WO2019020668A1 - Faserverstärktes bauteil und herstellungsverfahren dazu - Google Patents

Faserverstärktes bauteil und herstellungsverfahren dazu Download PDF

Info

Publication number
WO2019020668A1
WO2019020668A1 PCT/EP2018/070120 EP2018070120W WO2019020668A1 WO 2019020668 A1 WO2019020668 A1 WO 2019020668A1 EP 2018070120 W EP2018070120 W EP 2018070120W WO 2019020668 A1 WO2019020668 A1 WO 2019020668A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
fiber
component
component according
powder
Prior art date
Application number
PCT/EP2018/070120
Other languages
English (en)
French (fr)
Inventor
Stefan Lampenscherf
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2019020668A1 publication Critical patent/WO2019020668A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/0006Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects the reinforcement consisting of aligned, non-metal reinforcing elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/04Pretreatment of the fibres or filaments by coating, e.g. with a protective or activated covering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/06Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element
    • C22C47/062Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element from wires or filaments only
    • C22C47/068Aligning wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/14Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5268Orientation of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a fiber-reinforced component, in particular ⁇ sondere a metallic fiber-reinforced component, or a ceramic matrix composite (CMC) - component as beispiels-, be used as components in turbines or in an exhaust line, and a manufacturing method thereof.
  • a fiber-reinforced component in particular ⁇ sondere a metallic fiber-reinforced component, or a ceramic matrix composite (CMC) - component as beispiels-, be used as components in turbines or in an exhaust line, and a manufacturing method thereof.
  • CMC ceramic matrix composite
  • prototypes for turbine components and / or components of an exhaust line can be produced by additive methods for processing superalloys use of additive processes for prototype manufacture highly loaded turbine components based on metallic powders, such as the selective laser melting or e-beam processing of superalloys, offers many advantages.
  • complex designs for optimal thermal, Aerody ⁇ namic and structural properties can be relatively In this way, prototypes for functional and stress tests can be realized in a short time and thus the development process can be significantly shortened.
  • a disadvantage of the known additive method is the characteristic fine-grained structure of the components produced therefrom, which is produced by the layered structure. Although the components have a high strength, but also a limited temperature and / or creep resistance. So resul ⁇ advantage a limited continuous load this additive manufac- tured components. This is justified in its entirety and in principle limited suitability additive processes as Ferti ⁇ approval procedures for highly stressed components series.
  • a disadvantage of the known method is in particular ⁇ special that, first, no long or continuous fibers are used for reinforcement and secondly, that the processes always work on a direct irradiation of the fiber, so that the laser beam, albeit only briefly, but the Fiber hits and thus loaded.
  • the subject matter of the present invention is a component, in particular a component for a turbine and / or an exhaust line, a base material which can be processed by means of an additive process in the high temperature range, that is, for example, a metal, an alloy, a sinterable mixture and / or comprising a superalloy, wherein a fiber reinforcement is provided, the first fibers, fiber bundles, fiber scrims and / or fiber composites um- whose preferred direction lies in the plane of the layers constructed by the additive method.
  • this also includes the embodiment in which the preferred direction of the reinforcing fiber is transverse, in particular also at right angles to the construction direction of the individual layers constructed by the additive method.
  • the invention additionally relates to a process for manufacturing position of a component, in particular a turbine component by means of an additive method, the method fol ⁇ constricting process steps comprising:
  • a powder bed containing the meltable powder of a refractory alloy is mounted downwardly movable and from above with a
  • Electron or laser beam is workable
  • the powder bed moves slowly - layer by layer - in the speed of the construction of the component down and at the same time - at least temporarily - in the not yet melted powder bed ers ⁇ te (long) fibers, fiber bundles, fiber fabric and / or fiber composites made of long or continuous fibers inserted, wherein the Fa ⁇ fibers, the fiber bundle and / or the fiber composites are rolled according to an advantageous embodiment, in the speed at which the powder bed is moved down, where ⁇ in the first fibers, fiber bundles , fiber fabrics and / or Fa ⁇ server bunde in the metallic powder in the powder bed, which is melted with ⁇ means of laser, immersed or embedded so that the surface of the fiber is covered by the powder to irradiation and melts when irradiated with the metallic powder.
  • the first fibers, fiber bundles, fiber scrims and / or fiber composites are present as prepreg fibers, prepreg fiber bundles, prepreg fiber scrims and / or prepreg fiber composites.
  • Prepreg fibers and compounds derived therefrom, such as fiber bundles, braided fibers, fiber fabrics, fiber composites, etc., are referred to as reinforcing fibers which are encased in powder
  • the fibers are pretreated with a slurry and dried to form a solid coating the fiber is already present before the fiber is introduced into the powder bed, and this type of preimpregnated fiber is then more effectively protected from damage by irradiation.
  • the prepreg fiber Before processing by means of a laser or electric jet, the prepreg fiber is then covered with metallic high-temperature powder, such as, for example, the powder, a nickel-based or cobalt-based superalloy, for example, by scoring, so that the fiber is twisted twice,
