WO2019019827A1 - 一种数据传输方法和装置、设备、存储介质 - Google Patents

一种数据传输方法和装置、设备、存储介质 Download PDF

Info

Publication number
WO2019019827A1
WO2019019827A1 PCT/CN2018/090897 CN2018090897W WO2019019827A1 WO 2019019827 A1 WO2019019827 A1 WO 2019019827A1 CN 2018090897 W CN2018090897 W CN 2018090897W WO 2019019827 A1 WO2019019827 A1 WO 2019019827A1
Authority
WO
WIPO (PCT)
Prior art keywords
protection
channel
working
physical channel
service
Prior art date
Application number
PCT/CN2018/090897
Other languages
English (en)
French (fr)
Inventor
刘峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019019827A1 publication Critical patent/WO2019019827A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems

Definitions

  • the embodiments of the present invention relate to the field of data communications, and are related to, but not limited to, a data transmission method and apparatus, a device, and a storage medium.
  • the rapid increase of user network information traffic has promoted the rapid development of communication network information transmission bandwidth.
  • the interface bandwidth speed of communication equipment has been increased from 10M (unit: bit/second, the same content) to 100M, and 1G and 10G have been improved.
  • To reach the bandwidth speed of 100G a large number of commercial 100G optical modules have been started on the market.
  • 400G optical modules have been developed, but the 400G optical modules are expensive, exceeding the price of four 100G optical modules, resulting in the lack of commercial economic value of 400G optical modules.
  • the International Standards Organization defines the FLEXE protocol.
  • the FLEXE protocol bundles multiple 100G optical modules to form a large speed transmission channel.
  • the FLEXE protocol bundles multiple physical channels into one logical channel for service delivery, when one physical channel fails, the entire logical channel fails. For example, when a physical channel is interrupted, the entire logical channel is interrupted, as shown in Figure 2.
  • the reliability of the logical channel of the bundled group in the FLEXE protocol is reduced relative to a single service channel, and the probability of a logical channel failure is a single physics.
  • the integer multiple of the probability of a channel failure, the multiple is the total number of physical channels.
  • the delivery pipeline defined by the FLEXE protocol has low reliability and no service protection method, which affects the application of the FLEXE protocol in the communication network.
  • the embodiment of the invention provides a data transmission method, device, device and storage medium, which can solve the problem that the FLEXE protocol encounters low reliability of the transmission pipeline when the communication network is commercialized, and has no service protection method.
  • the embodiment of the invention provides a data transmission method, and the method includes:
  • the physical channel corresponding to the working member is exchanged with the physical channel corresponding to the protection member.
  • the embodiment of the invention further provides a data transmission device, the device comprising:
  • a transmission unit configured to transmit service data through a logical channel; wherein, the working member transmits data of the first type of service; and the protection member transmits data of the second type of service; wherein the first type of service has a higher priority than the second type
  • the priority of the service each physical channel in the logical channel is divided into working members or protection members, and each physical channel corresponds to each working member or each protection member;
  • the selecting unit is configured to exchange the physical channel corresponding to the working member with the physical channel corresponding to the protection member when the working member meets the preset switching condition.
  • the embodiment of the present invention further provides a data transmission device, including a memory and a processor, where the memory stores a computer program executable on a processor, and the processor implements the foregoing data transmission method when executing the program. A step of.
  • Embodiments of the present invention also provide a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps in the data transmission method described above.
  • the technical solution provided by the embodiment of the present invention includes: transmitting service data through a logical channel; wherein, the working member transmits data of the first type of service; and the protection member transmits data of the second type of service; wherein, the priority of the first type of service Higher than the priority of the second type of service; each physical channel in the logical channel is divided into working members or protection members, and each physical channel corresponds to each working member or each protection member; the working member meets the preset switching condition The physical channel corresponding to the working member is exchanged with the physical channel corresponding to the protection member.
  • the physical channel of the logical part when the physical channel of the logical part is faulty, the physical channel corresponding to the protection member is exchanged with the transmission service on the physical channel that is faulty, thereby ensuring the transmission quality of some important service data, for the common service.
  • the data has low latency requirements and can be restored after the fault is recovered.
  • the FLEXE protocol improves the reliability of the transmission pipeline when the communication network is commercialized, and there is no problem of the service protection method, and the whole network is improved. reliability.
  • Figure 1 is a schematic diagram of the application of the FLEXE protocol
  • FIG. 2 is a schematic diagram of relationship between member failure and logical channel failure in the FLEXE protocol
  • 3A is a schematic diagram of a FLEXE protocol overhead block and a data block arrangement position
  • 3B is a schematic diagram of transmission allocation of a FLEXE protocol service on multiple physical channels
  • FIG. 3C is a schematic diagram of receiving and distributing FLEXE protocol services on multiple physical channels
  • FIG. 3D is a schematic structural diagram of a FLEXE protocol overhead frame
  • 3E is a schematic diagram of a FLEXE protocol overhead multiframe structure
  • 4A is a schematic diagram of a FLEXE protocol key customer service protection scheme according to an embodiment of the present invention.
  • 4B is a schematic diagram of protection results after a key customer service interruption in the FLEXE protocol
  • FIG. 5 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • 7A is a schematic diagram of a transmitting end of a service 1:1 protection scheme in a FLEXE protocol
  • 7B is a schematic diagram of a receiving end of a service 1:1 protection scheme in a FLEXE protocol
  • 7C is a schematic diagram of a transmitting end of a service 1:4 protection scheme in the second FLEXE protocol;
  • 7D is a schematic diagram of a receiving end of a service 1:4 protection scheme in the second FLEXE protocol
  • 7E is a schematic diagram of a transmitting end of a service 2:3 protection scheme in an example three FLEXE protocol;
  • FIG. 7F is a schematic diagram of the receiving end of the service 2:3 protection scheme in the example three FLEXE protocol.
  • the data transmission method provided by the embodiment of the present invention is used in the data transmission based on the FLEXE protocol. Before introducing the data transmission method and device provided by the embodiment of the present invention, the related content in the FLEXE protocol is first introduced.
  • the FLEXE protocol is defined according to the physical layer 100G rate.
  • the 100G data message is 64/66 encoded before the data packet is transmitted, and the 64-bit data block is expanded into a 66-bit information block, and the added 2 bits are located in front of the 66-bit block.
  • the start flag of the 66-bit block it is then sent out from the optical port in a 66-bit block.
  • the optical port discriminates the 66-bit block from the received data stream, then recovers the original 64-bit data from the 66-bit block and reassembles the data message.
  • the 66-bit data block is sorted and planned before the 66-bit data block is transmitted, as shown in FIG. 3A:
  • Block group a total of 20 data blocks in each group, representing 20 time slots, each time slot represents the service speed of 5G bandwidth, and 20 time slots constitute the time slot calendar of FLEXE.
  • the slot structure is composed of 80 (4 * 20) slots
  • Calendar is 80 slots, divided into 4 groups of 20 slots each.
  • Each group is a member subcalendar.
  • each physical layer carries the contents of one member (subcalendar), and still forms a data block group according to 20 data blocks, and inserts an overhead block every 1023 data block groups.
  • the overhead block plays a role in positioning, and multiple members are positioned and sorted based on the overhead block to restore the service.
  • a FLEXE overhead block is inserted, as shown in the black block in FIG. 3A. After inserting the overhead block, continue to send the data block, after sending the second 1023*20 data blocks, insert the overhead block, and so on, so that during the process of sending the data block, the overhead block is periodically inserted.
  • each physical layer detects the received data, determines each 66 blocks of information, and identifies the FLEXE overhead block (black information block), and then can determine 20 time slot blocks.
  • each physical channel separately locates the FLEXE overhead, determines the respective 20 time slots, and then uses the overhead block as an alignment flag according to the overhead block in each physical channel.
  • the member number carried is used to determine the queue order between members (sorted by the member number).
  • the time slots of all members are combined into a large time slot group calendar, and then the customer service is restored.
  • the FLEXE overhead block is a 66-bit overhead block.
  • an overhead block is inserted every 1023*20 blocks.
  • the overhead block plays a positioning function in the entire service flow.
  • the content of the overhead block is shown in Figure 3D, and eight consecutive overhead blocks form an overhead frame.
  • An overhead block consists of a 2-bit block flag and 64-bit block contents. The block flag is located in the first 2 columns, the next 64 columns are the block contents, the block flag of the first overhead block is 10, and the block flags of the following 7 overhead blocks are 01 or SS (SS indicates that the content is uncertain).
  • the contents of the first overhead block are: 0x4B (8 bits, 4B in hexadecimal), C bits (1 bit, indicating adjustment control), OMF bits (1 bit, indicating overhead frame multiframe indication), RPF bits ( 1 bit, indicating remote defect indication), RES bit (1 bit, reserved bit), FLEXE group number (20 bits, indicating the number of the bundle group), 0x5 (4 bits, 5 in hexadecimal), 000000 (28) Bits are all 0).
  • 0x4B and 0x5 are the flag indications of the first overhead block. When receiving, when the corresponding position in an overhead block is found to be 0x4B and 0x5, it indicates that the overhead block is the first overhead block in the overhead frame, and The consecutive 7 overhead blocks form an overhead frame.
  • FIG. 3E is a schematic diagram of a FLEXE protocol overhead multiframe structure. The contents of other bytes in the overhead frame are not related to this application and will not be specifically described.
  • the FLEXE protocol defines eight overhead blocks to form a frame, as shown in FIG. 3D, wherein the first overhead block is identified by two fields: 4B (hexadecimal, identifier 0x4B) and 05 (hexadecimal, identifier 0x5).
  • 4B hexadecimal, identifier 0x4B
  • 05 hexadecimal, identifier 0x5
  • the FLEXE group number indicates the FLEXE bundle group identifier, and all members with the same group number belong to one group.
  • the PHY number is the member number. In the same group number, each member's PHY number is unique. All members are sorted according to the PHY number from small to large.
  • the PHY number is 8-bit data and can represent all numbers between 0-255, so there are up to 256 members in a group. In the current standard, 0 and 255 are reserved numbers for a special application, and normal members use the number 1-254.
  • the OMF field is a multiframe indication signal, as shown in Figure 3D.
  • OMF is a single-bit value, which is 0 in 16 consecutive frames, then 1 in 16 consecutive frames, then 0 in consecutive 16 frames, then 1 in 16 consecutive frames, repeated every 32 frames, so that the multiframe is 32 frames.
  • the Client calendar field indicates the configuration information of each time slot.
  • the Client calendar indicates that the time slot belongs to the client.
  • the number of time slots required for the client service is undefined and needs to be flexibly modified. Therefore, the client calendar has two sets of configuration information, Client calendar A and Client calendar B.
  • the two sets of configuration values work in the working mode and the standby mode respectively. Used to dynamically and smoothly switch configuration information.
  • only one set of configuration values is in active mode and the other is in standby mode. If you need to modify the configuration value, modify the configuration value of the standby mode and notify the peer that the configuration value of the port has changed.
  • the peer is prepared according to the new configuration value. After the preparation is complete, it is sent back to the initiator. After the configuration is complete, the switchover process of the configuration table is started.
  • the work mode configuration table is changed to the standby mode, and the original standby mode configuration table is changed to the work mode to implement dynamic adjustment of the configuration information.
