WO2019019834A1 - 一种信号处理方法、装置、设备及计算机可读存储介质 - Google Patents

一种信号处理方法、装置、设备及计算机可读存储介质 Download PDF

Info

Publication number
WO2019019834A1
WO2019019834A1 PCT/CN2018/091551 CN2018091551W WO2019019834A1 WO 2019019834 A1 WO2019019834 A1 WO 2019019834A1 CN 2018091551 W CN2018091551 W CN 2018091551W WO 2019019834 A1 WO2019019834 A1 WO 2019019834A1
Authority
WO
WIPO (PCT)
Prior art keywords
pbch dmrs
dmrs sequence
candidate pbch
different
candidate
Prior art date
Application number
PCT/CN2018/091551
Other languages
English (en)
French (fr)
Inventor
赵铮
李铁
钟伟
任斌
郑方政
达人
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to EP18838315.2A priority Critical patent/EP3661096B1/en
Priority to US16/633,718 priority patent/US11063722B2/en
Priority to JP2020503858A priority patent/JP6992153B2/ja
Priority to KR1020207004554A priority patent/KR20200024326A/ko
Priority to KR1020227001215A priority patent/KR102483502B1/ko
Publication of WO2019019834A1 publication Critical patent/WO2019019834A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Definitions

  • the embodiments of the present disclosure relate to the field of communications technologies, and in particular, to a signal processing method, apparatus, device, and computer readable storage medium.
  • the synchronization signal block is transmitted by means of beam scanning, that is, different beams are formed at different times to transmit the synchronization signal block in the same or different directions.
  • a sync signal block is composed of a sync signal and a physical broadcast channel portion.
  • the physical broadcast channel portion includes a Physical Broadcast Channel (PBCH) and a DeModulation Reference Signal (DM RS) of the physical broadcast channel.
  • PBCH Physical Broadcast Channel
  • DM RS DeModulation Reference Signal
  • the demodulation reference symbols in the physical broadcast channel are used for channel estimation and indicate the Synchronization Signal block (time) index (SS block (time) index).
  • the DMRS of each cell has several (eg, 8) available sequences, and the different sequences respectively correspond to the sequence numbers of different sync signal blocks.
  • the user uses all possible sequences to correlate the received signal or the channel-equalized signal, and the possible sequence with the largest correlation value is used as the detected sequence, and the sequence number of the corresponding synchronization signal block is used as the detected synchronization.
  • the sequence number of the signal block the sequence number of which can reflect the information of the beam.
  • the sequences of different cells and the sequence of the current cell are made as orthogonal as possible to improve the synchronization block and channel estimation detection accuracy.
  • the location of the mapping resource is related to the cell identifier. After receiving the cell identifier, the terminal detects the CRS on all the resources mapped according to the cell identifier.
  • the beam scanning mechanism is added, how to transmit DMRS to reduce the collision of PBCH DMRS is a major issue discussed by the relevant personnel.
  • embodiments of the present disclosure provide a signal processing method, apparatus, device, and computer readable storage medium to reduce collision of PBCH DMRS.
  • an embodiment of the present disclosure provides a signal processing method, which is applied to a network side device, and includes:
  • the candidate PBCH DMRS sequence is transmitted by using an RE group corresponding to the candidate PBCH DMRS sequence.
  • mapping relationship includes:
  • mapping relationship between the candidate PBCH DMRS sequences of different cell groups and different RE groups The mapping relationship between different candidate PBCH DMRS sequences and different RE groups in the same cell.
  • the transmitting, according to the mapping relationship, the candidate PBCH DMRS sequence by using an RE group corresponding to the candidate PBCH DMRS sequence includes:
  • the modulated candidate PBCH DMRS sequence is transmitted using the RE group.
  • two orthogonal frequency division multiplexing OFDM symbols of the same synchronization signal block carry the same candidate PBCH DMRS sequence
  • Two orthogonal frequency division multiplexing OFDM symbols of the same synchronization signal block jointly carry the same candidate PBCH DMRS sequence.
  • the initial value of the generator polynomial of the candidate PBCH DMRS sequence is determined according to the cell identifier and/or the sequence number of the synchronization signal block.
  • an embodiment of the present disclosure further provides a signal processing method, which is applied to a terminal, including:
  • the sequence number of the sync signal block is determined based on the detected candidate PBCH DMRS sequence.
  • mapping relationship includes:
  • mapping relationship between the candidate PBCH DMRS sequences of different cell groups and different RE groups The mapping relationship between different candidate PBCH DMRS sequences and different RE groups in the same cell.
  • the detecting, in the group of the RE, the candidate PBCH DMRS sequence corresponding to the RE group includes:
  • the candidate PBCH DMRS sequence in the candidate PBCH DMRS sequence group corresponding to the RE group is used to perform correlation detection, and the correlation value corresponding to each RE group is obtained;
  • the candidate PBCH DMRS sequence corresponding to the maximum correlation value is used as the detected candidate PBCH DMRS sequence.
  • an embodiment of the present disclosure further provides a signal processing apparatus, including:
  • a generating module configured to generate a candidate physical broadcast channel demodulation reference symbol PBCH DMRS sequence
  • An obtaining module configured to acquire a mapping relationship between a PBCH DMRS sequence and a resource unit RE group
  • a transmitting module configured to transmit, by using the RE group corresponding to the candidate PBCH DMRS sequence, the candidate PBCH DMRS sequence according to the mapping relationship.
  • mapping relationship includes:
  • mapping relationship between the candidate PBCH DMRS sequences of different cell groups and different RE groups The mapping relationship between different candidate PBCH DMRS sequences and different RE groups in the same cell.
  • the transmission module includes:
  • a modulation submodule configured to modulate the candidate PBCH DMRS sequence
  • mapping submodule configured to map the modulated candidate PBCH DMRS sequence to the RE group according to the mapping relationship
  • a transmission submodule configured to transmit the modulated candidate PBCH DMRS sequence by using the RE group.
  • two orthogonal frequency division multiplexing OFDM symbols of the same synchronization signal block carry the same candidate PBCH DMRS sequence; or two orthogonal frequency division multiplexing OFDM symbol carriers of the same synchronization signal block.
  • Different candidate PBCH DMRS sequences; or two orthogonal frequency division multiplexing OFDM symbols of the same synchronization signal block jointly carrying the same candidate PBCH DMRS sequence.
  • the initial value of the generator polynomial of the candidate PBCH DMRS sequence is determined according to the cell identifier and/or the sequence number of the synchronization signal block.
  • an embodiment of the present disclosure further provides a signal processing apparatus, including:
  • a receiving module configured to receive a candidate PBCH DMRS sequence
  • a first determining module configured to determine, according to a mapping relationship between a PBCH DMRS sequence and an RE group, an RE group corresponding to the candidate PBCH DMRS sequence
  • a detecting module configured to detect, in the RE group, a candidate PBCH DMRS sequence corresponding to the RE group
  • a second determining module configured to determine a sequence number of the synchronization signal block according to the detected candidate PBCH DMRS sequence.
  • mapping relationship includes:
  • mapping relationship between the candidate PBCH DMRS sequences of different cell groups and different RE groups The mapping relationship between different candidate PBCH DMRS sequences and different RE groups in the same cell.
  • the detecting module includes:
  • a grouping sub-module configured to group the candidate PBCH DMRS sequences to obtain a candidate PBCH DMRS sequence group, where the number of candidate PBCH DMRS sequence groups is equal to the number of the RE groups;
  • a detection submodule configured to perform correlation detection on a candidate PBCH DMRS sequence in a candidate PBCH DMRS sequence group corresponding to the RE group by using a preset PBCH DMRS sequence for each RE group, and obtain a correlation value corresponding to each RE group ;
  • a determining submodule configured to use the candidate PBCH DMRS sequence corresponding to the maximum correlation value as the detected candidate PBCH DMRS sequence.
  • an embodiment of the present disclosure further provides an electronic device including a memory, a processor, a transceiver, and a computer program stored on the memory and executable on the processor; The steps in the method as described in the first aspect above are implemented when the processor executes the computer program.
  • an embodiment of the present disclosure further provides an electronic device including a memory, a processor, a transceiver, and a computer program stored on the memory and executable on the processor; The steps in the method as described in the second aspect above are implemented when the processor executes the computer program.
  • an embodiment of the present disclosure is a computer readable storage medium for storing a computer program, wherein the computer program is executed by a processor to implement the method of the first aspect as described above step.
  • an embodiment of the present disclosure is a computer readable storage medium for storing a computer program, wherein the computer program is executed by a processor to implement the method as described in the second aspect above step.