  • metallic high-temperature powder such as, for example, the powder, a nickel-based or cobalt-based superalloy, for example, by scoring, so that the fiber is twisted twice,
  • the first fibers, fiber bundles, fiber scrims and / or fiber composite by second or further fibers, fiber bundles, Fa ⁇ sergelege and / or fiber composites will, lie, complements.
  • the Fa ⁇ fibers then form a two-dimensional network in which the metal, especially the superalloy is melted.
  • the fibers in question are preferably long fibers and / or continuous fibers which are used as reinforcing fibers of high-temperature metals or high-temperature metal alloys.
  • the first fibers, fiber bundles, Fasergelege for example, transverse to the first and / or in a plane or parallel to a plane in the layer formed by the melting via SLM and / or Elektrobeam will, lie, complements.
  • the Fa ⁇ fibers then form a two-dimensional network in which the metal, especially the superalloy is melted.
  • the fibers in question are preferably long fibers and / or continuous fibers which are used as reinforcing fibers of high-temperatur
  • fibers, fiber bundles, fiber scrims and / or fiber composites are meant all types of reinforcing fibers, such as are used for fiber reinforcement in, in particular metallic high-temperature, suitable composite materials. These include single fibers, especially in the form of continuous fibers.
  • fiber bundles such as braided fibers and fiber scrims, which make up a plane or position transverse or parallel to the layers formed by SLM.
  • These layers can also be a wall or part of a wall of the fiber-reinforced component.
  • Fiber scrims can be present in various mesh sizes into which the metal powder can be melted in, in particular via SLM / E-beam. It is particularly important that the fibers are protected during the Aufschmel ⁇ zen of the powder from direct irradiation vorlie ⁇ gene are therefore embedded in a powder, so that the radiation is absorbed by the powder and does not apply directly to the fiber.
  • ge ⁇ means that can be filled in whole or in part in the additive process by targeted melting of metal powder.
  • the reinforcing fibers are high-strength and / or temperature-resistant fibers, in particular carbon fibers and / or ceramic fibers, such as metal oxide fibers and / or silicon carbide fibers.
  • the laser electron beam or beams then melt in the additive process, the metal powder in the short term, whereby the fibers enclosed and incorporated layer by layer in the metallic structure, which is produced in the additive process.
  • a targeted temperature treatment and / or the superimposition of a temperature gradient during the building process are used in addition to further increase the coarsening or increase the coarseness of the microstructure.
  • the layer thickness of such a layer is, for example, in the range between 0.1 ⁇ m and 500 ⁇ m, for example between 1 ⁇ m and 200 ⁇ m and in particular between 10 ⁇ m and 50 ⁇ m.
  • the diameter of a reinforcing fiber in particular a ceramic reinforcing fiber, as can be used according to the invention, for example, between 0.1 ym to 50ym.
  • the ceramic fibers are preferably high-temperature-stable fibers, in particular a type which remains stable, in particular also dimensionally stable, under the conditions of the selective laser melting or electron beam method. As a result of the lowering process of the powder bed and the selective melting process of the metal powder, the ceramic fibers are enclosed to a certain extent by metal powder and then by molten metal and are incorporated in layers into the metallic structure.
  • an additive alloy can be used to addively build up a superalloy in the high temperature region around the ceramic fiber by prior embedding of the fiber in powder.
  • a superalloy metal matrix composite with significantly improved load properties such as high strength and / or high creep / temperature resistance.
  • FIG. 1 shows a process scheme for the production of a metal matrix composite with lying in the powder bed encryption restorative fiber orientation, and this is only a preferred from ⁇ guide die.
  • FIG. 1 shows the metal-matrix composite 1, namely the top view of a layer of a metal-matrix composite 1, wherein the topmost line shows the various stages of the processing.
  • Zone 3 From right to left four zones 3, 4, 6 and 7 can be seen and identified in FIG.
  • Zone 3 the ceramic fiber 1, which can be seen only in cross-section, because it lies in the plane of the powder bed, completely surrounded by Me ⁇ tallpulver 2.
  • Zone 4 just the metal powder 2 is selectively melted by the laser beam 5.
  • the visco ⁇ se energetically highly charged molten metal encases the ceramic reinforcing fiber, wherein the high-energy supply of the molten metal was the two surfaces of the metal ⁇ melt on the one hand and the ceramic fiber on the other hand, well together form adherent interfaces. Therefore, such a fused reinforcing fiber is well anchored and / or embedded in the metal matrix composite.
  • this condition is immediately frozen because immediately adjacent to the zone 4, in which the laser beam 5 selectively supplies high energy, in the zone 6, the composite already cools. In Zone 7, the composite is already almost at room temperature.
  • the extents of the zones can be surmised when it is considered that the cross-section of a reinforcing fiber, as seen here, is for example in the range between 10 ym and 50 ym.
  • fiber bundles are braided fibers, fiber fabric and / or fiber composites, the three-dimensional fiber lay bil ⁇ , the scope of the invention.
  • ge ⁇ shows how a fiber reinforcement in the construction of a means made in the additive method, high temperature stable and / or suitable for hot gas component applications can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Faserverstärktes Bauteil und Herstellungsverfahren dazu Die Erfindung betrifft ein faserverstärktes Bauteil, insbesondere ein metallisches faserverstärktes Bauteil oder ein Ceramic Matrix Composite (CMC)- Bauteil, wie sie beispielsweise als Turbinenkomponenten eingesetzt werden, sowie ein Herstellungsverfahren dazu. Durch die vorliegende Erfindung wird eine Möglichkeit gezeigt, wie eine Faserverstärkung beim Aufbau eines mittels Selective-Laser-Melting und/oder electron-beam gefertigten Bauteils realisierbar ist.

