WO2019019803A1 - 控制信道处理方法、装置、系统、相关设备及存储介质 - Google Patents

控制信道处理方法、装置、系统、相关设备及存储介质 Download PDF

Info

Publication number
WO2019019803A1
WO2019019803A1 PCT/CN2018/089536 CN2018089536W WO2019019803A1 WO 2019019803 A1 WO2019019803 A1 WO 2019019803A1 CN 2018089536 W CN2018089536 W CN 2018089536W WO 2019019803 A1 WO2019019803 A1 WO 2019019803A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink control
control channel
mode
demodulation
modulation mode
Prior art date
Application number
PCT/CN2018/089536
Other languages
English (en)
French (fr)
Inventor
倪吉庆
周伟
韩双锋
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2019019803A1 publication Critical patent/WO2019019803A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0012Modulated-carrier systems arrangements for identifying the type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of wireless communications, and in particular, to a downlink control channel processing method, apparatus, system, terminal, base station, and computer readable storage medium.
  • the physical layer control channel adopts a fixed modulation mode, that is, the control channel adopts Quadrature Phase Shift Key (QPSK) modulation.
  • QPSK Quadrature Phase Shift Key
  • the fifth-generation mobile communication technology (5G) new air interface has a physical time-frequency resource (AL, Aggregation Level) of a physical downlink control channel (PDCCH, Physical Downlink Control CHannel), and the new air interface supports various functions and flexible functions. Configuration, so some downlink control information (DCI, Downlink Control Information) format of the 5G system will require more bits than the LTE system.
  • A physical time-frequency resource
  • PDCCH Physical Downlink Control CHannel
  • the embodiments of the present disclosure provide a downlink control channel processing method, apparatus, system, terminal, base station, and computer readable storage medium.
  • An embodiment of the present disclosure provides a downlink control channel processing method, which is applied to a base station, and includes:
  • the first detection condition includes: whether the number of bits of the DCI format corresponding to the downlink control channel is greater than or equal to a first preset value;
  • the downlink control information corresponding to the downlink control channel is modulated by using the determined modulation mode, and sent to the terminal.
  • the determining, by using the configured AL and the first detection condition, that the modulation mode of the downlink control channel is the first modulation mode or the second modulation mode includes:
  • the AL is the first value
  • the number of bits of the DCI format corresponding to the downlink control channel is greater than or equal to the first preset value, determining that the modulation mode of the downlink control channel is the first modulation mode or the second modulation mode
  • the first detection condition further includes: whether the index value of the Modulation and Coding Scheme (MCS) fed back by the terminal exceeds a second preset value;
  • MCS Modulation and Coding Scheme
  • the method includes:
  • the mode is a first modulation mode or a second modulation mode
  • the MCS index value does not exceed the second preset value.
  • the method further includes:
  • RRC Radio Resource Control
  • the first modulation mode is QPSK; and the second modulation mode is 16QAM.
  • the embodiment of the present disclosure further provides a downlink control channel processing method, which is applied to a terminal, and includes:
  • the demodulation mode of the downlink control channel Determining, by the AL detection based on the blind detection, the demodulation mode of the downlink control channel, where the second detection condition includes: whether the number of bits of the DCI format corresponding to the downlink control channel is greater than or equal to the first a preset value; the determined demodulation mode includes at least one of a first demodulation mode and a second demodulation mode; and an encoding efficiency of the first demodulation mode is lower than an encoding efficiency of the second demodulation mode;
  • the downlink control channel is demodulated by determining a demodulation manner of the downlink control channel.
  • the AL based on the blind detection and the second detection condition are combined to determine a demodulation manner of the downlink control channel, including:
  • the second detection condition further includes: whether the MCS index value fed back by the terminal exceeds a second preset value;
  • the method includes:
  • the modulation mode is the first demodulation mode, or the second demodulation mode, or both the first demodulation mode and the second demodulation mode; correspondingly, using the first demodulation mode, the second demodulation mode, or Demodulating the downlink control channel by using the first demodulation mode and the second demodulation mode;
  • the number of bits in the DCI format corresponding to the downlink control channel is smaller than the first preset value
  • the MCS index value does not exceed the second preset value.
  • the method further includes:
  • the method further includes:
  • the modulation mode of the downlink control channel is a first modulation mode, or a second modulation mode, or the modulation mode includes a first modulation mode and Second modulation method;
  • the demodulation mode of the downlink control channel is determined according to a modulation mode to be a first demodulation mode or a second demodulation mode, or both a first demodulation mode and a second demodulation mode.
  • the first demodulation mode is QPSK; and the second demodulation mode is 16QAM.
  • the embodiment of the present disclosure further provides a line control channel processing apparatus, including:
  • a configuration unit configured to configure a corresponding AL for the terminal according to a downlink control channel condition of the terminal
  • a modulating unit configured to modulate downlink control information corresponding to the downlink control channel by using a determined modulation manner
  • a sending unit configured to send the modulated downlink control channel to the terminal.
  • the embodiment of the present disclosure further provides a downlink control channel processing apparatus, including:
  • a receiving unit configured to detect a downlink control channel
  • a second determining unit configured to determine, according to the AL of the blind detection, the demodulation mode of the downlink control channel, where the second detection condition includes: at least: a bit of the DCI format corresponding to the downlink control channel Whether the number is greater than or equal to the first preset value; the determined demodulation manner includes at least one of the first demodulation mode and the second demodulation mode; the coding efficiency of the first demodulation mode is lower than the second The coding efficiency of the demodulation method;
  • a demodulation unit configured to demodulate the downlink control channel by determining a demodulation manner of the downlink control channel.
  • the embodiment of the present disclosure further provides a base station, including:
  • a first processor configured to configure a corresponding AL for the terminal according to a downlink control channel condition of the terminal, and determine, by using the configured AL and the first detection condition, that the modulation mode of the downlink control channel is a first modulation mode or a second modulation mode; the coding efficiency of the first modulation mode is lower than the coding efficiency of the second modulation mode; the first detection condition includes at least: whether the number of bits of the DCI format corresponding to the downlink control channel is greater than or And being equal to the first preset value; and modulating the downlink control information corresponding to the downlink control channel by using the determined modulation manner;
  • a first transceiver configured to send the modulated downlink control channel to the terminal.
  • the first processor is specifically configured to: when the AL is the first value, and the number of bits of the DCI format corresponding to the downlink control channel is greater than or equal to the first preset value, determining the downlink control
  • the modulation mode of the channel is a first modulation mode or a second modulation mode
  • the first detection condition further includes: whether the MCS index value fed back by the terminal exceeds a second preset value;
  • the first processor is configured to:
  • the mode is a first modulation mode or a second modulation mode
  • the MCS index value does not exceed the second preset value.
  • the first transceiver is further used for
  • the first preset value and/or the second preset value are configured to the terminal by using RRC signaling or system information, and the preset value configured for the terminal is used by the terminal to determine a demodulation mode.
  • the embodiment of the present disclosure further provides a terminal, including:
  • a second transceiver configured to detect a downlink control channel
  • a second processor configured to determine, according to the AL of the blind detection, the demodulation mode of the downlink control channel, where the second detection condition includes: at least: a bit of the DCI format corresponding to the downlink control channel Whether the number is greater than or equal to the first preset value; the determined demodulation manner includes at least one of the first demodulation mode and the second demodulation mode; the coding efficiency of the first demodulation mode is lower than the second Decoding mode coding efficiency; and demodulating the downlink control channel by determining a demodulation mode of the downlink control channel.
  • the second processor is specifically configured to:
  • the second detection condition further includes: whether the MCS index value fed back by the terminal exceeds a second preset value;
  • the second processor is configured to:
  • the modulation mode is the first demodulation mode, or the second demodulation mode, or both the first demodulation mode and the second demodulation mode; correspondingly, using the first demodulation mode, the second demodulation mode, or Demodulating the downlink control channel by using the first demodulation mode and the second demodulation mode;
  • the number of bits in the DCI format corresponding to the downlink control channel is smaller than the first preset value
  • the MCS index value does not exceed the second preset value.
  • the second transceiver is further configured to receive RRC signaling or system information
  • the second processor is further configured to parse the RRC signaling or system information to obtain the first preset value and/or the second preset value.
  • the second transceiver is further configured to receive RRC signaling or system information
  • the second processor is further configured to parse the RRC signaling or system information, and obtain, when the AL is the first value, the modulation mode of the downlink control channel is a first modulation mode or a second modulation mode.
  • the modulation mode includes a first modulation mode and a second modulation mode;
  • the second processor determines, according to the modulation mode, that the demodulation mode of the downlink control channel is a first demodulation mode, or a second demodulation mode, or both a first demodulation mode and a second demodulation mode. .
  • the embodiment of the present disclosure further provides a base station, including: a first processor, a first memory, and a computer program stored on the first memory and capable of running on the first processor;
  • the first processor is configured to perform the steps of any of the methods on the base station side when the computer program is executed.