  • the neighboring cells can be reasonably planned such that the beams pointing in the same direction correspond to different synchronization signal block (time) numbers as much as possible, thereby avoiding collision of PBCH DMRS symbols between cells.
  • FIG. 1 is a flowchart of a signal processing method according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a signal processing method according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a signal processing method according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a signal processing apparatus according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a transmission module according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a signal processing apparatus according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a detection module according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a network side device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a terminal provided by an embodiment of the present disclosure.
  • the signal processing method of the embodiment of the present disclosure is applied to a network side device, and includes:
  • Step 101 Generate a candidate PBCH DMRS sequence.
  • the network side device may be a base station or the like.
  • On the base station side in general, there are 8 available PBCH DMRS sequences, and any one of the 8 sequences may be referred to as a Candidate PBCH DMRS sequence.
  • a candidate PBCH DMRS sequence for example, a Gold sequence or the like can be generated in a manner related to the related art.
  • Step 102 Obtain a mapping relationship between a PBCH DMRS sequence and an RE (Resource Element) group.
  • the mapping relationship may be agreed in advance.
  • the mapping relationship includes: mapping relationship between candidate PBCH DMRS sequences of different cells and different RE groups; or mapping relationship between different candidate PBCH DMRS sequences and different RE groups in the same cell; or different cell groups The mapping relationship between the candidate PBCH DMRS sequence and different RE groups; the mapping relationship between different candidate PBCH DMRS sequences and different RE groups in the same cell.
  • Step 103 Transmit the candidate PBCH DMRS sequence by using an RE group corresponding to the candidate PBCH DMRS sequence according to the mapping relationship.
  • the candidate PBCH DMRS sequence is modulated, and the modulated candidate PBCH DMRS sequence is mapped to the RE group according to the mapping relationship, and the modulated candidate PBCH DMRS is transmitted by using the RE group. sequence.
  • the modulation mode may be BPSK (Binary Phase Shift Keying), QPSK (Quadrature Phase Shift Keying), 16QAM (16 Quadrature Amplitude Modulation, 16 orthogonal Amplitude and phase modulation), 64QAM (64 Quadrature Amplitude Modulation), 256QAM (256 Quadrature Amplitude Modulation), etc.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • 16QAM (16 Quadrature Amplitude Modulation, 16 orthogonal Amplitude and phase modulation
  • 64QAM 64 Quadrature Amplitude Modulation
  • 256QAM 256 Quadrature Amplitude Modulation
  • two OFDM (Orthogonal Frequency Division Multiplexing) symbols of the same synchronization signal block carry the same candidate PBCH DMRS sequence; or two OFDM symbols of the same synchronization signal block carry different candidate PBCHs.
  • the generator polynomial refers to the polynomial used in generating the PBCH DMRS sequence.
  • the initial value of the generator polynomial of the candidate PBCH DMRS sequence is determined according to the cell identifier and/or the sequence number of the synchronization signal block.
  • the neighboring cells can be reasonably planned so that the beams pointing in the same direction correspond to different synchronization signal block (time) numbers as much as possible, thereby avoiding collision of PBCH DMRS symbols between cells.
  • the signal processing method of the embodiment of the present disclosure is applied to a terminal, including:
  • Step 201 Receive a candidate PBCH DMRS sequence.
  • Step 202 Determine, according to the mapping relationship between the PBCH DMRS sequence and the RE group, the RE group corresponding to the candidate PBCH DMRS sequence.
  • the mapping relationship includes: mapping relationship between candidate PBCH DMRS sequences of different cells and different RE groups; or mapping relationship between different candidate PBCH DMRS sequences and different RE groups in the same cell; or different The mapping relationship between the candidate PBCH DMRS sequence of the cell group and the different RE groups; the mapping relationship between different candidate PBCH DMRS sequences and different RE groups in the same cell.
  • the terminal may acquire the mapping relationship according to a prior agreement with the network side or according to a notification on the network side.
  • Step 203 In the RE group, detect a candidate PBCH DMRS sequence corresponding to the RE group.
  • the candidate PBCH DMRS sequences are grouped to obtain a candidate PBCH DMRS sequence group, and the number of candidate PBCH DMRS sequence groups is equal to the number of the RE groups.
  • the correlation PBCH DMRS sequence in the candidate PBCH DMRS sequence group corresponding to the RE group is used to perform correlation detection, and the correlation value corresponding to each RE group is obtained.
  • a maximum correlation value is obtained from a plurality of correlation values of all RE groups, and a candidate PBCH DMRS sequence corresponding to the maximum correlation value is used as the detected candidate PBCH DMRS sequence.
  • each cell has 8 candidate PBCH DMRS sequences.
  • the 8 candidate PBCH DMRS sequences are grouped into 4 groups of two PBCH DMRS sequences each.
  • each of the RE groups is separately correlated with the candidate PBCH DMRS sequences in each RE group by using two preset PBCH DMRS sequences, and two correlation values are obtained.
  • eight correlation values were obtained.
  • the candidate PBCH DMRS sequence corresponding to the largest correlation value among the eight correlation values is the detected DMRS sequence.
  • Step 204 Determine a sequence number of the synchronization signal block according to the detected candidate PBCH DMRS sequence.
  • the neighboring cells can be reasonably planned so that the beams pointing in the same direction correspond to different synchronization signal block (time) numbers as much as possible, thereby avoiding collision of PBCH DMRS symbols between cells.
  • the signal processing method of the embodiment of the present disclosure includes:
  • Step 301 Generate all candidate PBCH DMRS sequences, and generate a candidate PBCH DMRS sequence as a Gold sequence.
  • the generated candidate PBCH DMRS sequence is a Gold sequence.
  • the Gold sequence can be a complete Gold sequence in one cycle, or a sequence taken from a period Gold sequence.
  • the initial value of the generator polynomial of the Gold sequence is related to the cell identifier and/or the sync block (time) sequence number.
  • Step 302 Modulate the generated Gold sequence.
  • the modulation mode may be BPSK, QPSK, 16QAM, 64QAM, 256QAM, or the like.
  • Step 303 Obtain a mapping relationship between the PBCH DMRS sequence and the RE group.
  • the mapping relationship between the PBCH DMRS sequence and the resource unit RE group is the correspondence between the modulated Gold sequence and the RE group.
  • Step 304 Map the modulated Gold sequence to the corresponding RE group, and use the RE group to transmit the corresponding Gold sequence.
  • two OFDM (Orthogonal Frequency Division Multiplexing) symbols are used to transmit a PBCH part in one synchronization signal block, and the PBCH DMRS in two symbols can carry two identical Gold sequences. , or can carry two different Gold sequences, or two symbols together bear the same Gold sequence.
  • the neighboring cells can be reasonably planned so that the beams pointing in the same direction correspond to different synchronization signal block (time) numbers as much as possible, thereby avoiding collision of PBCH DMRS symbols between cells.
  • the candidate PBCH DMRS sequence of each cell is divided into several groups, and each group of candidate PBCH DMRS sequences are respectively transmitted on different RE groups, so that the sequence numbers of different synchronization signal blocks or different cells are corresponding.
  • the PBCH DMRS sequence is mapped to a different RE group for transmission.
  • the number of candidate sequences to be detected is reduced, thereby improving detection accuracy and reducing detection complexity.
  • the signal processing method of the embodiment of the present disclosure includes:
  • Step 401 the generated Gold sequence.
  • x 2 (n+31) (x 2 (n+3)+x 2 (n+2)+x 2 (n+1)+x 2 (n)) mod 2
  • x 2 (n) The initial value of x 2 (n) is Determined, where c init , x 2 (i) is a constant; Nc is a constant and is a positive integer, for example, the value may be 1600.
  • NR cell ID cell identifier
  • Step 402 Modulate the generated Gold sequence c(n).
  • Step 403 Map the modulated symbols onto the RE group, and transmit the modulated symbols by using the RE group.
  • d(n) is transmitted on the m+4n subcarrier, ie
  • d(n+72) is transmitted on the m+4n subcarrier, ie
  • the neighboring cells can be reasonably planned so that the beams pointing in the same direction correspond to different synchronization signal block (time) numbers as much as possible, thereby avoiding collision of PBCH DMRS symbols between cells.
  • the signal processing apparatus of the embodiment of the present disclosure includes:
  • a generating module 601 configured to generate a candidate physical broadcast channel demodulation reference symbol PBCH DMRS sequence
  • an obtaining module 602 configured to acquire a mapping relationship between a PBCH DMRS sequence and a resource unit RE group
  • a transmitting module 603, configured to: according to the mapping relationship,
  • the candidate PBCH DMRS sequence is transmitted using an RE group corresponding to the candidate PBCH DMRS sequence.