Description

Beschreibung Faserverstärktes Bauteil und Herstellungsverfahren dazu
Die Erfindung betrifft ein faserverstärktes Bauteil, insbe¬ sondere ein metallisches faserverstärktes Bauteil oder ein Ceramic Matrix Composite (CMC)- Bauteil, wie sie beispiels- weise als Komponenten in Turbinen oder in einem Abgasstrang eingesetzt werden, sowie ein Herstellungsverfahren dazu.
Es ist insbesondere auch die Nutzung additiver Verfahren zur prototypischen Herstellung hochbelasteter Turbinenbauteile auf der Basis metallischer Pulver im Fokus der vorliegenden Erfindung .
Als „additive Verfahren" werden vorliegend beispielsweise und insbesondere die Verfahren nach dem Selective Laser Melting und/oder das Electron-Beam-Verfahren bezeichnet. Beispielsweise lassen sich durch additive Verfahren zur Verarbeitung von Superlegierungen Prototypen für Turbinenkomponenten und/oder Komponenten eines Abgasstrangs herstellen. Die Nutzung additiver Verfahren zur prototypischen Herstellung hoch- belasteter Turbinenkomponenten auf Basis metallischer Pulver, wie beispielsweise beim Selective Laser Melting oder E-Beam- Verarbeitung von Superlegierungen, bietet viele Vorteile. So lassen sich komplexe Designs für optimale thermische, aerody¬ namische und strukturelle Eigenschaften relativ schnell und kostengünstig realisieren. Auf diese Weise können Prototypen für Funktions- und Belastungstests in kurzer Zeit realisiert und so der Entwicklungsprozess erheblich verkürzt werden.
Nachteilig an den bekannten additiven Verfahren ist die cha- rakteristische feinkörnige Struktur der daraus hergestellten Bauteile, die durch den lagenweisen Aufbau entsteht. Zwar zeigen die Bauteile eine hohe Festigkeit, jedoch auch eine begrenzte Temperatur- und/oder Kriechbeständigkeit. So resul¬ tiert eine begrenzte Dauerbelastbarkeit dieser additiv gefer- tigten Bauteile. Das begründet insgesamt und grundsätzlich eine eingeschränkte Eignung additiver Prozesse als Ferti¬ gungsverfahren für hochbelastete Serienbauteile.
Aus der DE 10 2016 201838.8 und der EP 17153083 sind bereits Lösungsvorschläge für das oben genannte Problem, in Form von Verfahren zum Einbau von Fasern in additiv gefertigte Bauteile, bekannt. Nachteilig an den bekannten Verfahren ist insbe¬ sondere, dass erstens keine Lang- oder Endlosfasern zur Verstärkung einsetzbar sind und zweitens, dass die Verfahren im- mer über eine direkte Bestrahlung der Faser arbeiten, so dass der Laserstrahl, wenn auch nur kurz, aber die Faser trifft und somit belastet.
So besteht weiterhin der Bedarf, ein über SLM und/oder electron beam funktionierendes Verfahren zur Herstellung lagenweise aufgebauter Bauteile, insbesondere aus Superlegie- rungen für Heißgasanwendungen, insbesondere für die Prototypfertigung und auch für die Serienfertigung zur Verfügung zu stellen .
Entsprechend ist es Aufgabe der vorliegenden Erfindung, ein faserverstärktes Bauteil insbesondere für Heißgasanwendungen, zu schaffen, das bezüglich der Festigkeit gegenüber dem Stand der Technik verbessert ist und weiterhin, ein Verfahren zur Herstellung eines derart verbesserten Bauteils anzugeben.
Diese Aufgabe wird durch den Gegenstand der vorliegenden Er¬ findung, wie er in den Ansprüchen, der Beschreibung und der Figur offenbart ist, gelöst.
Dementsprechend ist Gegenstand der vorliegenden Erfindung ein Bauteil, insbesondere eine Komponente für eine Turbine und/oder einen Abgasstrang, ein Basismaterial, das mittels eines additiven Verfahrens im Hochtemperaturbereich verar- beitbar ist, also beispielsweise ein Metall, eine Legierung, eine sinterbare Mischung und/oder eine Superlegierung umfassend, wobei eine Faserverstärkung vorgesehen ist, die erste Fasern, Faserbündel, Fasergelege und/oder Faserverbunde um- fasst, deren Vorzugsrichtung in der Ebene der durch das additive Verfahren aufgebauten Lagen liegt.