  • An embodiment of the present disclosure further provides a terminal, including: a second processor, a second memory, and a computer program stored on the second memory and capable of running on the second processor;
  • the second processor is configured to perform the steps of any of the methods on the terminal side when the computer program is executed.
  • the embodiment of the present disclosure further provides a downlink control channel processing system, including:
  • the base station is configured to configure a corresponding AL for the terminal according to the downlink control channel condition of the terminal, and determine, by using the configured AL and the first detection condition, that the modulation mode of the downlink control channel is the first modulation mode or the second a modulation mode; the coding efficiency of the first modulation mode is lower than the coding efficiency of the second modulation mode; the first detection condition includes: at least whether the number of bits of the downlink control information DCI format corresponding to the downlink control channel is greater than Or equal to the first preset value; and modulating the downlink control information corresponding to the downlink control channel by using the determined modulation mode, and sending the downlink control information to the terminal;
  • a terminal configured to detect a downlink control channel; and determine a demodulation mode of the downlink control channel according to the AL of the blind detection and the second detection condition; the second detection condition at least: the DCI corresponding to the downlink control channel Whether the number of bits of the format is greater than or equal to the first preset value; the determined demodulation manner includes at least one of the first demodulation mode and the second demodulation mode; the coding efficiency of the first demodulation mode is lower than Decoding the coding efficiency of the second demodulation method; and demodulating the downlink control channel by determining a demodulation manner of the downlink control channel.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer program is stored, and when the computer program is executed by the processor, the steps of any method of the base station side are implemented, or any method of the terminal side is implemented. step.
  • the base station configures a corresponding AL for the terminal according to the downlink control channel condition of the terminal; and uses the configured AL and combines Determining, by the first detecting condition, that the modulation mode of the downlink control channel is a first modulation mode or a second modulation mode; the coding efficiency of the first modulation mode is lower than the coding efficiency of the second modulation mode;
  • the detecting condition includes: determining whether the number of bits of the DCI format corresponding to the downlink control channel is greater than or equal to a first preset value; and modulating downlink control information corresponding to the downlink control channel by using the determined modulation mode, and sending the downlink control information to the
  • the terminal detects the downlink control channel; the AL based on the blind detection and the second detection condition determines the demodulation mode of the downlink control channel; the second detection condition includes at least: the DCI format corresponding to the downlink control channel
  • FIG. 1 is a schematic flowchart of a method for processing a downlink control channel of a base station according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for processing a downlink control channel on a terminal side according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a method for processing a downlink control channel according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a downlink control channel processing apparatus installed in a base station according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a downlink control channel processing apparatus installed in a terminal according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another terminal according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a downlink control channel processing system according to an embodiment of the present disclosure.
  • One PDCCH occupies an AL Control Channel Element (CCE).
  • CCE AL Control Channel Element
  • DCI downlink control information
  • the base station configures the corresponding AL for the terminal according to the downlink control channel condition of the terminal, and determines the modulation of the downlink control channel by using the configured AL and combining the first detection condition.
  • the mode is a first modulation mode or a second modulation mode; the coding efficiency of the first modulation mode is lower than the coding efficiency of the second modulation mode; and the first detection condition includes at least: the information corresponding to the downlink control channel Whether the number of bits in the DCI format is greater than or equal to a first preset value; modulating downlink control information corresponding to the downlink control channel by using a determined modulation mode, and transmitting the downlink control information to the terminal; and detecting, by the terminal, a downlink control channel; And determining, by the AL, the demodulation mode of the downlink control channel, where the second detection condition includes: whether the number of bits of the DCI format corresponding to the downlink control channel is greater than or equal to a first preset value;
  • the base station determines the modulation mode of the downlink control channel as the first modulation mode or the second modulation mode by using the configured AL and the first detection condition, and modulates the downlink control channel by using the determined modulation mode;
  • the terminal side determines the demodulation mode of the downlink control channel according to the AL of the blind detection and the second detection condition, and demodulates the downlink control channel by using the determined demodulation mode, and comprehensively considers the number of bits in the AL and DCI formats.
  • Modulating the control channel and corresponding demodulation processing that is, comprehensively considering the quality of the channel and the number of bits in the DCI format to modulate the control channel and corresponding demodulation processing, so that the channel quality can be saved when the channel quality is good
  • the resources of the control channel can guarantee QoS when the channel quality is poor.
  • the embodiment of the present disclosure provides a method for processing a downlink control channel, which is applied to a base station. As shown in FIG. 1, the method includes:
  • Step 101 Configure a corresponding AL for the terminal according to a downlink control channel condition of the terminal.
  • the base station may determine the condition of the downlink control channel according to a plurality of indicators, and the base station may determine, according to a channel quality indicator (CQI, Channel Quality Indicator) reported by the terminal, for example.
  • CQI Channel Quality Indicator
  • the base station may also determine downlink control channel conditions based on a channel sounding reference signal (SRS).
  • SRS channel sounding reference signal
  • Step 102 Determine, by using the configured AL, in combination with the first detection condition, that the modulation mode of the downlink control channel is a first modulation mode or a second modulation mode.
  • the coding efficiency of the first modulation method is lower than the coding efficiency of the second modulation method.
  • the commonly used modulation mode is 16QAM in QPSK and Quadrature Amplitude Modulation (QAM). Therefore, in practical applications, the first modulation mode may be QPSK, and the second modulation mode is 16QAM.
  • the first detecting condition includes: whether the number of bits of the DCI format corresponding to the downlink control channel is greater than or equal to a first preset value.
  • the first preset value can be set as needed.
  • step 102 may include:
  • the base station determines that the modulation mode of the downlink control channel is the first modulation mode or the second. Modulation;
  • the base station determines that the modulation mode of the downlink control channel is the first modulation mode
  • the base station determines that the modulation mode of the downlink control channel is the first modulation mode.
  • the first value may be determined according to a defined level of the AL.
  • 5G defines that the value of AL can be 1, 2, 4, 8, so the first value can be 1, that is, the downlink control channel when AL is the first value. Good quality.
  • the first detecting condition may further include: whether the MCS index value fed back by the terminal exceeds a second preset value;
  • the method includes:
  • the base station determines the downlink control
  • the modulation mode of the channel is a first modulation mode or a second modulation mode
  • the base station determines that the modulation mode of the downlink control channel is the first modulation mode
  • the base station determines that the modulation mode of the downlink control channel is the first modulation mode when one of the following conditions is met:
  • the MCS index value does not exceed the second preset value.
  • the second preset value may be set as needed.
  • the method further includes:
  • the base station configures a first preset value and/or a second preset value to the terminal by using RRC signaling or system information, and the preset value configured for the terminal is used by the terminal to determine a demodulation mode.
  • Step 103 Modulate downlink control information corresponding to the downlink control channel by using a determined modulation mode, and send the downlink control information to the terminal.
  • the base station when the determined modulation mode is the first modulation mode, the base station modulates the downlink control channel by using the first modulation mode; when the determined modulation mode is the second modulation mode, The base station modulates the downlink control channel by using the second modulation mode. That is to say, in actual application, the base station only selects one modulation mode to modulate the downlink control channel.
  • the base station when the determined modulation mode is QPSK, the base station modulates the downlink control channel by using QPSK; when the determined modulation mode is 16QAM, the base station modulates the downlink control channel by using 16QAM.
  • the base station may indicate, by using RRC signaling or system information, that the modulation mode of the downlink control channel of the terminal is the first modulation mode, or the second modulation mode, or the modulation mode includes the first modulation mode and the second mode.
  • the modulation mode is such that the terminal determines that the demodulation mode of the downlink control channel is the first demodulation mode or the second demodulation mode, or both the first demodulation mode and the second demodulation mode.
  • the embodiment of the present disclosure further provides a downlink control channel processing method, which is applied to a terminal.
  • the method includes:
  • Step 201 Detect a downlink control channel.
  • the downlink control channel sent by the base station is detected.
  • Step 202 Determine, according to the AL of the blind detection, in combination with the second detection condition, a demodulation manner of the downlink control channel.
  • the second detection condition includes: whether the number of bits of the DCI format corresponding to the downlink control channel is greater than or equal to a first preset value.
  • the determined demodulation mode includes at least one of a first demodulation mode and a second demodulation mode; the coding efficiency of the first demodulation mode is lower than the coding efficiency of the second demodulation mode.
  • the commonly used modulation modes are QPSK and 16QAM. Therefore, in actual application, the first demodulation mode may be QPSK, and the second demodulation mode is 16QAM.
  • the first preset value can be set as needed.
  • the method further includes:
  • the terminal receives RRC signaling or system information
  • the terminal parses the RRC signaling or system information, and obtains that, when the AL is the first value, the modulation mode of the downlink control channel is a first modulation mode, or a second modulation mode, or a modulation mode includes a first Modulation method and second modulation method;
  • the terminal determines, according to the modulation mode, that the demodulation mode of the downlink control channel is the first demodulation mode or the second demodulation mode, or both the first demodulation mode and the second demodulation mode.