  • the mapping relationship includes: a mapping relationship between a candidate PBCH DMRS sequence of different cells and different RE groups; or a mapping relationship between different candidate PBCH DMRS sequences and different RE groups in the same cell; or different cell groups
  • the transmission module 603 includes:
  • the modulation sub-module 6031 is configured to modulate the candidate PBCH DMRS sequence
  • the mapping sub-module 6032 is configured to map the modulated candidate PBCH DMRS sequence to the RE group according to the mapping relationship
  • the transmission sub-module 6033 The modulated candidate PBCH DMRS sequence is transmitted using the RE group.
  • two OFDM symbols of the same synchronization signal block carry the same candidate PBCH DMRS sequence; or two OFDM symbols of the same synchronization signal block carry different candidate PBCH DMRS sequences; or two of the same synchronization signal block.
  • the OFDM symbols collectively carry the same candidate PBCH DMRS sequence.
  • the initial value of the generator polynomial of the candidate PBCH DMRS sequence is determined according to the cell identifier and/or the sequence number of the synchronization signal block.
  • the neighboring cells can be reasonably planned so that the beams pointing in the same direction correspond to different synchronization signal block (time) numbers as much as possible, thereby avoiding collision of PBCH DMRS symbols between cells.
  • the signal processing apparatus of the embodiment of the present disclosure includes:
  • the receiving module 801 is configured to receive a candidate PBCH DMRS sequence
  • the first determining module 802 is configured to determine, according to the mapping relationship between the PBCH DMRS sequence and the RE group, the RE group corresponding to the candidate PBCH DMRS sequence, and the detecting module 803, configured to In the RE group, the candidate PBCH DMRS sequence corresponding to the RE group is detected; and the second determining module 804 is configured to determine a sequence number of the synchronization signal block according to the detected candidate PBCH DMRS sequence.
  • the mapping relationship includes: a mapping relationship between a candidate PBCH DMRS sequence of different cells and different RE groups; or a mapping relationship between different candidate PBCH DMRS sequences and different RE groups in the same cell; or different cell groups
  • the detecting module 803 includes:
  • a packet sub-module 8031 configured to group the candidate PBCH DMRS sequences to obtain a candidate PBCH DMRS sequence group, the number of candidate PBCH DMRS sequence groups is equal to the number of the RE groups; and the detecting sub-module 8032 is configured for each Correlation detection is performed by using the preset PBCH DMRS sequence and the candidate PBCH DMRS sequence in the candidate PBCH DMRS sequence group corresponding to the RE group, and the correlation value corresponding to each RE group is obtained; the obtaining submodule 8033 is used for Obtaining a maximum correlation value from a plurality of correlation values of all RE groups; and determining a sub-module 8034 for using the candidate PBCH DMRS sequence corresponding to the maximum correlation value as the detected candidate PBCH DMRS sequence.
  • the neighboring cells can be reasonably planned so that the beams pointing in the same direction correspond to different synchronization signal block (time) numbers as much as possible, thereby avoiding collision of PBCH DMRS symbols between cells.
  • a network side device such as a base station, in the embodiment of the present disclosure includes:
  • the processor 1000 is configured to read a program in the memory 1020, and perform the following process: generating a candidate physical broadcast channel demodulation reference symbol PBCH DMRS sequence; acquiring a mapping relationship between the PBCH DMRS sequence and the resource unit RE group; according to the mapping relationship, The candidate PBCH DMRS sequence is transmitted using an RE group corresponding to the candidate PBCH DMRS sequence.
  • the transceiver 1010 is configured to receive and transmit data under the control of the processor 1000.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1000 and various circuits of memory represented by memory 1020.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 1010 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 1000 is responsible for managing the bus architecture and general processing, and the memory 1020 can store data used by the processor 1000 in performing operations.
  • the processor 1000 is responsible for managing the bus architecture and general processing, and the memory 1020 can store data used by the processor 1000 in performing operations.
  • the mapping relationship includes:
  • mapping relationship between the candidate PBCH DMRS sequences of different cell groups and different RE groups The mapping relationship between different candidate PBCH DMRS sequences and different RE groups in the same cell.
  • the processor 1000 is further configured to read the computer program, and perform the following steps:
  • the modulated candidate PBCH DMRS sequence is transmitted using the RE group.
  • two OFDM symbols of the same synchronization signal block carry the same candidate PBCH DMRS sequence; or two OFDM symbols of the same synchronization signal block carry different candidate PBCH DMRS sequences; or two OFDM symbols of the same synchronization signal block share the same Candidate PBCH DMRS sequence.
  • the initial value of the generator polynomial of the candidate PBCH DMRS sequence is determined according to the cell identifier and/or the sequence number of the synchronization signal block.
  • the terminal of the embodiment of the present disclosure includes:
  • the processor 1100 is configured to read a program in the memory 1120 and perform the following process:
  • the candidate PBCH DMRS sequence is received by the transceiver 1110; the RE group corresponding to the candidate PBCH DMRS sequence is determined according to the mapping relationship between the PBCH DMRS sequence and the RE group; and the candidate PBCH DMRS corresponding to the RE group in the RE group
  • the sequence is detected; the sequence number of the sync signal block is determined according to the detected candidate PBCH DMRS sequence.
  • the transceiver 1110 is configured to receive and transmit data under the control of the processor 1100.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1100 and various circuits of memory represented by memory 1120.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 1110 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 1130 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1100 is responsible for managing the bus architecture and general processing, and the memory 1120 can store data used by the processor 1100 in performing operations.
  • the mapping relationship includes:
  • mapping relationship between the candidate PBCH DMRS sequences of different cell groups and different RE groups The mapping relationship between different candidate PBCH DMRS sequences and different RE groups in the same cell.
  • the processor 1100 is further configured to read the computer program, and perform the following steps:
  • the candidate PBCH DMRS sequence in the candidate PBCH DMRS sequence group corresponding to the RE group is used to perform correlation detection, and the correlation value corresponding to each RE group is obtained;
  • the candidate PBCH DMRS sequence corresponding to the maximum correlation value is used as the detected candidate PBCH DMRS sequence.
  • a computer readable storage medium of an embodiment of the present disclosure is configured to store a computer program executable by a processor to implement the following steps:
  • the candidate PBCH DMRS sequence is transmitted by using an RE group corresponding to the candidate PBCH DMRS sequence.
  • the mapping relationship includes:
  • mapping relationship between the candidate PBCH DMRS sequences of different cell groups and different RE groups The mapping relationship between different candidate PBCH DMRS sequences and different RE groups in the same cell.
  • the modulated candidate PBCH DMRS sequence is transmitted using the RE group.
  • two orthogonal frequency division multiplexing OFDM symbols of the same synchronization signal block carry the same candidate PBCH DMRS sequence
  • Two orthogonal frequency division multiplexing OFDM symbols of the same synchronization signal block jointly carry the same candidate PBCH DMRS sequence.
  • the initial value of the generator polynomial of the candidate PBCH DMRS sequence is determined according to the cell identifier and/or the sequence number of the synchronization signal block.
  • a computer readable storage medium of an embodiment of the present disclosure is for storing a computer program executable by the processor to implement the following steps:
  • the sequence number of the sync signal block is determined based on the detected candidate PBCH DMRS sequence.
  • the mapping relationship includes:
  • mapping relationship between the candidate PBCH DMRS sequences of different cell groups and different RE groups The mapping relationship between different candidate PBCH DMRS sequences and different RE groups in the same cell.
  • the candidate PBCH DMRS sequence in the candidate PBCH DMRS sequence group corresponding to the RE group is used to perform correlation detection, and the correlation value corresponding to each RE group is obtained;
  • the candidate PBCH DMRS sequence corresponding to the maximum correlation value is used as the detected candidate PBCH DMRS sequence.
  • the disclosed method and apparatus may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform part of the steps of the transceiving method of the various embodiments of the present disclosure.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种信号处理方法、装置、设备及计算机可读存储介质,涉及通信技术领域,用以减少PBCH DMRS的碰撞。本公开实施例所提供的信号处理方法包括:生成候选物理广播信道解调参考符号PBCH DMRS序列;获取PBCH DMRS序列和资源单位RE组的映射关系;根据所述映射关系,利用与所述候选PBCH DMRS序列对应的RE组传输所述候选PBCH DMRS序列。因此,本公开实施例能够减少PBCH DMRS的碰撞。