Das umfasst insbesondere auch die Ausführungsform, in der die Vorzugsrichtung der Verstärkungsfaser quer, insbesondere auch im rechten Winkel zur Aufbaurichtung der einzelnen, durch das additive Verfahren aufgebauten, Lagen liegt.
Außerdem ist Gegenstand der Erfindung ein Verfahren zur Her- Stellung eines Bauteils, insbesondere eines Turbinenbauteils mittels eines additiven Verfahrens, wobei das Verfahren fol¬ gende Prozessschritte umfasst:
- Zur Verfügungstellen eines Pulverbettes das aufschmelzbares Pulver einer hochschmelzenden Legierung enthält, nach unten bewegbar gelagert ist und von oben mit einem
Elektronen- oder Laserstrahl bearbeitbar ist,
- Einlegen von Verstärkungsfasern in das Pulverbett
- Bedecken der Verstärkungsfasern mit dem Pulver, derart, dass beim Bestrahlen des Pulvers im additiven Verfahren zum Aufschmelzen und Ausbilden der Komponente der Strahl nicht auf die Verstärkungsfaser trifft.
Während des additiven Verfahrens bewegt sich das Pulverbett langsam - Lage für Lage - in der Geschwindigkeit des Aufbaus des Bauteils nach unten und gleichzeitig wird - zumindest temporär - in das noch nicht aufgeschmolzene Pulverbett ers¬ te (Lang- ) Fasern, Faserbündel, Fasergelege und/oder Faserverbunde aus Lang- oder Endlosfasern eingelegt, wobei die Fa¬ sern, das Faserbündel und/oder die Faserverbunde nach einer vorteilhaften Ausführungsform in der Geschwindigkeit, in der das Pulverbett nach unten bewegt wird, abgerollt werden, wo¬ bei die ersten Fasern, Faserbündel, Fasergelege und/oder Fa¬ serverbunde in das metallische Pulver im Pulverbett, das mit¬ tels Laser aufgeschmolzen wird, eintauchen oder eingebettet werden, so dass die Oberfläche der Faser vom Pulver gegenüber der Bestrahlung abgedeckt ist und bei Bestrahlung mit dem metallischen Pulver verschmilzt. Gerade bei den hochtemperatur-schmelzenden Pulvern, also beispielsweise Pulver von Metallen oder Metalllegierungen mit einem Schmelzpunkt von über 1200°C, wie z.B. Ni-/Co- basierte Superlegierungen, besteht die Gefahr, dass eine Verstärkungs- faser bei direkter Einstrahlung zum Aufschmelzen der Pulver kaputt geht, deshalb muss die Faser bei Auftreffen des Laser¬ und/oder Elektronenstrahls durch Pulverbeschichtung und/oder Einbettung in das Pulverbett vor direkter Bestrahlung geschützt vorliegen.
Nach einer vorteilhaften Ausführungsform der Erfindung liegen die ersten Fasern, Faserbündel, Fasergelege und/oder Faserverbunde als Prepreg-Fasern, Prepreg-Faserbündel , Prepreg- Fasergelege und/oder Prepreg-Faserverbunde vor.
Als „Prepreg-Fasern" sowie daraus abgeleiteten Verbunden wie Faserbündel, geflochtene Fasern, Fasergelege, Faserverbunde etc. werden Verstärkungsfasern bezeichnet, die mit Pulver ummantelt sind. Dazu werden beispielsweise die Fasern mit einem Schlicker vorbehandelt und getrocknet, so dass eine feste Be- schichtung der Faser bereits vorliegt, bevor die Faser in das Pulverbett eingebracht wird. Diese Art der vorimprägnierten Fasern ist dann besonders effektiv vor Schäden durch Bestrahlung geschützt.
Vor der Bearbeitung mittels Laser oder Elektro-Strahl wird auch die Prepreg-Faser dann mit metallischem Hochtemperatur- Pulver wie beispielsweise dem Pulver eine Nickel-oder Cobalt basierten Superlegierung bedeckt - beispielsweise zugerakelt - , so dass die Faser zweifach,
- einmal durch die Prepreg-Beschichtung und
- einmal durch das Bedecken mit Pulvermaterial vor
Schäden die durch Bestrahlung und Energieeinwirkung während des additiven Festigungsverfahrens entstehen können,
geschützt ist.
Nach einer vorteilhaften Ausführungsform der Erfindung werden die ersten Fasern, Faserbündel, Fasergelege und/oder Faser- verbünde durch zweite oder weitere Fasern, Faserbündel, Fa¬ sergelege und/oder Faserverbunde, die beispielsweise quer zu den ersten und/oder in einer Ebene oder parallel zu einer Ebene in der die Lage, die durch das Aufschmelzen via SLM und/oder Elektrobeam gebildet wird, liegen, ergänzt. Die Fa¬ sern bilden dann ein zweidimensionales Netzwerk aus, in das das Metall, insbesondere die Superlegierung, eingeschmolzen wird . Die hier in Rede stehenden Fasern sind bevorzugt Langfasern und/oder Endlosfasern, die als Verstärkungsfasern von Hochtemperaturmetallen oder Hochtemperaturmetalllegierungen eingesetzt werden. Nach einer weiteren vorteilhaften Ausführungsform der Erfindung sind die ersten Fasern, Faserbündel, Fasergelege