  • the FLEXE protocol bundles multiple physical channels into one logical channel, which solves the need for large service delivery bandwidth. Because the FLEXE protocol bundles multiple physical channels into one logical channel for service delivery, when one physical channel fails, the entire logical channel fails, the reliability of the logical channel decreases, and the probability of failure of the logical channel increases several times. The multiple is the total number of physical channels. In the current version of the FLEXE protocol, when a physical channel fails, the service recovery method can only be performed by removing the failed channel member from the group and adding a new member.
  • Each party only knows that it is receiving faults on its side, but does not know whether the other party's reception is normal. It cannot be determined whether it is a one-way fault or a two-way fault, and it cannot start the work of deleting the customer slot; (2) When a member fails, it sends The receiving end has been unable to transmit information normally, and the notification and confirmation of the time slot deletion cannot be performed. The activity of deleting the faulty channel time slot cannot be performed. (3) Even if the activity of deleting the faulty channel time slot can be performed, the entire deletion activity needs to be negotiated. A series of activities such as handshakes exceeded the time required for the communication network to interrupt the business. In the communication system, when the communication channel fails, the critical customer service needs to be quickly protected and restored, and the service interruption time cannot exceed 50 ms.
  • an embodiment of the present invention provides a data transmission method and apparatus for classifying customer services: important customers and ordinary customers.
  • the service quality of important customers is very high.
  • the service can be quickly restored, and the interruption time is less than 50ms.
  • the general customer provides the general service quality, does not guarantee the recovery time after the service is interrupted, and the recovery time is longer after the service interruption (for example, etc.) The fault can only be recovered after it disappears).
  • five members of 100G (members 1, 2, 3, 4, and 5, of which members 1-4 are working channels and members 5 are protection channels) form a FLEXE group, total transmission.
  • the bandwidth is 500G.
  • Two customers are carried on the group, one is an important customer, 400G bandwidth; one is an ordinary customer, 100G bandwidth.
  • the important customer service of 400G is configured on members 1, 2, 3, and 4, and the ordinary customers of 100G are configured on member 5.
  • the FLEXE bearer channel is normal, both important customers and ordinary customers are reliably delivered. As shown in FIG.
  • an embodiment of the present invention provides a data transmission method, where the method includes:
  • step 200 the service data is transmitted through the logical channel; wherein the data of the first type of service is transmitted by the working member; and the data of the second type of service is transmitted by the protection member; wherein the priority of the first type of service is higher than that of the second type of service
  • Each physical channel in the logical channel is divided into a working member or a protection member, and each physical channel corresponds to each working member or each protection member one by one;
  • Step 300 When the working member meets the preset switching condition, the physical channel corresponding to the working member is exchanged with the physical channel corresponding to the protection member.
  • the first type of service is an important customer service;
  • the second type of service is an ordinary customer service, and the first type of service has a relatively high requirement for recovery after interruption, and therefore is a priority protection object.
  • the method further includes:
  • Step 400 At the receiving end, detect the numbering of each member in each physical channel in each FLEXE overhead frame, sort by member number order, and restore all time slots and client services.
  • steps 300 and 400 have no particular order.
  • the working member satisfies the preset switching condition, and includes one of the following manners:
  • the physical channel corresponding to the working member fails
  • the status of the working member carrying channel is detected.
  • the working member carrying channel status includes at least one of a channel interruption and a bit error limit.
  • the method before the service data is transmitted through the logical channel in step 200, the method further includes:
  • Step 100 Determine a working member and a corresponding physical channel, and determine a protection member and a corresponding physical channel.
  • the protection mode may be that one protection member protects multiple working members, such as 1:1, 1:N (N is a positive integer); and the protection mode may be that multiple protection members protect multiple working members, such as 2: N, 3: N, etc., N is a positive integer.
  • a logical channel includes five physical channels, which can be set as follows: 4 physical channels are physical channels corresponding to working members, and one physical channel is a physical channel corresponding to the protection member. It can also be set as: 3 physical channels are working. The physical channel corresponding to the member, and the two physical channels are the physical channels corresponding to the protection member.
  • the step 100 further includes: determining the PHY number of the working member and the PHY number of the protection member, and the PHY number of the protection member may be a special value for the receiving end to distinguish, such as the maximum value, the minimum value, or 0, or 255 among all members. Wait.
  • the working member and the protection member can be used to carry different data, for example, carrying the service data of the important customer on the time slot of the working member, and carrying the service data of the ordinary customer on the time slot of the protection member.
  • the number of physical channels in the logical channel is R;
  • step 200 the following points need to be explained:
  • the selector type on the working member and the corresponding physical channel is 2, the selector is an input from the working member, and the input is from the protection member; the alternate member and the corresponding physical channel are The selector type is N+1, 1 is input from the working member, and one input is from the protected member.
  • the selector type on the working member and the corresponding physical channel is 3, the selector is one input from the working member, the two inputs are from the protection member, the alternate member and the corresponding physical channel.
  • the selector type on it is N+1, 1 is input from the working member, and one input is from the protected member.
  • the selector on the working member and the corresponding physical channel selects the output of the working member
  • the selector on the protection member and the corresponding physical channel selects the protection member output.
  • the physical channel corresponding to the working member is exchanged with the physical channel corresponding to the protection member, including:
  • M1 of the M working members meet the preset switching condition, the M1 protection members of the N protection members are selected, and the physical channel corresponding to the working member is exchanged with the physical channel corresponding to the protection member;
  • M1 is a positive integer less than or equal to M and less than or equal to N.
  • step 300 the following points need to be explained:
  • the decision result relates to the faulty working channel and the protection channel selector.
  • the decision result involves multiple protection channels, decides the protection channel to participate in the protection operation, and protects the working channel.
  • the protection action includes performing an exchange between a working member and a protection member.
  • a selection portion is disposed between the FLEXE shim and the optical module, and the selection portion may include a plurality of selectors, and the selector can output the data signals output by the FLEXE shim to different optical modules; the selection portion can be set in the FLEXE shim Between the optical module and the optical module, it can also be set in the FLEXE shim, that is, the selection part is implemented in the FLEXE shim through software control.
  • the protection action can be started immediately after the protection operation is determined.
  • the protection action immediately starts to start the protection operation with the current code stream transmission location, that is, regardless of which part of the code stream is transmitted, the protection action is performed immediately. Waiting until the start position of the next FLEXE overhead frame initiates a protection action, and the protection action occurs at the boundary position of the overhead frame.
  • the protection action is not started immediately, and the next FLEXE overhead frame is waited for.
  • the PHY number number in the working channel and the protection channel is replaced first, and the channel service content is not switched.
  • the working channel carries the PHY number number of the protection channel.
  • the protection channel carries the PHY number number of the working channel, and waits for the start position of the next FLEXE overhead frame (two FLEXE frame overhead boundaries) to start the protection operation.
  • the exchanging the physical channel corresponding to the working member with the physical channel corresponding to the protection member includes:
  • Determining a scheme of the protection operation wherein, determining a correspondence between the working member that satisfies the preset switching condition and the corresponding protection member that performs the swap operation;
  • a protection operation is initiated that includes performing an exchange between a working member and a protection member.
  • the startup protection operation includes:
  • the protection operation is initiated immediately after determining the scheme of the protection operation; or, waiting for the start of the next FLEXE overhead frame to initiate a protection operation, the protection operation occurring at the boundary position of the overhead frame.
  • step 400 the following points need to be explained:
  • the result of detecting the PHY number of each physical channel is sorted according to the PHY number number sequence, and the group time slot is restored to restore the customer service.
  • the new PHY number is sorted in order, and the group time slot is restored to restore the customer service.
  • the physical channel detection member's PHY number number may be sorted according to the new PHY number number order, or may wait until the next overhead frame boundary position to start the sorting according to the new PHY number number sequence, according to The startup switching mode of the transmitting end selects the startup mode of the receiving end.
  • the service data is carried by the selection unit to each physical channel
  • the selection unit includes a first selector and a second selector; the number of the first selector is M, and the number of the second selector is N; the first selector is in one-to-one correspondence with each working member, and the second selector One-to-one correspondence with each protection member;
  • the number of input interfaces of the first selector is N+1, and the number of input interfaces of the second selector is R;
  • the service data is divided into R channels and input to the selection unit; wherein, the M channel data is input to the working member through the selection unit, and the N channel data is input to the protection member through the selection unit, wherein the M channel data is respectively connected to the input of the first selector.
  • the interface and the input interface of each of the second selectors, the N channels of data are respectively connected to the input interfaces of the respective first selectors and the respective second selectors.
  • FIG. 7A it is a 1:1 protection scheme.
  • the member number is represented by an 8-bit PHY number, where the 0 and 255 member numbers are reserved.
  • the number of the protection channel may be set to 255 (may also be a member of the number 0, or a member number of the group, or the member number with the largest number).
  • Two members form the group of the FLEXE protocol, a total of 2 * 20 time slots.
  • the important customer services are all carried by the time slots corresponding to the working channel.
  • the first 20 time slots are used to deliver important customers;
  • the normal customer service is carried by the time slots corresponding to the protection channels (or the protection channel and the working channel are jointly carried) ), in this example, the important customers are delivered by the last 20 slots.
  • the two members' services are sent to PHY1 and PHY2 through a 2-to-1 controller.
  • the selector A selects the service of the input port 1 and sends it to the PHY 1
  • the selector B selects the service of the selected input port 1 and sends it to the PHY 2.
  • the two PHYs are delivered to the remote device in the normal way.
  • the working member service is interrupted, and the interrupt alarm triggers the two selectors to start the protection action synchronously: the selector A selects the service of the selected input port 2 and sends the service to the PHY1, the selector B selects the service of input port 2 to send to PHY2, so that the transfer on PHY1 is an ordinary customer, the transfer on PHY2 is an important customer, the important customer service avoids the physical pipeline that has failed, and the important customer service is quickly recovered.