Description

一种信号处理方法、装置、设备及计算机可读存储介质
相关申请的交叉引用
本申请主张在2017年7月28日在中国提交的中国专利申请号No.201710632112.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及通信技术领域,尤其涉及一种信号处理方法、装置、设备及计算机可读存储介质。
背景技术
在第5代移动通信系统中,为了提高覆盖范围,采用波束扫描的方式发送同步信号块,即在不同时间形成不同波束指向相同或不同方向传输同步信号块。一个同步信号块由同步信号和物理广播信道部分构成。物理广播信道部分包含物理广播信道(Physical Broadcast Channel,PBCH)和物理广播信道的解调参考符号(DeModulation Reference Signal,DM RS)。
物理广播信道中的解调参考符号被用做进行信道估计,以及指示同步信号块的(时间)序号(Synchronization Signal block(time)index,SS block(time)index)。每个小区的DMRS有若干个(如8个)可用序列,不同的序列分别对应了不同的同步信号块的序号。用户接收到信号后,利用所有可能序列对接收后的信号或对经过信道均衡后的信号进行相关,相关值最大的可能序列便作为检测到序列,相应的同步信号块的序号便作为检测到同步信号块的序号,该同步信号块的序号可以反映波束的信息。
在第五代移动通信系统中,物理层的小区标识有1008个,在设计PBCH DMRS时,使得不同小区的序列,以及本小区的序列尽可能正交,以提高同步块以及信道估计检测精度。
在现有通信系统中,小区特定的参考符号(Cell-specific Reference Signal,CRS)进行资源映射时,映射资源的位置和小区标识有关。终端收到小区标识之后,会根据该小区标识在映射的所有资源上对CRS进行检测。然而,上 述资源映射和传输过程中,没有波束扫描机制,小区特定的参考符号也不需要携带波束指示信息。因此,当增加了波束扫描机制后,如何传输DMRS,以减少PBCH DMRS的碰撞是相关人员讨论的一个主要问题。
发明内容
有鉴于此,本公开实施例提供了一种信号处理方法、装置、设备及计算机可读存储介质,以减少PBCH DMRS的碰撞。
为解决上述技术问题,在第一个方面中,本公开实施例提供一种信号处理方法,应用于网络侧设备,包括:
生成候选物理广播信道解调参考符号PBCH DMRS序列;
获取PBCH DMRS序列和资源单位RE组的映射关系;以及
根据所述映射关系,利用与所述候选PBCH DMRS序列对应的RE组传输所述候选PBCH DMRS序列。
在本公开的一个可行实施例中,所述映射关系包括:
不同小区的候选PBCH DMRS序列和不同的RE组的映射关系;或
同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系;或
不同的小区组的候选PBCH DMRS序列和不同的RE组的映射关系;同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系。
在本公开的一个可行实施例中,所述根据所述映射关系,利用与所述候选PBCH DMRS序列对应的RE组传输所述候选PBCH DMRS序列,包括:
对所述候选PBCH DMRS序列进行调制;
根据所述映射关系,将调制后的候选PBCH DMRS序列映射到RE组上;以及
利用所述RE组传输所述调制后的候选PBCH DMRS序列。
在本公开的一个可行实施例中,同一个同步信号块两个正交频分复用OFDM符号承载相同的候选PBCH DMRS序列;或者
同一个同步信号块两个正交频分复用OFDM符号承载不同的候选PBCH DMRS序列;或者
同一个同步信号块两个正交频分复用OFDM符号共同承载同一候选PBCH DMRS序列。
在本公开的一个可行实施例中,所述候选PBCH DMRS序列的生成多项式的初始值是根据小区标识和/或同步信号块的序号确定的。
在第二个方面中,本公开实施例还提供了一种信号处理方法,应用于终端,包括:
接收候选PBCH DMRS序列;
根据PBCH DMRS序列和RE组的映射关系,确定所述候选PBCH DMRS序列对应的RE组;
在所述RE组内,对所述RE组对应的候选PBCH DMRS序列进行检测;以及
根据检测到的候选PBCH DMRS序列,确定同步信号块的序号。
在本公开的一个可行实施例中,所述映射关系包括:
不同小区的候选PBCH DMRS序列和不同的RE组的映射关系;或
同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系;或
不同的小区组的候选PBCH DMRS序列和不同的RE组的映射关系;同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系。
在本公开的一个可行实施例中,所述在所述RE组内,对所述RE组对应的候选PBCH DMRS序列进行检测,包括:
对所述候选PBCH DMRS序列进行分组,获得候选PBCH DMRS序列组,所述候选PBCH DMRS序列组的数量等于所述RE组的数量;
对于每个RE组,利用预设PBCH DMRS序列与所述RE组对应的候选PBCH DMRS序列组中的候选PBCH DMRS序列,进行相关检测,获得每个RE组对应的相关值;
从所有RE组的多个相关值中获得最大相关值;以及
将所述最大相关值对应的候选PBCH DMRS序列作为检测到的候选PBCH DMRS序列。
在第三个方面中,本公开实施例还提供了一种信号处理装置,包括:
生成模块,用于生成候选物理广播信道解调参考符号PBCH DMRS序列;
获取模块,用于获取PBCH DMRS序列和资源单位RE组的映射关系;以及
传输模块,用于根据所述映射关系,利用与所述候选PBCH DMRS序列对应的RE组传输所述候选PBCH DMRS序列。
在本公开的一个可行实施例中,所述映射关系包括:
不同小区的候选PBCH DMRS序列和不同的RE组的映射关系;或
同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系;或
不同的小区组的候选PBCH DMRS序列和不同的RE组的映射关系;同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系。
在本公开的一个可行实施例中,所述传输模块包括:
调制子模块,用于对所述候选PBCH DMRS序列进行调制;
映射子模块,用于根据所述映射关系,将调制后的候选PBCH DMRS序列映射到RE组上;以及
传输子模块,用于利用所述RE组传输所述调制后的候选PBCH DMRS序列。
在本公开的一个可行实施例中,同一个同步信号块两个正交频分复用OFDM符号承载相同的候选PBCH DMRS序列;或者同一个同步信号块两个正交频分复用OFDM符号承载不同的候选PBCH DMRS序列;或者同一个同步信号块两个正交频分复用OFDM符号共同承载同一候选PBCH DMRS序列。
在本公开的一个可行实施例中,所述候选PBCH DMRS序列的生成多项式的初始值是根据小区标识和/或同步信号块的序号确定的。
在第四个方面中,本公开实施例还提供了一种信号处理装置,包括:
接收模块,用于接收候选PBCH DMRS序列;
第一确定模块,用于根据PBCH DMRS序列和RE组的映射关系,确定所述候选PBCH DMRS序列对应的RE组;
检测模块,用于在所述RE组内,对所述RE组对应的候选PBCH DMRS序列进行检测;以及
第二确定模块,用于根据检测到的候选PBCH DMRS序列,确定同步信号块的序号。
在本公开的一个可行实施例中,所述映射关系包括:
不同小区的候选PBCH DMRS序列和不同的RE组的映射关系;或
同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系;或
不同的小区组的候选PBCH DMRS序列和不同的RE组的映射关系;同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系。
在本公开的一个可行实施例中,所述检测模块包括:
分组子模块,用于对所述候选PBCH DMRS序列进行分组,获得候选PBCH DMRS序列组,所述候选PBCH DMRS序列组的数量等于所述RE组的数量;
检测子模块,用于对于每个RE组,利用预设PBCH DMRS序列与所述RE组对应的候选PBCH DMRS序列组中的候选PBCH DMRS序列,进行相关检测,获得每个RE组对应的相关值;
获取子模块,用于从所有RE组的多个相关值中获得最大相关值;以及
确定子模块,用于将所述最大相关值对应的候选PBCH DMRS序列作为检测到的候选PBCH DMRS序列。
在第五个方面中,本公开实施例还提供了一种电子设备,包括存储器、处理器、收发机及存储在所述存储器上并可在所述处理器上运行的计算机程序;其中,所述处理器执行所述计算机程序时实现如前述第一个方面中所述的方法中的步骤。
在第六个方面中,本公开实施例还提供了一种电子设备,包括存储器、处理器、收发机及存储在所述存储器上并可在所述处理器上运行的计算机程序;其中,所述处理器执行所述计算机程序时实现如前述第二个方面中所述的方法中的步骤。
在第七个方面中,本公开实施例一种计算机可读存储介质,用于存储计算机程序,其中,所述计算机程序被处理器执行时实现如前述第一个方面中所述的方法中的步骤。
在第八个方面中,本公开实施例一种计算机可读存储介质,用于存储计算机程序,其中,所述计算机程序被处理器执行时实现如前述第二个方面中所述的方法中的步骤。
本公开实施例提供的上述技术方案的有益效果如下:
采用本公开实施例的方案,相邻小区可以通过合理规划,使得指向相同方向的波束尽量对应不同的同步信号块(时间)序号,从而避免小区间的PBCH DMRS符号碰撞。
附图说明
为了更清楚地说明本公开文本实施例或相关技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开文本的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例所提供的信号处理方法的流程图;
图2为本公开实施例所提供的信号处理方法的流程图;
图3为本公开实施例所提供的信号处理方法的流程图;
图4为本公开实施例所提供的信号处理方法的流程图;
图5为本公开实施例所提供的信号处理装置的示意图;
图6为本公开实施例所提供的传输模块的示意图;
图7为本公开实施例所提供的信号处理装置的示意图;
图8为本公开实施例所提供的检测模块的示意图;
图9为本公开实施例所提供的网络侧设备的示意图;