und/oder Faserverbunde, die beispielsweise seitlich abgerollt werden, an einer Pulverbett-Seitenwand verankert oder werden durch Öffnungen in einer oder mehrerer Seitenwand/Seitenwände in das Pulverbett eingezogen oder eingebracht. Im Prozess werden die Faser und/oder das Gelege auf dem Pulverbett abge¬ legt und dann mit dem Pulver bedeckt, beispielsweise durch Über-Rakeln oder Einrakeln mit Pulver. Unter Fasern, Faserbündel, Fasergelege und/oder Faserverbunden sind alle Arten von Verstärkungsfasern, wie sie zur Faserverstärkung in, insbesondere metallischen Hochtemperatur geeigneten Komposit-Materialien eingesetzt werden, gemeint. Hierunter fallen Einzelfasern, insbesondere in Form von Endlosfasern. Außerdem Faserbündel, beispielsweise geflochtene Fasern sowie Fasergelege, die eine Ebene oder Lage quer oder parallel zu den über SLM gebildeten Lagen ausmachen. Diese Lagen können auch eine Wand oder Teil einer Wand des faser- verstärkten Bauteils darstellen. Fasergelege können in verschiedenen Maschenweiten, in die das Metallpulver - insbesondere über SLM /E-Beam - einschmelzbar ist, vorliegen. Wichtig ist vor allem, dass die Fasern während des Aufschmel¬ zens des Pulvers vor direkter Bestrahlung geschützt vorlie¬ gen, also in Pulver eingebettet sind, so dass die Strahlung von dem Pulver absorbiert wird und nicht direkt auf die Faser trifft.
Schließlich sind mit Faserverbunden noch dreidimensionale Fasergebilde mit Maschen und gegebenenfalls Innenräumen ge¬ meint, die ganz oder teilweise im additiven Verfahren durch gezieltes Aufschmelzen von Metallpulver gefüllt werden können .
In der Regel handelt es sich bei den Verstärkungsfasern um hochfeste und/oder temperaturbeständige Fasern, insbesondere um Carbonfasern und/oder Keramikfasern, wie metalloxidische Fasern und/oder Siliziumcarbidfasern . Der oder die Laser- Elektronenbeam-Strahlen schmelzen dann im additiven Verfahren das Metallpulver kurzfristig auf, wodurch die Fasern umschlossen und lagenweise in die metallische Struktur, die im additiven Verfahren hergestellt wird, eingebaut werden.
Nach einer vorteilhaften Ausführungsform des Verfahrens werden eine gezielte Temperaturbehandlung und/oder die Überlagerung eines Temperaturgradienten beim Aufbauprozess ergänzend eingesetzt, um die Vergröberung oder Erhöhung der Grobkörnigkeit der Mikrostruktur weiter zu erhöhen.
Die Schichtdicke einer derartigen Lage liegt beispielsweise im Bereich zwischen 0,1 ym und 500 ym, beispielsweise zwi- sehen 1 ym und 200 ym und insbesondere zwischen 10 ym bis 50ym.
Der Durchmesser einer Verstärkungsfaser, insbesondere einer keramischen Verstärkungsfaser, wie sie gemäß der Erfindung einsetzbar ist, liegt beispielsweise zwischen 0,1 ym bis 50ym. Bevorzugt handelt es sich bei den keramischen Fasern um hoch- temperaturstabile Fasern, insbesondere um eine Art, die unter den Bedingungen des Selective Laser Melting oder Elektronen- Beam-Verfahrens stabil, insbesondere auch formstabil, bleibt. Durch den Absenkprozess des Pulverbettes und den selektiven Aufschmelzprozess des Metallpulvers werden die keramischen Fasern zu einem bestimmten Teil von Metallpulver und dann von Metallschmelze umschlossen und lagenweise in die metallische Struktur eingebaut.
Überraschend hat sich gezeigt, dass durch ein additives Ver¬ fahren im Hochtemperaturbereich um die keramische Faser herum eine Superlegierung durch die vorherige Einbettung der Faser in Pulver additiv aufgebaut werden kann. Dadurch kann ein Me- tall-Matrix Komposit auf Basis einer Superlegierung mit deutlich verbesserten Belastungseigenschaften wie hohe Festigkeit und/oder hohe Kriech-/Temperaturbeständigkeit erzeugt werden.