  • the timing at which the two selectors initiate the protection action simultaneously can be selected at the beginning of a FLEXE frame overhead, so that the protection action can be prevented from occurring in the middle of one frame of data, resulting in the content of a frame of content and The latter content is different members, causing misjudgment of frame content analysis.
  • the PHY1 receives the service signal, and judges that the member number is 1 through the FLEXE overhead byte content; the PHY2 receives the service signal and passes the FLEXE overhead word. The content of the section determines that the member number is 255.
  • the member recovery is defined in the FLEXE protocol, it is sorted according to the size of the member number, sorted from small to large, and re-formed into all time slots in the group, so that the member with the number 1 is in front and the member with the number 255 is behind, thus recovering. Out of the transmission slot allocation relationship.
  • the important customer service can be recovered, and the ordinary customer is on the member 255.
  • PHY1 receives the service signal, and judges that the member number is 255 through the content of the FLEXE overhead byte
  • PHY2 receives the service signal, and judges that the member number is 1 through the content of the FLEXE overhead byte. Sort the member numbers from small to large and re-form all the time slots in the group. Similarly, the member with the number 1 is in front and the member with the number 255 is behind.
  • the important customer service can be recovered, and the ordinary customer is on the member 255, so that the important customer service is received through the PHY2, and the service is protected by the transmission channel of the PHY1.
  • FIG. 7C is a 1:4 protection scheme.
  • There are 5*20 100 time slots in the group.
  • the first 80 time slots (member number 1-4) are used to carry important customers.
  • the last 20 time slots (member number 255) are used to carry ordinary customers. .
  • members 1-4 are sent to the corresponding PHY through the 2-to-1 selector (selectors A, B, C, D), and the 255 members pass the 5-to-1 selector ( The selector E) is sent to the corresponding PHY 5.
  • the selector A, the selector B, the selector C, and the selector D all select the service of the input port 1 and then send it to the PHY
  • the selector E selects the service of the input port 5 and sends it to the PHY 5, so that PHY1 carries the service of member number 1, PHY2 carries the service of member number 2, PHY3 carries the service of member number 3, PHY4 carries the service of member number 4, and PHY5 carries the service of member number 255.
  • selector B and selector E simultaneously switch, and selector B selects input port 2 as an input service and sends it to PHY2.
  • selector E selects the input port 2 as the input service and sends it to the PHY5, so that the PHY2 carries the service with the member number 255, the PHY5 carries the service with the member number 2, and the customer service carried on the PHY2 and the PHY5 is replaced.
  • the member numbered 2 carries this important customer service, switching from the PHY2 channel to the PHY5 channel, avoiding the faulty channel, and implementing the service protection function.
  • the member 255 carries the ordinary client, and switches from the PHY5 channel to the PHY2 channel, and the normal customer service goes through the fault channel, and the service can be normally transmitted after the fault is recovered.
  • PHY1 carries the member with the number 1
  • the PHY2 carries the member with the number 2
  • the PHY3 carries the member with the number 3
  • the PHY4 carries the member with the number 4
  • the PHY5 bears the number 255. member.
  • the protocol rule is to sort all the members in the group according to the order of the member numbers, and then restore each customer business.
  • the PHY2 bearer number changes from member 2 to member 255.
  • the PHY5 bearer number changes from member 255 to member 2
  • the number of the member number is still in the order of the member number. Large sorting, recovering the time slots in the group, do not need to pay attention to the change of the member number on each physical channel.
  • FIG. 7E it is a 2:3 protection scheme.
  • There are 5*20 100 time slots in the group.
  • the first 60 time slots (member number 1-3) are used to carry important customers, and the last 40 time slots (member number 255 and 255) are used to carry ordinary customer.
  • members 1-3 are sent to the corresponding PHY through the 3-to-1 selector (selectors A, B, C), and members 254 and 255 are selected through the 4-to-1 selector (selector D, The selector E) is sent to the corresponding PHY.
  • the selector A, the selector B, and the selector C select the service of the input port 1 and then send it to the PHY
  • the selector D and the selector E select the service of the input port 4 and send the service to the PHY.
  • PHY1 carries the service of member number 1
  • PHY2 carries the service of member number 2
  • PHY3 carries the service of member number 3
  • PHY4 carries the service of member number 254,
  • PHY5 carries the service of member number 255.
  • the channel corresponding to PHY2 fails. After detecting the fault alarm signal and determining the alarm channel, it is necessary to decide to start the protection action by that protection channel. If the result of the decision is that the PHY4 protects the service of the PHY2, the selector B and the selector D simultaneously switch, the selector B selects the input port 3 as an input service and sends it to the PHY2, and the selector D selects the input port 2 as an input service and sends it to the PHY4.
  • the PHY2 carries the service with the member number 254, the PHY4 carries the service with the member number 2, and the customer service carried on the PHY2 and the PHY4 is replaced. Members with member number 2 carry important customer services.
  • the member 254 carries the ordinary client, and the PHY4 channel is switched to the PHY2 channel, and the normal customer service goes through the fault channel, and the normal transmission can be performed after the fault is recovered.
  • the services are received in the normal manner, and the members are sorted from small to large in order of member number, and all members in the group are restored, and then each customer service is restored.
  • the time slot is still restored in the order of the member number of the customer. It is not necessary to pay attention to the change of the member number on each physical channel.
  • the selector A, the selector C, the selector D, and the selector E are simultaneously switched, the selector A selects the input port 3 as an input service and sends it to the PHY 1, and the selector C selects the input port 2 as an input service and sends it to the PHY 3, and the selector D selects the input port 1 as the input service and sends it to the PHY 4, and the selector E selects the input port 3 as the input service and sends it to the PHY 5, so that the PHY1 carries the service with the member number 254, and the PHY3 carries the service with the member number 255.
  • PHY4 carries the service with member number 1.
  • the PHY5 carries the service with member number 3. The customer service carried on PHY1 and PHY4 is replaced.
  • the customer service carried on PHY3 and PHY5 is replaced.
  • Members with member number 1 carry important customer services. After protection, they switch from PHY1 channel to PHY4 channel to avoid the fault channel.
  • Members with member number 3 carry important customer services and switch from PHY3 channel after protection action. Go to the PHY5 channel and avoid the faulty channel.
  • the member 254 carries the normal client, and the PHY4 channel switches to the PHY1 channel; the member 255 carries the ordinary client, and the PHY5 channel switches to the PHY3 channel. Ordinary customer business goes through the fault channel, and can be delivered normally after the fault is recovered.
  • PHY1 carries the member with the number 1
  • the PHY2 bears the member with the number 2
  • the PHY3 carries the member with the number 3
  • the PHY4 carries the member with the number 4
  • the PHY5 bears the number 255. member.
  • the protocol rule is to sort all the members in the group according to the order of the member numbers, and then restore each customer business.
  • the number of the client member carried in the physical channel changes, for example, the PHY1 bearer number changes from member 1 to member 254, the PHY3 bearer number changes from member 3 to member 255, and the PHY4 bearer number changes from member 254 to 1.
  • the PHY5 bearer number changes from member 255 to member 3
  • the PHY5 bearer number is sorted from small to large according to the order of the customer member number, and the time slot in the group is recovered. It is not necessary to pay attention to the change of the member number on each physical channel. happening.
  • the embodiment of the present invention further provides a data transmission device, which is disposed on a terminal, and a data transmission device according to an embodiment of the present invention includes:
  • a transmission unit configured to transmit service data through a logical channel; wherein, the working member transmits data of the first type of service; and the protection member transmits data of the second type of service; wherein the first type of service has a higher priority than the second type
  • the priority of the service each physical channel in the logical channel is divided into working members or protection members, and each physical channel corresponds to each working member or each protection member;
  • the selecting unit is configured to exchange the physical channel corresponding to the working member with the physical channel corresponding to the protection member when the working member meets the preset switching condition.
  • the selecting unit determines that the working member meets the preset switching condition according to one of the following manners:
  • the physical channel corresponding to the working member fails
  • the status of the working member carrying channel is detected, and when the working member carrying channel condition meets the preset starting switching requirement, the working member carrying channel status includes at least one of a channel interruption and a bit error limit.
  • the device further includes a setting unit configured to determine a working member and a corresponding physical channel, and determine a protection member and a corresponding physical channel.
  • the number of physical channels in the logical channel is R;
  • the selecting unit exchanges the physical channel corresponding to the working member with the physical channel corresponding to the protection member, including:
  • M1 of the M working members meet the preset switching condition, the M1 protection members of the N protection members are selected, and the physical channel corresponding to the working member is exchanged with the physical channel corresponding to the protection member;
  • M1 is a positive integer less than or equal to M and less than or equal to N.
  • the selecting unit includes:
  • Determining a sub-module configured to determine a scheme of the protection operation; wherein, determining a correspondence between the working member that satisfies the preset switching condition and the corresponding protection member that performs the swap operation;
  • the interchange submodule is configured to initiate a protection operation including performing an exchange between the working member and the protection member.
  • the switching submodule initiates the protection operation, including:
  • the protection operation After determining the scheme of the protection operation, the protection operation is initiated with the current code stream transmission location; or, waiting for the start of the next FLEXE overhead frame to initiate the protection operation.
  • the selecting unit 30 carries the service data to each physical channel through the selecting part
  • the selection portion includes a first selector and a second selector; the number of the first selectors is M, and the number of the second selectors is N; the first selectors are respectively in one-to-one correspondence with the respective working members, and the second selector One-to-one correspondence with each protection member;
  • the number of input interfaces of the first selector is N+1, and the number of input interfaces of the second selector is R;
  • the business data is divided into R channels and input to the selection unit; wherein the M channel data is input to the working member through the selection portion, and the N channel data is input to the protection member through the selection portion, wherein the M channel data is respectively connected to the input of the first selector
  • the interface and the input interface of each of the second selectors, the N channels of data are respectively connected to the input interfaces of the respective first selectors and the respective second selectors.
  • the above data transmission method is implemented in the form of a software function module and sold or used as a standalone product, it may also be stored in a computer readable storage medium.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computing device (which may be a personal computer, server, or network device, etc.) is implemented to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • the embodiment of the present invention further provides a data transmission device, including a memory and a processor, where the memory stores a computer program executable on a processor, and the processor implements the foregoing data transmission method when executing the program. A step of.
  • Embodiments of the present invention also provide a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps in the data transmission method described above.