图10为本公开实施例所提供的终端的示意图。
具体实施方式
下面将结合附图和实施例,对本公开的具体实施方式作进一步详细描述。以下实施例用于说明本公开,但不用来限制本公开的范围。
如图1所示,本公开实施例的信号处理方法,应用于网络侧设备,包括:
步骤101、生成候选PBCH DMRS序列。
在本公开实施例中,所述网络侧设备可以是基站等。在基站侧,通常情况下,生成的可用的PBCH DMRS序列有8个,那么在此,该8个序列中的任意一个序列都可称为候选(Candidate)PBCH DMRS序列。
生成候选PBCH DMRS序列的方式有多种,例如可按照相关技术中的方式生成Gold序列等。
步骤102、获取PBCH DMRS序列和RE(Resource Element,资源单位)组的映射关系。
在本公开实施例中,所述映射关系可以是事先约定好的。例如,所述映射关系包括:不同小区的候选PBCH DMRS序列和不同的RE组的映射关系;或同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系;或不同的小区组的候选PBCH DMRS序列和不同的RE组的映射关系;同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系。
步骤103、根据所述映射关系,利用与所述候选PBCH DMRS序列对应的RE组传输所述候选PBCH DMRS序列。
在此步骤中,对所述候选PBCH DMRS序列进行调制,根据所述映射关系,将调制后的候选PBCH DMRS序列映射到RE组上,并利用所述RE组传输所述调制后的候选PBCH DMRS序列。
在本公开实施例中,调制方式可以为BPSK(Binary Phase Shift Keying,二进制相移键控),QPSK(Quadrature Phase Shift Keying,正交相移键控),16QAM(16 Quadrature Amplitude Modulation,16正交幅相调制),64QAM(64 Quadrature Amplitude Modulation,64正交幅相调制),256QAM(256 Quadrature Amplitude Modulation,256正交幅相调制)等。
在实际应用中,同一个同步信号块两个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号承载相同的候选PBCH DMRS序列;或者同一个同步信号块两个OFDM符号承载不同的候选PBCH DMRS序列;或者同一个同步信号块两个OFDM符号共同承载同一候选PBCH DMRS序列。
在实际应用中,可能存在有8000多个PBCH DMRS序列,而选取哪个序列是由PBCH DMRS序列的生成多项式的初始值决定的,而所采用的序列都 具有对应的小区标识和/或同步信号块的序号。其中,生成多项式指的是在生成PBCH DMRS序列时所用到的多项式。例如,生成M序列用到的生成多项式,或者生成Gold序列时用到的生成多项式等。因此,在本公开实施例中,所述候选PBCH DMRS序列的生成多项式的初始值是根据小区标识和/或同步信号块的序号确定的。
由上可以看出,采用本公开实施例的方案,相邻小区可以通过合理规划,使得指向相同方向的波束尽量对应不同的同步信号块(时间)序号,从而避免小区间的PBCH DMRS符号碰撞。
如图2所示,本公开实施例的信号处理方法,应用于终端,包括:
步骤201、接收候选PBCH DMRS序列。
步骤202、根据PBCH DMRS序列和RE组的映射关系,确定所述候选PBCH DMRS序列对应的RE组。
如前所述,所述映射关系包括:不同小区的候选PBCH DMRS序列和不同的RE组的映射关系;或同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系;或不同的小区组的候选PBCH DMRS序列和不同的RE组的映射关系;同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系。
在此,终端可根据与网络侧事先的约定,或者根据网络侧的通知,获取该映射关系。
步骤203、在所述RE组内,对所述RE组对应的候选PBCH DMRS序列进行检测。
在此,对所述候选PBCH DMRS序列进行分组,获得候选PBCH DMRS序列组,所述候选PBCH DMRS序列组的数量等于所述RE组的数量。对于每个RE组,利用预设PBCH DMRS序列与所述RE组对应的候选PBCH DMRS序列组中的候选PBCH DMRS序列,进行相关检测,获得每个RE组对应的相关值。之后,从所有RE组的多个相关值中获得最大相关值,将所述最大相关值对应的候选PBCH DMRS序列作为检测到的候选PBCH DMRS序列。
例如,假设有4个RE组,每个小区有8个候选PBCH DMRS序列。在 此,对这8个候选PBCH DMRS序列进行分组,分为4组,每组两个PBCH DMRS序列。终端检测时,分别对每个RE组,利用2个预设的PBCH DMRS序列分别与每个RE组中的候选PBCH DMRS序列进行相关检测,得到2个相关值。分别对4组RE组进行相关检测后,得到了8个相关值。将8个相关值中最大相关值对应的候选PBCH DMRS序列即为检测到的DMRS序列。
步骤204、根据检测到的候选PBCH DMRS序列,确定同步信号块的序号。
由上可以看出,采用本公开实施例的方案,相邻小区可以通过合理规划,使得指向相同方向的波束尽量对应不同的同步信号块(时间)序号,从而避免小区间的PBCH DMRS符号碰撞。
结合以下实施例,详细描述一下本公开实施例的信号处理方法的实现过程。
如图3所示,以基站侧为例,本公开实施例的信号处理方法包括:
步骤301、生成所有候选PBCH DMRS序列,生成的候选PBCH DMRS序列为Gold序列。
在本公开实施例中,生成的候选PBCH DMRS序列为Gold序列。该Gold序列可以是一个周期内完整的Gold序列,或者是从一个周期的Gold序列中截取的一段序列。其中,Gold序列的生成多项式的初始值与小区标识和/或同步块(时间)序号有关。
步骤302、对生成的Gold序列进行调制。在本公开实施例中,调制方式可以为BPSK,QPSK,16QAM,64QAM,256QAM等。
步骤303、获取PBCH DMRS序列和RE组的映射关系。
在本公开实施例中,PBCH DMRS序列和资源单位RE组的映射关系,即为调制后的Gold序列和RE组的对应关系。
步骤304、将调制后的Gold序列映射到相应的RE组上,利用RE组传输相应的Gold序列。
在实际应用中,例如,在一个同步信号块中利用两个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号传输PBCH部分,两个符号中的PBCH DMRS可以承载两个相同的Gold序列,或可承载两个不同的 Gold序列,或两个符号共同承载同一个Gold序列。
由上可以看出,采用本公开实施例的方案,相邻小区可以通过合理规划,使得指向相同方向的波束尽量对应不同的同步信号块(时间)序号,从而避免小区间的PBCH DMRS符号碰撞。
此外,在本公开实施例中,将每个小区的候选PBCH DMRS序列分成的若干组,每组候选PBCH DMRS序列分别在不同的RE组上传输,从而将不同同步信号块的序号或不同小区对应的PBCH DMRS序列映射到不同的RE组上进行传输。这样在每一个RE上,减少了待检测的候选序列的个数,从而提高了检测精度,减少了检测复杂度。
如图4所示,以基站侧为例,本公开实施例的信号处理方法包括:
步骤401、生成的Gold序列。
Figure PCTCN2018091551-appb-000001
Gold序列c(n),其中c(n)的长度为Np,Np
Figure PCTCN2018091551-appb-000002
mod 2
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod 2
其中,x 1(n)的初始值为:x 1(0)=1,x 1(n)=0,n=1,...,30,;
x 2(n)的初始值由
Figure PCTCN2018091551-appb-000003
确定,其中,c init,x 2(i)为常量;Nc为常量,为正整数,例如可取值为1600。
c init和同步信号块的序号(SS block index)和小区标识(NR cell ID)有关,如:c init=1008×SS block index+NR cell ID;或c init=SS block index+8×NR cell ID;或c init=1024×SS block index+NR cell ID。
步骤402、对生成的Gold序列c(n)进行调制。
在本公开实施例中,调制方式可以为QPSK调制,得到d(n),(n=0,1,…,143)。
步骤403、将调制后的符号映射到RE组上,并利用RE组传输调制后的符号。
每个PBCH符号的第一个子载波为载波0,从第m个子载波(m=0,1,2,3)开始,将调制后的PBCH DMRS序列顺序映射到m+4k(k=0,1,…,71)子载波,m可根据小区标识和/或同步信号块的序号确定,如m=mod(ss block index,4),或m=mod(ss block index+mod(N_cellID,4),4)。
对于第一个PBCH符号,在第m+4n子载波上传输d(n),即
a(1,m+4n)=d(n)(n=0,1,…,71);
对于第二个PBCH符号,在第m+4n子载波上传输d(n+72),即
a(2,m+4n)=d(n+72)(n=0,1,…,71)。
由上可以看出,采用本公开实施例的方案,相邻小区可以通过合理规划,使得指向相同方向的波束尽量对应不同的同步信号块(时间)序号,从而避免小区间的PBCH DMRS符号碰撞。
如图5所示,本公开实施例的信号处理装置,包括:
生成模块601,用于生成候选物理广播信道解调参考符号PBCH DMRS序列;获取模块602,用于获取PBCH DMRS序列和资源单位RE组的映射关系;传输模块603,用于根据所述映射关系,利用与所述候选PBCH DMRS序列对应的RE组传输所述候选PBCH DMRS序列。
其中,所述映射关系包括:不同小区的候选PBCH DMRS序列和不同的RE组的映射关系;或同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系;或不同的小区组的候选PBCH DMRS序列和不同的RE组的映射关系;同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系。
如图6所示,所述传输模块603包括:
