are described based on the final destination of the signal, and the transmission path along the way can be selected as appropriate. For example, in the example of FIG. 5, the output of the wheel speed sensor Sd is shown as an example of input to the vehicle speed estimation means 28. For example, the output of the wheel speed sensor Sd is input to the electric brake control device 2, and the electric brake control device The wheel speed may be output to the vehicle speed estimator 28 via 2. For example, when performing wheel speed control such as anti-skid control (not shown) in the electric brake control device 1, it may be necessary to perform wheel speed control calculation in the electric brake control device 1. It may be preferable to do this.
   <電動ブレーキシステム(さらに他の実施形態)>
 図6は、複数の電動ブレーキ装置1(1,1,……)を、ブレーキ統合制御装置20で統合制御する電動ブレーキシステムの一例を示す。この電動ブレーキシステムは、ブレーキ統合制御装置20に設けられた一つのブレーキ荷重指令器22が、前記複数の電動ブレーキ装置1(1,1,……)における前記ブレーキ荷重指令器22となる。前記ブレーキ統合制御装置20は、車両の統合制御を行う車両統合制御装置(VCU)等の上位制御装置19に設けられている。
<Electric brake system (further embodiment)>
FIG. 6 shows an example of an electric brake system in which a plurality of electric brake devices 1 (1 1 , 1 2 ,...) Are integrated and controlled by the brake integrated control device 20. In this electric brake system, one brake load command device 22 provided in the brake integrated control device 20 becomes the brake load command device 22 in the plurality of electric brake devices 1 (1 1 , 1 2 ,...). . The brake integrated control device 20 is provided in a host control device 19 such as a vehicle integrated control device (VCU) that performs integrated control of the vehicle.
 図6に示す第一,第二,…の電動ブレーキ装置1,1,……の各ブロックは、図1に示す電動ブレーキ装置1からブレーキ荷重指令器22を省いた構成部分を示しており、同図の第一,第二,…の各電動ブレーキ装置1,1,……は、ブレーキ統合制御装置20に設けられたブレーキ荷重指令器22を含めて電動ブレーキ装置1を構成する。図6の第一,第二,…の各電動ブレーキ装置1,1,……のブロックで示す部分は、図7に示すように、図1または図5の電動ブレーキ装置1におけるブレーキ荷重指令器22以外の全ての構成、例えば電動ブレーキ制御装置2、電動アクチュエータ5、摩擦ブレーキ7等を備えている。 Each block of the first, second,..., Electric brake devices 1 1 , 1 2 ,... Shown in FIG. 6 shows the components that omit the brake load command device 22 from the electric brake device 1 shown in FIG. , Each of the first, second,... Electric brake devices 1 1 , 1 2 ,... Constitutes the electric brake device 1 including the brake load command device 22 provided in the brake integrated control device 20. To do. The parts indicated by the blocks of the first, second,... Electric brake devices 1 1 , 1 2 ,... In FIG. 6 are brake loads in the electric brake device 1 of FIG. All components other than the command device 22, for example, the electric brake control device 2, the electric actuator 5, the friction brake 7, and the like are provided.
 図6のブレーキ統合制御装置20に設けられたブレーキ荷重指令器22の一つに統合されたブレーキ電力低減器23は、静止ブレーキ荷重指令部23bおよび走行ブレーキ荷重指令部23aが、統合に係る各電動ブレーキ装置1(1,1,……)における、停車状態目標ブレーキ荷重Fst、および走行状態目標ブレーキ荷重Fdyのそれぞれの合計値を出力する。これらの各合計値を用いて、ブレーキ荷重指令判断部23cによる前記停車状態目標ブレーキ荷重Fstおよび走行状態目標ブレーキ荷重Fdyの選択または所定比率の合計を行った後、その選択または所定比率の合計が行われた合計目標ブレーキ荷重を、各電動ブレーキ装置1(1,1,……)に、これらの電動ブレーキ装置1(1,1,……)の定められたブレーキ力分担割合で出力する。なお、前記ブレーキ力分担割合は、個々の電動ブレーキ装置における電動ブレーキ制御装置2に自己のブレーキ力分担割合を設定しておき、ブレーキ統合制御装置20からは合計目標ブレーキ荷重を出力するようにしてもよい。 