Abstract

本发明实施例提供了一种数据传输方法和装置、设备、存储介质,该方法包括:通过逻辑通道传输业务数据;其中,通过工作成员传输第一类业务的数据;通过保护成员传输第二类业务的数据;其中,第一类业务的优先级高于第二类业务的优先级;逻辑通道中的各个物理通道分为工作成员或保护成员,各个物理通道分别一一对应于各工作成员或各保护成员;在工作成员满足预设的切换条件时,将所述工作成员对应的物理通道与保护成员对应的物理通道进行互换。

Description

一种数据传输方法和装置、设备、存储介质
相关申请的交叉引用
本申请基于申请号为201710632020.4、申请日为2017年07月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以全文引入的方式引入本申请。
技术领域
本发明实施例涉及数据通信领域,涉及但不限于一种数据传输方法和装置、设备、存储介质。
背景技术
用户网络信息流量的快速增加,促使着通讯网络信息传递带宽的快速发展,通讯设备的接口带宽速度从10M(单位:比特/秒,后面内容相同)提高到100M,又提高1G、10G,目前已经达到100G的带宽速度,市场上已经开始大量商用100G的光模块。目前已经研发出400G的光模块,但400G的光模块价格昂贵,超过了4个100G光模块的价格,导致400G光模块缺少商用的经济价值。为了在100G光模块上传递400G业务,国际标准组织定义了FLEXE协议。FLEXE协议将多个100G的光模块捆绑起来,形成一个大速度的传递通道,如图1,通过FLEXE协议将4个100G光模块捆绑起来,形成一个400G传递通道,等效于1个400G的光模块的传递速度,在不增加成本的情况下解决了400G业务的传递需求。由于FLEXE协议是将多个物理通道捆绑成一个业务传递的逻辑通道,当一个物理通道发生故障时,则整个逻辑通道发生故障。例如,当一个物理通道出现中断,则整个逻辑通道就中断,如图2,这样相对于单条业务通道,FLEXE协议中捆 绑组的逻辑通道的可靠性降低了,逻辑通道发生故障的概率是单个物理通道发生故障概率的整数倍,倍数就是物理通道的总数量。在通讯系统中,当通信通道发生故障时,需要对关键客户业务能快速进行保护,并恢复正常工作,业务中断时间不能超过50ms。FLEXE协议定义的传递管道可靠性低,没有业务保护方法,影响FLEXE协议在通讯网络中应用。
发明内容
本发明实施例提出了一种数据传输方法和装置、设备、存储介质,能够解决了FLEXE协议在通讯网路商用时遇到传递管道可靠性低,没有业务保护方法的问题。
本发明实施例提出了一种数据传输方法,所述方法包括:
通过逻辑通道传输业务数据;其中,通过工作成员传输第一类业务的数据;通过保护成员传输第二类业务的数据;其中,第一类业务的优先级高于第二类业务的优先级;逻辑通道中的各个物理通道分为工作成员或保护成员,各个物理通道分别一一对应于各工作成员或各保护成员;
在工作成员满足预设的切换条件时,将所述工作成员对应的物理通道与保护成员对应的物理通道进行互换。
本发明实施例还提出了一种数据传输装置,所述装置包括:
传输单元,配置为通过逻辑通道传输业务数据;其中,通过工作成员传输第一类业务的数据;通过保护成员传输第二类业务的数据;其中,第一类业务的优先级高于第二类业务的优先级;逻辑通道中的各个物理通道分为工作成员或保护成员,各个物理通道分别一一对应于各工作成员或各保护成员;
选择单元,配置为在工作成员满足预设的切换条件时,将所述工作成员对应的物理通道与保护成员对应的物理通道进行互换。
本发明实施例还提出了一种数据传输设备,包括存储器和处理器,所 述存储器存储有可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述的数据传输方法中的步骤。
本发明实施例还提出了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述的数据传输方法中的步骤。
本发明实施例提供的技术方案包括:通过逻辑通道传输业务数据;其中,通过工作成员传输第一类业务的数据;通过保护成员传输第二类业务的数据;其中,第一类业务的优先级高于第二类业务的优先级;逻辑通道中的各个物理通道分为工作成员或保护成员,各个物理通道分别一一对应于各工作成员或各保护成员;在工作成员满足预设的切换条件时,将所述工作成员对应的物理通道与保护成员对应的物理通道进行互换。通过本发明实施例的方案,在逻辑部分物理通道出现故障时,将保护成员对应的物理通道与出现故障的物理通道上的传输业务进行交换,从而保障部分重要业务数据的传输质量,对于普通业务数据,对于时延要求较低,可以在故障恢复后恢复传输,通过该传输机制,改善了FLEXE协议在通讯网路商用时遇到传递管道可靠性低,没有业务保护方法的问题,提高整个网络的可靠性。
附图说明
下面对本发明实施例中的附图进行说明,实施例中的附图是用于对本发明的进一步理解,与说明书一起用于解释本发明,并不构成对本发明保护范围的限制。
图1为FLEXE协议应用示意图;
图2为FLEXE协议中成员故障和逻辑通道故障关系示意图;
图3A为FLEXE协议开销块和数据块排列位置示意图;
图3B为FLEXE协议业务在多物理通道上发送分配示意图;
图3C为FLEXE协议业务在多物理通道上接收分配示意图;
图3D为FLEXE协议开销帧结构示意图;
图3E为FLEXE协议开销复帧结构示意图;
图4A为本发明实施例提供的FLEXE协议关键客户业务保护方案示意图;
图4B为FLEXE协议中关键客户业务中断后的保护结果示意图;
图5为本发明实施例提供的一种数据传输方法的流程图;
图6为本发明实施例提供的一种数据传输方法的流程图;
图7A为示例一FLEXE协议中业务1:1保护方案发送端示意图;
图7B为示例一FLEXE协议中业务1:1保护方案接收端示意图;
图7C为示例二FLEXE协议中业务1:4保护方案发送端示意图;
图7D为示例二FLEXE协议中业务1:4保护方案接收端示意图;
图7E为示例三FLEXE协议中业务2:3保护方案发送端示意图;
图7F为示例三FLEXE协议中业务2:3保护方案接收端示意图。
具体实施方式
为了便于本领域技术人员的理解,下面结合附图对本发明实施例作进一步的描述,并不能用来限制本发明的保护范围。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的各种方式可以相互组合。
本发明实施例提供的数据传输方法用于基于FLEXE协议的数据传输中,在介绍本发明实施例提供的数据传输方法和装置之前,首先对FLEXE协议中的相关内容进行介绍。
目前FLEXE协议按照物理层100G速率来定义。在光模快中,100G的数据报文在发送前,是将数据包报文进行64/66编码,将64比特的数据块扩展成66比特的信息块,增加的2比特位于66比特块前面,作为66比特块的开始标志,然后以66比特块的方式从光口发送出去。在接收时,光口从接收到的数据流中辨别出66比特块,然后从66比特块中恢复出原始的 64比特数据,重新组装出数据报文来。
FLEXE协议处于64比特到66块转换层之后,在发送66比特数据块前,对66比特的数据块进行排序和规划,如图3A:对于100G业务,每20个66比特数据块划分为一个数据块组,每组中共20个数据块,代表20个时隙,每个时隙代表5G带宽的业务速度,20个时隙组成FLEXE的时隙calendar。当4路100G的物理层捆绑成一个400G的逻辑业务带宽时,时隙结构是由80(4*20)个时隙组成,Calendar是80个时隙,分成4组,每组20时隙,每组是一个成员subcalendar。在物理层,每个物理层承载一个成员(subcalendar)的内容,仍按照20个数据块组成一个数据块组,每1023个数据块组插入一个开销块。开销块起到定位作用,多个成员以开销块为基准进行定位和排序,来恢复业务。发送66比特的数据块时,每发送完1023个数据块组(1023*20个数据块),插入一个FLEXE开销块,如图3A中黑色块。插入开销块后,继续发送数据块,发送完第二个1023*20个数据块后,再插入开销块,以此类推,这样在发送数据块的过程中,会周期性地插入开销块,相邻两个开销块的间隔是1023*20个数据块。在接收端,每个物理层检测接收数据,确定每个66块信息块,辨别出FLEXE开销块(黑色的信息块)后,就可以确定出20个时隙块。当逻辑通道是由多个物理管理捆绑时,如图3C,每个物理通道分别定位FLEXE开销,确定各自的20个时隙,然后以开销块为对齐标志,根据每个物理通道中开销块中携带的本成员编号,确定成员之间的排队顺序(按照成员编号从小到大排序),将所有成员的时隙组成一个大的时隙组calendar,然后恢复出客户业务。
FLEXE开销块是一个66比特长的开销块,在业务数据流发送时,每间隔1023*20个数据块插入一个开销块。开销块在整个业务流中起到定位功能,找到开销块,就可以知道业务中第一个数据块组的位置,以及后续的数据块组的位置。开销块的内容如图3D,连续8个开销块则组成一个开销 帧。一个开销块由2比特的块标志和64位的块内容组成。块标志位于前2列,后面64列是块内容,第一个开销块的块标志是10,后面7个开销块的块标志是01或SS(SS表示内容不确定)。第一个开销块的内容是:0x4B(8位,十六进制的4B)、C比特(1位,指示调整控制)、OMF比特(1位,表示开销帧复帧指示)、RPF比特(1位,表示远端缺陷指示)、RES比特(1位,保留位)、FLEXE group number(20位,表示捆绑组的编号)、0x5(4位,十六进制的5)、000000(28位,都是0)。其中的0x4B和0x5是第一个开销块的标志指示,在接收时,当找到一个开销块中对应位置是0x4B和0x5,则表示该开销块是开销帧中的第一个开销块,和次后连续的7个开销块组成一个开销帧。在开销帧中,reserved部分是保留内容,尚未定义,见图3B黑色块。图3E是FLEXE协议开销复帧结构示意图。开销帧中其他字节内容与本申请没有关系,不再具体说明。
FLEXE协议中定义8个开销块组成一帧,如图3D,其中第一个开销块中由4B(16进制,标识为0x4B)和05(16进制,标识为0x5)两个字段标识。当开销块中,检测出对应位置是4B和05内容时,则表示该开销块是第一个开销块,和后面的7个开销块组成一帧。