调制子模块6031,用于对所述候选PBCH DMRS序列进行调制;映射子模块6032,用于根据所述映射关系,将调制后的候选PBCH DMRS序列映射到RE组上;传输子模块6033,用于利用所述RE组传输所述调制后的候选PBCH DMRS序列。
在本公开实施例中,同一个同步信号块两个OFDM符号承载相同的候选PBCH DMRS序列;或者同一个同步信号块两个OFDM符号承载不同的候选PBCH DMRS序列;或者同一个同步信号块两个OFDM符号共同承载同一候选PBCH DMRS序列。
其中,所述候选PBCH DMRS序列的生成多项式的初始值是根据小区标识和/或同步信号块的序号确定的。
所述装置的工作原理可参照前述方法实施例的描述。
由上可以看出,采用本公开实施例的方案,相邻小区可以通过合理规划, 使得指向相同方向的波束尽量对应不同的同步信号块(时间)序号,从而避免小区间的PBCH DMRS符号碰撞。
如图7所示,本公开实施例的信号处理装置,包括:
接收模块801,用于接收候选PBCH DMRS序列;第一确定模块802,用于根据PBCH DMRS序列和RE组的映射关系,确定所述候选PBCH DMRS序列对应的RE组;检测模块803,用于在所述RE组内,对所述RE组对应的候选PBCH DMRS序列进行检测;第二确定模块804,用于根据检测到的候选PBCH DMRS序列,确定同步信号块的序号。
其中,所述映射关系包括:不同小区的候选PBCH DMRS序列和不同的RE组的映射关系;或同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系;或不同的小区组的候选PBCH DMRS序列和不同的RE组的映射关系;同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系。
如图8所示,所述检测模块803包括:
分组子模块8031,用于对所述候选PBCH DMRS序列进行分组,获得候选PBCH DMRS序列组,所述候选PBCH DMRS序列组的数量等于所述RE组的数量;检测子模块8032,用于对于每个RE组,利用预设PBCH DMRS序列与所述RE组对应的候选PBCH DMRS序列组中的候选PBCH DMRS序列,进行相关检测,获得每个RE组对应的相关值;获取子模块8033,用于从所有RE组的多个相关值中获得最大相关值;确定子模块8034,用于将所述最大相关值对应的候选PBCH DMRS序列作为检测到的候选PBCH DMRS序列。
所述装置的工作原理可参照前述方法实施例的描述。
由上可以看出,采用本公开实施例的方案,相邻小区可以通过合理规划,使得指向相同方向的波束尽量对应不同的同步信号块(时间)序号,从而避免小区间的PBCH DMRS符号碰撞。
如图9所示,本公开实施例的网络侧设备,如基站,包括:
处理器1000,用于读取存储器1020中的程序,执行下列过程:生成候选物理广播信道解调参考符号PBCH DMRS序列;获取PBCH DMRS序列和 资源单位RE组的映射关系;根据所述映射关系,利用与所述候选PBCH DMRS序列对应的RE组传输所述候选PBCH DMRS序列。
收发机1010,用于在处理器1000的控制下接收和发送数据。
其中,在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1000代表的一个或多个处理器和存储器1020代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1010可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器1000负责管理总线架构和通常的处理,存储器1020可以存储处理器1000在执行操作时所使用的数据。
处理器1000负责管理总线架构和通常的处理,存储器1020可以存储处理器1000在执行操作时所使用的数据。
其中,所述映射关系包括:
不同小区的候选PBCH DMRS序列和不同的RE组的映射关系;或
同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系;或
不同的小区组的候选PBCH DMRS序列和不同的RE组的映射关系;同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系。
处理器1000还用于读取所述计算机程序,执行如下步骤:
对所述候选PBCH DMRS序列进行调制;
根据所述映射关系,将调制后的候选PBCH DMRS序列映射到RE组上;
利用所述RE组传输所述调制后的候选PBCH DMRS序列。
其中,同一个同步信号块两个OFDM符号承载相同的候选PBCH DMRS序列;或者同一个同步信号块两个OFDM符号承载不同的候选PBCH DMRS序列;或者同一个同步信号块两个OFDM符号共同承载同一候选PBCH DMRS序列。
其中,所述候选PBCH DMRS序列的生成多项式的初始值是根据小区标识和/或同步信号块的序号确定的。
如图10所示,本公开实施例的终端,包括:
处理器1100,用于读取存储器1120中的程序,执行下列过程:
通过收发机1110接收候选PBCH DMRS序列;根据PBCH DMRS序列和RE组的映射关系,确定所述候选PBCH DMRS序列对应的RE组;在所述RE组内,对所述RE组对应的候选PBCH DMRS序列进行检测;根据检测到的候选PBCH DMRS序列,确定同步信号块的序号。
收发机1110,用于在处理器1100的控制下接收和发送数据。
其中,在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1100代表的一个或多个处理器和存储器1120代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1110可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1130还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1100负责管理总线架构和通常的处理,存储器1120可以存储处理器1100在执行操作时所使用的数据。
其中,所述映射关系包括:
不同小区的候选PBCH DMRS序列和不同的RE组的映射关系;或
同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系;或
不同的小区组的候选PBCH DMRS序列和不同的RE组的映射关系;同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系。
处理器1100还用于读取所述计算机程序,执行如下步骤:
对所述候选PBCH DMRS序列进行分组,获得候选PBCH DMRS序列组,所述候选PBCH DMRS序列组的数量等于所述RE组的数量;
对于每个RE组,利用预设PBCH DMRS序列与所述RE组对应的候选PBCH DMRS序列组中的候选PBCH DMRS序列,进行相关检测,获得每个RE组对应的相关值;
从所有RE组的多个相关值中获得最大相关值;
将所述最大相关值对应的候选PBCH DMRS序列作为检测到的候选PBCH DMRS序列。
此外,本公开实施例的计算机可读存储介质,用于存储计算机程序,所述计算机程序可被处理器执行实现以下步骤:
生成候选物理广播信道解调参考符号PBCH DMRS序列;
获取PBCH DMRS序列和资源单位RE组的映射关系;
根据所述映射关系,利用与所述候选PBCH DMRS序列对应的RE组传输所述候选PBCH DMRS序列。
其中,所述映射关系包括:
不同小区的候选PBCH DMRS序列和不同的RE组的映射关系;或
同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系;或
不同的小区组的候选PBCH DMRS序列和不同的RE组的映射关系;同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系。
其中,所述根据所述映射关系,利用与所述候选PBCH DMRS序列对应的RE组传输所述候选PBCH DMRS序列,包括:
对所述候选PBCH DMRS序列进行调制;
根据所述映射关系,将调制后的候选PBCH DMRS序列映射到RE组上;
利用所述RE组传输所述调制后的候选PBCH DMRS序列。
其中,同一个同步信号块两个正交频分复用OFDM符号承载相同的候选PBCH DMRS序列;或者
同一个同步信号块两个正交频分复用OFDM符号承载不同的候选PBCH DMRS序列;或者
同一个同步信号块两个正交频分复用OFDM符号共同承载同一候选PBCH DMRS序列。
其中,所述候选PBCH DMRS序列的生成多项式的初始值是根据小区标识和/或同步信号块的序号确定的。
此外,本公开实施例的计算机可读存储介质,用于存储计算机程序,所 述计算机程序可被处理器执行实现以下步骤:
接收候选PBCH DMRS序列;
根据PBCH DMRS序列和RE组的映射关系,确定所述候选PBCH DMRS序列对应的RE组;
在所述RE组内,对所述RE组对应的候选PBCH DMRS序列进行检测;
根据检测到的候选PBCH DMRS序列,确定同步信号块的序号。
其中,所述映射关系包括:
不同小区的候选PBCH DMRS序列和不同的RE组的映射关系;或
同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系;或
不同的小区组的候选PBCH DMRS序列和不同的RE组的映射关系;同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系。
其中,所述在所述RE组内,对所述RE组对应的候选PBCH DMRS序列进行检测,包括:
对所述候选PBCH DMRS序列进行分组,获得候选PBCH DMRS序列组,所述候选PBCH DMRS序列组的数量等于所述RE组的数量;
对于每个RE组,利用预设PBCH DMRS序列与所述RE组对应的候选PBCH DMRS序列组中的候选PBCH DMRS序列,进行相关检测,获得每个RE组对应的相关值;
从所有RE组的多个相关值中获得最大相关值;
将所述最大相关值对应的候选PBCH DMRS序列作为检测到的候选PBCH DMRS序列。
在本申请所提供的几个实施例中,应该理解到,所揭露方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述收发方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (26)