  • step 202 may include:
  • the terminal determines that the demodulation mode of the downlink control channel is the first demodulation The mode, or the second demodulation mode, or both the first demodulation mode and the second demodulation mode; correspondingly, the terminal uses the first demodulation mode, the second demodulation mode, or the first solution simultaneously
  • the downlink control channel is blindly detected by the modulation mode and the second demodulation mode;
  • the terminal determines that the modulation mode of the downlink control channel is the first demodulation mode
  • the terminal determines that the demodulation mode of the downlink control channel is the first demodulation mode.
  • the first value may be determined according to a defined level of the AL.
  • the value of AL can be 1, 2, 4, 8, so the first value can be 1. That is to say, the downlink control channel quality is better when AL is the first value.
  • the second detecting condition further includes: whether the MCS index value fed back by the terminal exceeds a second preset value;
  • the method includes:
  • the terminal determines that The modulation mode of the downlink control channel is a first demodulation mode, or a second demodulation mode, or both a first demodulation mode and a second demodulation mode;
  • the terminal determines that the modulation mode of the downlink control channel is the first demodulation mode
  • the number of bits in the DCI format corresponding to the downlink control channel is smaller than the first preset value
  • the second preset value may be set as needed.
  • the method further includes:
  • the terminal receives RRC signaling or system information
  • the terminal parses the RRC signaling or system information to obtain the first preset value and/or the second preset value.
  • the base station may indicate, by using RRC signaling or system information, that the modulation mode of the downlink control channel of the terminal is the first modulation mode, or the second modulation mode, or the modulation mode includes the first modulation mode and the second mode.
  • the modulation mode is such that the terminal determines that the demodulation mode of the downlink control channel is the first demodulation mode or the second demodulation mode, or both the first demodulation mode and the second demodulation mode.
  • Step 203 Demodulate the downlink control channel by determining a demodulation manner of the downlink control channel.
  • the terminal blindly detects the downlink control channel by using a determined demodulation mode (ie, the downlink control channel is not necessarily correctly demodulated by using the determined demodulation mode).
  • the terminal demodulates the downlink control channel by using the first demodulation mode, the second demodulation mode, or the first demodulation mode and the second demodulation mode.
  • the terminal demodulates the downlink control channel by using the first demodulation mode; when the determined demodulation mode is the second In the demodulation mode (such as 16QAM), the terminal demodulates the downlink control channel by using the second demodulation mode; when the determined demodulation mode is the first demodulation mode and the second demodulation mode, The terminal demodulates the downlink control channel by using the first demodulation mode and the second demodulation mode, respectively.
  • the first demodulation mode such as QPSK
  • the terminal demodulates the downlink control channel by using the first demodulation mode
  • the second In the demodulation mode such as 16QAM
  • the terminal demodulates the downlink control channel by using the second demodulation mode
  • the determined demodulation mode is the first demodulation mode and the second demodulation mode, respectively.
  • the embodiment of the present disclosure further provides a downlink control channel processing method. As shown in FIG. 3, the method includes:
  • Step 301 The base station configures a corresponding AL for the terminal according to the downlink control channel condition of the terminal, and determines, by using the configured AL and the first detection condition, that the modulation mode of the downlink control channel is the first modulation mode or the second modulation. the way;
  • the coding efficiency of the first modulation mode is lower than the coding efficiency of the second modulation mode; the first detection condition includes at least: whether the number of bits of the DCI format corresponding to the downlink control channel is greater than or equal to A preset value.
  • Step 302 The base station modulates downlink control information corresponding to the downlink control channel by using a determined modulation mode, and sends the downlink control information to the terminal.
  • Step 303 The terminal detects a downlink control channel, and determines a demodulation mode of the downlink control channel according to the AL of the blind detection and the second detection condition.
  • the second detection condition includes: whether the number of bits of the DCI format corresponding to the downlink control channel is greater than or equal to a first preset value.
  • the determined demodulation mode includes at least one of a first demodulation mode and a second demodulation mode.
  • the coding efficiency of the first demodulation mode is lower than the coding efficiency of the second demodulation mode
  • Step 304 Demodulate the downlink control channel by determining a demodulation manner of the downlink control channel.
  • the first modulation mode may be referred to as a basic modulation mode, and accordingly, the first demodulation mode may be referred to as a basic demodulation mode.
  • the base station determines the modulation mode of the downlink control channel as the first modulation mode or the second modulation mode by using the configured AL and the first detection condition, and modulates the downlink control channel by using the determined modulation mode;
  • the terminal side determines the demodulation mode of the downlink control channel according to the AL of the blind detection and the second detection condition, and demodulates the downlink control channel by using the determined demodulation mode, and comprehensively considers the number of bits in the AL and DCI formats.
  • Modulating the control channel and corresponding demodulation processing that is, comprehensively considering the quality of the channel and the number of bits in the DCI format to modulate the control channel and corresponding demodulation processing, so that the channel quality can be saved when the channel quality is good
  • the resources of the control channel can guarantee QoS when the channel quality is poor.
  • the second modulation mode can be provided, and a better block can be provided than the first modulation mode with low coding efficiency.
  • BLER Battery Error Rate
  • the application example takes QPSK and 16QAM as an example.
  • the method mainly includes the following steps:
  • the debugging mode of the control channel is QPSK.
  • the detecting condition includes: detecting whether the number of bits in a DCI format is greater than or equal to X;
  • a certain detection condition may optionally include: the MCS fed back by the terminal exceeds Y.
  • the X and Y values may be preset or configured through RRC signaling or system information.
  • the base station configures a control channel for four terminals, and the number of bits corresponding to the DCI format of the downlink control channel is x1, x2, and x3, respectively, and only the number of bits of the DCI format is considered.
  • the number of detected DCI format bits is small (less than X), and only the QPSK demodulation control channel is used;
  • the embodiment of the present disclosure further provides a downlink control channel processing apparatus, which is disposed at a base station. As shown in FIG. 4, the apparatus includes:
  • the first determining unit 42 is configured to determine, by using the configured AL, in combination with the first detection condition, that the modulation mode of the downlink control channel is a first modulation mode or a second modulation mode; and the coding efficiency of the first modulation mode is lower than The coding efficiency of the second modulation mode; the first detection condition includes: whether the number of bits of the DCI format corresponding to the downlink control channel is greater than or equal to a first preset value;
  • the modulating unit 43 is configured to modulate downlink control information corresponding to the downlink control channel by using a determined modulation manner
  • the sending unit 44 is configured to send the modulated downlink control channel to the terminal.
  • the first determining unit 42 is specifically configured to:
  • the AL is the first value
  • the number of bits of the DCI format corresponding to the downlink control channel is greater than or equal to the first preset value, determining that the modulation mode of the downlink control channel is the first modulation mode or the second modulation mode
  • the first detection condition may further include: whether the MCS index value fed back by the terminal exceeds a second preset value;
  • the first determining unit 42 is configured to:
  • the mode is a first modulation mode or a second modulation mode
  • the MCS index value does not exceed the second preset value.
  • the sending unit 44 is further configured to configure, by using RRC signaling or system information, a first preset value and/or a second preset value to the terminal, and configure a preset to the terminal.
  • the value is used by the terminal to determine the demodulation mode.
  • the embodiment of the present disclosure further provides a downlink control channel processing device, which is disposed in the terminal.
  • the device includes:
  • the receiving unit 51 is configured to detect a downlink control channel
  • a second determining unit 52 configured to determine, according to the AL of the blind detection, the demodulation mode of the downlink control channel, where the second detection condition includes: at least: a DCI format corresponding to the downlink control channel Whether the number of bits is greater than or equal to a first preset value; the determined demodulation manner includes at least one of a first demodulation mode and a second demodulation mode; and the coding efficiency of the first demodulation mode is lower than the first The coding efficiency of the second demodulation method;
  • the demodulation unit 53 is configured to demodulate the downlink control channel by using a demodulation manner for determining the downlink control channel.
  • the second determining unit 52 is specifically configured to:
  • the second detection condition may further include: whether the MCS index value fed back by the terminal exceeds a second preset value;
  • the second determining unit 52 is configured to:
  • the modulation mode is the first demodulation mode, or the second demodulation mode, or both the first demodulation mode and the second demodulation mode; correspondingly, using the first demodulation mode, the second demodulation mode, or Demodulating the downlink control channel by using the first demodulation mode and the second demodulation mode;
  • the number of bits in the DCI format corresponding to the downlink control channel is smaller than the first preset value
  • the MCS index value does not exceed the second preset value.
  • the apparatus may further include: a parsing unit; wherein
  • the receiving unit 51 is further configured to receive RRC signaling or system information.
  • the parsing unit is configured to parse the RRC signaling or system information to obtain the first preset value and/or the second preset value.
  • the parsing unit is further configured to parse the RRC signaling or the system information, and obtain, when the AL is the first value, the modulation mode of the downlink control channel is a first modulation mode, or a second modulation mode, or The modulation mode includes a first modulation mode and a second modulation mode;
  • the second determining unit 52 determines, according to the modulation mode, that the demodulation mode of the downlink control channel is the first demodulation mode, or the second demodulation mode, or both the first demodulation mode and the second demodulation mode. the way.
