WO2019021750A1 - Power generation device, control device, and control program - Google Patents

Power generation device, control device, and control program Download PDF

Info

Publication number
WO2019021750A1
WO2019021750A1 PCT/JP2018/025099 JP2018025099W WO2019021750A1 WO 2019021750 A1 WO2019021750 A1 WO 2019021750A1 JP 2018025099 W JP2018025099 W JP 2018025099W WO 2019021750 A1 WO2019021750 A1 WO 2019021750A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
generation device
reformer
temperature
control unit
Prior art date
Application number
PCT/JP2018/025099
Other languages
French (fr)
Japanese (ja)
Inventor
亮 後藤
毅史 山根
泰孝 秋澤
真紀 末廣
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2019532465A priority Critical patent/JP7005628B2/en
Publication of WO2019021750A1 publication Critical patent/WO2019021750A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a power generation device, a control device, and a control program.
  • a fuel cell such as a solid oxide fuel cell (Solid Oxide Fuel Cell (hereinafter referred to as SOFC)) supplies gas, water, air and the like to generate power (for example, see Patent Document 1) reference).
  • SOFC Solid Oxide Fuel Cell
  • a power generation device includes a reformer that is supplied with a raw fuel gas and reforming water to generate a fuel gas, and a fuel that generates electric power using the fuel gas supplied from the reformer.
  • a battery and a control unit are provided. The control unit increases the flow rate of air supplied to the fuel cell when the temperature of a predetermined position in the power generation device becomes equal to or higher than a first predetermined temperature in the reforming reaction processing stage at the start of the power generation device.
  • a control device is a reformer that is supplied with raw fuel gas and reforming water to generate a fuel gas, and a fuel that generates electric power using the fuel gas supplied from the reformer. And a battery.
  • the control device increases the flow rate of air supplied to the fuel cell when the temperature of a predetermined position in the power generation device becomes equal to or higher than a first predetermined temperature in the reforming reaction processing stage when the power generation device is started.
  • a control program includes a reformer that is supplied with raw fuel gas and reforming water to generate a fuel gas, and a fuel that generates electricity using the fuel gas supplied from the reformer. And a control program for a control device that controls a power generation device including the battery.
  • the control program supplies the fuel cell to the control device when the temperature of a predetermined position in the power generation device becomes equal to or higher than a first predetermined temperature in a reforming reaction processing step at startup of the power generation device. Execute the step of increasing the air flow rate.
  • the present disclosure relates to providing a power generation device, a control device, and a control program capable of appropriately controlling the air flow rate supplied at the start of the power generation device.
  • a control device capable of appropriately controlling the air flow rate supplied at the start of the power generation device.
  • FIG. 1 is a functional block diagram schematically showing a configuration of a power generation device 1 according to an embodiment of the present disclosure.
  • a power generation device 1 As shown in FIG. 1, a power generation device 1 according to an embodiment of the present disclosure is connected to a hot water storage tank 60, a load 100, and a commercial power supply (grid) 200. Further, as shown in FIG. 1, the power generation device 1 generates electric power by supplying gas, water, and air from the outside, and supplies the generated electric power to a load 100 or the like.
  • the power generation apparatus 1 includes a control unit 10, a storage unit 12, a fuel cell module 20, a gas supply unit 32 for supplying a raw fuel gas, a reforming water supply unit 34, and oxygen.
  • An air supply unit 36 for supplying air as a gas, an inverter 40, a combustion catalyst 42, a combustion catalyst heater 44, an exhaust heat recovery processing unit 50, and a circulating water processing unit 52 are provided.
  • the power plant 1 includes at least one processor as a controller 10 to provide control and processing capabilities to perform various functions, as will be described in more detail below.
  • the at least one processor may also be implemented as a single integrated circuit (IC) or as a plurality of communicatively coupled integrated circuits and / or discrete circuits. Good.
  • the at least one processor can be implemented according to various known techniques.
  • a processor includes one or more circuits or units configured to perform one or more data calculation procedures or processes.
  • the processor may be one or more processors, controllers, microprocessors, microcontrollers, application specific integrated circuits (ASICs), digital signal processors, programmable logic devices, field programmable gate arrays, or any of these devices or configurations.
  • ASICs application specific integrated circuits
  • digital signal processors programmable logic devices, field programmable gate arrays, or any of these devices or configurations.
  • the functions described below may be performed by including a combination or a combination of other known devices or configurations.
  • the control unit 10 is connected to the storage unit 12, the fuel cell module 20, the gas supply unit 32, the reforming water supply unit 34, the air supply unit 36, the inverter 40, and the combustion catalyst heater 44. And control and manage the whole of the power generation device 1 including the respective functional units.
  • the control unit 10 acquires a program stored in the storage unit 12 and executes the program to realize various functions related to each unit of the power generation device 1.
  • the control unit 10 and the other functional units may be connected by wire or wirelessly. The control characteristic of the present embodiment performed by the control unit 10 will be further described later.
  • the storage unit 12 stores the information acquired from the control unit 10.
  • the storage unit 12 also stores programs and the like executed by the control unit 10.
  • the storage unit 12 also stores various data such as calculation results by the control unit 10, for example.
  • the storage unit 12 will be described below as being capable of including a work memory and the like when the control unit 10 operates.
  • the storage unit 12 can be configured by, for example, a semiconductor memory or a magnetic disk, but is not limited to these and can be any storage device.
  • the storage unit 12 may be an optical storage device such as an optical disk, or may be a magneto-optical disk.
  • the fuel cell module 20 includes a reformer 22, a cell stack 24, an ignition heater 26, and a temperature sensor 70.
  • the cell stack 24 of the fuel cell module 20 generates power using the fuel gas supplied from the reformer 22 and the air that is the oxygen-containing gas supplied from the air supply unit 36.
  • the fuel gas contains, for example, hydrogen.
  • the DC power generated in the fuel cell module 20 is output to the inverter 40.
  • the fuel cell module 20 is also referred to as a hot module.
  • the cell stack 24 generates heat as power is generated.
  • the cell stack 24 that actually generates power is appropriately referred to as a “fuel cell”.
  • any functional unit including the cell stack 24 may also be collectively referred to as a “fuel cell” as appropriate.
  • a fuel cell a single cell, a fuel cell module, etc. are mentioned to others.
  • the reformer 22 uses, for example, the fuel such as hydrogen and / or carbon monoxide, using the raw fuel gas supplied from the gas supply unit 32 and the reforming water supplied from the reforming water supply unit 34. Generate gas.
  • the reformer 22 generates steam using the reforming water supplied from the reforming water supply unit 34.
  • the reformer 22 generates a fuel gas such as hydrogen and / or carbon monoxide by using the raw fuel gas supplied from the gas supply unit 32 by steam reforming using the generated steam.
  • the cell stack 24 generates power by reacting a fuel gas such as hydrogen and / or carbon monoxide generated by the reformer 22 with oxygen in the air. That is, in the present embodiment, the cell stack 24 generates power by an electrochemical reaction.
  • the reformer 22 is disposed above the cell stack 24. At the outlet of the reformer 22, a pipe having an outlet below the cell stack 24 is installed. The reformer 22 supplies the hydrogen and / or carbon monoxide generated in the reformer 22 to the cell stack 24 through this pipe.
  • the ignition heater 26 burns around the cell stack 24 and the cell stack 24 at the time of starting the power generation device 1 or the like.
  • the temperature sensor 70 is installed near the outlet of the reformer 22 and detects the temperature near the outlet of the reformer 22.
  • the temperature sensor 70 may detect the temperature of the reformer 22 other than the vicinity of the outlet of the reformer 22.
  • the temperature sensor 70 can be configured by, for example, a thermocouple. Further, the temperature sensor 70 is not limited to a thermocouple, and any member that can measure the temperature can be adopted. For example, the temperature sensor 70 may be a thermistor or a platinum temperature measuring resistor.
  • the cell stack 24 will be described as being an SOFC (solid oxide fuel cell).
  • the cell stack 24 according to the present embodiment is not limited to the SOFC.
  • the cell stack 24 according to the present embodiment includes, for example, a polymer electrolyte fuel cell (PEFC), a phosphoric acid fuel cell (Phosphoric Acid Fuel Cell (PAFC)), and a molten carbonate fuel cell (PEFC). It may be configured by a fuel cell such as Molten Carbonate Fuel Cell (MCFC).
  • PEFC polymer electrolyte fuel cell
  • PAFC phosphoric Acid Fuel Cell
  • PEFC molten carbonate Fuel Cell
  • MCFC Molten Carbonate Fuel Cell
  • the cell stack 24 may not be included in the same casing as the reformer 22, and includes the fuel cell module 20 as described above. It does not have to be.
  • the cell stack 24 and the reformer 22 may or may not be located in the same casing.
  • the cell stack 24 may be provided with, for example, four cells that can generate about 700 W alone.
  • the fuel cell module 20 can output power of about 3 kW as a whole.
  • the cell stack 24 and the fuel cell module 20 according to the present embodiment are not limited to such a configuration, and various configurations can be adopted.
  • the fuel cell module 20 according to the present embodiment may have only one cell stack 24.
  • the power generation device 1 may be provided with a fuel cell that generates power using gas. Therefore, for example, the power generation device 1 can be assumed to have only one fuel battery cell as the fuel cell, not the cell stack 24.
  • the fuel cell according to the present embodiment may be a fuel cell without a module, such as PEFC.
  • the gas supply unit 32 supplies the raw fuel gas to the reformer 22 of the fuel cell module 20.
  • raw fuel gas is also simply referred to as "gas” as appropriate.
  • the gas supply unit 32 controls the flow rate of the gas supplied to the reformer 22 based on the control signal from the control unit 10.
  • the gas supply unit 32 can be configured by, for example, a gas pump or the like.
  • the gas supply unit 32 may perform desulfurization treatment of the gas, or may preheat the gas.
  • the exhaust heat of the cell stack 24 may be used as a heat source to heat the gas.
  • the gas is, for example, city gas or LPG, but is not limited thereto.
  • the gas may be natural gas or coal gas depending on the fuel cell.
  • the reforming water supply unit 34 supplies reforming water to the reformer 22 of the fuel cell module 20. At this time, the reforming water supply unit 34 controls the flow rate of the reforming water supplied to the reformer 22 based on the control signal from the control unit 10.
  • the reforming water supply unit 34 can be configured by, for example, a reforming water pump or the like.
  • the reforming water supply unit 34 may generate reforming water using water recovered from the exhaust of the cell stack 24 as a raw material.
  • the air supply unit 36 supplies air to the cell stack 24 of the fuel cell module 20. At this time, the air supply unit 36 controls the flow rate of air supplied to the cell stack 24 (hereinafter also referred to as “air flow rate”) based on the control signal from the control unit 10.
  • the air supply unit 36 can be configured by, for example, an air blower or the like. Alternatively, the air supply unit 36 may preheat the air taken from the outside and supply the air to the cell stack 24. The exhaust heat of the cell stack 24 may be used as a heat source to heat the air.