  1. 一种信号处理方法,应用于网络侧设备,包括:
    生成候选物理广播信道解调参考符号PBCH DMRS序列;
    获取PBCH DMRS序列和资源单位RE组的映射关系;以及
    根据所述映射关系,利用与所述候选PBCH DMRS序列对应的RE组传输所述候选PBCH DMRS序列。
  2. 根据权利要求1所述的方法,其中,所述映射关系包括:
    不同小区的候选PBCH DMRS序列和不同的RE组的映射关系;或
    同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系;或
    不同的小区组的候选PBCH DMRS序列和不同的RE组的映射关系;同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系。
  3. 根据权利要求1所述的方法,其中,所述根据所述映射关系,利用与所述候选PBCH DMRS序列对应的RE组传输所述候选PBCH DMRS序列,包括:
    对所述候选PBCH DMRS序列进行调制;
    根据所述映射关系,将调制后的候选PBCH DMRS序列映射到RE组上;以及
    利用所述RE组传输所述调制后的候选PBCH DMRS序列。
  4. 根据权利要求3所述的方法,其中,
    同一个同步信号块两个正交频分复用OFDM符号承载相同的候选PBCH DMRS序列;或者
    同一个同步信号块两个正交频分复用OFDM符号承载不同的候选PBCH DMRS序列;或者
    同一个同步信号块两个正交频分复用OFDM符号共同承载同一候选PBCH DMRS序列。
  5. 根据权利要求1至4中任一项所述的方法,其中,所述候选PBCH DMRS序列的生成多项式的初始值是根据小区标识和/或同步信号块的序号 确定的。
  6. 一种信号处理方法,应用于终端,包括:
    接收候选PBCH DMRS序列;
    根据PBCH DMRS序列和RE组的映射关系,确定所述候选PBCH DMRS序列对应的RE组;
    在所述RE组内,对所述RE组对应的候选PBCH DMRS序列进行检测;以及
    根据检测到的候选PBCH DMRS序列,确定同步信号块的序号。
  7. 根据权利要求6所述的方法,其中,所述映射关系包括:
    不同小区的候选PBCH DMRS序列和不同的RE组的映射关系;或
    同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系;或
    不同的小区组的候选PBCH DMRS序列和不同的RE组的映射关系;同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系。
  8. 根据权利要求6所述的方法,其中,所述在所述RE组内,对所述RE组对应的候选PBCH DMRS序列进行检测,包括:
    对所述候选PBCH DMRS序列进行分组,获得候选PBCH DMRS序列组,所述候选PBCH DMRS序列组的数量等于所述RE组的数量;
    对于每个RE组,利用预设PBCH DMRS序列与所述RE组对应的候选PBCH DMRS序列组中的候选PBCH DMRS序列,进行相关检测,获得每个RE组对应的相关值;
    从所有RE组的多个相关值中获得最大相关值;以及
    将所述最大相关值对应的候选PBCH DMRS序列作为检测到的候选PBCH DMRS序列。
  9. 一种信号处理装置,包括:
    生成模块,用于生成候选物理广播信道解调参考符号PBCH DMRS序列;
    获取模块,用于获取PBCH DMRS序列和资源单位RE组的映射关系;以及
    传输模块,用于根据所述映射关系,利用与所述候选PBCH DMRS序列 对应的RE组传输所述候选PBCH DMRS序列。
  10. 根据权利要求9所述的装置,其中,所述映射关系包括:
    不同小区的候选PBCH DMRS序列和不同的RE组的映射关系;或
    同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系;或
    不同的小区组的候选PBCH DMRS序列和不同的RE组的映射关系;同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系。
  11. 根据权利要求9所述的装置,其中,所述传输模块包括:
    调制子模块,用于对所述候选PBCH DMRS序列进行调制;
    映射子模块,用于根据所述映射关系,将调制后的候选PBCH DMRS序列映射到RE组上;以及
    传输子模块,用于利用所述RE组传输所述调制后的候选PBCH DMRS序列。
  12. 根据权利要求11所述的装置,其中,
    同一个同步信号块两个正交频分复用OFDM符号承载相同的候选PBCH DMRS序列;或者
    同一个同步信号块两个正交频分复用OFDM符号承载不同的候选PBCH DMRS序列;或者
    同一个同步信号块两个正交频分复用OFDM符号共同承载同一候选PBCH DMRS序列。
  13. 根据权利要求9至12中任一项所述的装置,其中,所述候选PBCH DMRS序列的生成多项式的初始值是根据小区标识和/或同步信号块的序号确定的。
  14. 一种信号处理装置,包括:
    接收模块,用于接收候选PBCH DMRS序列;
    第一确定模块,用于根据PBCH DMRS序列和RE组的映射关系,确定所述候选PBCH DMRS序列对应的RE组;
    检测模块,用于在所述RE组内,对所述RE组对应的候选PBCH DMRS序列进行检测;以及
    第二确定模块,用于根据检测到的候选PBCH DMRS序列,确定同步信号块的序号。
  15. 根据权利要求14所述的装置,其中,所述映射关系包括:
    不同小区的候选PBCH DMRS序列和不同的RE组的映射关系;或
    同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系;或
    不同的小区组的候选PBCH DMRS序列和不同的RE组的映射关系;同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系。
  16. 根据权利要求14所述的装置,其中,所述检测模块包括:
    分组子模块,用于对所述候选PBCH DMRS序列进行分组,获得候选PBCH DMRS序列组,所述候选PBCH DMRS序列组的数量等于所述RE组的数量;
    检测子模块,用于对于每个RE组,利用预设PBCH DMRS序列与所述RE组对应的候选PBCH DMRS序列组中的候选PBCH DMRS序列,进行相关检测,获得每个RE组对应的相关值;
    获取子模块,用于从所有RE组的多个相关值中获得最大相关值;以及
    确定子模块,用于将所述最大相关值对应的候选PBCH DMRS序列作为检测到的候选PBCH DMRS序列。
  17. 一种网络侧设备,包括存储器、处理器、收发机及存储在所述存储器上并可在所述处理器上运行的计算机程序;其中,所述处理器执行所述计算机程序时实现一种信号处理方法,包括:
    生成候选物理广播信道解调参考符号PBCH DMRS序列;
    获取PBCH DMRS序列和资源单位RE组的映射关系;以及
    根据所述映射关系,利用与所述候选PBCH DMRS序列对应的RE组传输所述候选PBCH DMRS序列。
  18. 根据权利要求17所述的网络侧设备,其中,所述映射关系包括:
    不同小区的候选PBCH DMRS序列和不同的RE组的映射关系;或
    同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系;或
    不同的小区组的候选PBCH DMRS序列和不同的RE组的映射关系;同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系。
  19. 根据权利要求17所述的网络侧设备,其中,所述处理器执行所述计算机程序时还实现:
    对所述候选PBCH DMRS序列进行调制;
    根据所述映射关系,将调制后的候选PBCH DMRS序列映射到RE组上;以及
    利用所述RE组传输所述调制后的候选PBCH DMRS序列。
  20. 根据权利要求19所述的网络侧设备,其中,
    同一个同步信号块两个正交频分复用OFDM符号承载相同的候选PBCH DMRS序列;或者
    同一个同步信号块两个正交频分复用OFDM符号承载不同的候选PBCH DMRS序列;或者
    同一个同步信号块两个正交频分复用OFDM符号共同承载同一候选PBCH DMRS序列。
  21. 根据权利要求17至20中任一项所述的网络侧设备,其中,所述候选PBCH DMRS序列的生成多项式的初始值是根据小区标识和/或同步信号块的序号确定的。
  22. 一种终端侧设备,包括存储器、处理器、收发机及存储在所述存储器上并可在所述处理器上运行的计算机程序;其中,所述处理器执行所述计算机程序时实现一种信号处理方法,包括:
    接收候选PBCH DMRS序列;
    根据PBCH DMRS序列和RE组的映射关系,确定所述候选PBCH DMRS序列对应的RE组;
    在所述RE组内,对所述RE组对应的候选PBCH DMRS序列进行检测;以及
    根据检测到的候选PBCH DMRS序列,确定同步信号块的序号。
  23. 根据权利要求22所述的终端侧设备,其中,所述映射关系包括:
    不同小区的候选PBCH DMRS序列和不同的RE组的映射关系;或
    同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系;或
    不同的小区组的候选PBCH DMRS序列和不同的RE组的映射关系;同一小区内,不同的候选PBCH DMRS序列和不同的RE组的映射关系。
  24. 根据权利要求22所述的终端侧设备,其中,所述处理器执行所述计算机程序时还实现:
    对所述候选PBCH DMRS序列进行分组,获得候选PBCH DMRS序列组,所述候选PBCH DMRS序列组的数量等于所述RE组的数量;
    对于每个RE组,利用预设PBCH DMRS序列与所述RE组对应的候选PBCH DMRS序列组中的候选PBCH DMRS序列,进行相关检测,获得每个RE组对应的相关值;
    从所有RE组的多个相关值中获得最大相关值;以及
    将所述最大相关值对应的候选PBCH DMRS序列作为检测到的候选PBCH DMRS序列。
  25. 一种计算机可读存储介质,用于存储计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至5中任一项所述的方法中的步骤。
  26. 一种计算机可读存储介质,用于存储计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求6至8中任一项所述的方法中的步骤。
PCT/CN2018/091551 2017-07-28 2018-06-15 一种信号处理方法、装置、设备及计算机可读存储介质 WO2019019834A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18838315.2A EP3661096B1 (en) 2017-07-28 2018-06-15 Signal processing method and device, apparatus, and computer-readable storage medium
US16/633,718 US11063722B2 (en) 2017-07-28 2018-06-15 Signal processing method and apparatus, device, and computer readable storage medium
JP2020503858A JP6992153B2 (ja) 2017-07-28 2018-06-15 信号処理方法、装置、機器およびコンピュータ読み取り可能な記憶媒体
KR1020207004554A KR20200024326A (ko) 2017-07-28 2018-06-15 신호 처리 방법, 장치, 기기 및 컴퓨터 판독 가능 저장 매체
KR1020227001215A KR102483502B1 (ko) 2017-07-28 2018-06-15 신호 처리 방법, 장치, 기기 및 컴퓨터 판독 가능 저장 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710632112.2A CN109309557B (zh) 2017-07-28 2017-07-28 一种信号处理方法、装置、设备及计算机可读存储介质
CN201710632112.2 2017-07-28