在FLEXE开销帧结构中,FLEXE group number表示FLEXE捆绑组标识,所有group number相同的成员都属于一组。PHY number是成员编号,在同一个group number中,每个成员的PHY number是唯一的,所有成员在排序时是按照PHY number从小到大的排序规则进行排序。PHY number是8位的数据,可以表示0-255之间的所有编号,因此一个group中最多有256个成员。在当前标准中定义0和255是保留编号,共特殊应用,正常成员使用1-254的编号。
在第一个开销块中,OMF字段是复帧指示信号,如图3D。OMF是单比特数值,连续16帧中为0,然后连续16帧中为1,然后又是连续16帧 中为0,然后连续16帧中为1,每32帧重复一次,这样复帧就是由32帧组成。在帧中,客户日历(Client calendar)字段表示每个时隙的配置信息,可以业务在承载时,通过Client calendar表示本时隙属于那个客户。客户业务在承载时需要的时隙数量是不确定的,需要能灵活修改,因此Client calendar有两套配置信息,Client calendar A和Client calendar B,两套配置值分别工作在工作模式和备用模式,用于动态、平滑地切换配置信息。在一个时间点,只有一套配置值处于工作模式,另外一个配置值处于备用模式。当需要修改配置值,则修改备用模式的配置值,同时通知对端表示本端口的配置值发生了变化,对端根据新的配置值进行准备,准备好后回送给发起端,等两端协商一致后,启动配置表的切换流程,则原来处于工作模式配置表变为备用模式,将原来处于备用模式配置表修变为工作模式,实现配置信息的动态调整。
FLEXE协议将多个物理通道捆绑成一个逻辑通道,解决了大业务传递带宽的需求。由于FLEXE协议是将多个物理通道捆绑成一个业务传递的逻辑通道,当一个物理通道发生故障时,则整个逻辑通道发生故障,逻辑通道的可靠性降低了,逻辑通道发生故障的概率增加好几倍,倍数就是物理通道的总数量。在FLEXE协议当前版本中,当一个物理通道发生故障时,需要进行业务恢复的方法只能是从group中将发生故障的通道成员剔除出去,重新增加一个新成员。这涉及如下操作和步骤:(1)、发送端:发送将客户业务从故障成员中删除的通知,故障成员不传递客户业务;(2)、接收端:认可发送端的时隙配置修改通知,给出接收答复;(3)、发送端:将客户业务从故障成员中删除,故障成员不传递客户业务;(4)、接收端:不再从故障成员中接收客户业务;(5)、增加新成员,从新成员中接收客户信息。目前这种解决方法,存在弊端:(1)、当一个成员发生故障时,例如收发光纤同时被挖断时,该成员在两台设备之间已经无法正常传递信息,故障信 息只是单方向知道,每一方只知道自己这边接收时故障,但不知道对方接收是否正常,无法确定是单向故障还是双向故障,无法启动删除客户时隙的工作;(2)、当一个成员发生故障时,发送和接收端已经无法正常传递信息,无法进行时隙删除的通知和确认工作,不能进行删除故障通道时隙的活动;(3)即使删除故障通道时隙的活动可以进行,整个删除活动需要经过协商握手等一系列活动,超过了通讯网络对业务中断的要求时间。在通讯系统中,当通信通道发生故障时,需要对关键客户业务能快速进行保护和恢复,业务中断时间不能超过50ms。
基于FLEXE协议的应用中,本发明实施例提供一种数据传输方法和装置,对客户业务进行分等级:重要客户和普通客户。重要客户的服务质量很高,当业务中断时,能快速恢复业务,中断时间不超过50ms;普通客户提供一般服务质量,不保证业务中断后恢复时间,业务中断后恢复时间较长(例如,等故障消失后才能恢复)。如图4A,5条100G的成员(1号、2号、3号、4号、5号成员,其中1-4号成员是工作通道,5号成员是保护通道)组成一个FLEXE group,总传输带宽是500G。在group上承载两条客户,一条是重要客户,400G的带宽;一条是普通客户,100G的带宽。在配置上,将400G的重要客户业务配置在1、2、3、4号成员上,将100G的普通客户配置在5号成员上。当FLEXE承载通道都正常时,重要客户和普通客户都得到可靠传递。如图4B所示,当成员1出现故障时,成员1的身份快速变成成员5,同时成员5的身份快速变成成员1,代替原来的成员1传递重要客户,这样5个成员的编号由1、2、3、4、5,变成5、2、3、4、1,在group中仍就由1、2、3、4成员传递重要客户,5号成员传递普通客户,重要客户在经过瞬间中断后能快速恢复起来,业务中断时间非常短。普通客户由中断的成员承载,普通客户出现故障,等故障消失后才能恢复正常。通过备用物理通道代替发生故障的成员,可以快速恢复受损的重要 客户业务,保障了重要客户的服务质量。这种业务保护方法,只是工作通道发生故障时才启动保护活动,牺牲普通客户保障重要客户。当成员没有发生故障时,普通客户和重要客户都得到正常传递,业务不受影响。
参见图5,本发明实施例提出了一种数据传输方法,所述方法包括:
步骤200,通过逻辑通道传输业务数据;其中,通过工作成员传输第一类业务的数据;通过保护成员传输第二类业务的数据;其中,第一类业务的优先级高于第二类业务的;逻辑通道中的各个物理通道分为工作成员或保护成员,各个物理通道分别一一对应于各工作成员或各保护成员;
步骤300,在工作成员满足预设的切换条件时,将所述工作成员对应的物理通道与保护成员对应的物理通道进行互换。
本发明实施例中,第一类业务为重要客户业务;第二类业务为普通客户业务,第一类业务对于中断后恢复的要求比较高,因此作为优先保护的对象。
参见图6,在步骤200之后还包括:
步骤400,在接收端,检测每个物理通道中每个成员在每一个FLEXE开销帧中的编号情况,按照成员编号顺序排序,恢复所有时隙和客户业务。
可以理解,步骤300和步骤400没有特定的先后顺序。
本发明实施例中,所述工作成员满足预设的切换条件包括如下方式之一:
所述工作成员对应的物理通道出现故障;
检测所述工作成员承载通道状况,在工作成员承载通道状况满足保护操作需求时,所述工作成员承载通道状况包括通道中断、误码越限中的至少一个。
本发明实施例中,在步骤200的通过逻辑通道传输业务数据之前,所述方法还包括:
步骤100,确定工作成员及对应的物理通道,确定保护成员及对应的物理通道。
步骤100中,保护方式可以是1个保护成员保护多个工作成员,如1:1,1:N(N为正整数);保护方式可以是多个保护成员保护多个工作成员,如2:N,3:N等,N为正整数。
例如,逻辑通道中包括5条物理通道,可以设置为:4条物理通道为工作成员对应的物理通道,1条物理通道为保护成员对应的物理通道;也可以设置为:3条物理通道为工作成员对应的物理通道,2条物理通道为保护成员对应的物理通道。
步骤100还包括:确定工作成员的PHY number和保护成员的PHY number,保护成员的PHY number可以是特殊数值,以便接收端区分,如所有成员中的最大值、最小,或为0,或为255等。
在正常情况下,工作成员在其对应的物理通道传送业务,保护成员在其对应的物理通道传送业务。
在发送业务数据时,工作成员和保护成员可以用于承载不同的数据,例如,在工作成员的时隙上承载重要客户的业务数据,在保护成员的时隙上承载普通客户的业务数据。
本发明实施例中,逻辑通道中物理通道的数目为R;
所述确定工作成员及对应的物理通道,确定保护成员及对应的物理通道包括:设置工作成员的数目为M,设置保护成员的数目为N;M+N=R;M、N、R均为正整数。
步骤200中,需要说明如下几点:
2-1、在1:N模式下,工作成员及对应的物理通道上的选择器类型是2选1,选择器一个输入自工作成员,一个输入来自保护成员;备用成员及对应的物理通道上的选择器类型是N+1选1,N个输入来自工作成员,一个 输入来自保护成员。
2-2、在2:N模式下,工作成员及对应的物理通道上的选择器类型是3选1,选择器一个输入自工作成员,两个输入来自保护成员;备用成员及对应的物理通道上的选择器类型是N+1选1,N个输入来自工作成员,一个输入来自保护成员。
2-3、在正常工作情况下,工作成员及对应的物理通道上选择器选择工作成员输出,保护成员及对应的物理通道上选择器选择保护成员输出。
所述在工作成员满足预设的切换条件时,将所述工作成员对应的物理通道与保护成员对应的物理通道进行互换包括:
在M个工作成员中的M1个满足预设的切换条件时,选出N个保护成员中的M1个保护成员,将工作成员对应的物理通道与保护成员对应的物理通道进行互换;其中,M1为小于或等于M,且小于或等于N的正整数。
步骤300中,需要说明如下几点:
3-1、检测工作成员承载通道状况,包括通道中断、误码越限等,决策是否启动保护操作。
3-2、对于1:N保护方案,决策结果涉及故障的工作通道和保护通道选择器。对2:N、3:N等多个保护通道的保护方案,决策结果涉及多个保护通道,决策出参与保护操作的保护通道,以及保护那条工作通道。
3-3、启动保护操作时,故障的工作通路和保护通路同时启动保护操作。
其中,所述保护动作包括执行工作成员和保护成员之间的互换。
在FLEXE垫层(shim)和光模块之间设置有选择部分,选择部分可以为包括多个选择器,选择器能够将FLEXE shim输出的数据信号输出至不同的光模块;选择部分可以设置在FLEXE shim和光模块之间,也可以设置在FLEXE shim中,即选择部分通过软件控制在FLEXE shim中实现。
3-4、在决策出保护操作后可以立即启动保护动作,其中,立即启动保 护动作是指随当前码流传输位置启动保护操作,即不论码流传输到哪个部分,立刻执行保护动作,也可以等待到下一个FLEXE开销帧的起始位置启动保护动作,保护动作发生在开销帧的边界位置。
3-5、在决策出保护操作后不立即启动保护动作,等待到下一个FLEXE开销帧。在下个开销帧中,先替换工作通道和保护通道中的PHY number编号,通道业务内容不进行切换。工作通道携带保护通道的PHY number编号,保护通道携带工作通道的PHY number编号,再等待下下个FLEXE开销帧的起始位置(两个FLEXE帧开销边界)才启动保护操作。
本发明实施例中,所述将所述工作成员对应的物理通道与保护成员对应的物理通道进行互换包括:
确定保护操作的方案;其中,确定满足预设的切换条件的工作成员与对应的执行互换操作的保护成员之间的对应关系;
启动保护操作,所述保护操作包括执行工作成员和保护成员之间的互换。
本发明实施例中,所述启动保护操作包括:
在确定保护操作的方案之后,立即启动保护操作;或,等待到下一个FLEXE开销帧的起始位置启动保护操作,保护操作发生在开销帧的边界位置。
步骤400中,需要说明如下几点:
4-1、每条物理通道检测成员的PHY number编号结果,按照PHY number编号顺序排序,恢复group时隙,恢复客户业务。
4-2、当物理通道检测成员的PHY number编号发生变化后,按照新的PHY number编号顺序排序,恢复group时隙,恢复客户业务。
4-3、当物理通道检测成员的PHY number编号发生变化后,可以立即按照新的PHY number编号顺序排序,也可以等待到下一个开销帧边界位置 才按照新的PHY number编号顺序启动排序,根据发送端的启动切换模式选择接收端的启动模式。
本发明实施例中,所述业务数据通过选择单元承载到各个物理通道上;
所述选择单元包括第一选择器和第二选择器;第一选择器的数目为M,第二选择器的数目为N;第一选择器分别与各工作成员一一对应,第二选择器分别与各保护成员一一对应;
第一选择器的输入接口的数目为N+1,第二选择器的输入接口的数目为R;
业务数据分为R路输入至选择单元;其中,M路数据通过选择单元输入至工作成员,N路数据通过选择单元输入至保护成员,其中,M路数据分别连接至一个第一选择器的输入接口和各个第二选择器的输入接口,N路数据分别连接至各个第一选择器和各个第二选择器的输入接口。
下面结合具体的示例进行说明。
实施例一
如图7A所示,是1:1的保护方案。在FLEXE协议的group中,有2个成员,一个是工作通道,一个是保护通道。在FLEXE协议中,成员编号由8位的PHY number来表示,其中0和255成员号保留。在具体实现中,为了容易区分工作通道和保护通道,可以将保护通道的编号设置255(也可以是0号成员,或group中编号小成员编号、或编号最大的成员号)。在本示例中将两个成员的PHY number编为1和255,No=1是工作通道,No=255是保护通道。两个成员组成FLEXE协议的group,共2*20个时隙。重要客户业务全部由工作通道对应的时隙来承载,在本示例中,由前20时隙来传递重要客户;普通客户业务由保护通道对应的时隙来承载(或保护通道和工作通道共同承载),在本示例中,由后20时隙来传递重要客户。
在发送端,两个成员的业务准备好后,各自通过一个2选1控制器后 才发给PHY1和PHY2。在工作成员正常情况下,选择器A选择输入口1的业务发送给PHY1,选择器B选择选择输入口1的业务发送给PHY2。两个PHY按照正常的工作方式传递到远端设备。
当检测到PHY1发送到远端设备的路径发生故障后,工作成员业务就出现中断,中断告警触发两个选择器同步启动保护动作:选择器A选择选择输入口2的业务发送给PHY1,选择器B选择选择输入口2的业务发送给PHY2,这样PHY1上传递是普通客户,PHY2上传递是重要客户,重要客户业务避开了发生故障的物理管道,重要客户业务得到了快速恢复。当检测到链路故障时,两个选择器同步启动保护动作的时刻可以选择在一个FLEXE帧开销的起始位置,这样可以避免保护动作发生在一帧数据的中间,导致一帧内容前面内容和后面内容是不同成员的,造成帧内容解析上误判。
在接收端,如图7B所示,在成员业务正常、没有启动保护的情况下,PHY1接收业务信号,通过FLEXE开销字节内容,判断出成员编号是1;PHY2接收业务信号,通过FLEXE开销字节内容,判断出成员编号是255。在FLEXE协议中定义成员恢复时,按照成员编号的大小排序,从小到大进行排序,重新组成group中所有时隙,这样编号为1的成员在前面,编号为255的成员在后面,这样就恢复出发送端时隙排列关系。在成员1上可以恢复出重要客户业务,在成员255上普通客户。当发生保护时,PHY1接收业务信号,通过FLEXE开销字节内容,判断出成员编号是255;PHY2接收业务信号,通过FLEXE开销字节内容,判断出成员编号是1。按照成员编号从小到大进行排序,重新组成group中所有时隙,同样是编号为1的成员在前面,编号为255的成员在后面。在成员1上可以恢复出重要客户业务,在成员255上普通客户,这样重要客户业务通过PHY2上接收,避免通过PHY1的传输通道,业务得到了保护。对于接收端,只需要判断每个PHY上携带的成员编号,按照从小到大的顺序排序,恢复出group中所有时隙, 不需要识别保护动作、不参与保护动作,接收端仍按照正常的业务处理方式工作,不受保护活动影响。
实施例二
本发明的另一个实施例中,如图7C所示,是1:4的保护方案。在FLEXE协议的group中有5个成员,4个是工作通道,成员编号是1、2、3、4;一个是保护通道,成员编号是255。在group中共有5*20=100个时隙,前80个时隙(1-4号成员编号承载)用来承载重要客户,后20个时隙(255号成员编号承载)用来承载普通客户。在发送端,在所有成员都准备好业务后,1-4号成员通过2选1选择器(选择器A、B、C、D)发送给对应PHY,255号成员通过5选1选择器(选择器E)发送给对应PHY5。在所有通道都正常的情况下,选择器A、选择器B、选择器C、选择器D都选择输入口1的业务然后发给PHY,选择器E选择输入口5的业务发给PHY5,这样PHY1承载的是成员编号1的业务,PHY2承载的是成员编号2的业务,PHY3承载的是成员编号3的业务,PHY4承载的是成员编号4的业务,PHY5承载的是成员编号255的业务。如果一个通道发生故障,如PHY2对应的通道出现故障,检测故障告警信号并判断出告警通道后,选择器B和选择器E同时进行切换,选择器B选择输入口2作为输入业务发送给PHY2,选择器E选择输入口2作为输入业务发送给PHY5,这样PHY2上承载的是成员编号为255的业务,PHY5上承载的是成员编号为2的业务,PHY2和PHY5上承载的客户业务发生了替换,编号为2的成员承载这重要客户业务,从PHY2通道切换到PHY5通道,避开了故障通道,实现业务保护功能。成员255上承载着普通客户,从PHY5通道切换为PHY2通道,普通客户业务走故障通道,等故障恢复后才能正常传递业务。
在接收端,如图7D所示,正常时PHY1承载编号为1的成员,PHY2承载编号为2的成员,PHY3承载编号为3的成员,PHY4承载编号为4 的成员,PHY5承载编号为255的成员。协议规则是按照成员编号的顺序,从小到大排序,恢复group中所有成员,然后恢复出每个客户业务。当物理通道中承载的客户成员编号发生变换时,如PHY2承载编号从2号成员变成255号成员,PHY5承载编号从255号成员变成2号成员时,仍按照客户成员编号顺序,从小到大排序,恢复出group中的时隙,不需要关注每个物理通道上成员编号的变化情况。
实施例三
本发明的又一个实施例中,如图7E所示,是2:3的保护方案。在FLEXE协议的group中有5个成员,3个是工作通道,成员编号是1、2、3;2个是保护通道,成员编号是254、255。在group中共有5*20=100个时隙,前60个时隙(1-3号成员编号承载)用来承载重要客户,后40个时隙(254、255号成员编号承载)用来承载普通客户。在所有成员都准备好业务后,1-3号成员通过3选1选择器(选择器A、B、C)发送给对应PHY,254、255号成员通过4选1选择器(选择器D、选择器E)发送给对应PHY。在所有通道都正常的情况下,选择器A、选择器B、选择器C都选择输入口1的业务然后发给PHY,选择器D、选择器E选择输入口4的业务发给PHY,这样PHY1承载的是成员编号1的业务,PHY2承载的是成员编号2的业务,PHY3承载的是成员编号3的业务,PHY4承载的是成员编号254的业务,PHY5承载的是成员编号255的业务。
如果1个工作通道发生故障,如PHY2对应的通道出现故障,检测故障告警信号并判断出告警通道后,需要决策由那个保护通道启动保护动作。如果决策结果是PHY4保护PHY2的业务,则选择器B和选择器D同时进行切换,选择器B选择输入口3作为输入业务发送给PHY2,选择器D选择输入口2作为输入业务发送给PHY4,这样PHY2上承载的是成员编号为254的业务,PHY4上承载的是成员编号为2的业务,PHY2和PHY4上承 载的客户业务发生了替换。成员编号为2的成员承载着重要客户业务,经过保护动作,从PHY2通道切换到PHY4通道,避开了故障通道,实现业务保护功能。成员254上承载着普通客户,由PHY4通道切换为PHY2通道,普通客户业务走故障通道,等故障恢复后才能正常传递。在接收端,让按照正常的方式接收业务,按照成员编号的顺序,从小到大排序,恢复group中所有成员,然后恢复出每个客户业务。当物理通道中承载的客户成员编号发生变换时,仍按照客户成员编号顺序恢复时隙,不需要关注每个物理通道上成员编号的变化情况。
如果2个工作通道发生故障,如PHY1和PHY3对应的通道出现故障,检测故障告警信号并判断出告警通道后,需要决策由那个保护通道启动保护动作。如果决策结果是PHY4保护PHY1的业务,PHY5保护PHY3的业务。则选择器A、选择器C、选择器D、选择器E同时进行切换,选择器A选择输入口3作为输入业务发送给PHY1,选择器C选择输入口2作为输入业务发送给PHY3,选择器D选择输入口1作为输入业务发送给PHY4,选择器E选择输入口3作为输入业务发送给PHY5,这样PHY1上承载的是成员编号为254的业务,PHY3上承载的是成员编号为255的业务,PHY4上承载的是成员编号为1的业务,PHY5上承载的是成员编号为3的业务,PHY1和PHY4上承载的客户业务发生了替换,PHY3和PHY5上承载的客户业务发生了替换。成员编号为1的成员承载着重要客户业务,经过保护动作,从PHY1通道切换到PHY4通道,避开了故障通道;成员编号为3的成员承载着重要客户业务,经过保护动作,从PHY3通道切换到PHY5通道,避开了故障通道。成员254上承载着普通客户,由PHY4通道切换为PHY1通道;成员255上承载着普通客户,由PHY5通道切换为PHY3通道。普通客户业务走故障通道,等故障恢复后才能正常传递。
在接收端,如图7F所示,正常时PHY1承载编号为1的成员,PHY2 承载编号为2的成员,PHY3承载编号为3的成员,PHY4承载编号为4的成员,PHY5承载编号为255的成员。协议规则是按照成员编号的顺序,从小到大排序,恢复group中所有成员,然后恢复出每个客户业务。当物理通道中承载的客户成员编号发生变换时,如PHY1承载编号从1号成员变成254号成员,PHY3承载编号从3号成员变成255号成员,PHY4承载编号从254号成员变成1号成员时,PHY5承载编号从255号成员变成3号成员时,仍按照客户成员编号顺序,从小到大排序,恢复出group中的时隙,不需要关注每个物理通道上成员编号的变化情况。