Die Integration der Verstärkungsfasern wäre über den Gusspro- zess nicht möglich, da die dabei auftretenden dauerhaften
Temperaturbelastungen die Fasern zerstören würden. Diese vorteilhafte Kombination eines additiven metallischen Aufbauprozesses mit der Verwendung keramischer Verstärkungsfasern ermöglicht die Ausnutzung der additiven Prozesstechnologie für die Herstellung von hochbelasteten Gasturbinenbauteilen.
Im Folgenden wird die Erfindung noch anhand einer Figur, die im Detail zeigt, wie eine Faser während des SLM-Verfahrens durch Metallschmelze ummantelt wird.
Die Figur 1 zeigt ein Prozess-Schema für die Erzeugung eines Metall-Matrix-Komposits mit in der Pulverbett liegenden Ver- stärkungs-Faserverlauf, wobei dies nur eine bevorzugte Aus¬ führungsform ist. Eine Ergänzung durch weitere respektive „zweite" Fasern, die beispielsweise auch quer zum Faserver¬ lauf der ersten Fasern aber dennoch in der Pulverbett- oder Lagenebene liegen, liegt je nach Ausführungsform mal vor und mal nicht vor. In Figur 1 ist das Metall-Matrix-Komposit 1 zu sehen und zwar die Ansicht der Draufsicht auf eine Lage eines Metall-Matrix- Komposits 1, wobei in der obersten Zeile die verschiedenen Stadien der Verarbeitung gezeigt sind.
Von rechts nach links sind in Figur 1 vier Zonen 3, 4, 6 und 7 erkennbar und gekennzeichnet. In Zone 3 ist die keramische Faser 1, die nur im Querschnitt zu sehen ist, weil sie in der Ebene des Pulverbettes liegt, vollumfänglich umgeben vom Me¬ tallpulver 2. In Zone 4 wird gerade das Metallpulver 2 vom Laserstrahl 5 gezielt geschmolzen. Dabei ummantelt die visko¬ se energetisch hoch aufgeladene Metallschmelze die keramische Verstärkungsfaser, wobei durch den hohen energetischen Zu- stand der Metallschmelze die beiden Oberflächen der Metall¬ schmelze einerseits und der keramischen Faser andererseits, gut aneinander haftende Grenzflächen bilden. Deshalb ist eine derart eingeschmolzene Verstärkungsfaser gut im Metall- Matrix-Komposit verankert und/oder eingebettet. Nach Ausbil- dung dieser gut aneinander haftenden Grenzflächen wird dieser Zustand sofort eingefroren, weil unmittelbar angrenzend an die Zone 4, in der der Laserstrahl 5 punktuell hohe Energie zuführt, in der Zone 6 das Komposit bereits abkühlt. In Zone 7 liegt das Komposit bereits fast wieder in Raumtemperatur vor. Die Ausdehnungen der Zonen lassen sich erahnen, wenn bedacht wird, dass der Querschnitt einer Verstärkungsfaser, wie hier zu sehen, beispielsweise im Bereich zwischen 10 ym und 50 ym liegt. Die Regelung der Laserstrahl oder Elektronenstrahl-Energie, ebenso wie die Geschwindigkeit, in der der Strahl über die Oberfläche des Pulverbetts geführt wird, spielen dabei natür¬ lich eine wichtige Rolle, die vom Fachmann durch Feinjustie¬ rung während des Herstellungsverfahrens und/oder nach erfolg- ter Qualitäts-Prüfung der hergestellten Bauteile jeweils Pro- zess- und/oder Materialabhängig nachgeregelt werden. Selbstverständlich können ergänzend zu den gezeigten in der Lagenebene verlaufenden Verstärkungsfasern auch noch dazu quer liegende Fasern, die ebenfalls in der Ebene der Lagen liegen, in das faserverstärkte Bauteil eingebaut werden.
Ebenso liegen Faserbündel, geflochtene Fasern, Fasergelege und/oder Faserverbunde, die dreidimensionale Fasergelege bil¬ den, im Umfang der Erfindung. In der Figur 1 wurde nur der Übersichtlichkeit halber die einfachste Form der Faserver¬ stärkung durch Einbau einzeln vorliegender Fasern gezeigt.
Durch die vorliegende Erfindung wird eine Möglichkeit ge¬ zeigt, wie eine Faserverstärkung beim Aufbau eines mittels im additiven Verfahren gefertigten hochtemperaturstabilen und/oder für Heißgasanwendungen geeigneten Bauteils realisierbar ist.