  • the downlink control channel processing apparatus when performing the control channel processing, the downlink control channel processing apparatus provided in the foregoing embodiment is only exemplified by the division of each of the foregoing program modules. In actual applications, the foregoing processing may be allocated to different programs as needed. The module is completed, dividing the internal structure of the device into different program modules to complete all or part of the processing described above.
  • the downlink control channel processing apparatus and the downlink control channel processing method embodiment provided by the foregoing embodiments are in the same concept, and the specific implementation process is described in detail in the method embodiment, and details are not described herein again.
  • an embodiment of the present disclosure further provides a base station.
  • the base station 60 includes:
  • the first transceiver 61 is capable of performing information interaction with the terminal
  • the first processor 62 is coupled to the first transceiver to perform information interaction with the terminal for executing the computer program to perform the method provided by one or more of the above technical solutions.
  • the first processor 62 is configured to configure a corresponding AL for the terminal according to the downlink control channel condition of the terminal, and determine, by using the configured AL and the first detection condition, that the modulation mode of the downlink control channel is a first modulation mode or a second modulation mode; the coding efficiency of the first modulation mode is lower than the coding efficiency of the second modulation mode; the first detection condition at least includes: a DCI format corresponding to the downlink control channel Whether the number of bits is greater than or equal to the first preset value; and modulating the downlink control information corresponding to the downlink control channel by using the determined modulation mode;
  • the first transceiver 61 is configured to send the modulated downlink control channel to the terminal.
  • the first processor 61 is specifically configured to: when AL is the first value, and the number of bits of the DCI format corresponding to the downlink control channel is greater than or equal to the first preset value, determine The modulation mode of the downlink control channel is a first modulation mode or a second modulation mode;
  • the first detection condition further includes: whether the MCS index value fed back by the terminal exceeds a second preset value;
  • the first processor 61 is configured to:
  • the mode is a first modulation mode or a second modulation mode
  • the MCS index value does not exceed the second preset value.
  • the first transceiver 61 is further configured to:
  • the first preset value and/or the second preset value are configured to the terminal by using RRC signaling or system information, and the preset value configured for the terminal is used by the terminal to determine a demodulation mode.
  • the first processor 62 can be connected to the first transceiver 61 via a system bus such as an integrated circuit bus.
  • the base station 60 includes a first processor 62, a first memory 63, and is stored on the first memory 63 and capable of running on the first processor 62.
  • Computer program ;
  • the first processor 62 is configured to execute when the computer program is executed:
  • the first detection condition includes: whether the number of bits of the DCI format corresponding to the downlink control channel is greater than or equal to a first preset value;
  • the downlink control information corresponding to the downlink control channel is modulated by using the determined modulation mode, and sent to the terminal.
  • the AL is the first value
  • the number of bits of the DCI format corresponding to the downlink control channel is greater than or equal to the first preset value, determining that the modulation mode of the downlink control channel is the first modulation mode or the second modulation mode
  • the first detection condition further includes: whether the modulation and coding policy MCS index value fed back by the terminal exceeds a second preset value;
  • the first processor 62 is configured to execute when the computer program is executed:
  • the mode is a first modulation mode or a second modulation mode
  • the MCS index value does not exceed the second preset value.
  • the first processor 62 is further configured to: when the computer program is executed, execute:
  • the first preset value and/or the second preset value are configured to the terminal by using RRC signaling or system information, and the preset value configured for the terminal is used by the terminal to determine a demodulation mode.
  • the first modulation mode may be QPSK, and the second modulation mode may be 16QAM.
  • the base station 60 may further include: at least one network interface 64.
  • the various components in base station 60 are coupled together by a bus system 65.
  • the bus system 65 is used to implement connection communication between these components.
  • the bus system 65 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 65 in FIG.
  • the number of the first processors 62 may be at least one.
  • the network interface 64 is used for wired or wireless communication between the base station 60 and other devices, such as terminals.
  • the base station interacts with the terminal through a network interface 64 (equivalent to the functionality of the first transceiver 61 in FIG. 6).
  • the first memory 63 in the disclosed embodiment is used to store various types of data to support the operation of the base station 60.
  • the method disclosed in the above embodiments of the present disclosure may be applied to the first processor 62 or implemented by the first processor 62.
  • the first processor 62 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the first processor 62 or an instruction in the form of software.
  • the first processor 62 described above may be a general purpose processor, a digital signal processor (DSP), or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or the like.
  • DSP digital signal processor
  • the first processor 62 can implement or perform the various methods, steps, and logic blocks disclosed in the embodiments of the present disclosure.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present disclosure may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium located in the first memory 63, the first processor 62 reading the information in the first memory 63, and completing the steps of the foregoing method in combination with its hardware.
  • the base station 60 may be configured by one or more Application Specific Integrated Circuits (ASICs), DSPs, Programmable Logic Devices (PLDs), and Complex Programmable Logic Devices (CPLDs). Complex Programmable Logic Device), Field-Programmable Gate Array (FPGA), General Purpose Processor, Controller, Micro Controller Unit (MCU), Microprocessor, or other electronic components Implemented to perform the aforementioned method.
  • ASICs Application Specific Integrated Circuits
  • DSPs Programmable Logic Devices
  • PLDs Programmable Logic Devices
  • CPLDs Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • MCU Micro Controller Unit
  • Microprocessor or other electronic components Implemented to perform the aforementioned method.
  • an embodiment of the present disclosure further provides a terminal.
  • the terminal 80 includes:
  • the second transceiver 81 is capable of performing information interaction with the base station
  • the second processor 82 is coupled to the second transceiver to perform information interaction with the base station for performing the method provided by the one or more technical solutions when the computer program is executed.
  • the second transceiver 91 is configured to detect a downlink control channel
  • the second processor 82 is configured to determine, according to the AL of the blind detection, the demodulation mode of the downlink control channel, where the second detection condition is at least: the DCI format corresponding to the downlink control channel Whether the number of bits is greater than or equal to a first preset value; the determined demodulation manner includes at least one of a first demodulation mode and a second demodulation mode; and the coding efficiency of the first demodulation mode is lower than the first a coding efficiency of the second demodulation method; and demodulating the downlink control channel by determining a demodulation manner of the downlink control channel.
  • the second detection condition is at least: the DCI format corresponding to the downlink control channel Whether the number of bits is greater than or equal to a first preset value; the determined demodulation manner includes at least one of a first demodulation mode and a second demodulation mode; and the coding efficiency of the first demodulation mode is lower than the first a coding efficiency of the second demodulation method; and demodul
  • the second processor 82 is specifically configured to:
  • the second detection condition further includes: whether the MCS index value fed back by the terminal exceeds a second preset value;
  • the second processor 82 is configured to:
  • the modulation mode is the first demodulation mode, or the second demodulation mode, or both the first demodulation mode and the second demodulation mode; correspondingly, using the first demodulation mode, the second demodulation mode, or Demodulating the downlink control channel by using the first demodulation mode and the second demodulation mode;
  • the number of bits in the DCI format corresponding to the downlink control channel is smaller than the first preset value
  • the second transceiver 81 is further configured to receive RRC signaling or system information.
  • the second processor 82 is further configured to parse the RRC signaling or system information to obtain the first preset value and/or the second preset value.
  • the second transceiver 81 is further configured to receive RRC signaling or system information.
  • the second processor 82 is further configured to parse the RRC signaling or system information, to obtain that when the AL is the first value, the modulation mode of the downlink control channel is a first modulation mode or a second modulation.
  • the mode, or modulation mode includes a first modulation mode and a second modulation mode;
  • the second processor 82 determines, according to the modulation mode, that the demodulation mode of the downlink control channel is a first demodulation mode, or a second demodulation mode, or both a first demodulation mode and a second demodulation mode. the way.
  • the second processor 82 can be connected to the second transceiver 81 via a system bus such as an integrated circuit bus.
  • the terminal 80 includes a second processor 82, a second memory 83, and is stored on the second memory 83 and capable of running on the second processor 82.
  • Computer program ;
  • the second processor 82 is configured to execute when the computer program is executed:
  • the demodulation mode of the downlink control channel Determining, by the AL detection based on the blind detection, the demodulation mode of the downlink control channel, where the second detection condition includes: whether the number of bits of the DCI format corresponding to the downlink control channel is greater than or equal to the first a preset value; the determined demodulation mode includes at least one of a first demodulation mode and a second demodulation mode; and an encoding efficiency of the first demodulation mode is lower than an encoding efficiency of the second demodulation mode;
  • the downlink control channel is demodulated by determining a demodulation manner of the downlink control channel.
  • the second detection condition further includes: whether the MCS index value fed back by the terminal exceeds a second preset value;
  • the second processor 82 is configured to execute when the computer program is executed:
  • the modulation mode is the first demodulation mode, or the second demodulation mode, or both the first demodulation mode and the second demodulation mode; correspondingly, using the first demodulation mode, the second demodulation mode, or Demodulating the downlink control channel by using the first demodulation mode and the second demodulation mode;
  • the number of bits in the DCI format corresponding to the downlink control channel is smaller than the first preset value
  • the MCS index value does not exceed the second preset value.