The brake power reducer 23 integrated with one of the brake load command devices 22 provided in the brake integrated control device 20 of FIG. 6 includes a stationary brake load command unit 23b and a travel brake load command unit 23a that are related to the integration. The total values of the stationary state target brake load Fst and the traveling state target brake load Fdy in the electric brake device 1 (1 1 , 1 2 ,...) Are output. Using these total values, the brake load command determination unit 23c selects the stop state target brake load Fst and the travel state target brake load Fdy or totals a predetermined ratio, and then selects or totals the predetermined ratio. The total target brake load performed is applied to each electric brake device 1 (1 1 , 1 2 ,...) And the brake force sharing ratio determined by these electric brake devices 1 (1 1 , 1 2 ,...). To output. As for the brake force sharing ratio, the own brake force sharing ratio is set in the electric brake control device 2 in each electric brake device, and the total target brake load is output from the brake integrated control device 20. Also good.
 例えば、一般的な四輪自動車の場合、制動時に前輪側の車輪垂直荷重が比較的強くなる前後荷重配分となる傾向などから、前輪側のブレーキ荷重が後輪側に対して比較的大きくなるよう設定する場合が多い。その場合、前輪側の電動ブレーキ装置と後輪側の電動ブレーキ装置とで、ブレーキ荷重に対するモータ銅損すなわちブレーキ消費電力の関係が異なることがある。このとき、例えば前輪側のブレーキ荷重をより積極的に低下させたほうが四輪総和でのブレーキ消費電力が低減できるか、あるいは逆に後輪側のブレーキ荷重を積極的に低下させた方が四輪総和でのブレーキ消費電力が低減できる場合がある。 For example, in the case of a general four-wheeled vehicle, the brake load on the front wheel side becomes relatively large with respect to the rear wheel side because the front-wheel load distribution on the front wheel side becomes relatively strong at the time of braking. Often set. In this case, the relationship between the motor copper loss, that is, the brake power consumption with respect to the brake load may be different between the front wheel side electric brake device and the rear wheel side electric brake device. At this time, for example, if the brake load on the front wheel side is more actively reduced, the brake power consumption in the total sum of the four wheels can be reduced, or conversely, the brake load on the rear wheel side is more actively reduced. The brake power consumption in the wheel sum may be reduced.
 この実施形態によると、前記の静止ブレーキ荷重指令部23bにおいて、例えば前記複数の電動ブレーキ装置1の停車状態目標ブレーキ荷重Fstの総和を演算した後、より消費電力が低減できる配分とした目標ブレーキ荷重Frを複数の電動ブレーキ装置1に送信することができる。前記より消費電力が低減できる配分は、試験やシミュレーション等により求めた適宜の配分とし、ブレーキ電力低減器23のブレーキ荷重指令判断部23cに定めておく。 According to this embodiment, in the stationary brake load command unit 23b, for example, after calculating the sum of the stop state target brake loads Fst of the plurality of electric brake devices 1, the target brake load is distributed so that the power consumption can be further reduced. Fr can be transmitted to the plurality of electric brake devices 1. The distribution that can reduce the power consumption from the above is an appropriate distribution obtained by a test, simulation, or the like, and is determined in the brake load command determination unit 23c of the brake power reducer 23.
 ブレーキ統合制御装置20は、前記複数の電動ブレーキ装置1(1,1,……)のうちの何れかの電動ブレーキ制御装置2であってもよい。図8は、第一の電動ブレーキ装置1の電動ブレーキ制御装置2が、図6のブレーキ統合制御装置20となる例を示す。 The brake integrated control device 20 may be any one of the plurality of electric brake devices 1 (1 1 , 1 2 ,...). 8, the electric brake control unit 2 of the first electric braking device 1 1 shows an example of a brake integrated control apparatus 20 of FIG.
 図9は、図1の電動ブレーキ装置1に対して、ブレーキ電力低減器23Aをブレーキ荷重推定において実施する例を示す。同図の例では、ブレーキ荷重指令器22は、走行状態であるか停車状態であるかを問わずに、要求ブレーキ力Brkに対応する目標ブレーキ荷重Frを出力する。ブレーキ電力低減器23Aは、ブレーキ荷重制御器24が、荷重センサSbの検出値をフィードバックさせて目標ブレーキ荷重Frに対応するブレーキ荷重保持電力の指令値Arを演算して出力するときに、荷重センサSbの検出値に応じた荷重の推定値を、車両の停車状態では走行状態よりも大きな値とする。 FIG. 9 shows an example in which the brake power reducer 23A is implemented in the brake load estimation for the electric brake device 1 of FIG. In the example of the figure, the brake load command device 22 outputs the target brake load Fr corresponding to the required brake force Brk regardless of whether the vehicle is running or stopped. The brake power reducer 23A is a load sensor when the brake load controller 24 calculates and outputs a command value Ar of brake load holding power corresponding to the target brake load Fr by feeding back the detection value of the load sensor Sb. The estimated value of the load according to the detected value of Sb is set to a larger value in the stopped state of the vehicle than in the traveling state.