基于与上述实施例相同或相似的构思,本发明实施例还提供一种数据传输装置,设置在终端上,本发明实施例提出的一种数据传输装置包括:
传输单元,配置为通过逻辑通道传输业务数据;其中,通过工作成员传输第一类业务的数据;通过保护成员传输第二类业务的数据;其中,第一类业务的优先级高于第二类业务的优先级;逻辑通道中的各个物理通道分为工作成员或保护成员,各个物理通道分别一一对应于各工作成员或各保护成员;
选择单元,配置为在工作成员满足预设的切换条件时,将所述工作成员对应的物理通道与保护成员对应的物理通道进行互换。
本发明实施例中,所述选择单元根据如下方式之一来判断工作成员满足预设的切换条件:
所述工作成员对应的物理通道出现故障;
检测所述工作成员承载通道状况,在工作成员承载通道状况满足预设的启动切换需求时,所述工作成员承载通道状况包括通道中断、误码越限中的至少一个。
本发明实施例中,所述装置还包括设置单元,配置为确定工作成员及对应的物理通道,确定保护成员及对应的物理通道。
本发明实施例中,逻辑通道中物理通道的数目为R;
所述设置单元确定工作成员及对应的物理通道,确定保护成员及对应的物理通道包括:设置工作成员的数目为M,设置保护成员的数目为N;M+N=R;M、N、R均为正整数;
所述选择单元在工作成员满足预设的切换条件时,将所述工作成员对应的物理通道与保护成员对应的物理通道进行互换包括:
在M个工作成员中的M1个满足预设的切换条件时,选出N个保护成员中的M1个保护成员,将工作成员对应的物理通道与保护成员对应的物理通道进行互换;其中,M1为小于或等于M,且小于或等于N的正整数。
本发明实施例中,所述选择单元包括:
确定子模块,配置为确定保护操作的方案;其中,确定满足预设的切换条件的工作成员与对应的执行互换操作的保护成员之间的对应关系;
互换子模块,配置为启动保护操作,所述保护操作包括执行工作成员和保护成员之间的互换。
本发明实施例中,所述互换子模块启动保护操作包括:
在确定保护操作的方案之后,随当前码流传输位置启动保护操作;或,等待到下一个FLEXE开销帧的起始位置启动保护操作。
本发明实施例中,所述选择单元30将业务数据通过选择部分承载到各个物理通道上;
所述选择部分包括第一选择器和第二选择器;第一选择器的数目为M,第二选择器的数目为N;第一选择器分别与各工作成员一一对应,第二选择器分别与各保护成员一一对应;
第一选择器的输入接口的数目为N+1,第二选择器的输入接口的数目为R;
业务数据分为R路输入至选择单元;其中,M路数据通过选择部分输 入至工作成员,N路数据通过选择部分输入至保护成员,其中,M路数据分别连接至一个第一选择器的输入接口和各个第二选择器的输入接口,N路数据分别连接至各个第一选择器和各个第二选择器的输入接口。
需要说明的是,本发明实施例中,如果以软件功能模块的形式实现上述的数据传输方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
本发明实施例还提出了一种数据传输设备,包括存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述的数据传输方法中的步骤。
本发明实施例还提出了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述的数据传输方法中的步骤。
以上所述,仅为本发明的实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种数据传输方法,所述方法包括:
    通过逻辑通道传输业务数据;其中,通过工作成员传输第一类业务的数据;通过保护成员传输第二类业务的数据;其中,第一类业务的优先级高于第二类业务的优先级;逻辑通道中的各个物理通道分为工作成员或保护成员,各个物理通道分别一一对应于各工作成员或各保护成员;
    在工作成员满足预设的切换条件时,将所述工作成员对应的物理通道与保护成员对应的物理通道进行互换。
  2. 根据权利要求1所述的数据传输方法,所述工作成员满足预设的切换条件包括如下方式之一:
    所述工作成员对应的物理通道出现故障;
    检测所述工作成员承载通道状况,在工作成员承载通道状况满足预设的启动切换需求时,所述工作成员承载通道状况包括通道中断、误码越限中的至少一个。
  3. 根据权利要求1所述的数据传输方法,在所述通过逻辑通道传输业务数据之前,所述方法还包括:
    确定工作成员及对应的物理通道,确定保护成员及对应的物理通道。
  4. 根据权利要求3所述的数据传输方法,逻辑通道中物理通道的数目为R;
    所述确定工作成员及对应的物理通道,确定保护成员及对应的物理通道包括:设置工作成员的数目为M,设置保护成员的数目为N;M+N=R;M、N、R均为正整数;
    所述在工作成员满足预设的切换条件时,将所述工作成员对应的物理通道与保护成员对应的物理通道进行互换包括:
    在M个工作成员中的M1个满足预设的切换条件时,选出N个保护成 员中的M1个保护成员,将工作成员对应的物理通道与保护成员对应的物理通道进行互换;其中,M1为小于或等于M,且小于或等于N的正整数。
  5. 根据权利要求1所述的数据传输方法,所述将所述工作成员对应的物理通道与保护成员对应的物理通道进行互换包括:
    确定保护操作的方案;其中,确定满足预设的切换条件的工作成员与对应的执行互换操作的保护成员之间的对应关系;
    启动保护操作;所述保护操作包括执行工作成员和保护成员之间的互换。
  6. 根据权利要求5所述的数据传输方法,所述启动保护操作包括:
    在确定保护操作的方案之后,随当前码流传输位置启动保护操作;或,等待到下一个FLEXE开销帧的起始位置启动保护操作。
  7. 根据权利要求4~6所述的数据传输方法,所述业务数据通过选择部分承载到各个物理通道上;
    所述选择部分包括第一选择器和第二选择器;第一选择器的数目为M,第二选择器的数目为N;第一选择器分别与各工作成员一一对应,第二选择器分别与各保护成员一一对应;
    第一选择器的输入接口的数目为N+1,第二选择器的输入接口的数目为R;
    业务数据分为R路输入至选择单元;其中,M路数据通过选择部分输入至工作成员,N路数据通过选择部分输入至保护成员,其中,M路数据分别连接至一个第一选择器的输入接口和各个第二选择器的输入接口,N路数据分别连接至各个第一选择器和各个第二选择器的输入接口。
  8. 一种数据传输装置,所述装置包括:
    传输单元,配置为通过逻辑通道传输业务数据;其中,通过工作成员传输第一类业务的数据;通过保护成员传输第二类业务的数据;其中,第 一类业务的优先级高于第二类业务的优先级;逻辑通道中的各个物理通道分为工作成员或保护成员,各个物理通道分别一一对应于各工作成员或各保护成员;
    选择单元,配置为在工作成员满足预设的切换条件时,将所述工作成员对应的物理通道与保护成员对应的物理通道进行互换。
  9. 根据权利要求8所述的数据传输装置,所述选择单元根据如下方式之一来判断工作成员满足预设的切换条件:
    所述工作成员对应的物理通道出现故障;
    检测所述工作成员承载通道状况,在工作成员承载通道状况满足预设的启动切换需求时,所述工作成员承载通道状况包括通道中断、误码越限中的至少一个。
  10. 根据权利要求8所述的数据传输装置,所述装置还包括设置单元,配置为确定工作成员及对应的物理通道,确定保护成员及对应的物理通道。
  11. 根据权利要求10所述的数据传输装置,
    逻辑通道中物理通道的数目为R;
    所述设置单元确定工作成员及对应的物理通道,确定保护成员及对应的物理通道包括:设置工作成员的数目为M,设置保护成员的数目为N;M+N=R;M、N、R均为正整数;
    所述选择单元在工作成员满足预设的切换条件时,将所述工作成员对应的物理通道与保护成员对应的物理通道进行互换包括:
    在M个工作成员中的M1个满足预设的切换条件时,选出N个保护成员中的M1个保护成员,将工作成员对应的物理通道与保护成员对应的物理通道进行互换;其中,M1为小于或等于M,且小于或等于N的正整数。
  12. 根据权利要求8所述的数据传输装置,所述选择单元包括:
    确定子模块,配置为确定保护操作的方案;其中,确定满足预设的切 换条件的工作成员与对应的执行互换操作的保护成员之间的对应关系;
    互换子模块,配置为启动保护操作,所述保护操作包括执行工作成员和保护成员之间的互换。
  13. 根据权利要求12所述的数据传输装置,所述互换子模块启动保护操作包括:
    在确定保护操作的方案之后,随当前码流传输位置启动保护操作;或,等待到下一个FLEXE开销帧的起始位置启动保护操作。
  14. 根据权利要求11~13所述的数据传输装置,所述选择单元将业务数据通过选择部分承载到各个物理通道上;
    所述选择部分包括第一选择器和第二选择器;第一选择器的数目为M,第二选择器的数目为N;第一选择器分别与各工作成员一一对应,第二选择器分别与各保护成员一一对应;
    第一选择器的输入接口的数目为N+1,第二选择器的输入接口的数目为R;
    业务数据分为R路输入至选择单元;其中,M路数据通过选择部分输入至工作成员,N路数据通过选择部分输入至保护成员,其中,M路数据分别连接至一个第一选择器的输入接口和各个第二选择器的输入接口,N路数据分别连接至各个第一选择器和各个第二选择器的输入接口。
  15. 一种数据传输设备,包括存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,所述处理器执行所述程序时实现权利要求1至7任一项所述数据传输方法中的步骤。
  16. 一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现权利要求1至7任一项所述数据传输方法中的步骤。
PCT/CN2018/090897 2017-07-28 2018-06-12 一种数据传输方法和装置、设备、存储介质 WO2019019827A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710632020.4A CN109309530B (zh) 2017-07-28 2017-07-28 一种数据传输方法和装置
CN201710632020.4 2017-07-28