  • the second processor 82 is further configured to: when the computer program is executed:
  • the second processor 82 is further configured to: when the computer program is executed:
  • the modulation mode of the downlink control channel is a first modulation mode, or a second modulation mode, or the modulation mode includes a first modulation mode and Second modulation method;
  • the demodulation mode of the downlink control channel is determined according to a modulation mode to be a first demodulation mode or a second demodulation mode, or both a first demodulation mode and a second demodulation mode.
  • the first demodulation mode may be QPSK; and the second demodulation mode may be 16QAM.
  • the terminal 80 may further include: at least one network interface 84 and a user interface 85.
  • the various components in the terminal 80 are coupled together by a bus system 86.
  • bus system 86 is used to implement connection communication between these components.
  • the bus system 86 includes a power bus, a control bus, and a status signal bus.
  • various buses are labeled as bus system 86 in FIG.
  • the user interface 85 may include a display, a keyboard, a mouse, a trackball, a click wheel, a button, a button, a touch panel, or a touch screen.
  • the number of the second processors 82 may be at least one.
  • the network interface 84 is used for wired or wireless communication between the terminal 80 and other devices such as base stations.
  • the terminal interacts with the terminal through a network interface 84 (corresponding to the function of the second transceiver 81 in FIG. 8).
  • the second memory 83 in the embodiment of the present disclosure is used to store various types of data with the operation of the terminal 80.
  • the method disclosed in the above embodiments of the present disclosure may be applied to the second processor 82 or implemented by the second processor 82.
  • the second processor 82 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the second processor 82 or an instruction in the form of software.
  • the second processor 82 described above may be a general purpose processor, a DSP, or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or the like.
  • the second processor 82 can implement or perform the various methods, steps, and logic blocks disclosed in the embodiments of the present disclosure.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present disclosure may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a storage medium located in the second memory 83, and the second processor 82 reads the information in the second memory 83 in conjunction with its hardware to perform the steps of the foregoing method.
  • terminal 80 may be implemented by one or more ASICs, DSPs, PLDs, CPLDs, FPGAs, general purpose processors, controllers, MCUs, microprocessors, or other electronic components for execution The aforementioned method.
  • the memory (such as the first memory 63 and the second memory 83) in the embodiments of the present disclosure may be a volatile memory or a non-volatile memory, and may also include both volatile and non-volatile memory.
  • the non-volatile memory may be a Read Only Memory (ROM), a Programmable Read-Only Memory (PROM), or an Erasable Programmable Read (EPROM). Only Memory), Electrically Erasable Programmable Read-Only Memory (EEPROM), Ferromagnetic Random Access Memory (FRAM), Flash Memory, Magnetic Surface Memory , CD-ROM, or Compact Disc Read-Only Memory (CD-ROM); the magnetic surface memory can be a disk storage or a tape storage.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • many forms of RAM are available, such as Static Random Access Memory (SRAM), Synchronous Static Random Access Memory (SSRAM), Dynamic Random Access (SSRAM).
  • DRAM Dynanamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhance Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Dynamic Random Access Memory
  • DRRAM Direct Memory Bus Random Access Memory
  • the memories described in the embodiments of the present disclosure are intended to include, but are not limited to, these and any other suitable types of memory.
  • an embodiment of the present disclosure further provides a computer readable storage medium, for example, including a first memory 63 storing a computer program executable by a first processor 62 of a base station 60 to perform the foregoing The steps of the base station side method; or a second memory 83 storing a computer program executable by the second processor 82 of the terminal 80 to perform the steps described in the aforementioned terminal side method.
  • the computer readable storage medium may be a memory such as FRAM, ROM, PROM, EPROM, EEPROM, flash memory, magnetic surface memory, optical disk, or CD-ROM; A device of one or any combination of memories.
  • an embodiment of the present disclosure further provides a downlink control channel processing system. As shown in FIG. 10, the system includes:
  • the base station 101 is configured to configure a corresponding AL for the terminal according to the downlink control channel condition of the terminal, and determine, by using the configured AL and the first detection condition, that the modulation mode of the downlink control channel is the first modulation mode or the first a second modulation mode; the coding efficiency of the first modulation mode is lower than the coding efficiency of the second modulation mode; the first detection condition includes: at least: the number of bits of the downlink control information DCI format corresponding to the downlink control channel And greater than or equal to the first preset value; and modulating downlink control information corresponding to the downlink control channel by using the determined modulation mode, and sending the downlink control information to the terminal;
  • the terminal 102 is configured to detect a downlink control channel, and determine a demodulation mode of the downlink control channel according to the AL of the blind detection and the second detection condition.
  • the second detection condition includes: at least: corresponding to the downlink control channel Whether the number of bits in the DCI format is greater than or equal to a first preset value; the determined demodulation manner includes at least one of a first demodulation mode and a second demodulation mode; and the coding efficiency of the first demodulation mode is lower than The coding efficiency of the second demodulation mode; and demodulating the downlink control channel by determining a demodulation mode of the downlink control channel.

Abstract

提供一种下行控制信道处理方法,包括:检测下行控制信道;基于盲检测的汇聚等级(AL)并结合第二检测条件,确定所述下行控制信道的解调方式;所述第二检测条件至少包括:所述下行控制信道对应的下行控制信息(DCI)格式的比特数是否大于或等于第一预设值;确定的解调方式包括第一解调方式和第二解调方式中的至少一种;所述第一解调方式的编码效率低于所述第二解调方式的编码效率;利用确定所述下行控制信道的解调方式,解调所述下行控制信道。同时还提供一种下行控制信道处理装置、终端、基站、下行控制信道处理系统及计算机可读存储介质。

Description

控制信道处理方法、装置、系统、相关设备及存储介质
相关申请的交叉引用
本申请主张在2017年7月27日在中国提交的中国专利申请No.201710623342.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线通信领域,尤其涉及一种下行控制信道处理方法、装置、系统、终端、基站及计算机可读存储介质。
背景技术
在长期演进(LTE,Long Term Evolution)系统中,物理层控制信道采用一种固定的调制方式,即控制信道采用正交相移键控(QPSK,Quadrature Phase Shift Key)调制。
第五代移动通信技术(5G)新空口一个物理下行控制信道(PDCCH,Physical Downlink Control CHannel)的物理时频资源会有多个汇聚等级(AL,Aggregation Level),且新空口支持各种功能灵活配置,因此相对于LTE系统,5G系统某些下行控制信息(DCI,Downlink Control Information)格式会需要更多的比特。
当DCI格式的比特数较多时,如果采用QPSK调制,则会导致误码率较高。此时一般可以采用更高的AL,但该方法会占用较多的控制信道资源。
发明内容
为解决相关技术中存在的技术问题,本公开实施例提供一种下行控制信道处理方法、装置、系统、终端、基站及计算机可读存储介质。
本公开实施例的技术方案是这样实现的:
本公开实施例提供了一种下行控制信道处理方法,应用于基站,包括:
根据终端的下行控制信道条件,为所述终端配置对应的AL;
利用配置的AL并结合第一检测条件,确定所述下行控制信道的调制方 式为第一调制方式或第二调制方式;所述第一调制方式的编码效率低于所述第二调制方式的编码效率;所述第一检测条件至少包括:所述下行控制信道对应的DCI格式的比特数是否大于或等于第一预设值;
利用确定的调制方式调制所述下行控制信道对应的下行控制信息,并发送给所述终端。
上述方案中,所述利用配置的AL以及第一检测条件,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式,包括:
当AL为第一值,且所述下行控制信道对应的DCI格式的比特数大于或等于第一预设值时,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;
或者,当AL不为第一值时,确定所述下行控制信道的调制方式为第一调制方式;
或者,当所述下行控制信道对应的DCI格式的比特数小于第一预设值时,确定所述下行控制信道的调制方式为第一调制方式。
上述方案中,所述第一检测条件还包括:所述终端反馈的调制与编码策略(MCS,Modulation and Coding Scheme)索引值是否超过第二预设值;
所述确定所述下行控制信道的调制方式为第一调制方式或第二调制方式时,所述方法包括:
当AL为第一值,所述行控制信道对应的DCI格式的比特数大于或等于第一预设值,且所述MCS索引值超过第二预设值时,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;
或者,当AL不为第一值时,确定所述下行控制信道的调制方式为第一调制方式;
或者,满足以下条件之一时,确定所述下行控制信道的调制方式为第一调制方式:
当所述下行控制信道对应的DCI格式的比特数小于第一预设值;
所述MCS索引值未超过第二预设值。
上述方案中,所述方法还包括:
通过无线资源控制(RRC,Radio Resource Control)信令或系统信息将第 一预设值和/或第二预设值配置给所述终端,配置给所述终端的预设值用于供所述终端确定解调方式。
上述方案中,所述第一调制方式为QPSK;所述第二调制方式为16QAM。
本公开实施例还提供了一种下行控制信道处理方法,应用于终端,包括:
检测下行控制信道;
基于盲检测的AL并结合第二检测条件,确定所述下行控制信道的解调方式;所述第二检测条件至少包括:所述下行控制信道对应的DCI格式的比特数是否大于或等于第一预设值;确定的解调方式包括第一解调方式和第二解调方式中的至少一种;所述第一解调方式的编码效率低于所述第二解调方式的编码效率;
利用确定所述下行控制信道的解调方式,解调所述下行控制信道。
上述方案中,所述基于盲检测的AL并结合第二检测条件,确定所述下行控制信道的解调方式,包括:
当检测到AL为第一值,且所述下行控制信道对应的DCI格式的比特数大于或等于第一预设值时,确定所述下行控制信道的解调方式为第一解调方式、或第二解调方式,或同时是第一解调方式和第二解调方式;相应地,利用所述第一解调方式、第二解调方式或同时利用第一解调方式和第二解调方式,盲检测所述下行控制信道;
或者,当检测到AL不为第一值时,确定所述下行控制信道的调制方式为第一解调方式;
或者,当所述下行控制信道对应的DCI格式的比特数小于第一预设值时,确定所述下行控制信道的解调方式为第一解调方式。
上述方案中,所述第二检测条件还包括:所述终端反馈的MCS索引值是否超过第二预设值;
所述确定所述下行控制信道的解调方式时,所述方法包括:
当检测到AL为第一值,所述下行控制信道对应的DCI格式的比特数大于或等于第一预设值,且所述MCS索引值超过第二预设值时,确定所述下行控制信道的调制方式为第一解调方式,或第二解调方式,或同时是第一解调方式和第二解调方式;相应地,利用所述第一解调方式、第二解调方式或同 时利用所述第一解调方式和第二解调方式,解调所述下行控制信道;
当检测到AL不为第一值时,确定所述下行控制信道的调制方式为第一解调方式;
或者,当满足一下条件之一时,确定所述下行控制信道的解调方式为第一解调方式:
所述下行控制信道对应的DCI格式的比特数小于第一预设值;
所述MCS索引值未超过第二预设值。
上述方案中,所述方法还包括:
接收RRC信令或系统信息;
解析所述RRC信令或系统信息,得到所述第一预设值和/或第二预设值。
上述方案中,所述方法还包括:
接收RRC信令或系统信息;
解析所述RRC信令或系统信息,得到当AL为所述第一值时,所述下行控制信道的调制方式为第一调制方式、或第二调制方式、或调制方式包括第一调制方式和第二调制方式;
相应地,根据调制方式确定所述下行控制信道的解调方式为第一解调方式、或第二解调方式,或同时是第一解调方式和第二解调方式。
上述方案中,所述第一解调方式为QPSK;所述第二解调方式为16QAM。
本公开实施例又提供了一种行控制信道处理装置,包括:
配置单元,用于根据终端的下行控制信道条件,为所述终端配置对应的AL;
第一确定单元,用于利用配置的AL并结合第一检测条件,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;所述第一调制方式的编码效率低于所述第二调制方式的编码效率;所述第一检测条件至少包括:所述下行控制信道对应的DCI格式的比特数是否大于或等于第一预设值;
调制单元,用于利用确定的调制方式调制所述下行控制信道对应的下行控制信息;
发送单元,用于将调制后的下行控制信道发送给所述终端。
本公开实施例还提供了一种下行控制信道处理装置,包括:
接收单元,用于检测下行控制信道;
第二确定单元,用于基于盲检测的AL并结合第二检测条件,确定所述下行控制信道的解调方式;所述第二检测条件至少包括:所述下行控制信道对应的DCI格式的比特数是否大于或等于第一预设值;确定的解调方式包括第一解调方式和第二解调方式中的至少一种;所述第一解调方式的编码效率低于所述第二解调方式的编码效率;
解调单元,用于利用确定所述下行控制信道的解调方式,解调所述下行控制信道。