 走行ブレーキ荷重推定部23Aaは、走行状態における荷重センサSbの検出値からの荷重の推定値を求め、静止ブレーキ荷重推定部23Abは、停車状態における荷重センサSbの検出値からの荷重の推定値を求める。ブレーキ状態推定判断部23Acは、停車判断手段23dを有していて、走行状態であるか停車状態であるかによって、走行ブレーキ荷重推定部23Aaと静止ブレーキ荷重推定部23Abとのいずれの荷重推定値をブレーキ荷重制御器24に送信するかの処理を行う。 The traveling brake load estimating unit 23Aa obtains an estimated value of the load from the detected value of the load sensor Sb in the traveling state, and the stationary brake load estimating unit 23Ab calculates the estimated value of the load from the detected value of the load sensor Sb in the stopped state. Ask. The brake state estimation determination unit 23Ac includes a stop determination unit 23d, and depending on whether the vehicle is in a traveling state or a stopped state, which load estimated value of the traveling brake load estimation unit 23Aa and the stationary brake load estimation unit 23Ab is determined. Is transmitted to the brake load controller 24.
 同図の実施形態の場合、停車状態のブレーキ荷重を大きめに推定し、走行状態のブレーキ荷重を小さめに推定することで、図1に示す第1の実施形態と同様の電力節減の効果を得ることができる。 In the case of the embodiment shown in the figure, the brake load in the stopped state is estimated to be large, and the brake load in the traveling state is estimated to be small, thereby obtaining the same power saving effect as that of the first embodiment shown in FIG. be able to.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更、削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。 As described above, the preferred embodiments have been described with reference to the drawings, but various additions, modifications, and deletions are possible without departing from the spirit of the present invention. Therefore, such a thing is also included in the scope of the present invention.
1…電動ブレーキ装置、1A…ブレーキ機構部、2…電動ブレーキ制御装置、3…電源装置、4…電動モータ、5…直動アクチュエータ、7…摩擦ブレーキ、9…摩擦材、0…減速機、15:車輪、19…車両の上位制御装置、20…ブレーキ統合制御装置、21…ブレーキ力指令手段、22…ブレーキ荷重指令器、23…ブレーキ電力低減器、23a…走行ブレーキ荷重指令部、23b…静止ブレーキ荷重指令部、23c…ブレーキ荷重指令判断部、23d…停車判断手段、24…ブレーキ荷重制御器、25…モータドライバ、26…電流推定器、27…角度推定器、28…荷重推定器、29…車速推定器、Sa…角度センサ、Sb…荷重センサ、Sc…電流センサ、Sd…車輪速センサ、Ar…ブレーキ荷重保持電力の指令値、Brk…要求ブレーキ力、Fr…最終的な目標ブレーキ荷重、Fdy…走行状態目標ブレーキ荷重、Fst…停止状態目標ブレーキ荷重 DESCRIPTION OF SYMBOLS 1 ... Electric brake device, 1A ... Brake mechanism part, 2 ... Electric brake control device, 3 ... Power supply device, 4 ... Electric motor, 5 ... Linear actuator, 7 ... Friction brake, 9 ... Friction material, 0 ... Reduction gear, DESCRIPTION OF SYMBOLS 15: Wheel, 19 ... High-order control apparatus of vehicle, 20 ... Brake integrated control apparatus, 21 ... Brake force command means, 22 ... Brake load command device, 23 ... Brake power reducer, 23a ... Travel brake load command part, 23b ... Static brake load command section, 23c ... brake load command determination section, 23d ... stop determination means, 24 ... brake load controller, 25 ... motor driver, 26 ... current estimator, 27 ... angle estimator, 28 ... load estimator, 29 ... Vehicle speed estimator, Sa ... Angle sensor, Sb ... Load sensor, Sc ... Current sensor, Sd ... Wheel speed sensor, Ar ... Brake load holding power command value, Brk ... Required Brake force, Fr ... the final target brake load, Fdy ... traveling state target brake load, Fst ... stop state target brake load