Publications (1)

Publication Number Publication Date
WO2019019834A1 true WO2019019834A1 (zh) 2019-01-31

Family

ID=65040047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091551 WO2019019834A1 (zh) 2017-07-28 2018-06-15 一种信号处理方法、装置、设备及计算机可读存储介质

Country Status (6)

Country Link
US (1) US11063722B2 (zh)
EP (1) EP3661096B1 (zh)
JP (1) JP6992153B2 (zh)
KR (2) KR20200024326A (zh)
CN (1) CN109309557B (zh)
WO (1) WO2019019834A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309557B (zh) * 2017-07-28 2020-09-01 电信科学技术研究院 一种信号处理方法、装置、设备及计算机可读存储介质
CN111213408A (zh) * 2017-08-11 2020-05-29 日本电气株式会社 用于同步信号传输的方法和装置
US11856540B2 (en) 2020-02-10 2023-12-26 Nec Corporation Methods and apparatuses for synchronization signal transmission
EP3754924A4 (en) * 2018-02-16 2021-09-29 Ntt Docomo, Inc. WIRELESS TRANSMISSION DEVICE
EP3648365A1 (en) * 2018-11-02 2020-05-06 Panasonic Intellectual Property Corporation of America Mobile terminal and base station involved in downlink control channel operations
US11239966B2 (en) * 2019-01-23 2022-02-01 Qualcomm Incorporated Devices and methods for facilitating DMRS sequence grouping
CN110417700A (zh) * 2019-07-11 2019-11-05 天津市德力电子仪器有限公司 一种应用于5GNR系统的SSB block序号识别方法
CN112187694B (zh) * 2020-09-24 2022-10-28 国家无线电监测中心 一种基于dmrs的手机终端信号屏蔽方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103037514A (zh) * 2011-09-30 2013-04-10 上海贝尔股份有限公司 一种通信网络中用于传输解调参考信号的方法和装置
CN104812057A (zh) * 2014-01-29 2015-07-29 北京三星通信技术研究有限公司 一种d2d系统中数据传输的方法及设备
WO2016048074A1 (ko) * 2014-09-24 2016-03-31 엘지전자 주식회사 무선 통신 시스템에서 참조 신호를 송수신하는 방법 및 이를 위한 장치
CN105917610A (zh) * 2013-12-10 2016-08-31 瑞典爱立信有限公司 用于数据无线电传输的基于组的资源单元映射

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2730104B1 (en) 2011-07-06 2019-10-09 Nokia Solutions and Networks Oy Dm rs based downlink lte physical layer
US9271288B2 (en) * 2012-02-07 2016-02-23 Qualcomm Incorporated Resource allocation for enhanced physical downlink control channel (EPDCCH)
CN103906139B (zh) * 2012-12-27 2018-10-30 夏普株式会社 系统信息的发送和接收方法以及基站和用户设备
US10893520B2 (en) * 2015-08-26 2021-01-12 Qualcomm Incorporated Downlink and synchronization techniques for narrowband wireless communications
WO2018068723A1 (en) * 2016-10-11 2018-04-19 Mediatek Inc. Method and apparatus for handling synchronization signal block in mobile communications
ES2932829T3 (es) * 2017-02-03 2023-01-26 Idac Holdings Inc Transmisión y demodulación de un canal de difusión
US10484153B2 (en) * 2017-03-09 2019-11-19 Samsung Electronics Co., Ltd. Method and apparatus for NR-DMRS sequence design
US10285147B2 (en) 2017-04-10 2019-05-07 Qualcomm Incorporated Reference signal schemes in wireless communications
US10925023B2 (en) * 2017-05-04 2021-02-16 Innovative Technology Lab Co., Ltd. Method and apparatus for communicating reference signal for broadcast channel
EP4040858A1 (en) 2017-05-05 2022-08-10 ZTE Corporation Techniques for communicating synchronization signal timing information
JP7030818B2 (ja) * 2017-05-05 2022-03-07 エルジー エレクトロニクス インコーポレイティド 同期信号を受信する方法及びそのための装置
JP7214654B2 (ja) * 2017-05-05 2023-01-30 富士通株式会社 情報指示方法、検出方法及びその装置、通信システム
CN108989003B (zh) * 2017-06-02 2024-06-25 华为技术有限公司 一种通信的方法及装置
EP3639454A1 (en) 2017-06-15 2020-04-22 Convida Wireless, LLC Beam based downlink control signaling
WO2018229952A1 (ja) * 2017-06-15 2018-12-20 株式会社Nttドコモ ユーザ端末及び無線通信方法
US20180368084A1 (en) * 2017-06-16 2018-12-20 Lg Electronics Inc. Self-contained dmrs for pbch in ss block
US20190013917A1 (en) * 2017-07-10 2019-01-10 Qualcomm Incorporated Demodulation reference signal (dmrs) sequence generation and resource mapping for physical broadcast channel (pbch) transmissions
CN109309557B (zh) * 2017-07-28 2020-09-01 电信科学技术研究院 一种信号处理方法、装置、设备及计算机可读存储介质
WO2019098768A1 (ko) * 2017-11-17 2019-05-23 엘지전자 주식회사 하향링크 채널을 송수신하는 방법 및 이를 위한 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103037514A (zh) * 2011-09-30 2013-04-10 上海贝尔股份有限公司 一种通信网络中用于传输解调参考信号的方法和装置
CN105917610A (zh) * 2013-12-10 2016-08-31 瑞典爱立信有限公司 用于数据无线电传输的基于组的资源单元映射
CN104812057A (zh) * 2014-01-29 2015-07-29 北京三星通信技术研究有限公司 一种d2d系统中数据传输的方法及设备
WO2016048074A1 (ko) * 2014-09-24 2016-03-31 엘지전자 주식회사 무선 통신 시스템에서 참조 신호를 송수신하는 방법 및 이를 위한 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3661096A4 *

Also Published As

Publication number Publication date
KR20220010614A (ko) 2022-01-25
US11063722B2 (en) 2021-07-13
JP6992153B2 (ja) 2022-01-13
KR20200024326A (ko) 2020-03-06
JP2020528244A (ja) 2020-09-17
KR102483502B1 (ko) 2022-12-30
EP3661096A4 (en) 2020-07-15
EP3661096A1 (en) 2020-06-03
CN109309557B (zh) 2020-09-01
CN109309557A (zh) 2019-02-05
EP3661096B1 (en) 2024-01-10
US20200204315A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
WO2019019834A1 (zh) 一种信号处理方法、装置、设备及计算机可读存储介质
US11722268B2 (en) Method and device for representing quasi co-location parameter configuration, and transmitting and receiving apparatus
US10912080B2 (en) Signal scrambling method and apparatus, and signal descrambling method and apparatus
WO2020164449A1 (zh) 信息传输方法、装置及设备
US10326547B2 (en) Multi-user code division multiple access communication method, and corresponding transmitter and receiver
WO2018228433A1 (zh) 一种公共下行控制信道的传输方法和相关设备
CN109474398B (zh) 一种参考信号的传输方法、装置、基站及终端
US10063358B2 (en) Pilot signal sending and receiving method and apparatus
CN113747497B (zh) 干扰抑制合并方法、资源指示方法及通信装置
US10484209B2 (en) Data transmission method and device
JP2021533697A (ja) 参照信号送信方法、参照信号受信方法、および装置
WO2018228243A1 (zh) 一种发送解调参考信号的方法和装置、解调方法和装置
CN107306176B (zh) 一种参考信号的发送方法、接收方法及相关设备
KR20190121112A (ko) 무선 통신 시스템에서 동기 개선을 위한 방법 및 장치
CN109150462B (zh) 一种pbch专属解调参考信号传输方法及装置
CN111756483B (zh) 一种反馈信息传输方法和终端
CN108631827B (zh) 一种上行数据传输方法、终端和网络侧设备
CN112438065B (zh) 发送位置参考信号的方法、节点、位置确定的方法和设备
CN111490862B (zh) 一种上行解调参考信号配置方法、装置、介质和设备
WO2021017876A1 (zh) 一种数据处理方法及通信装置
CN110719152A (zh) 一种上行发送方法和发送端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838315

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503858

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207004554

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018838315

Country of ref document: EP