Claims

Patentansprüche
1. Bauteil, insbesondere eine Komponente für eine Turbine und/oder einen Abgasstrang, ein Basismaterial, das mittels eines additiven Verfahrens im Hochtemperaturbereich verarbeitbar ist, also beispielsweise ein Metall, eine Legierung, eine sinterbare Mischung und/oder eine Superlegierung umfassend, wobei eine Faserverstärkung vorgesehen ist, die erste Fasern, Faserbündel, Fasergelege und/oder Faserverbunde um- fasst, deren Vorzugsrichtung in einer Ebene mit dem Pulverbett, also quer, insbesondere auch im rechten Winkel zur Auf¬ baurichtung der einzelnen, durch das additive Verfahren aufgebauten, Lagen liegt.
2. Bauteil nach Anspruch 1, wobei die ersten Fasern zumindest zum Teil als keramische Lang-Fasern, insbesondere als Endlos¬ fasern, vorliegen.
3. Bauteil nach einem der Ansprüche 1 oder 2, wobei die ers- ten Fasern zumindest zum Teil in Form von Faserbündel vorlie¬ gen .
4. Bauteil nach einem der Ansprüche 1 bis 3, wobei die ersten Fasern zumindest zum Teil in Form von geflochtenen Fasern vorliegen.
5. Bauteil nach einem der Ansprüche 1 bis 4, wobei die ersten Fasern zumindest zum Teil in Form von Fasergelegen vorliegen.
6. Bauteil nach Anspruch 5, wobei die Fasergelege zumindest zum Teil in Form von zwei-dimensionalen Fasergelegen vorliegen .
7. Bauteil nach einem der vorstehenden Ansprüche 1 bis 6, wo- bei die ersten Fasern zumindest zum Teil in Form von Faserverbunden vorliegen.
8. Bauteil nach Anspruch 7, wobei die Faserverbunde zumindest zum Teil in Form von drei-dimensionalen Faserverbunden vorliegen .
9. Bauteil nach einem der vorstehenden Ansprüche, wobei zwei¬ te Fasern vorgesehen sind, die quer zu den ersten Fasern liegend eine weitere Faserverstärkung des Bauteils bewirken.
10. Bauteil nach einem der vorstehenden Ansprüche, wobei die zweiten Fasern in Form von Faserbündel, Fasergelegen und/oder
Faserverbunden vorliegen.
11. Bauteil nach einem der vorstehenden Ansprüche, wobei der Querschnitt der ersten Fasern im Bereich zwischen 0,1 ym und 50 ym liegt.
12. Bauteil nach einem der vorstehenden Ansprüche, wobei das Material der ersten Fasern zumindest zum Teil ausgewählt ist aus der Gruppe folgender Materialien: Carbonfasern und/oder Keramikfasern, wie metalloxidische Fasern und/oder
Siliziumcarbidfasern .
13. Bauteil nach einem der vorstehenden Ansprüche, wobei das Material der zweiten Fasern zumindest zum Teil ausgewählt ist aus der Gruppe folgender Materialien: Carbonfasern und/oder Keramikfasern, wie metalloxidische Fasern und/oder
Siliziumcarbidfasern .
14. Verfahren zur Herstellung eines Bauteils, insbesondere eines Bauteils für eine Turbine oder einen Abgasstrang mit¬ tels eines additiven Verfahrens, wobei das Verfahren folgende Prozessschritte umfasst:
- Zur Verfügungstellen eines Pulverbettes, das aufschmelzbares Pulver einer hochschmelzenden Legierung enthält, nach unten bewegbar gelagert ist und von oben mit einem
Elektronen- oder Laserstrahl bearbeitbar ist,
- Einlegen von Verstärkungsfasern, -faserbündel und/oder - fasergelege in das Pulverbett - Bedecken der Verstärkungsfasern, -faserbündel und/oder - fasergelege mit dem Pulver, derart, dass beim Bestrahlen des Pulvers zum Aufschmelzen und Ausbilden der Komponente der Strahl auf das Pulver und nicht direkt auf die Verstärkungsfaser trifft.
15. Verfahren nach Anspruch 14, wobei die ersten Fasern, Faserbündel, Fasergelege und/oder Faserverbunde als Prepreg- Fasern, -Faserbündel, -Fasergelege und/oder -Faserverbunde vorliegen .
PCT/EP2018/070120 2017-07-25 2018-07-25 Faserverstärktes bauteil und herstellungsverfahren dazu WO2019020668A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017212731.7A DE102017212731A1 (de) 2017-07-25 2017-07-25 Faserverstärktes Bauteil und Herstellungsverfahren dazu
DE102017212731.7 2017-07-25

Publications (1)

Publication Number Publication Date
WO2019020668A1 true WO2019020668A1 (de) 2019-01-31

Family

ID=63168365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/070120 WO2019020668A1 (de) 2017-07-25 2018-07-25 Faserverstärktes bauteil und herstellungsverfahren dazu

Country Status (2)

Country Link
DE (1) DE102017212731A1 (de)
WO (1) WO2019020668A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113020598A (zh) * 2021-03-03 2021-06-25 西北工业大学 一种选区激光熔化成形镍基高温合金及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6814823B1 (en) * 1999-09-16 2004-11-09 Solidica, Inc. Object consolidation through sequential material deposition
DE102015113677A1 (de) * 2015-08-18 2017-02-23 Airbus Operations Gmbh Additive Fertigung eines Bauteils aus einem Metallmatrix-Verbundwerkstoff
DE102015221078A1 (de) * 2015-10-28 2017-05-04 Airbus Operations Gmbh Faserverstärktes Metallbauteil für ein Luft- oder Raumfahrzeug und Herstellungsverfahren für faserverstärkte Metallbauteile
DE102016013857A1 (de) * 2016-11-19 2017-05-18 Daimler Ag Verfahren zurn Herstellen eines faserverstärkten Bauteils für ein Kraftfahrzeug
DE102016201838A1 (de) 2016-02-08 2017-08-10 Siemens Aktiengesellschaft Verfahren zur Herstellung eines Bauteils und Vorrichtung
EP3354632A1 (de) * 2017-01-25 2018-08-01 Siemens Aktiengesellschaft Verfahren zur herstellung eines generativ gefertigten faserverstärkten keramischen matrixverbundwerkstoffs