Claims (10)

  1.  ブレーキロータと、このブレーキロータに接触してブレーキ力を発生させる摩擦材と、電動モータと、この電動モータの回転動作を前記摩擦材の前記ブレーキロータへの接触動作に変換する摩擦材操作手段と、ブレーキ力指令手段の要求ブレーキ力に基づき前記電動モータを制御することにより前記摩擦材の前記ブレーキロータへの押付力であるブレーキ荷重を制御する電動ブレーキ制御装置とを備え、車両に搭載される電動ブレーキ装置であって、
     前記電動ブレーキ制御装置が、
     前記車両の停車状態と走行状態の区別を、前記ブレーキロータの配置された車輪の回転運動から判断する停車判断手段と、
     前記要求ブレーキ力に基づき前記ブレーキ荷重の制御目標値となる目標ブレーキ荷重を出力するブレーキ荷重指令器と、
     前記目標ブレーキ荷重に応じて前記電動モータに与えるブレーキ荷重保持電力の指令値を出力するブレーキ荷重制御器と、
     前記停車状態であるときに、前記要求ブレーキ力に基づき前記電動モータに与える前記ブレーキ荷重保持電力の指令値を、前記走行状態であるときと比較して低減するブレーキ電力低減器と備える、
     電動ブレーキ装置。
    A brake rotor, a friction material that comes into contact with the brake rotor to generate a braking force, an electric motor, and a friction material operation means that converts a rotational operation of the electric motor into a contact operation of the friction material with the brake rotor; And an electric brake control device that controls a brake load, which is a pressing force of the friction material against the brake rotor, by controlling the electric motor based on a required brake force of a brake force command means, and is mounted on a vehicle. An electric brake device,
    The electric brake control device is
    Stop determination means for determining the distinction between the stop state and the travel state of the vehicle from the rotational motion of the wheel on which the brake rotor is disposed;
    A brake load command device that outputs a target brake load that is a control target value of the brake load based on the required brake force;
    A brake load controller that outputs a command value of brake load holding power applied to the electric motor according to the target brake load;
    A brake power reducer that reduces the command value of the brake load holding power to be given to the electric motor based on the required brake force when the vehicle is in a stopped state as compared to when the vehicle is in the running state;
    Electric brake device.
  2.  請求項1に記載の電動ブレーキ装置において、前記ブレーキ電力低減器は、前記停車状態である場合の前記要求ブレーキ力に対する目標ブレーキ荷重である停車状態目標ブレーキ荷重Fstを演算する静止ブレーキ荷重指令部と、前記走行状態である場合の前記要求ブレーキ力に対する目標ブレーキ荷重である走行状態目標ブレーキ荷重Fdyを演算する走行ブレーキ荷重指令部とを有し、
     前記静止ブレーキ荷重指令部は、前記要求ブレーキ力に対して、前記停車状態目標ブレーキ荷重Fstを前記走行状態目標ブレーキ荷重Fdyに比べて小さな値とする、
     電動ブレーキ装置。
    2. The electric brake device according to claim 1, wherein the brake power reducer includes a stationary brake load command unit that calculates a stop state target brake load Fst that is a target brake load with respect to the required brake force in the stop state. A running brake load command unit that calculates a running state target brake load Fdy that is a target brake load with respect to the required brake force in the running state,
    The stationary brake load command unit sets the stop state target brake load Fst to a value smaller than the travel state target brake load Fdy with respect to the required brake force.
    Electric brake device.
  3.  請求項2に記載の電動ブレーキ装置において、前記静止ブレーキ荷重指令部は、前記要求ブレーキ力に対して演算する前記停車状態目標ブレーキ荷重Fstを、前記走行状態目標ブレーキ荷重Fdyに比べて小さな値とする割合につき、
     前記摩擦材とブレーキロータとの接触における動摩擦係数に対する静止摩擦係数の所定の比率kfrに基づき、前記走行状態目標ブレーキ荷重Fdyに対して、Fst=Fdy/kfrとなるように演算する、
     電動ブレーキ装置。
    3. The electric brake device according to claim 2, wherein the stationary brake load command unit sets the stop state target brake load Fst calculated with respect to the required brake force to a value smaller than the travel state target brake load Fdy. Per percentage
    Based on a predetermined ratio kfr of a static friction coefficient to a dynamic friction coefficient in contact between the friction material and the brake rotor, calculation is performed so that Fst = Fdy / kfr with respect to the traveling state target brake load Fdy.
    Electric brake device.
  4.  請求項2または請求項3に記載の電動ブレーキ装置において、前記電動ブレーキ制御装置の構成要素として、または前記電動ブレーキ制御装置とは別に、少なくとも前記車輪の回転運動を含む所定の情報に基づいて前記電動ブレーキ装置搭載車両の車速を推定する車速推定器を有し、
     前記ブレーキ電力低減器は、推定車速の大きさが所定値を下回る場合において、前記推定車速の大きさが零と見做せる値まで推移するにしたがって、最終的に決定される目標ブレーキ荷重を、前記走行状態目標ブレーキ荷重Fdyから前記停車状態目標ブレーキ荷重Fstへと推移させる機能を有する電動ブレーキ装置。
    4. The electric brake device according to claim 2, wherein the electric brake device is a component of the electric brake control device or separately from the electric brake control device, based on predetermined information including at least rotational movement of the wheels. It has a vehicle speed estimator that estimates the vehicle speed of a vehicle equipped with an electric brake device,