  • the air supply unit 36 supplies air used for an electrochemical reaction when the cell stack 24 generates power.
  • the gas supplied by the air supply unit 36 is not limited to air, and may be any gas that can generate electric power by reacting with a fuel gas such as hydrogen. For example, the air supply unit 36 may supply a gas other than air containing oxygen.
  • the air supply unit 36 supplies air to the cell stack 24 through a pipe having an outlet below the cell stack 24.
  • the inverter 40 is electrically connected to the cell stack 24 in the fuel cell module 20.
  • the inverter 40 converts the DC power generated by the cell stack 24 into AC power.
  • the AC power output from the inverter 40 is supplied to the load 100 via a distribution board or the like.
  • the load 100 receives the power output from the inverter 40 via a distribution board or the like.
  • the load 100 is illustrated as only one member in FIG. 1, it may be any number of various electrical devices that configure the load.
  • the load 100 can also receive power from the commercial power supply 200 via a distribution board or the like.
  • the combustion catalyst 42 burns the unburned gas contained in the exhaust gas generated by the power generation of the cell stack 24.
  • the combustion catalyst 42 burns carbon monoxide, which is an unburned gas, to carbon dioxide.
  • the combustion catalyst 42 can burn unburned gas when the temperature is equal to or higher than a predetermined temperature.
  • the combustion catalyst 42 may include, for example, a honeycomb catalyst in which a noble metal catalyst is applied to a honeycomb structure.
  • the noble metal catalyst may contain, for example, platinum and palladium.
  • the combustion catalyst heater 44 heats the exhaust flowing from the cell stack 24 to the combustion catalyst 42.
  • the exhaust heat recovery processing unit 50 recovers exhaust heat from the exhaust generated by the power generation of the cell stack 24.
  • the exhaust heat recovery processing unit 50 can be configured by, for example, a heat exchanger or the like.
  • the exhaust heat recovery processing unit 50 is connected to the circulating water processing unit 52 and the hot water storage tank 60.
  • the circulating water processing unit 52 circulates water from the hot water storage tank 60 to the exhaust heat recovery processing unit 50.
  • the water supplied to the exhaust heat recovery processing unit 50 is heated by the exhaust heat recovered by the exhaust heat recovery processing unit 50 and returns to the hot water storage tank 60.
  • the exhaust heat recovery processing unit 50 discharges the exhaust that has recovered the exhaust heat to the outside.
  • the hot water storage tank 60 is connected to the exhaust heat recovery processing unit 50 and the circulating water processing unit 52.
  • the hot water storage tank 60 can store hot water generated using exhaust heat recovered from the cell stack 24 of the fuel cell module 20 or the like.
  • the control unit 10 starts the supply of air from the air supply unit 36 to the cell stack 24 when the start of the power generation device 1 is started. Subsequently, the control unit 10 turns on the combustion catalyst heater 44 to preheat the combustion catalyst 42. Subsequently, the control unit 10 turns on the ignition heater 26 and starts supply of gas from the gas supply unit 32 to the reformer 22 when a predetermined time has elapsed.
  • the gas starts to burn between the cell stack 24 and the reformer 22 installed above the cell stack 24.
  • the place where the gas between the cell stack 24 and the reformer 22 is burning is also referred to as a "burning part”.
  • the control unit 10 shifts to the reforming reaction process, and reforms the reforming water supply unit 34 to the reformer 22. Start water supply.
  • the control unit 10 switches the stages in accordance with the temperature near the outlet of the reformer 22 in the reforming reaction processing stage.
  • the control unit 10 switches the flow rate of the gas, the flow rate of the reforming water, and the air flow rate when the steps are switched.
  • the control unit 10 switches stages 1 to 3 as follows, for example. Switch from stage 1 to stage 2 when the temperature near the outlet of the reformer 22 reaches or exceeds a first predetermined temperature (for example, 285 ° C.). When the temperature near the outlet of the reformer 22 becomes equal to or higher than a second predetermined temperature (for example, 650 ° C.) higher than the first predetermined temperature, switching from stage 2 to stage 3 is performed.
  • a first predetermined temperature for example, 285 ° C.
  • a second predetermined temperature for example, 650 ° C.
  • FIG. 2 an example of the air flow volume in each step which the control part 10 controls is shown.
  • the control unit 10 switches from stage 1 to stage 2 and the air flow rate is 100 [NL / min] to 106
  • the air supply unit 36 is controlled to increase to [NL / min].
  • the control unit 10 switches from stage 2 to stage 3 and the air flow rate is 106 [NL / min] to 80 [NL / min]. Control the air supply 36 to reduce the
  • control unit 10 switches the stages 1 to 3 based on the temperature near the outlet of the reformer 22, but the temperature measurement place is not limited to this.
  • the control unit 10 may switch between stage 1 to stage 3 based on the temperature of any predetermined position in the power generation device 1. As the first predetermined temperature and the second predetermined temperature, appropriate temperatures may be set in advance according to the measurement location.
  • the control unit 10 increases the air flow rate when going from stage 1 to stage 2.
  • the control unit 10 increases the air flow rate, the flow rate of the air supplied from the air supply unit 36 to the lower side of the cell stack 24 through the piping increases, whereby the gas in the fuel cell module 20 is agitated.
  • the temperature difference between the outlet of the reformer 22 and the portion of the pipe near the lower part of the cell stack 24 is reduced. Therefore, the disproportionation reaction resulting from the temperature difference can be suppressed, and the control unit 10 can suppress carbon deposition in the temperature range of stage 2.
  • control unit 10 reduces the air flow rate from stage 2 to stage 3. This is because, when the temperature in the vicinity of the outlet of the reformer 22 reaches a second predetermined temperature or more, the temperature difference between the outlet of the reformer 22 and the lower portion of the cell stack 24 of the pipe is already It is because the disproportionation reaction is less likely to occur. Maintaining the temperature in the fuel cell module 20 at a high temperature can be considered as the reason for reducing the air flow rate compared to the time of startup.
  • the control unit 10 acquires the temperature in the vicinity of the outlet of the reformer 22 from the temperature sensor 70 in the reforming reaction processing stage when the power generation device 1 is started. The control unit 10 determines whether the temperature in the vicinity of the outlet of the reformer 22 has become equal to or higher than a first predetermined temperature (step S101).
  • control unit 10 When the temperature in the vicinity of the outlet of the reformer 22 is not higher than the first predetermined temperature (No in step S101), the control unit 10 does not change the air flow rate.
  • control unit 10 increases the air flow rate in step 1 to the air flow rate in step 2 (step S102).
  • control unit 10 determines whether the temperature in the vicinity of the outlet of the reformer 22 has become equal to or higher than a second predetermined temperature (step S103).
  • control unit 10 When the temperature in the vicinity of the outlet of the reformer 22 is not higher than the second predetermined temperature (No in step S103), the control unit 10 does not change the air flow rate.
  • control unit 10 reduces the air flow rate in step 2 to the air flow rate in step 3 (step S104).
  • control unit 10 controls the flow rate of air supplied to the cell stack 24 when the temperature near the outlet of the reformer 22 becomes equal to or higher than the first predetermined temperature in the reforming reaction processing step at the time of starting the power generation device Control the air supply 36 to increase the As a result, the gas in the fuel cell module 20 is agitated, and the temperature difference between the outlet of the reformer 22 and the portion of the pipe near the lower part of the cell stack 24 decreases, so the power generation device 1 suppresses carbon deposition. can do.
  • the power generation device 1 can appropriately control the flow rate of air supplied when the power generation device 1 is started.
  • the control unit 10 switches not only the air flow rate but also the gas flow rate and the reforming water flow rate according to the stage. At this time, the control unit 10 may switch the value of S / C, which is the ratio of the reforming water supplied to the reformer 22 to the gas supplied to the reformer 22, according to the stage.
  • FIG. 4 shows an example of S / C at each stage controlled by the control unit 10.
  • the control unit 10 controls the gas supply unit 32 and the reforming water supply unit 34 so that S / C increases from 1 to 2.5 from stage 1 to stage 2. Further, when going from stage 2 to stage 3, the control unit 10 controls the gas supply unit 32 and the reforming water supply unit 34 so that S / C increases from 2.5 to 4.
  • control unit 10 increases the S / C when the temperature at the outlet of the reformer 22 rises and the stages switch. Thereby, control part 10 can control carbon precipitation in the temperature range of stage 2 and stage 3.
  • the control unit 10 sets S / C to a small value in stage 1.
  • carbon deposition hardly occurs when the temperature is low, carbon deposition can be suppressed in Step 1 even if S / C is a small value.
  • S / C can be increased because the temperature is already high enough.
  • the control unit 10 acquires the temperature in the vicinity of the outlet of the reformer 22 from the temperature sensor 70 in the reforming reaction processing stage when the power generation device 1 is started. The control unit 10 determines whether the temperature in the vicinity of the outlet of the reformer 22 has become equal to or higher than a first predetermined temperature (step S201).
  • control unit 10 When the temperature in the vicinity of the outlet of the reformer 22 is not the first predetermined temperature or more (No in step S201), the control unit 10 does not change the S / C.
  • control unit 10 increases the S / C of step 1 to the S / C of step 2 (step S202). ).
  • control unit 10 determines whether the temperature in the vicinity of the outlet of the reformer 22 has reached a second predetermined temperature or more (step S203).
  • control unit 10 does not change the S / C.
  • control unit 10 further increases the S / C of step 2 to the S / C of step 3 (step S204).
  • the embodiment of the present disclosure can also be realized as a configuration in which functional blocks corresponding to the control unit 10 and the storage unit 12 of the power generation device 1 shown in FIG. 1 are provided outside the power generation device 1.
  • FIG. 6 An example of such an embodiment is shown in FIG.
  • the control device 2 that controls the power generation device 1 from the outside includes a control unit 10 and a storage unit 12.
  • the functions of the control unit 10 and the storage unit 12 of the control device 2 shown in FIG. 6 are respectively equivalent to the functions of the control unit 10 and the storage unit 12 of the power generation device 1 shown in FIG.
  • the embodiment of the present disclosure can also be realized as, for example, a control program that is executed by the control device 2 illustrated in FIG.
  • each functional unit, each means, the functions included in each step, and the like can be rearranged so as not to be logically contradictory, and a plurality of functional units and steps are combined or divided into one. It is possible.
  • each embodiment of the present invention mentioned above is not limited to carrying out faithfully to each embodiment described respectively, and combines each feature suitably, or carries out by omitting a part. It can also be done.
  • the power generation device 1 including the cell stack 24 that is SOFC has been described as the present embodiment.
  • the power generation device 1 according to the present embodiment is not limited to one including an SOFC, and may include various fuel cells such as a PEFC without a module.
  • fuel cell means, for example, a power generation system, a power generation unit, a fuel cell module, a hot module, a cell stack, or a cell.
  • the “fuel cell” in the present disclosure may be a fuel cell mounted on a fuel cell vehicle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)