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10011089B2 (en) * 2011-12-31 2018-07-03 The Boeing Company Method of reinforcement for additive manufacturing
US9757802B2 (en) * 2014-06-30 2017-09-12 General Electric Company Additive manufacturing methods and systems with fiber reinforcement
DE102015104827A1 (de) * 2015-03-27 2016-09-29 Airbus Operations Gmbh Generatives Schichtaufbauverfahren und Vorrichtung zur Herstellung eines dreidimensionalen faserverstärkten Objekts

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6814823B1 (en) * 1999-09-16 2004-11-09 Solidica, Inc. Object consolidation through sequential material deposition
DE102015113677A1 (de) * 2015-08-18 2017-02-23 Airbus Operations Gmbh Additive Fertigung eines Bauteils aus einem Metallmatrix-Verbundwerkstoff
DE102015221078A1 (de) * 2015-10-28 2017-05-04 Airbus Operations Gmbh Faserverstärktes Metallbauteil für ein Luft- oder Raumfahrzeug und Herstellungsverfahren für faserverstärkte Metallbauteile
DE102016201838A1 (de) 2016-02-08 2017-08-10 Siemens Aktiengesellschaft Verfahren zur Herstellung eines Bauteils und Vorrichtung
DE102016013857A1 (de) * 2016-11-19 2017-05-18 Daimler Ag Verfahren zurn Herstellen eines faserverstärkten Bauteils für ein Kraftfahrzeug
EP3354632A1 (de) * 2017-01-25 2018-08-01 Siemens Aktiengesellschaft Verfahren zur herstellung eines generativ gefertigten faserverstärkten keramischen matrixverbundwerkstoffs

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113020598A (zh) * 2021-03-03 2021-06-25 西北工业大学 一种选区激光熔化成形镍基高温合金及其制备方法

Also Published As

Publication number Publication date
DE102017212731A1 (de) 2019-01-31

Similar Documents

Publication Publication Date Title
EP2099582B1 (de) Vorrichtung und verfahren zur reparatur oder herstellung von schaufelspitzen von schaufeln einer gasturbine, insbesondere eines flugtriebwerks
EP2794152B1 (de) Verfahren zur fertigung eines kompakten bauteils sowie mit dem verfahren herstellbares bauteil
EP3074161B1 (de) Verfahren und vorrichtung zum generativen herstellen zumindest eines bauteilbereichs eines bauteils
EP2886226A2 (de) Belichtung bei generativer Fertigung
DE102014108061A1 (de) Vorrichtung und Verfahren zur generativen Herstellung zumindest eines Bauteilbereichs eines Bauteils
DE102009051479A1 (de) Verfahren und Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine
EP3487651A1 (de) Verfahren zum erzeugen eines bauteils mit einem pulverbettbasierten additiven fertigungsverfahren und pulver zur verwendung in einem solchen verfahren
EP3368237B1 (de) Verfahren zur herstellung eines bauteils für eine strömungsmaschine
DE102014108081A1 (de) Vorrichtung und Verfahren zur generativen Herstellung zumindest eines Bauteilbereichs eines Bauteils
WO2019011641A1 (de) Verfahren für ein additiv herzustellendes bauteil mit vorbestimmter oberflächenstruktur
DE102019200620A1 (de) Verfahren zur Herstellung von Laufschaufeln aus Ni-Basislegierungen und entsprechend hergestellte Laufschaufel
WO2012113369A2 (de) Verfahren zur generativen herstellung oder reparatur eines bauteils sowie bauteil
WO2019020668A1 (de) Faserverstärktes bauteil und herstellungsverfahren dazu
DE102009018762B4 (de) Verfahren zum Herstellen eines metallischen Verbundwerkstoffs mit Kohlenstoffnanoröhren sowie eines endformnahen Bauteils aus diesem Verbundwerkstoff
EP4142970A1 (de) Bestrahlungsstrategie für eine kühlbare, additiv hergestellte struktur
WO2019228755A1 (de) Vorrichtung zum erwärmen eines bauteilmaterials, additive herstellungsanlage und verfahren zur additiven herstellung
WO2021094026A1 (de) Verfahren zur schichtweisen additiven herstellung eines verbundwerkstoffs
DE4335558A1 (de) Verfahren zum Herstellen von langfaserverstärkten Bauteilen
WO2019025135A1 (de) Verfahren zum ausbilden einer definierten oberflächenrauheit in einen bereich eines additiv herzustellenden oder hergestellten bauteils für einer strömungsmaschine
EP2343143A2 (de) Verfahren zur Fertigung von Bauteilen aus Refraktärmetallen
WO2017194451A1 (de) Vorbehandlung, verfahren zur additiven herstellung eines bauteils und vorrichtung
WO2017194275A1 (de) Bauplattform für die additive herstellung und verfahren
DE102020201621A1 (de) Strategie zum Trennen von Bauteilen in der additiven Herstellung
WO2022129503A1 (de) Additiv hergestellte poröse bauteilstruktur und mittel zu deren herstellung
EP2815824A1 (de) Verfahren zur Herstellung einer Komponente

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18753072

Country of ref document: EP

Kind code of ref document: A1