    The brake power reducer, when the estimated vehicle speed is below a predetermined value, the target brake load that is finally determined as the estimated vehicle speed transitions to a value that can be regarded as zero, An electric brake device having a function of shifting from the travel state target brake load Fdy to the stop state target brake load Fst.
  5.  請求項2ないし請求項4のいずれか1項に記載の電動ブレーキ装置において、前記静止ブレーキ荷重指令部は、前記要求ブレーキ力が所定値よりも小さい場合においては、前記停車状態目標ブレーキ荷重Fstを前記走行状態目標ブレーキ荷重Fdyと同一と見做せる値に演算し、前記要求ブレーキ力が前記所定値よりも大きい場合においては、前記停車状態目標ブレーキ荷重Fstを前記走行状態目標ブレーキ荷重Fdyよりも小さな値に演算する電動ブレーキ装置。 5. The electric brake device according to claim 2, wherein when the required brake force is smaller than a predetermined value, the stationary brake load command unit sets the stop state target brake load Fst. When the required braking force is greater than the predetermined value, the stop state target brake load Fst is set to be greater than the traveling state target brake load Fdy. Electric brake device that calculates small values.
  6.  請求項5に記載の電動ブレーキ装置において、
     前記ブレーキ電力低減器は、
     前記停車状態目標ブレーキ荷重Fstと、前記走行状態目標ブレーキ荷重Fdyが略同一でなくなる前記要求ブレーキ力の第一の所定値と、この第一の所定値より大きい要求ブレーキ力の第二の所定値とが設定され、
     前記第一の所定値から第二の所定値に至るまで、前記停車状態目標ブレーキ荷重Fstと、前記走行状態目標ブレーキ荷重Fdyとを徐々に乖離させる電動ブレーキ装置。
    The electric brake device according to claim 5,
    The brake power reducer is
    A first predetermined value of the required brake force at which the stop state target brake load Fst and the traveling state target brake load Fdy are not substantially the same, and a second predetermined value of the required brake force that is greater than the first predetermined value. And are set,
    An electric brake device that gradually separates the stop state target brake load Fst and the travel state target brake load Fdy from the first predetermined value to the second predetermined value.
  7.  請求項2ないし請求項6のいずれか1項に記載の電動ブレーキ装置において、前記ブレーキ電力低減器は、前記走行状態目標ブレーキ荷重Fdyから前記停車状態目標ブレーキ荷重Fstへの切替が発生してから所定時間内において、この所定時間内における時間経過にしたがって、前記目標ブレーキ荷重を、前記走行状態目標ブレーキ荷重Fdyから前記停車状態目標ブレーキ荷重Fstへと推移させる電動ブレーキ装置。 The electric brake device according to any one of claims 2 to 6, wherein the brake power reducer has switched from the travel state target brake load Fdy to the stop state target brake load Fst. An electric brake device that shifts the target brake load from the running state target brake load Fdy to the stop state target brake load Fst within a predetermined time as time elapses within the predetermined time.
  8.  請求項2ないし請求項7のいずれか1項に記載の電動ブレーキ装置を複数備える電動ブレーキシステムであって、
     前記複数の電動ブレーキ装置を統合制御するブレーキ統合制御装置を備え、
     前記複数の電動ブレーキ装置における少なくとも二つの電動ブレーキ装置の前記ブレーキ電力低減器が一つに統合されて前記ブレーキ統合制御装置に設けられ、
     この一つに統合された前記ブレーキ電力低減器は、このブレーキ電力低減器における前記静止ブレーキ荷重指令部および前記走行ブレーキ荷重指令部が、統合に係る各電動ブレーキ装置における前記目標ブレーキ荷重の合計値を出力する、
     電動ブレーキシステム。
    An electric brake system comprising a plurality of the electric brake devices according to any one of claims 2 to 7,
    A brake integrated control device for integrated control of the plurality of electric brake devices;
    The brake power reducer of at least two electric brake devices in the plurality of electric brake devices is integrated into one and provided in the brake integrated control device,
    The brake power reducer integrated into this one is the total value of the target brake load in each electric brake device in which the stationary brake load command unit and the traveling brake load command unit in the brake power reducer are integrated. Output,
    Electric brake system.
  9.  請求項8に記載の電動ブレーキシステムにおいて、前記ブレーキ統合制御装置が、前記車両の上位制御装置に設けられた電動ブレーキシステム。 9. The electric brake system according to claim 8, wherein the brake integrated control device is provided in a host control device of the vehicle.
  10.  請求項8に記載の電動ブレーキシステムにおいて、前記ブレーキ統合制御装置が、統合に係る各電動ブレーキ装置におけるいずれかの前記電動ブレーキ制御装置である電動ブレーキシステム。 9. The electric brake system according to claim 8, wherein the brake integrated control device is any one of the electric brake control devices in each electric brake device related to integration.
PCT/JP2019/004471 2018-02-13 2019-02-07 Electric brake device and electric brake system WO2019159813A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-022836 2018-02-13
JP2018022836A JP7116551B2 (en) 2018-02-13 2018-02-13 Electric brake device and electric brake system