Abstract

This power generation device is equipped with a reformer to which a raw fuel gas and reforming water are supplied and which generates a fuel gas therefrom, a fuel cell which generates power using the fuel gas supplied from the reformer, and a control unit. In a reforming reaction treatment step during activation of the power generation device, the control unit increases the flow rate of air supplied to the fuel cell when the temperature at a prescribed position within the power generation device reaches a first prescribed temperature or higher.

Description

発電装置、制御装置及び制御プログラムPOWER GENERATOR, CONTROL DEVICE, AND CONTROL PROGRAM 関連出願の相互参照Cross-reference to related applications
 本出願は、日本国特許出願2017-145887号(2017年7月27日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。 This application claims the priority of Japanese Patent Application No. 2017-145887 (filed on July 27, 2017), the entire disclosure of which is incorporated herein by reference.
 本開示は、発電装置、制御装置及び制御プログラムに関する。 The present disclosure relates to a power generation device, a control device, and a control program.
 固体酸化物形燃料電池(Solid Oxide Fuel Cell(以下、SOFCと記す))等のような燃料電池を備える発電装置は、ガス、水、及び空気などを供給されて発電する(例えば、特許文献1参照)。 A power generating apparatus equipped with a fuel cell such as a solid oxide fuel cell (Solid Oxide Fuel Cell (hereinafter referred to as SOFC)) supplies gas, water, air and the like to generate power (for example, see Patent Document 1) reference).
特開2013-191585号公報JP, 2013-191585, A
 本開示の一実施形態に係る発電装置は、原燃料ガス及び改質水を供給されて燃料ガスを生成する改質器と、前記改質器から供給される前記燃料ガスを用いて発電する燃料電池と、制御部と、を備える。前記制御部は、前記発電装置の起動時の改質反応処理段階において、前記発電装置内の所定の位置の温度が第1の所定温度以上になると、前記燃料電池に供給する空気流量を増やす。 A power generation device according to an embodiment of the present disclosure includes a reformer that is supplied with a raw fuel gas and reforming water to generate a fuel gas, and a fuel that generates electric power using the fuel gas supplied from the reformer. A battery and a control unit are provided. The control unit increases the flow rate of air supplied to the fuel cell when the temperature of a predetermined position in the power generation device becomes equal to or higher than a first predetermined temperature in the reforming reaction processing stage at the start of the power generation device.
 本開示の一実施形態に係る制御装置は、原燃料ガス及び改質水を供給されて燃料ガスを生成する改質器と、前記改質器から供給される前記燃料ガスを用いて発電する燃料電池と、を備える発電装置を制御する。前記制御装置は、前記発電装置の起動時の改質反応処理段階において、前記発電装置内の所定の位置の温度が第1の所定温度以上になると、前記燃料電池に供給する空気流量を増やす。 A control device according to an embodiment of the present disclosure is a reformer that is supplied with raw fuel gas and reforming water to generate a fuel gas, and a fuel that generates electric power using the fuel gas supplied from the reformer. And a battery. The control device increases the flow rate of air supplied to the fuel cell when the temperature of a predetermined position in the power generation device becomes equal to or higher than a first predetermined temperature in the reforming reaction processing stage when the power generation device is started.
 本開示の一実施形態に係る制御プログラムは、原燃料ガス及び改質水を供給されて燃料ガスを生成する改質器と、前記改質器から供給される前記燃料ガスを用いて発電する燃料電池と、を備える発電装置を制御する制御装置のための制御プログラムである。前記制御プログラムは、前記制御装置に、前記発電装置の起動時の改質反応処理段階において、前記発電装置内の所定の位置の温度が第1の所定温度以上になると、前記燃料電池に供給する空気流量を増やすステップを実行させる。 A control program according to an embodiment of the present disclosure includes a reformer that is supplied with raw fuel gas and reforming water to generate a fuel gas, and a fuel that generates electricity using the fuel gas supplied from the reformer. And a control program for a control device that controls a power generation device including the battery. The control program supplies the fuel cell to the control device when the temperature of a predetermined position in the power generation device becomes equal to or higher than a first predetermined temperature in a reforming reaction processing step at startup of the power generation device. Execute the step of increasing the air flow rate.
本開示の実施形態に係る発電装置の構成を概略的に示す機能ブロック図である。It is a functional block diagram showing roughly the composition of the power generator concerning the embodiment of this indication. 本開示の実施形態に係る発電装置の起動時の改質反応処理段階の各段階における空気流量の一例を示す図である。It is a figure which shows an example of the air flow volume in each step of the reforming reaction process step at the time of starting of the electric power generating apparatus which concerns on embodiment of this indication. 本開示の実施形態に係る発電装置が起動時の改質反応処理段階の各段階において空気流量を変える動作の一例を示すフローチャートである。It is a flow chart which shows an example of operation which changes an air flow in each stage of a reforming reaction processing stage at the time of start-up of a power generation device concerning an embodiment of this indication. 本開示の実施形態に係る発電装置の起動時の改質反応処理段階の各段階におけるS/Cの一例を示す図である。It is a figure which shows an example of S / C in each step of the reforming reaction process step at the time of starting of the electric power generating apparatus which concerns on embodiment of this indication. 本開示の実施形態に係る発電装置が起動時の改質反応処理段階の各段階においてS/Cを変える動作の一例を示すフローチャートである。It is a flow chart which shows an example of operation which changes S / C in each stage of a reforming reaction processing stage at the time of starting of a power generation device concerning an embodiment of this indication. 本開示の実施形態に係る発電装置の構成の変形例を概略的に示す機能ブロック図である。It is a functional block diagram showing roughly a modification of composition of a power generator concerning an embodiment of this indication.
 従来、発電装置の起動時に供給する空気流量の制御には改善の余地があった。本開示は、発電装置の起動時に供給する空気流量を適切に制御することができる発電装置、制御装置及び制御プログラムを提供することに関する。以下、本開示の実施形態について、図面を参照して説明する。まず、本開示の実施形態に係る発電装置の構成を説明する。 Conventionally, there has been room for improvement in the control of the air flow rate supplied at the time of start of the power generation device. The present disclosure relates to providing a power generation device, a control device, and a control program capable of appropriately controlling the air flow rate supplied at the start of the power generation device. Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. First, the configuration of a power generation device according to an embodiment of the present disclosure will be described.
 図1は、本開示の実施形態に係る発電装置1の構成を概略的に示す機能ブロック図である。 FIG. 1 is a functional block diagram schematically showing a configuration of a power generation device 1 according to an embodiment of the present disclosure.
 図1に示すように、本開示の実施形態に係る発電装置1は、貯湯タンク60と、負荷100と、商用電源(grid)200とに接続される。また、図1に示すように、発電装置1は、外部からガス、水、及び空気が供給されることにより発電し、発電した電力を負荷100等に供給する。 As shown in FIG. 1, a power generation device 1 according to an embodiment of the present disclosure is connected to a hot water storage tank 60, a load 100, and a commercial power supply (grid) 200. Further, as shown in FIG. 1, the power generation device 1 generates electric power by supplying gas, water, and air from the outside, and supplies the generated electric power to a load 100 or the like.
 図1に示すように、発電装置1は、制御部10と、記憶部12と、燃料電池モジュール20と、原燃料ガスを供給するガス供給部32と、改質水供給部34と、酸素含有ガスとしての空気を供給する空気供給部36と、インバータ40と、燃焼触媒42と、燃焼触媒ヒータ44と、排熱回収処理部50と、循環水処理部52とを備える。 As shown in FIG. 1, the power generation apparatus 1 includes a control unit 10, a storage unit 12, a fuel cell module 20, a gas supply unit 32 for supplying a raw fuel gas, a reforming water supply unit 34, and oxygen. An air supply unit 36 for supplying air as a gas, an inverter 40, a combustion catalyst 42, a combustion catalyst heater 44, an exhaust heat recovery processing unit 50, and a circulating water processing unit 52 are provided.
 発電装置1は、以下にさらに詳細に述べられるように、種々の機能を実行するための制御及び処理能力を提供するために、制御部10として少なくとも1つのプロセッサを含む。種々の実施形態によれば、少なくとも1つのプロセッサは、単一の集積回路(IC)として、又は複数の通信可能に接続された集積回路、及び/又はディスクリート回路(discrete circuits)として実現されてもよい。少なくとも1つのプロセッサは、種々の既知の技術に従って実現されることが可能である。 The power plant 1 includes at least one processor as a controller 10 to provide control and processing capabilities to perform various functions, as will be described in more detail below. According to various embodiments, the at least one processor may also be implemented as a single integrated circuit (IC) or as a plurality of communicatively coupled integrated circuits and / or discrete circuits. Good. The at least one processor can be implemented according to various known techniques.
 ある実施形態において、プロセッサは、1以上のデータ計算手続又は処理を実行するために構成された、1以上の回路又はユニットを含む。例えば、プロセッサは、1以上のプロセッサ、コントローラ、マイクロプロセッサ、マイクロコントローラ、特定用途向け集積回路(ASIC)、デジタル信号処理装置、プログラマブルロジックデバイス、フィールドプログラマブルゲートアレイ、又はこれらのデバイス若しくは構成の任意の組み合わせ、又は他の既知のデバイス若しくは構成の組み合わせを含むことにより、以下に説明する機能を実行してもよい。 In one embodiment, a processor includes one or more circuits or units configured to perform one or more data calculation procedures or processes. For example, the processor may be one or more processors, controllers, microprocessors, microcontrollers, application specific integrated circuits (ASICs), digital signal processors, programmable logic devices, field programmable gate arrays, or any of these devices or configurations. The functions described below may be performed by including a combination or a combination of other known devices or configurations.
 制御部10は、記憶部12と、燃料電池モジュール20と、ガス供給部32と、改質水供給部34と、空気供給部36と、インバータ40と、燃焼触媒ヒータ44とに接続され、これらの各機能部をはじめとして発電装置1の全体を制御及び管理する。制御部10は、記憶部12に記憶されているプログラムを取得して、このプログラムを実行することにより、発電装置1の各部に係る種々の機能を実現する。制御部10から他の機能部に制御信号又は各種の情報などを送信する場合、制御部10と他の機能部とは、有線又は無線により接続されていればよい。制御部10が行う本実施形態に特徴的な制御については、さらに後述する。 The control unit 10 is connected to the storage unit 12, the fuel cell module 20, the gas supply unit 32, the reforming water supply unit 34, the air supply unit 36, the inverter 40, and the combustion catalyst heater 44. And control and manage the whole of the power generation device 1 including the respective functional units. The control unit 10 acquires a program stored in the storage unit 12 and executes the program to realize various functions related to each unit of the power generation device 1. When a control signal or various information is transmitted from the control unit 10 to another functional unit, the control unit 10 and the other functional units may be connected by wire or wirelessly. The control characteristic of the present embodiment performed by the control unit 10 will be further described later.
 記憶部12は、制御部10から取得した情報を記憶する。また記憶部12は、制御部10によって実行されるプログラム等を記憶する。その他、記憶部12は、例えば制御部10による演算結果などの各種データも記憶する。さらに、記憶部12は、制御部10が動作する際のワークメモリ等も含むことができるものとして、以下説明する。記憶部12は、例えば半導体メモリ又は磁気ディスク等により構成することができるが、これらに限定されず、任意の記憶装置とすることができる。例えば、記憶部12は、光ディスクのような光学記憶装置としてもよいし、光磁気ディスクなどとしてもよい。 The storage unit 12 stores the information acquired from the control unit 10. The storage unit 12 also stores programs and the like executed by the control unit 10. In addition, the storage unit 12 also stores various data such as calculation results by the control unit 10, for example. Further, the storage unit 12 will be described below as being capable of including a work memory and the like when the control unit 10 operates. The storage unit 12 can be configured by, for example, a semiconductor memory or a magnetic disk, but is not limited to these and can be any storage device. For example, the storage unit 12 may be an optical storage device such as an optical disk, or may be a magneto-optical disk.