本公开实施例又提供了一种基站,包括:
第一处理器,用于根据终端的下行控制信道条件,为所述终端配置对应的AL;利用配置的AL并结合第一检测条件,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;所述第一调制方式的编码效率低于所述第二调制方式的编码效率;所述第一检测条件至少包括:所述下行控制信道对应的DCI格式的比特数是否大于或等于第一预设值;以及利用确定的调制方式调制所述下行控制信道对应的下行控制信息;
第一收发器,用于将调制的所述下行控制信道发送给所述终端。
上述方案中,所述第一处理器,具体用于:当AL为第一值,且所述下行控制信道对应的DCI格式的比特数大于或等于第一预设值时,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;
或者,当AL不为第一值时,确定所述下行控制信道的调制方式为第一调制方式;
或者,当所述下行控制信道对应的DCI格式的比特数小于第一预设值时,确定所述下行控制信道的调制方式为第一调制方式。
上述方案中,所述第一检测条件还包括:所述终端反馈的MCS索引值是否超过第二预设值;
所述第一处理器,用于:
当AL为第一值,所述行控制信道对应的DCI格式的比特数大于或等于第一预设值,且所述MCS索引值超过第二预设值时,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;
或者,当AL不为第一值时,确定所述下行控制信道的调制方式为第一调制方式;
或者,满足以下条件之一时,确定所述下行控制信道的调制方式为第一调制方式:
当所述下行控制信道对应的DCI格式的比特数小于第一预设值;
所述MCS索引值未超过第二预设值。
上述方案中,所述第一收发器,还用于
通过RRC信令或系统信息将第一预设值和/或第二预设值配置给所述终端,配置给所述终端的预设值用于供所述终端确定解调方式。
本公开实施例还提供了一种终端,包括:
第二收发器,用于检测下行控制信道;
第二处理器,用于基于盲检测的AL并结合第二检测条件,确定所述下行控制信道的解调方式;所述第二检测条件至少包括:所述下行控制信道对应的DCI格式的比特数是否大于或等于第一预设值;确定的解调方式包括第一解调方式和第二解调方式中的至少一种;所述第一解调方式的编码效率低于所述第二解调方式的编码效率;以及利用确定所述下行控制信道的解调方式,解调所述下行控制信道。
上述方案中,所述第二处理器,具体用于:
当检测到AL为第一值,且所述下行控制信道对应的DCI格式的比特数大于或等于第一预设值时,确定所述下行控制信道的解调方式为第一解调方式、或第二解调方式,或同时是第一解调方式和第二解调方式;相应地,利用所述第一解调方式、第二解调方式或同时利用第一解调方式和第二解调方式,盲检测所述下行控制信道;
或者,当检测到AL不为第一值时,确定所述下行控制信道的调制方式为第一解调方式;
或者,当所述下行控制信道对应的DCI格式的比特数小于第一预设值时,确定所述下行控制信道的解调方式为第一解调方式。
上述方案中,所述第二检测条件还包括:所述终端反馈的MCS索引值是否超过第二预设值;
所述第二处理器,用于:
当检测到AL为第一值,所述下行控制信道对应的DCI格式的比特数大于或等于第一预设值,且所述MCS索引值超过第二预设值时,确定所述下行控制信道的调制方式为第一解调方式,或第二解调方式,或同时是第一解调方式和第二解调方式;相应地,利用所述第一解调方式、第二解调方式或同时利用所述第一解调方式和第二解调方式,解调所述下行控制信道;
当检测到AL不为第一值时,确定所述下行控制信道的调制方式为第一解调方式;
或者,当满足一下条件之一时,确定所述下行控制信道的解调方式为第一解调方式:
所述下行控制信道对应的DCI格式的比特数小于第一预设值;
所述MCS索引值未超过第二预设值。
上述方案中,所述第二收发器,还用于接收RRC信令或系统信息;
所述第二处理器,还用于解析所述RRC信令或系统信息,得到所述第一预设值和/或第二预设值。
上述方案中,所述第二收发器,还用于接收RRC信令或系统信息;
所述第二处理器,还用于解析所述RRC信令或系统信息,得到当AL为所述第一值时,所述下行控制信道的调制方式为第一调制方式、或第二调制方式、或调制方式包括第一调制方式和第二调制方式;
相应地,所述第二处理器根据调制方式确定所述下行控制信道的解调方式为第一解调方式、或第二解调方式,或同时是第一解调方式和第二解调方式。
本公开实施例又提供了一种基站、包括:第一处理器、第一存储器及存储在所述第一存储器上并能够在所述第一处理器上运行的计算机程序;
其中,所述第一处理器用于运行所述计算机程序时,执行上述基站侧任一方法的步骤。
本公开实施例还提供了一种终端,包括:第二处理器、第二存储器及存储在所述第二存储器上并能够在所述第二处理器上运行的计算机程序;
其中,所述第二处理器用于运行所述计算机程序时,执行上述终端侧任 一方法的步骤。
本公开实施例又提供了一种下行控制信道处理系统,包括:
基站,用于根据终端的下行控制信道条件,为所述终端配置对应的AL;并利用配置的AL并结合第一检测条件,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;所述第一调制方式的编码效率低于所述第二调制方式的编码效率;所述第一检测条件至少包括:所述下行控制信道对应的下行控制信息DCI格式的比特数是否大于或等于第一预设值;以及利用确定的调制方式调制所述下行控制信道对应的下行控制信息,并发送给所述终端;
终端,用于检测下行控制信道;并基于盲检测的AL并结合第二检测条件,确定所述下行控制信道的解调方式;所述第二检测条件至少包括:所述下行控制信道对应的DCI格式的比特数是否大于或等于第一预设值;确定的解调方式包括第一解调方式和第二解调方式中的至少一种;所述第一解调方式的编码效率低于所述第二解调方式的编码效率;以及利用确定所述下行控制信道的解调方式,解调所述下行控制信道。
本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述基站侧任一方法的步骤,或者实现上述终端侧任一方法的步骤。
本公开实施例提供的下行控制信道处理方法、装置、系统、终端、基站及计算机可读存储介质,基站根据终端的下行控制信道条件,为所述终端配置对应的AL;利用配置的AL并结合第一检测条件,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;所述第一调制方式的编码效率低于所述第二调制方式的编码效率;所述第一检测条件至少包括:所述下行控制信道对应的息DCI格式的比特数是否大于或等于第一预设值;利用确定的调制方式调制所述下行控制信道对应的下行控制信息,并发送给所述终端;而终端检测下行控制信道;基于盲检测的AL并结合第二检测条件,确定所述下行控制信道的解调方式;所述第二检测条件至少包括:所述下行控制信道对应的DCI格式的比特数是否大于或等于第一预设值;确定的解调方式包括第一解调方式和第二解调方式中的至少一种;所述第一解调方式的编码效 率低于所述第二解调方式的编码效率;利用确定所述下行控制信道的解调方式,解调所述下行控制信道,综合考虑了AL和DCI格式的比特数来对控制信道进行调制和相应的解调处理,也就是说,综合考虑了信道的质量和DCI格式的比特数对控制信道进行调制和相应的解调处理,如此,信道质量较好的时候能够节省控制信道的资源,在信道质量较差的时候能够保证服务质量(QoS,Quality Of Service)。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。以下附图并未刻意按实际尺寸等比例缩放绘制,重点在于示出本公开的主旨。
图1为本公开实施例基站侧下行控制信道处理的方法流程示意图;
图2为本公开实施例终端侧下行控制信道处理的方法流程示意图;
图3为本公开实施例下行控制信道处理的方法流程示意图;
图4为本公开实施例设置在基站的下行控制信道处理装置结构示意图;
图5为本公开实施例设置在终端的下行控制信道处理装置结构示意图;
图6为本公开实施例一种基站结构示意图;
图7为本公开实施例另一种基站结构示意图;
图8为本公开实施例一种终端结构示意图;
图9为本公开实施例另一种终端结构示意图;
图10为本公开实施例下行控制信道处理系统结构示意图。
具体实施方式
下面结合附图及实施例对本公开再作进一步详细的描述。
在5G新空口一个PDCCH的物理时频资源会有多个AL,具体地,AL=1,2,4,8。其中,一个PDCCH占用AL个控制信道单元(CCE,Control Channel Element)。实际应用时,信道条件较好的用户可以配置AL=1或2, 信道条件比较差的用户可以配置AL=4或8。
其中,假设如果为用户配置AL=1,可以用于传输控制信息的资源元素(RE,Resource Element)数目为x,如果采用QPSK调制,编码后的比特数目为2x。然而,新空口支持各种功能灵活配置,因此相对于LTE,5G某些下行控制信息(DCI)格式会需要更多的比特,假设为y。如果y值较大,此时采用QPSK调制,可能会导致码率较高。举个例子来说,假设x=48,y=80,码率为y/(2x)=83.3%,性能会严重下降。为解决该问题,一种方法是采用更高的AL,例如AL=2,但该方法会使用较多的控制信道资源。
基于此,在本公开的各种实施例中:基站根据终端的下行控制信道条件,为所述终端配置对应的AL;利用配置的AL并结合第一检测条件,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;所述第一调制方式的编码效率低于所述第二调制方式的编码效率;所述第一检测条件至少包括:所述下行控制信道对应的息DCI格式的比特数是否大于或等于第一预设值;利用确定的调制方式调制所述下行控制信道对应的下行控制信息,并发送给所述终端;而终端检测下行控制信道;基于盲检测的AL并结合第二检测条件,确定所述下行控制信道的解调方式;所述第二检测条件至少包括:所述下行控制信道对应的DCI格式的比特数是否大于或等于第一预设值;确定的解调方式包括第一解调方式和第二解调方式中的至少一种;所述第一解调方式的编码效率低于所述第二解调方式的编码效率;利用确定所述下行控制信道的解调方式,解调所述下行控制信道。
本公开实施例提供的方案,基站利用配置的AL并结合第一检测条件,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式,采用确定的调制方式调制下行控制信道;而终端侧基于盲检测的AL并结合第二检测条件,确定所述下行控制信道的解调方式,并利用确定的解调方式解调下行控制信道,综合考虑了AL和DCI格式的比特数来对控制信道进行调制和相应的解调处理,也就是说,综合考虑了信道的质量和DCI格式的比特数对控制信道进行调制和相应的解调处理,如此,信道质量较好的时候能够节省控制信道的资源,在信道质量较差的时候能够保证QoS。
本公开实施例提供一种下行控制信道处理方法,应用于基站,如图1所 示,该述方法包括:
步骤101:根据终端的下行控制信道条件,为所述终端配置对应的AL;
这里,实际应用时,所述基站可以根据很多指标来确定下行控制信道的条件,举个例子来说,所述基站可以基于所述终端上报的信道质量指示符(CQI,Channel Quality Indicator)来确定下行控制信道条件;比如,如果CQI大于16,可以认为信道质量较好,可以为所述终端配置AL=1或2;如果CQI小于16,可以认为信道质量较差,可以为所述终端配置AL=4或8。
再举个例子,所述基站还可以基于信道探测参考信号(SRS)来确定下行控制信道条件。
需要说明的是:本公开实施例并不限定基站确定下行控制信道条件的具体实现方式。
步骤102:利用配置的AL并结合第一检测条件,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;