Publications (1)

Publication Number Publication Date
WO2019019827A1 true WO2019019827A1 (zh) 2019-01-31

Family

ID=65039951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090897 WO2019019827A1 (zh) 2017-07-28 2018-06-12 一种数据传输方法和装置、设备、存储介质

Country Status (2)

Country Link
CN (1) CN109309530B (zh)
WO (1) WO2019019827A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4072052A4 (en) * 2019-12-31 2022-12-14 Huawei Technologies Co., Ltd. DATA TRANSMITTING METHOD, RECEIVING METHOD, TRANSMITTING DEVICE AND RECEIVING DEVICE

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112543113A (zh) * 2019-09-23 2021-03-23 中兴通讯股份有限公司 一种灵活以太网响应链路故障的方法、装置、设备及介质
CN112911420A (zh) * 2019-12-03 2021-06-04 中兴通讯股份有限公司 基于FlexE网络的重路由方法、电子设备和可读存储介质
CN112787844B (zh) * 2020-06-28 2022-01-25 中兴通讯股份有限公司 FlexE客户端状态处理方法、装置、网络设备和可读存储介质
CN114567410A (zh) * 2020-11-27 2022-05-31 华为技术有限公司 一种信号帧的处理方法及相关设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1797974A (zh) * 2004-12-23 2006-07-05 华为技术有限公司 板间通信通道的管理方法
WO2008110083A1 (fr) * 2007-03-12 2008-09-18 Huawei Technologies Co., Ltd. Procédé, dispositif et système de transmission permettant une transmission de service d'interface iub sur ip
CN105656652A (zh) * 2014-11-14 2016-06-08 中兴通讯股份有限公司 业务数据流传输方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759222B2 (ja) * 2001-08-01 2011-08-31 富士通株式会社 通信方法および通信装置
EP1921808B1 (en) * 2006-11-10 2014-06-18 Alcatel Lucent Preemptive transmission protection scheme for data services
CN101656630B (zh) * 2009-09-09 2015-09-16 中兴通讯股份有限公司 一种业务保护方法和系统
CN102271048B (zh) * 2010-06-02 2015-08-12 中兴通讯股份有限公司 聚合链路中的业务保护方法及装置
CN102480368B (zh) * 2010-11-22 2015-07-22 中兴通讯股份有限公司 一种聚合链路的保护方法及系统
US8830825B2 (en) * 2011-05-05 2014-09-09 Fujitsu Limited Method and system for priority based (1:1)n ethernet protection
CN105791108B (zh) * 2014-12-25 2019-07-12 中兴通讯股份有限公司 一种基于捆绑接口的隧道带宽预留的方法及装置
CN106100988A (zh) * 2016-07-26 2016-11-09 安徽皖通邮电股份有限公司 一种实现链路聚合快速切换的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1797974A (zh) * 2004-12-23 2006-07-05 华为技术有限公司 板间通信通道的管理方法
WO2008110083A1 (fr) * 2007-03-12 2008-09-18 Huawei Technologies Co., Ltd. Procédé, dispositif et système de transmission permettant une transmission de service d'interface iub sur ip
CN105656652A (zh) * 2014-11-14 2016-06-08 中兴通讯股份有限公司 业务数据流传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPTICAL INTERNETWORKING FORUM: "OIF Next Generation Interconnect Framework OIF-FD-Client-400G/1T-01.0", 30 April 2013 (2013-04-30), pages 1 - 33, XP055568433, Retrieved from the Internet <URL:https://www.oiforum.com/wp-content/uploads/2019/01/OIF-FD-Client-400G-1T-01.0.pdf> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4072052A4 (en) * 2019-12-31 2022-12-14 Huawei Technologies Co., Ltd. DATA TRANSMITTING METHOD, RECEIVING METHOD, TRANSMITTING DEVICE AND RECEIVING DEVICE

Also Published As

Publication number Publication date
CN109309530B (zh) 2023-08-01
CN109309530A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
WO2019019827A1 (zh) 一种数据传输方法和装置、设备、存储介质
CN109688016B (zh) 灵活以太网协议中切换时隙配置的方法及相关设备
Davies et al. A digital communication network for computers giving rapid response at remote terminals
US11297000B2 (en) Data transmission method, apparatus, and system
EP3107251B1 (en) Packet transmission method and device
JPS5866448A (ja) パケット交換における誤り検出方式
US8830825B2 (en) Method and system for priority based (1:1)n ethernet protection
WO2018059604A1 (zh) 一种信息传输的方法和设备、计算机存储介质
JP2002232462A (ja) Ipパケット通信装置及び冗長構成切替え方法
WO2019007431A1 (zh) 灵活以太网的故障通知、获取方法、装置以及通信设备
CN110383766B (zh) 保护倒换方法、设备及系统
US5224096A (en) Frame strip method and apparatus therefor
CN102088387A (zh) 环网的隧道保护方法及装置
US20220294603A1 (en) Data Stream Processing Method and Apparatus
US6337860B1 (en) Redundancy termination
CN112511919A (zh) Oam信息发送方法、装置、设备和存储介质
CN102487330A (zh) 运行、管理和维护报文的发送方法及装置
US7162544B2 (en) Message transfer method and apparatus
CN111263250B (zh) 业务数据处理方法及设备
CN114827013B (zh) 配电网站域式快速保护系统数据冗余发送方法及相关装置
JPH0267848A (ja) 可変長データフレームの転送方式
CN102130830B (zh) 一种备用lsp的激活方法、装置和系统
CN214101381U (zh) 一种光网络多路径快速切换系统
CN110830308B (zh) 一种切换通信链路的方法及接收端
CN101374062B (zh) 双源组播网络中单个源节点失效的保护方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/07/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18837289

Country of ref document: EP

Kind code of ref document: A1