 燃料電池モジュール20は、改質器22と、セルスタック24と、着火ヒータ26と、温度センサ70とを備えている。燃料電池モジュール20のセルスタック24は、改質器22から供給される燃料ガス、及び空気供給部36から供給される酸素含有ガスである空気を用いて発電する。燃料ガスは、例えば水素を含む。燃料電池モジュール20内で発電した直流電力は、インバータ40に出力される。燃料電池モジュール20は、ホットモジュールとも呼ばれる。燃料電池モジュール20において、セルスタック24は、発電に伴い発熱する。本開示において、実際に発電を行うセルスタック24を、適宜、「燃料電池」と記す。また、本開示において、セルスタック24を含めた任意の機能部も、適宜、「燃料電池」と総称することがある。例えば、「燃料電池」としては、他に、単体のセル、又は燃料電池モジュールなどが挙げられる。 The fuel cell module 20 includes a reformer 22, a cell stack 24, an ignition heater 26, and a temperature sensor 70. The cell stack 24 of the fuel cell module 20 generates power using the fuel gas supplied from the reformer 22 and the air that is the oxygen-containing gas supplied from the air supply unit 36. The fuel gas contains, for example, hydrogen. The DC power generated in the fuel cell module 20 is output to the inverter 40. The fuel cell module 20 is also referred to as a hot module. In the fuel cell module 20, the cell stack 24 generates heat as power is generated. In the present disclosure, the cell stack 24 that actually generates power is appropriately referred to as a “fuel cell”. Further, in the present disclosure, any functional unit including the cell stack 24 may also be collectively referred to as a “fuel cell” as appropriate. For example, as a "fuel cell", a single cell, a fuel cell module, etc. are mentioned to others.
 改質器22は、ガス供給部32から供給される原燃料ガス、及び、改質水供給部34から供給される改質水を用いて、例えば、水素及び/又は一酸化炭素のような燃料ガスを生成する。例えば、改質器22は、改質水供給部34から供給される改質水を用いて水蒸気を生成する。さらに、改質器22は、生成した水蒸気を用いた水蒸気改質により、ガス供給部32から供給される原燃料ガスを用いて、水素及び/又は一酸化炭素のような燃料ガスを生成する。セルスタック24は、改質器22で生成された水素及び/又は一酸化炭素のような燃料ガスと、空気中の酸素とを反応させることにより、発電する。すなわち、本実施形態において、セルスタック24は、電気化学反応により発電する。 The reformer 22 uses, for example, the fuel such as hydrogen and / or carbon monoxide, using the raw fuel gas supplied from the gas supply unit 32 and the reforming water supplied from the reforming water supply unit 34. Generate gas. For example, the reformer 22 generates steam using the reforming water supplied from the reforming water supply unit 34. Furthermore, the reformer 22 generates a fuel gas such as hydrogen and / or carbon monoxide by using the raw fuel gas supplied from the gas supply unit 32 by steam reforming using the generated steam. The cell stack 24 generates power by reacting a fuel gas such as hydrogen and / or carbon monoxide generated by the reformer 22 with oxygen in the air. That is, in the present embodiment, the cell stack 24 generates power by an electrochemical reaction.
 改質器22は、セルスタック24の上方に設置されている。改質器22の出口には、セルスタック24の下方に出口のある配管が設置されている。改質器22は、この配管を通して、改質器22において生成された水素及び/又は一酸化炭素を、セルスタック24に供給する。 The reformer 22 is disposed above the cell stack 24. At the outlet of the reformer 22, a pipe having an outlet below the cell stack 24 is installed. The reformer 22 supplies the hydrogen and / or carbon monoxide generated in the reformer 22 to the cell stack 24 through this pipe.
 着火ヒータ26は、発電装置1の起動時などにおいて、セルスタック24及びセルスタック24の周辺を燃焼する。 The ignition heater 26 burns around the cell stack 24 and the cell stack 24 at the time of starting the power generation device 1 or the like.
 温度センサ70は、改質器22の出口付近に設置され、改質器22の出口付近の温度を検出する。なお、温度センサ70は、改質器22の出口付近以外の改質器22の温度を検出してもよい。 The temperature sensor 70 is installed near the outlet of the reformer 22 and detects the temperature near the outlet of the reformer 22. The temperature sensor 70 may detect the temperature of the reformer 22 other than the vicinity of the outlet of the reformer 22.
 温度センサ70は、例えば熱電対などにより構成することができる。また、温度センサ70は、熱電対に限定されず、温度を測定できる部材であれば任意のものを採用することができる。例えば、温度センサ70は、サーミスタ又は白金測温抵抗体としてもよい。 The temperature sensor 70 can be configured by, for example, a thermocouple. Further, the temperature sensor 70 is not limited to a thermocouple, and any member that can measure the temperature can be adopted. For example, the temperature sensor 70 may be a thermistor or a platinum temperature measuring resistor.
 以下、セルスタック24は、SOFC(固体酸化物形燃料電池)であるとして説明する。しかしながら、本実施形態に係るセルスタック24はSOFCに限定されない。本実施形態に係るセルスタック24は、例えば固体高分子形燃料電池(Polymer Electrolyte Fuel Cell(PEFC))、リン酸形燃料電池(Phosphoric Acid Fuel Cell(PAFC))、及び溶融炭酸塩形燃料電池(Molten Carbonate Fuel Cell(MCFC))などのような燃料電池で構成してもよい。なお、セルスタック24が例えばPEFC等、SOFCと異なるタイプの場合、セルスタック24は、改質器22と同じ筺体内に含まれなくてもよく、前述したような燃料電池モジュール20を有していなくてもよい。また、セルスタック24が例えばPEFC等、SOFCと異なるタイプの場合、セルスタック24と改質器22が同じ筺体内であっても近傍に位置しなくてもよい。また、本実施形態において、セルスタック24は、例えば単体で700W程度の発電ができるものを4つ備えてもよい。この場合、燃料電池モジュール20は、全体として3kW程度の電力を出力することができる。しかしながら、本実施形態に係るセルスタック24及び燃料電池モジュール20は、このような構成に限定されるものではなく、種々の構成を採用することができる。例えば、本実施形態に係る燃料電池モジュール20は、セルスタック24を1つのみ備えるようにしてもよい。本実施形態において、発電装置1は、ガスを利用して発電を行う燃料電池を備えていればよい。したがって、例えば、発電装置1は、燃料電池として、セルスタック24ではなく、単に燃料電池セル1つのみを備えるものも想定できる。また、本実施形態に係る燃料電池は、例えばPEFCのように、モジュールのない燃料電池としてもよい。 Hereinafter, the cell stack 24 will be described as being an SOFC (solid oxide fuel cell). However, the cell stack 24 according to the present embodiment is not limited to the SOFC. The cell stack 24 according to the present embodiment includes, for example, a polymer electrolyte fuel cell (PEFC), a phosphoric acid fuel cell (Phosphoric Acid Fuel Cell (PAFC)), and a molten carbonate fuel cell (PEFC). It may be configured by a fuel cell such as Molten Carbonate Fuel Cell (MCFC). When the cell stack 24 is of a type different from SOFC, such as PEFC, for example, the cell stack 24 may not be included in the same casing as the reformer 22, and includes the fuel cell module 20 as described above. It does not have to be. Also, in the case where the cell stack 24 is of a type different from SOFC, such as PEFC, for example, the cell stack 24 and the reformer 22 may or may not be located in the same casing. Further, in the present embodiment, the cell stack 24 may be provided with, for example, four cells that can generate about 700 W alone. In this case, the fuel cell module 20 can output power of about 3 kW as a whole. However, the cell stack 24 and the fuel cell module 20 according to the present embodiment are not limited to such a configuration, and various configurations can be adopted. For example, the fuel cell module 20 according to the present embodiment may have only one cell stack 24. In the present embodiment, the power generation device 1 may be provided with a fuel cell that generates power using gas. Therefore, for example, the power generation device 1 can be assumed to have only one fuel battery cell as the fuel cell, not the cell stack 24. Also, the fuel cell according to the present embodiment may be a fuel cell without a module, such as PEFC.
 ガス供給部32は、燃料電池モジュール20の改質器22に原燃料ガスを供給する。以下、適宜、「原燃料ガス」を単に「ガス」とも記す。このとき、ガス供給部32は、制御部10からの制御信号に基づいて、改質器22に供給するガスの流量を制御する。本実施形態において、ガス供給部32は、例えばガスポンプ等によって構成することができる。またガス供給部32は、ガスの脱硫処理を行ってもよいし、ガスを予備的に加熱してもよい。ガスを加熱する熱源として、セルスタック24の排熱が利用されてもよい。ガスは、例えば、都市ガス、又はLPG等であるが、これらに限定されない。例えば、ガスは、燃料電池に応じて、天然ガス又は石炭ガスなどとしてもよい。 The gas supply unit 32 supplies the raw fuel gas to the reformer 22 of the fuel cell module 20. Hereinafter, "raw fuel gas" is also simply referred to as "gas" as appropriate. At this time, the gas supply unit 32 controls the flow rate of the gas supplied to the reformer 22 based on the control signal from the control unit 10. In the present embodiment, the gas supply unit 32 can be configured by, for example, a gas pump or the like. In addition, the gas supply unit 32 may perform desulfurization treatment of the gas, or may preheat the gas. The exhaust heat of the cell stack 24 may be used as a heat source to heat the gas. The gas is, for example, city gas or LPG, but is not limited thereto. For example, the gas may be natural gas or coal gas depending on the fuel cell.
 改質水供給部34は、燃料電池モジュール20の改質器22に改質水を供給する。このとき、改質水供給部34は、制御部10からの制御信号に基づいて、改質器22に供給する改質水の流量を制御する。本実施形態において、改質水供給部34は、例えば改質水ポンプ等によって構成することができる。改質水供給部34は、セルスタック24の排気から回収された水を原料として改質水を生成してもよい。 The reforming water supply unit 34 supplies reforming water to the reformer 22 of the fuel cell module 20. At this time, the reforming water supply unit 34 controls the flow rate of the reforming water supplied to the reformer 22 based on the control signal from the control unit 10. In the present embodiment, the reforming water supply unit 34 can be configured by, for example, a reforming water pump or the like. The reforming water supply unit 34 may generate reforming water using water recovered from the exhaust of the cell stack 24 as a raw material.
 空気供給部36は、燃料電池モジュール20のセルスタック24に空気を供給する。このとき、空気供給部36は、制御部10からの制御信号に基づいて、セルスタック24に供給する空気の流量(以下「空気流量」とも称する)を制御する。本実施形態において、空気供給部36は、例えば空気ブロワ等によって構成することができる。また空気供給部36は、外部から取り込んだ空気を予備的に加熱して、セルスタック24に供給してもよい。空気を加熱する熱源として、セルスタック24の排熱が利用されてもよい。本実施形態において、空気供給部36は、セルスタック24が発電する際の電気化学反応に用いられる空気を供給する。空気供給部36が供給する気体は空気に限定されず、水素等の燃料ガスと反応して発電できる気体であればよい。例えば、空気供給部36は、酸素を含有する空気以外の気体を供給してもよい。 The air supply unit 36 supplies air to the cell stack 24 of the fuel cell module 20. At this time, the air supply unit 36 controls the flow rate of air supplied to the cell stack 24 (hereinafter also referred to as “air flow rate”) based on the control signal from the control unit 10. In the present embodiment, the air supply unit 36 can be configured by, for example, an air blower or the like. Alternatively, the air supply unit 36 may preheat the air taken from the outside and supply the air to the cell stack 24. The exhaust heat of the cell stack 24 may be used as a heat source to heat the air. In the present embodiment, the air supply unit 36 supplies air used for an electrochemical reaction when the cell stack 24 generates power. The gas supplied by the air supply unit 36 is not limited to air, and may be any gas that can generate electric power by reacting with a fuel gas such as hydrogen. For example, the air supply unit 36 may supply a gas other than air containing oxygen.
 空気供給部36は、セルスタック24の下方に出口のある配管を通して、空気をセルスタック24に供給する。 The air supply unit 36 supplies air to the cell stack 24 through a pipe having an outlet below the cell stack 24.
 インバータ40は、燃料電池モジュール20内のセルスタック24に電気的に接続される。インバータ40は、セルスタック24が発電した直流電力を、交流電力に変換する。インバータ40から出力される交流電力は、分電盤などを介して、負荷100に供給される。負荷100は、分電盤などを介して、インバータ40から出力された電力を受電する。図1において、負荷100は、1つのみの部材として図示してあるが、負荷を構成する任意の個数の各種電気機器とすることができる。また、負荷100は、分電盤などを介して、商用電源200から受電することもできる。 The inverter 40 is electrically connected to the cell stack 24 in the fuel cell module 20. The inverter 40 converts the DC power generated by the cell stack 24 into AC power. The AC power output from the inverter 40 is supplied to the load 100 via a distribution board or the like. The load 100 receives the power output from the inverter 40 via a distribution board or the like. Although the load 100 is illustrated as only one member in FIG. 1, it may be any number of various electrical devices that configure the load. The load 100 can also receive power from the commercial power supply 200 via a distribution board or the like.