Publications (1)

Publication Number Publication Date
WO2019159813A1 true WO2019159813A1 (en) 2019-08-22

Family

ID=67620002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004471 WO2019159813A1 (en) 2018-02-13 2019-02-07 Electric brake device and electric brake system

Country Status (2)

Country Link
JP (1) JP7116551B2 (en)
WO (1) WO2019159813A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327105A (en) * 2002-05-14 2003-11-19 Denso Corp Running control device
JP2017180531A (en) * 2016-03-28 2017-10-05 トヨタ自動車株式会社 Vehicular brake system and friction member abrasion detection method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11165620A (en) * 1997-12-01 1999-06-22 Sumitomo Electric Ind Ltd Brake device for vehicle
JP4677964B2 (en) * 1997-12-16 2011-04-27 トヨタ自動車株式会社 Electric brake device
JP4762283B2 (en) * 2008-09-11 2011-08-31 日立オートモティブシステムズ株式会社 Brake control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327105A (en) * 2002-05-14 2003-11-19 Denso Corp Running control device
JP2017180531A (en) * 2016-03-28 2017-10-05 トヨタ自動車株式会社 Vehicular brake system and friction member abrasion detection method

Also Published As

Publication number Publication date
JP2019137249A (en) 2019-08-22
JP7116551B2 (en) 2022-08-10

Similar Documents

Publication Publication Date Title
US10384659B2 (en) Electric brake device
WO2017043461A1 (en) Powered brake device
US10377355B2 (en) Electric brake device
US10759399B2 (en) Electric brake device
WO2019151146A1 (en) Electric actuator and electric brake device
WO2017026329A1 (en) Electric brake system
JP7089868B2 (en) Electric motor device and electric brake device
US11001246B2 (en) Electric brake device
WO2019159813A1 (en) Electric brake device and electric brake system
JP6502172B2 (en) Electric brake device
JP6952528B2 (en) Electric brake device
JP7126907B2 (en) brake device
WO2019049971A1 (en) Electric actuator and electric motor device
JP6906398B2 (en) Electric brake device
JP6765265B2 (en) Electric brake device
JP2020043665A (en) Electric actuator and electric brake device
JP6986903B2 (en) Electric linear actuator and electric brake device
JP7250191B2 (en) Electric linear actuator and electric brake device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19753696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19753696

Country of ref document: EP

Kind code of ref document: A1