 燃焼触媒42は、セルスタック24の発電により生じる排気に含まれる未燃ガスを燃焼させる。燃焼触媒42は、例えば、未燃ガスである一酸化炭素を燃焼させて、二酸化炭素にする。燃焼触媒42は、所定の温度以上であるときに、未燃ガスを燃焼させることができる。燃焼触媒42は、例えばハニカム構造に貴金属触媒が塗布されたハニカム触媒を含んでもよい。貴金属触媒は、例えば白金及びパラジウム等を含んでもよい。 The combustion catalyst 42 burns the unburned gas contained in the exhaust gas generated by the power generation of the cell stack 24. For example, the combustion catalyst 42 burns carbon monoxide, which is an unburned gas, to carbon dioxide. The combustion catalyst 42 can burn unburned gas when the temperature is equal to or higher than a predetermined temperature. The combustion catalyst 42 may include, for example, a honeycomb catalyst in which a noble metal catalyst is applied to a honeycomb structure. The noble metal catalyst may contain, for example, platinum and palladium.
 燃焼触媒ヒータ44は、セルスタック24から燃焼触媒42に流入する排気を加熱する。 The combustion catalyst heater 44 heats the exhaust flowing from the cell stack 24 to the combustion catalyst 42.
 排熱回収処理部50は、セルスタック24の発電により生じる排気から排熱を回収する。排熱回収処理部50は、例えば熱交換器等で構成することができる。排熱回収処理部50は、循環水処理部52及び貯湯タンク60に接続される。 The exhaust heat recovery processing unit 50 recovers exhaust heat from the exhaust generated by the power generation of the cell stack 24. The exhaust heat recovery processing unit 50 can be configured by, for example, a heat exchanger or the like. The exhaust heat recovery processing unit 50 is connected to the circulating water processing unit 52 and the hot water storage tank 60.
 循環水処理部52は、貯湯タンク60から排熱回収処理部50へ水を循環させる。排熱回収処理部50に供給された水は、排熱回収処理部50で回収された排熱によって加熱され、貯湯タンク60に戻る。排熱回収処理部50は、排熱を回収した排気を外部に排出する。 The circulating water processing unit 52 circulates water from the hot water storage tank 60 to the exhaust heat recovery processing unit 50. The water supplied to the exhaust heat recovery processing unit 50 is heated by the exhaust heat recovered by the exhaust heat recovery processing unit 50 and returns to the hot water storage tank 60. The exhaust heat recovery processing unit 50 discharges the exhaust that has recovered the exhaust heat to the outside.
 貯湯タンク60は、排熱回収処理部50及び循環水処理部52に接続される。貯湯タンク60は、燃料電池モジュール20のセルスタック24などから回収された排熱を利用して生成された湯を、貯えることができる。 The hot water storage tank 60 is connected to the exhaust heat recovery processing unit 50 and the circulating water processing unit 52. The hot water storage tank 60 can store hot water generated using exhaust heat recovered from the cell stack 24 of the fuel cell module 20 or the like.
 次に、制御部10の動作について説明する。 Next, the operation of the control unit 10 will be described.
(起動時の処理)
 制御部10は、発電装置1の起動を開始すると、空気供給部36からセルスタック24への空気の供給を開始する。続いて、制御部10は、燃焼触媒ヒータ44をオンし、燃焼触媒42を予熱する。続いて、制御部10は、着火ヒータ26をオンし、所定の時間が経過すると、ガス供給部32から改質器22へのガスの供給を開始する。
(Process at startup)
The control unit 10 starts the supply of air from the air supply unit 36 to the cell stack 24 when the start of the power generation device 1 is started. Subsequently, the control unit 10 turns on the combustion catalyst heater 44 to preheat the combustion catalyst 42. Subsequently, the control unit 10 turns on the ignition heater 26 and starts supply of gas from the gas supply unit 32 to the reformer 22 when a predetermined time has elapsed.
 ガスの供給が開始されると、セルスタック24と、セルスタック24の上方に設置されている改質器22との間で、ガスが燃焼し始める。以後、セルスタック24と改質器22との間のガスが燃焼しているところを「燃焼部」とも称する。 When the gas supply is started, the gas starts to burn between the cell stack 24 and the reformer 22 installed above the cell stack 24. Hereinafter, the place where the gas between the cell stack 24 and the reformer 22 is burning is also referred to as a "burning part".
 燃焼部においてガスが燃焼し始めると、改質器22の出口付近の温度が上昇していく。制御部10は、改質器22の出口付近の温度が所定の温度(例えば135℃)以上になると、改質反応処理に移行し、改質水供給部34から改質器22への改質水の供給を開始する。 As the gas begins to burn in the combustion section, the temperature near the outlet of the reformer 22 rises. When the temperature in the vicinity of the outlet of the reformer 22 reaches a predetermined temperature (for example, 135 ° C.) or more, the control unit 10 shifts to the reforming reaction process, and reforms the reforming water supply unit 34 to the reformer 22. Start water supply.
(改質反応処理段階における空気流量の制御)
 制御部10は、改質反応処理段階において、改質器22の出口付近の温度に応じて段階を切り替える。制御部10は、段階が切り替わると、ガスの流量、改質水の流量、及び空気流量を切り替える。
(Control of air flow rate in the reforming reaction processing stage)
The control unit 10 switches the stages in accordance with the temperature near the outlet of the reformer 22 in the reforming reaction processing stage. The control unit 10 switches the flow rate of the gas, the flow rate of the reforming water, and the air flow rate when the steps are switched.
 制御部10は、例えば、以下のように段階1~段階3を切り替える。
・改質器22の出口付近の温度が第1の所定温度(例えば285℃)以上になると、段階1から段階2に切り替える。
・改質器22の出口付近の温度が第1の所定温度より高い第2の所定温度(例えば650℃)以上になると、段階2から段階3に切り替える。
The control unit 10 switches stages 1 to 3 as follows, for example.
Switch from stage 1 to stage 2 when the temperature near the outlet of the reformer 22 reaches or exceeds a first predetermined temperature (for example, 285 ° C.).
When the temperature near the outlet of the reformer 22 becomes equal to or higher than a second predetermined temperature (for example, 650 ° C.) higher than the first predetermined temperature, switching from stage 2 to stage 3 is performed.
 図2に、制御部10が制御する各段階における空気流量の一例を示す。図2に示すように、制御部10は、改質器22の出口付近の温度が第1の所定温度以上になると、段階1から段階2に切り替え、空気流量が100[NL/min]から106[NL/min]に増えるように、空気供給部36を制御する。また、制御部10は、改質器22の出口付近の温度が第2の所定温度以上になると、段階2から段階3に切り替え、空気流量が106[NL/min]から80[NL/min]に減るように、空気供給部36を制御する。 In FIG. 2, an example of the air flow volume in each step which the control part 10 controls is shown. As shown in FIG. 2, when the temperature in the vicinity of the outlet of the reformer 22 becomes equal to or higher than the first predetermined temperature, the control unit 10 switches from stage 1 to stage 2 and the air flow rate is 100 [NL / min] to 106 The air supply unit 36 is controlled to increase to [NL / min]. Further, when the temperature in the vicinity of the outlet of the reformer 22 becomes equal to or higher than the second predetermined temperature, the control unit 10 switches from stage 2 to stage 3 and the air flow rate is 106 [NL / min] to 80 [NL / min]. Control the air supply 36 to reduce the
 なお、本実施形態においては、制御部10は、改質器22の出口付近の温度に基づいて、段階1~段階3を切り替えているが、温度の測定場所はこれに限定されない。制御部10は、発電装置1内の任意の所定の位置の温度に基づいて、段階1~段階3を切り替えてよい。第1の所定の温度及び第2の所定の温度は、測定場所に応じて、適切な温度を予め設定しておけばよい。 In the present embodiment, the control unit 10 switches the stages 1 to 3 based on the temperature near the outlet of the reformer 22, but the temperature measurement place is not limited to this. The control unit 10 may switch between stage 1 to stage 3 based on the temperature of any predetermined position in the power generation device 1. As the first predetermined temperature and the second predetermined temperature, appropriate temperatures may be set in advance according to the measurement location.
 以下、制御部10の上記空気流量の制御の技術的意味について説明する。 Hereinafter, the technical meaning of control of the said air flow rate of the control part 10 is demonstrated.
 発電装置1の起動時において、燃焼部における燃焼が開始すると、燃焼部に近い改質器22の出口の温度はすぐに高くなるが、改質器22の出口からセルスタック24の下方に延びている配管の、セルスタック24の下方付近の部分は温度が上昇するのに時間がかかる。このように、改質器22の出口と、配管のセルスタック24の下方付近の部分との温度差が大きいと、下記に示す不均化反応(ブドワール反応)により炭素析出が起こる。
 2CO→C+CO2
When combustion in the combustion unit starts at the time of start-up of the power generation device 1, the temperature at the outlet of the reformer 22 close to the combustion unit rises immediately, but extends downward from the outlet of the reformer 22 to the cell stack 24 It takes time for the temperature to rise in the portion of the existing piping near the lower part of the cell stack 24. As described above, when the temperature difference between the outlet of the reformer 22 and the portion of the pipe near the lower portion of the cell stack 24 is large, carbon deposition occurs due to the disproportionation reaction (Budwar reaction) described below.
2CO → C + CO2
 上述の不均化反応による炭素析出は、低い温度においては起こりにくい傾向があるため、制御部10は、段階1から段階2になったときに空気流量を増やす。制御部10が空気流量を増やすと、空気供給部36から配管を通してセルスタック24の下方に供給される空気流量が増えることで、燃料電池モジュール20内の気体が攪拌される。これにより、改質器22の出口と、配管のセルスタック24の下方付近の部分との温度差が小さくなる。したがって、温度差に起因する不均化反応を抑制することができ、制御部10は、段階2の温度範囲における炭素析出を抑制することができる。 Since carbon deposition due to the disproportionation reaction described above tends not to occur at low temperatures, the control unit 10 increases the air flow rate when going from stage 1 to stage 2. When the control unit 10 increases the air flow rate, the flow rate of the air supplied from the air supply unit 36 to the lower side of the cell stack 24 through the piping increases, whereby the gas in the fuel cell module 20 is agitated. Thereby, the temperature difference between the outlet of the reformer 22 and the portion of the pipe near the lower part of the cell stack 24 is reduced. Therefore, the disproportionation reaction resulting from the temperature difference can be suppressed, and the control unit 10 can suppress carbon deposition in the temperature range of stage 2.
 また、制御部10は、段階2から段階3になると空気流量を減らす。これは、改質器22の出口付近の温度が第2の所定温度以上になった状態では、すでに、改質器22の出口と、配管のセルスタック24の下方付近の部分との温度差が小さくなっており、不均化反応が起こりにくくなっているからである。起動時よりも空気流量を減らす理由としては、燃料電池モジュール20内の温度を高温に維持することが考えられる。 In addition, the control unit 10 reduces the air flow rate from stage 2 to stage 3. This is because, when the temperature in the vicinity of the outlet of the reformer 22 reaches a second predetermined temperature or more, the temperature difference between the outlet of the reformer 22 and the lower portion of the cell stack 24 of the pipe is already It is because the disproportionation reaction is less likely to occur. Maintaining the temperature in the fuel cell module 20 at a high temperature can be considered as the reason for reducing the air flow rate compared to the time of startup.
 続いて、本実施形態に係る発電装置1が起動時の改質反応処理段階の各段階において空気流量を変える動作の一例について図3のフローチャートを参照して説明する。 Subsequently, an example of the operation of changing the air flow rate at each stage of the reforming reaction processing step at the time of startup of the power generation device 1 according to the present embodiment will be described with reference to the flowchart of FIG.
 制御部10は、発電装置1の起動時の改質反応処理段階において、温度センサ70から改質器22の出口付近の温度を取得する。制御部10は、改質器22の出口付近の温度が第1の所定温度以上になったか否かを判定する(ステップS101)。 The control unit 10 acquires the temperature in the vicinity of the outlet of the reformer 22 from the temperature sensor 70 in the reforming reaction processing stage when the power generation device 1 is started. The control unit 10 determines whether the temperature in the vicinity of the outlet of the reformer 22 has become equal to or higher than a first predetermined temperature (step S101).
 改質器22の出口付近の温度が第1の所定温度以上でない場合(ステップS101のNo)、制御部10は、空気流量を変えない。 When the temperature in the vicinity of the outlet of the reformer 22 is not higher than the first predetermined temperature (No in step S101), the control unit 10 does not change the air flow rate.
 改質器22の出口付近の温度が第1の所定温度以上になった場合(ステップS101のYes)、制御部10は、段階1の空気流量から段階2の空気流量に増やす(ステップS102)。 When the temperature in the vicinity of the outlet of the reformer 22 becomes equal to or higher than the first predetermined temperature (Yes in step S101), the control unit 10 increases the air flow rate in step 1 to the air flow rate in step 2 (step S102).
 続いて、制御部10は、改質器22の出口付近の温度が第2の所定温度以上になったか否かを判定する(ステップS103)。 Subsequently, the control unit 10 determines whether the temperature in the vicinity of the outlet of the reformer 22 has become equal to or higher than a second predetermined temperature (step S103).
 改質器22の出口付近の温度が第2の所定温度以上でない場合(ステップS103のNo)、制御部10は、空気流量を変えない。 When the temperature in the vicinity of the outlet of the reformer 22 is not higher than the second predetermined temperature (No in step S103), the control unit 10 does not change the air flow rate.
 改質器22の出口付近の温度が第2の所定温度以上になった場合(ステップS103のYes)、制御部10は、段階2の空気流量から段階3の空気流量に減らす(ステップS104)。 When the temperature in the vicinity of the outlet of the reformer 22 becomes equal to or higher than the second predetermined temperature (Yes in step S103), the control unit 10 reduces the air flow rate in step 2 to the air flow rate in step 3 (step S104).
 このように、制御部10は、発電装置1の起動時の改質反応処理段階において、改質器22の出口付近の温度が第1の所定温度以上になると、セルスタック24に供給する空気流量を増やすように空気供給部36を制御する。これにより、燃料電池モジュール20内の気体が攪拌され、改質器22の出口と、配管のセルスタック24の下方付近の部分との温度差が小さくなるため、発電装置1は、炭素析出を抑制することができる。このように、本実施形態によれば、発電装置1は、発電装置1の起動時に供給する空気流量を適切に制御することができる。 As described above, the control unit 10 controls the flow rate of air supplied to the cell stack 24 when the temperature near the outlet of the reformer 22 becomes equal to or higher than the first predetermined temperature in the reforming reaction processing step at the time of starting the power generation device Control the air supply 36 to increase the As a result, the gas in the fuel cell module 20 is agitated, and the temperature difference between the outlet of the reformer 22 and the portion of the pipe near the lower part of the cell stack 24 decreases, so the power generation device 1 suppresses carbon deposition. can do. As described above, according to the present embodiment, the power generation device 1 can appropriately control the flow rate of air supplied when the power generation device 1 is started.
(S/Cの制御)
 制御部10は、段階に応じて、空気流量だけでなく、ガスの流量、及び改質水の流量も切り替える。この際、制御部10は、改質器22に供給される改質水の、改質器22に供給されるガスに対する比であるS/Cの値を、段階に応じて切り替えてよい。
(Control of S / C)
The control unit 10 switches not only the air flow rate but also the gas flow rate and the reforming water flow rate according to the stage. At this time, the control unit 10 may switch the value of S / C, which is the ratio of the reforming water supplied to the reformer 22 to the gas supplied to the reformer 22, according to the stage.
 図4に、制御部10が制御する各段階におけるS/Cの一例を示す。図4に示すように、制御部10は、段階1から段階2になると、S/Cが1から2.5に増えるように、ガス供給部32及び改質水供給部34を制御する。また、制御部10は、段階2から段階3になると、S/Cが2.5から4に増えるように、ガス供給部32及び改質水供給部34を制御する。 FIG. 4 shows an example of S / C at each stage controlled by the control unit 10. As shown in FIG. 4, the control unit 10 controls the gas supply unit 32 and the reforming water supply unit 34 so that S / C increases from 1 to 2.5 from stage 1 to stage 2. Further, when going from stage 2 to stage 3, the control unit 10 controls the gas supply unit 32 and the reforming water supply unit 34 so that S / C increases from 2.5 to 4.
 以下、制御部10の上記S/Cの制御の技術的意味について説明する。 Hereinafter, the technical meaning of control of said S / C of the control part 10 is demonstrated.
 S/Cを増やすことは、ガスに対する改質水の割合を増やすことになり、炭素析出を抑制することができる。炭素析出は、高温において起こりやすくなる傾向があるため、制御部10は、改質器22の出口の温度が高くなって段階が切り替わるときに、S/Cを増やす。これにより、制御部10は、段階2及び段階3の温度範囲における炭素析出を抑制することができる。 Increasing S / C increases the ratio of reforming water to gas, and can suppress carbon deposition. Since carbon deposition tends to occur at high temperatures, the control unit 10 increases the S / C when the temperature at the outlet of the reformer 22 rises and the stages switch. Thereby, control part 10 can control carbon precipitation in the temperature range of stage 2 and stage 3.
 また、温度が低い状態でS/Cを増やすと、温度が上昇しにくくなるという傾向もある。この観点から、制御部10は、段階1においてはS/Cを小さい値としている。しかしながら、温度が低いときには炭素析出は起こりにくいため、段階1においては、S/Cを小さい値としていても、炭素析出を抑制できている。段階2及び段階3においては、温度が既に十分に高くなっているため、S/Cを増やすことができる。 In addition, when the S / C is increased while the temperature is low, there is a tendency that the temperature becomes difficult to rise. From this point of view, the control unit 10 sets S / C to a small value in stage 1. However, since carbon deposition hardly occurs when the temperature is low, carbon deposition can be suppressed in Step 1 even if S / C is a small value. In Stages 2 and 3, S / C can be increased because the temperature is already high enough.
 続いて、本実施形態に係る発電装置1が起動時の改質反応処理段階の各段階においてS/Cを変える動作の一例について図5のフローチャートを参照して説明する。 Subsequently, an example of the operation of changing the S / C at each stage of the reforming reaction processing stage at the time of startup of the power generation device 1 according to the present embodiment will be described with reference to the flowchart of FIG.
 制御部10は、発電装置1の起動時の改質反応処理段階において、温度センサ70から改質器22の出口付近の温度を取得する。制御部10は、改質器22の出口付近の温度が第1の所定温度以上になったか否かを判定する(ステップS201)。 The control unit 10 acquires the temperature in the vicinity of the outlet of the reformer 22 from the temperature sensor 70 in the reforming reaction processing stage when the power generation device 1 is started. The control unit 10 determines whether the temperature in the vicinity of the outlet of the reformer 22 has become equal to or higher than a first predetermined temperature (step S201).
 改質器22の出口付近の温度が第1の所定温度以上でない場合(ステップS201のNo)、制御部10は、S/Cを変えない。 When the temperature in the vicinity of the outlet of the reformer 22 is not the first predetermined temperature or more (No in step S201), the control unit 10 does not change the S / C.
 改質器22の出口付近の温度が第1の所定温度以上になった場合(ステップS201のYes)、制御部10は、段階1のS/Cから段階2のS/Cに増やす(ステップS202)。 When the temperature in the vicinity of the outlet of the reformer 22 becomes equal to or higher than the first predetermined temperature (Yes in step S201), the control unit 10 increases the S / C of step 1 to the S / C of step 2 (step S202). ).
 続いて、制御部10は、改質器22の出口付近の温度が第2の所定温度以上になったか否かを判定する(ステップS203)。 Subsequently, the control unit 10 determines whether the temperature in the vicinity of the outlet of the reformer 22 has reached a second predetermined temperature or more (step S203).
 改質器22の出口付近の温度が第2の所定温度以上でない場合(ステップS203のNo)、制御部10は、S/Cを変えない。 If the temperature in the vicinity of the outlet of the reformer 22 is not higher than the second predetermined temperature (No in step S203), the control unit 10 does not change the S / C.
 改質器22の出口付近の温度が第2の所定温度以上になった場合(ステップS203のYes)、制御部10は、段階2のS/Cから段階3のS/Cにさらに増やす(ステップS204)。 If the temperature in the vicinity of the outlet of the reformer 22 becomes equal to or higher than the second predetermined temperature (Yes in step S203), the control unit 10 further increases the S / C of step 2 to the S / C of step 3 (step S204).
[制御装置を外部に有する構成]
 本開示の実施形態は、図1に示す発電装置1の制御部10及び記憶部12に相当する機能ブロックを、発電装置1の外部に有する構成として実現することもできる。このような実施形態の一例を図6に示す。図6に示す例においては、発電装置1を外部から制御する制御装置2は、制御部10と、記憶部12とを備える。図6に示す制御装置2の制御部10及び記憶部12の機能は、図1に示す発電装置1の制御部10及び記憶部12の機能とそれぞれ同等である。
[Configuration having control device outside]
The embodiment of the present disclosure can also be realized as a configuration in which functional blocks corresponding to the control unit 10 and the storage unit 12 of the power generation device 1 shown in FIG. 1 are provided outside the power generation device 1. An example of such an embodiment is shown in FIG. In the example illustrated in FIG. 6, the control device 2 that controls the power generation device 1 from the outside includes a control unit 10 and a storage unit 12. The functions of the control unit 10 and the storage unit 12 of the control device 2 shown in FIG. 6 are respectively equivalent to the functions of the control unit 10 and the storage unit 12 of the power generation device 1 shown in FIG.
 また、本開示の実施形態は、例えば、図6に示す制御装置2に実行させる制御プログラムとして実現することもできる。 In addition, the embodiment of the present disclosure can also be realized as, for example, a control program that is executed by the control device 2 illustrated in FIG.
 本発明を諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形及び修正を行うことが容易であることに注意されたい。したがって、これらの変形及び修正は本発明の範囲に含まれることに留意されたい。例えば、各機能部、各手段、各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の機能部及びステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。また、上述した本発明の各実施形態は、それぞれ説明した各実施形態に忠実に実施することに限定されるものではなく、適宜、各特徴を組み合わせたり、一部を省略したりして実施することもできる。 Although the present invention has been described based on the drawings and examples, it should be noted that those skilled in the art can easily make various changes and modifications based on the present disclosure. Therefore, it should be noted that these variations and modifications are included in the scope of the present invention. For example, each functional unit, each means, the functions included in each step, and the like can be rearranged so as not to be logically contradictory, and a plurality of functional units and steps are combined or divided into one. It is possible. Moreover, each embodiment of the present invention mentioned above is not limited to carrying out faithfully to each embodiment described respectively, and combines each feature suitably, or carries out by omitting a part. It can also be done.
 以上の開示においては、本実施形態として、SOFCとするセルスタック24を備える発電装置1について説明した。しかしながら、上述したように、本実施形態に係る発電装置1は、SOFCを備えるものに限定されず、例えばモジュールのないPEFCなど、各種の燃料電池を備えるものとすることができる。本開示において「燃料電池」とは、例えば発電システム、発電ユニット、燃料電池モジュール、ホットモジュール、セルスタック、又はセルなどを意味する。また、本開示における「燃料電池」は、燃料電池車に搭載される燃料電池であってもよい。 In the above disclosure, the power generation device 1 including the cell stack 24 that is SOFC has been described as the present embodiment. However, as described above, the power generation device 1 according to the present embodiment is not limited to one including an SOFC, and may include various fuel cells such as a PEFC without a module. In the present disclosure, “fuel cell” means, for example, a power generation system, a power generation unit, a fuel cell module, a hot module, a cell stack, or a cell. In addition, the “fuel cell” in the present disclosure may be a fuel cell mounted on a fuel cell vehicle.
 1 発電装置
 2 制御装置
 10 制御部
 12 記憶部
 20 燃料電池モジュール
 22 改質器
 24 セルスタック
 26 着火ヒータ
 32 ガス供給部
 34 改質水供給部
 36 空気供給部
 40 インバータ
 42 燃焼触媒
 44 燃焼触媒ヒータ
 50 排熱回収処理部
 52 循環水処理部
 60 貯湯タンク
 70 温度センサ
 100 負荷
 200 商用電源
DESCRIPTION OF SYMBOLS 1 power generation device 2 control device 10 control part 12 storage part 20 fuel cell module 22 reformer 24 cell stack 26 ignition heater 32 gas supply part 34 reforming water supply part 36 air supply part 40 inverter 42 combustion catalyst 44 combustion catalyst heater 50 Exhaust heat recovery processing unit 52 Circulating water processing unit 60 Hot water storage tank 70 Temperature sensor 100 Load 200 Commercial power supply

Claims (6)

  1.  原燃料ガス及び改質水を供給されて燃料ガスを生成する改質器と、
     前記改質器から供給される前記燃料ガスを用いて発電する燃料電池と、
     制御部と、を備える発電装置であって、
     前記制御部は、前記発電装置の起動時の改質反応処理段階において、前記発電装置内の所定の位置の温度が第1の所定温度以上になると、前記燃料電池に供給する空気流量を増やす、発電装置。
    A reformer which is supplied with raw fuel gas and reforming water to generate fuel gas;
    A fuel cell generating electricity using the fuel gas supplied from the reformer;
    A control unit;
    The control unit increases the flow rate of air supplied to the fuel cell when the temperature of a predetermined position in the power generation device becomes equal to or higher than a first predetermined temperature in the reforming reaction processing stage at the start of the power generation device. Power generator.
  2.  請求項1に記載の発電装置において、
     前記制御部は、前記発電装置の起動時の改質反応処理段階において、前記発電装置内の前記所定の位置の温度が前記第1の所定温度より高い第2の所定温度以上になると、前記燃料電池に供給する空気流量を減らす、発電装置。
    In the power generation device according to claim 1,
    When the temperature of the predetermined position in the power generation device becomes equal to or higher than a second predetermined temperature higher than the first predetermined temperature in the reforming reaction processing stage at the time of activation of the power generation device, the control unit A generator that reduces the air flow to the battery.
  3.  請求項1又は2に記載の発電装置において、
     前記制御部は、前記発電装置の起動時の改質反応処理段階において、前記発電装置内の前記所定の位置の温度が前記第1の所定温度以上になると、前記改質器に供給される前記改質水の、前記改質器に供給される前記原燃料ガスに対する比であるS/Cを増やす、発電装置。
    In the power generation device according to claim 1 or 2,
    The control unit supplies the reformer with the reformer when the temperature of the predetermined position in the power generation device becomes equal to or higher than the first predetermined temperature in the reforming reaction processing step at the start of the power generation device. A power generator, which increases S / C, which is a ratio of reformed water to the raw fuel gas supplied to the reformer.
  4.  請求項3に記載の発電装置において、
     前記制御部は、前記発電装置の起動時の改質反応処理段階において、前記発電装置内の前記所定の位置の温度が前記第2の所定温度以上になると、前記S/Cをさらに増やす、発電装置。
    In the power generator according to claim 3,
    The control unit further increases the S / C when the temperature of the predetermined position in the power generation device becomes equal to or higher than the second predetermined temperature in a reforming reaction processing step at startup of the power generation device. apparatus.
  5.  原燃料ガス及び改質水を供給されて燃料ガスを生成する改質器と、前記改質器から供給される前記燃料ガスを用いて発電する燃料電池と、を備える発電装置を制御する制御装置であって、
     前記発電装置の起動時の改質反応処理段階において、前記発電装置内の所定の位置の温度が第1の所定温度以上になると、前記燃料電池に供給する空気流量を増やす、制御装置。
    Control device for controlling a power generation apparatus, comprising: a reformer supplied with raw fuel gas and reforming water to generate a fuel gas; and a fuel cell generating electricity using the fuel gas supplied from the reformer And
    A control device for increasing the flow rate of air supplied to the fuel cell when the temperature of a predetermined position in the power generation device becomes equal to or higher than a first predetermined temperature in the reforming reaction processing stage at the start of the power generation device.
  6.  原燃料ガス及び改質水を供給されて燃料ガスを生成する改質器と、前記改質器から供給される前記燃料ガスを用いて発電する燃料電池と、を備える発電装置を制御する制御装置に、
     前記発電装置の起動時の改質反応処理段階において、前記発電装置内の所定の位置の温度が第1の所定温度以上になると、前記燃料電池に供給する空気流量を増やすステップを実行させる、制御プログラム。
    Control device for controlling a power generation apparatus, comprising: a reformer supplied with raw fuel gas and reforming water to generate a fuel gas; and a fuel cell generating electricity using the fuel gas supplied from the reformer To
    In the reforming reaction processing stage at the time of startup of the power generation device, control is performed to increase the flow rate of air supplied to the fuel cell when the temperature of the predetermined position in the power generation device becomes equal to or higher than a first predetermined temperature program.
PCT/JP2018/025099 2017-07-27 2018-07-02 Power generation device, control device, and control program WO2019021750A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019532465A JP7005628B2 (en) 2017-07-27 2018-07-02 Power generators, controls and control programs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-145887 2017-07-27
JP2017145887 2017-07-27

Publications (1)

Publication Number Publication Date
WO2019021750A1 true WO2019021750A1 (en) 2019-01-31

Family

ID=65041046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025099 WO2019021750A1 (en) 2017-07-27 2018-07-02 Power generation device, control device, and control program

Country Status (2)

Country Link
JP (1) JP7005628B2 (en)
WO (1) WO2019021750A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273619A (en) * 2005-03-28 2006-10-12 Aisin Seiki Co Ltd Reformer
JP2012038608A (en) * 2010-08-09 2012-02-23 Jx Nippon Oil & Energy Corp Fuel cell system and control method of reforming water supply amount in fuel cell system
JP2013187118A (en) * 2012-03-09 2013-09-19 Aisin Seiki Co Ltd Fuel cell system
JP2016122629A (en) * 2014-12-25 2016-07-07 Jxエネルギー株式会社 Fuel battery system and control method for the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5220445B2 (en) * 2008-03-13 2013-06-26 株式会社日立製作所 Solid oxide fuel cell power generation system
JP2009238623A (en) * 2008-03-27 2009-10-15 Hitachi Ltd Solid oxide fuel cell power generation system and its operation control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273619A (en) * 2005-03-28 2006-10-12 Aisin Seiki Co Ltd Reformer
JP2012038608A (en) * 2010-08-09 2012-02-23 Jx Nippon Oil & Energy Corp Fuel cell system and control method of reforming water supply amount in fuel cell system
JP2013187118A (en) * 2012-03-09 2013-09-19 Aisin Seiki Co Ltd Fuel cell system
JP2016122629A (en) * 2014-12-25 2016-07-07 Jxエネルギー株式会社 Fuel battery system and control method for the same

Also Published As

Publication number Publication date
JPWO2019021750A1 (en) 2020-06-18
JP7005628B2 (en) 2022-02-04

Similar Documents

Publication Publication Date Title
JPWO2017135180A1 (en) Fuel cell assembly system and operation method thereof
JP6943285B2 (en) Fuel cell system and fuel cell system control method
JP6857846B2 (en) Fuel cell system and how to operate it
WO2019021751A1 (en) Power generation device, control device, and control program
JP2007294443A (en) Solid oxide fuel cell system
JP2006219328A (en) Hydrogen generation apparatus and fuel cell system using the same
JP5215527B2 (en) Operation method of fuel cell
JP7005628B2 (en) Power generators, controls and control programs
JPWO2018221471A1 (en) POWER GENERATOR, CONTROL DEVICE, AND CONTROL PROGRAM
JP4450563B2 (en) Fuel cell reformer
JP2019040663A (en) Power generation device, control device, and control program
JP2019009069A (en) Power generation device, control device and control program
JP2011210637A (en) Fuel cell system
JP5592760B2 (en) Fuel cell power generation system
JP2002008697A (en) Operation starting method of fuel cell system and its equipment
JP2018206480A (en) Power generation apparatus, control unit, and control program
JP6912928B2 (en) Power generators, controls, and control programs
JP2002367653A (en) Fuel cell power generating device
JP6784641B2 (en) Power generator, control device and control program
JP2004335368A (en) Fuel cell system
JP6606665B2 (en) Fuel cell system and operation method thereof
JP6765340B2 (en) Power generator, control device and control program
JP2019036487A (en) Power generator, controller, and control program
JP2016034881A (en) Hydrogen generator and method for operating the same, and fuel cell system
JP2019009066A (en) Power generation device, control device, and control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838959

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532465

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838959

Country of ref document: EP

Kind code of ref document: A1