这里,所述第一调制方式的编码效率低于所述第二调制方式的编码效率。
其中,比较常用的调制方式为QPSK和正交振幅调制(QAM,Quadrature Amplitude Modulation)中的16QAM,因此实际应用时,所述第一调制方式可以为QPSK,第二调制方式为16QAM。
所述第一检测条件至少包括:所述下行控制信道对应的DCI格式的比特数是否大于或等于第一预设值。
这里,所述第一预设值可以根据需要进行设置。
具体地,步骤102的具体实现可以包括:
当AL为第一值,且所述下行控制信道对应的DCI格式的比特数大于或等于第一预设值时,所述基站确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;
或者,当AL不为第一值时,所述基站确定所述下行控制信道的调制方式为第一调制方式;
或者,当所述下行控制信道对应的DCI格式的比特数小于第一预设值时,所述基站确定所述下行控制信道的调制方式为第一调制方式。
其中,所述第一值可以根据定义的AL的等级来确定。举个例子来说, 目前5G定义了AL的取值可以为1,2,4,8,所以所述第一值可以为1,也就是说,当AL为第一值时所述下行控制信道质量较好。
在一些实施例中,所述第一检测条件还可以包括:所述终端反馈的MCS索引值是否超过第二预设值;
所述确定所述下行控制信道的调制方式为第一调制方式或第二调制方式时,所述方法包括:
当AL为第一值,所述行控制信道对应的DCI格式的比特数大于或等于第一预设值,且所述MCS索引值超过第二预设值时,所述基站确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;
或者,当AL不为第一值时,所述基站确定所述下行控制信道的调制方式为第一调制方式;
或者,满足以下条件之一时,所述基站确定所述下行控制信道的调制方式为第一调制方式:
当所述下行控制信道对应的DCI格式的比特数小于第一预设值;
所述MCS索引值未超过第二预设值。
这里,实际应用时,所述第二预设值可以根据需要进行设置。
在一些实施例中,所述方法还包括:
所述基站通过RRC信令或系统信息将第一预设值和/或第二预设值配置给所述终端,配置给所述终端的预设值用于供所述终端确定解调方式。
步骤103:利用确定的调制方式调制所述下行控制信道对应的下行控制信息,并发送给所述终端。
具体地,当确定的调制方式为所述第一调制方式时,所述基站利用所述第一调制方式调制所述下行控制信道;当确定的调制方式为所述第二调制方式时,所述基站利用所述第二调制方式调制所述下行控制信道。也就是说,实际应用时,所述基站只会选择一种调制方式调制所述下行控制信道。
更具体地,当确定的调制方式为QPSK时,所述基站利用QPSK调制所述下行控制信道;当确定的调制方式为16QAM时,所述基站利用16QAM调制所述下行控制信道。
实际应用时,所述基站可以通过RRC信令或系统信息,来指示所述终端 下行控制信道的调制方式为第一调制方式、或第二调制方式、或调制方式包括第一调制方式和第二调制方式,以便所述终端确定所述下行控制信道的解调方式为第一解调方式、或第二解调方式,或同时是第一解调方式和第二解调方式。
对应地,本公开实施例还提供了一种下行控制信道处理方法,应用于终端,如图2所示,该方法包括:
步骤201:检测下行控制信道;
具体地,检测基站发送的下行控制信道。
步骤202:基于盲检测的AL并结合第二检测条件,确定所述下行控制信道的解调方式;
这里,所述第二检测条件至少包括:所述下行控制信道对应的DCI格式的比特数是否大于或等于第一预设值。
确定的解调方式包括第一解调方式和第二解调方式中的至少一种;所述第一解调方式的编码效率低于所述第二解调方式的编码效率。
其中,比较常用的调制方式为QPSK和16QAM,因此实际应用时,所述第一解调方式可以为QPSK,第二解调方式为16QAM。
这里,所述第一预设值可以根据需要进行设置。
基于此,在一些实施例中,所述方法还包括:
所述终端接收RRC信令或系统信息;
所述终端解析所述RRC信令或系统信息,得到当AL为所述第一值时,所述下行控制信道的调制方式为第一调制方式、或第二调制方式、或调制方式包括第一调制方式和第二调制方式;
相应地,所述终端根据调制方式确定所述下行控制信道的解调方式为第一解调方式、或第二解调方式,或同时是第一解调方式和第二解调方式。
具体地,步骤202的具体实现可以包括:
当检测到AL为第一值,且所述下行控制信道对应的DCI格式的比特数大于或等于第一预设值时,所述终端确定所述下行控制信道的解调方式为第一解调方式、或第二解调方式,或同时是第一解调方式和第二解调方式;相应地,所述终端利用所述第一解调方式、第二解调方式或同时利用第一解调 方式和第二解调方式,盲检测所述下行控制信道;
或者,当检测到AL不为第一值时,所述终端确定所述下行控制信道的调制方式为第一解调方式;
或者,当所述下行控制信道对应的DCI格式的比特数小于第一预设值时,所述终端确定所述下行控制信道的解调方式为第一解调方式。
其中,所述第一值可以根据定义的AL的等级来确定。举个例子来说,目前5G定义了AL的取值可以为1,2,4,8,所以所述第一值可以为1。也就是说,当AL为第一值时所述下行控制信道质量较好。
在一些实施例中,所述第二检测条件还包括:所述终端反馈的MCS索引值是否超过第二预设值;
所述确定所述下行控制信道的解调方式时,所述方法包括:
当检测到AL为第一值,所述下行控制信道对应的DCI格式的比特数大于或等于第一预设值,且所述MCS索引值超过第二预设值时,所述终端确定所述下行控制信道的调制方式为第一解调方式,或第二解调方式,或同时是第一解调方式和第二解调方式;
当检测到AL不为第一值时,所述终端确定所述下行控制信道的调制方式为第一解调方式;
或者,当满足一下条件之一时,确定所述下行控制信道的解调方式为第一解调方式:
所述下行控制信道对应的DCI格式的比特数小于第一预设值;
这里,实际应用时,所述第二预设值可以根据需要进行设置。
在一些实施例中,所述方法还包括:
所述终端接收RRC信令或系统信息;
所述终端解析所述RRC信令或系统信息,得到所述第一预设值和/或第二预设值。
实际应用时,所述基站可以通过RRC信令或系统信息,来指示所述终端下行控制信道的调制方式为第一调制方式、或第二调制方式、或调制方式包括第一调制方式和第二调制方式,以便所述终端确定所述下行控制信道的解调方式为第一解调方式、或第二解调方式,或同时是第一解调方式和第二解 调方式。
步骤203:利用确定所述下行控制信道的解调方式,解调所述下行控制信道。
也就是说,所述终端利用确定的解调方式盲检测所述下行控制信道(即利用确定的解调方式不一定正确解调所述下行控制信道)。
具体地,所述终端利用所述第一解调方式、第二解调方式或同时利用所述第一解调方式和第二解调方式,解调所述下行控制信道。
更具体地,当确定的解调方式为第一解调方式(比如QPSK)时,所述终端利用所述第一解调方式解调所述下行控制信道;当确定的解调方式为第二解调方式(比如16QAM)时,所述终端利用所述第二解调方式解调所述下行控制信道;当确定的解调方式为第一解调方式和第二解调方式时,所述终端利用所述第一解调方式和第二解调方式分别解调所述下行控制信道。
基于上述基站侧和终端侧的方法,本公开实施例还提供了一种下行控制信道处理方法,如图3所示,该方法包括:
步骤301:基站根据终端的下行控制信道条件,为所述终端配置对应的AL;利用配置的AL并结合第一检测条件,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;
这里,所述第一调制方式的编码效率低于所述第二调制方式的编码效率;所述第一检测条件至少包括:所述下行控制信道对应的息DCI格式的比特数是否大于或等于第一预设值。
步骤302:所述基站利用确定的调制方式调制所述下行控制信道对应的下行控制信息,并发送给所述终端;
步骤303:所述终端检测下行控制信道;并基于盲检测的AL并结合第二检测条件,确定所述下行控制信道的解调方式;
这里,所述第二检测条件至少包括:所述下行控制信道对应的DCI格式的比特数是否大于或等于第一预设值。
确定的解调方式包括第一解调方式和第二解调方式中的至少一种。
其中,所述第一解调方式的编码效率低于所述第二解调方式的编码效率;
步骤304:利用确定所述下行控制信道的解调方式,解调所述下行控制 信道。
需要说明的是:终端和基站的具体处理过程已在上文详述,这里不再赘述。
另外,第一调制方式可以称为基础调制方式,相应地,第一解调方式可以称为基础解调方式。
本公开实施例提供的方案,基站利用配置的AL并结合第一检测条件,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式,采用确定的调制方式调制下行控制信道;而终端侧基于盲检测的AL并结合第二检测条件,确定所述下行控制信道的解调方式,并利用确定的解调方式解调下行控制信道,综合考虑了AL和DCI格式的比特数来对控制信道进行调制和相应的解调处理,也就是说,综合考虑了信道的质量和DCI格式的比特数对控制信道进行调制和相应的解调处理,如此,信道质量较好的时候能够节省控制信道的资源,在信道质量较差的时候能够保证QoS。
另外,当AL为第一值时,即下行控制信道质量较好,且DCI格式的比特数较多时可以第二调制方式,与编码效率低的第一调制方式相比,能够提供更好的块差错率(BLER,BLock Error Rate)性能,而且能够有效地节省控制信息资源。
下面结合应用实施例来作进一步详细的描述。
应用实施例以QPSK和16QAM为例来说。在应用实施例中,主要包括以下步骤:
步骤1:基站侧根据终端的信道条件,为终端配置相应的AL;且当AL=1时,可以为用户配置下行控制信道的调制方式为QPSK和16QAM;当AL为更高值时,配置下行控制信道的调试方式为QPSK。
步骤2:当终端检测到AL=1,且达到某一检测条件时,可以同时利用QPSK和16QAM两种解调方式解调下行控制信道;当检测到AL=2或更高汇聚等级时,利用QPSK解调下行控制信道。
其中,某一检测条件包括:检测某一DCI格式中的比特数目是否大于或等于X;
这里,某一检测条件,可选包括:终端反馈的MCS超过Y。
其中,X、Y值可以是预先设置的,或通过RRC信令或系统信息配置的。
在应用实施例中,基站为4个终端配置控制信道,下行控制信道对应DCI格式的比特数目分别为x1,x2和x3,且仅考虑了DCI格式的比特数。
1、在基站侧:决策控制信道相关配置
具体地,终端1信道条件较好,且x1数目为40bits(小于X),配置AL=1,调制方式为QPSK;
终端2信道条件较好,且x2数目为75bits(大于或等于X),配置AL=1,调制方式为16QAM;
终端3信道条件较好,且x3数目为75bits(大于或等于X),配置AL=2,调制方式为QPSK;
终端4信道条件较差,且x4数目为75bits(大于或等于X),MCS值较低(未超过Y),配置AL=4,调制方式为QPSK。
2、在终端侧:对控制信道进行盲检测
对于终端1,检测的DCI格式比特数目较少(小于X),只采用QPSK解调控制信道;
对于终端2,检测的DCI格式比特数目较多(大于或等于X),且检测到AL=1,同时采用QPSK和16QAM两种解调方式解调控制信道;
对于终端3,检测的DCI格式比特数目较多(大于或等于X),且检测到AL=2,只采用QPSK解调控制信道;
对于终端4,检测的DCI格式比特数目较多(大于或等于X),检测到AL=4,且由于反馈的MCS值较低(未超过Y),只采用QPSK解调控制信道。
从上面的描述可以看出,当AL=1,且DCI格式的比特数较多时,采用16QAM调制控制信道,16QAM相对QPSK可以提供能好的BLER性能,且可以节省更多控制信息资源。
为实现本公开实施例基站侧的方法,本公开实施例还提供了一种下行控制信道处理装置,设置在基站,如图4所示,该装置包括:
配置单元41,用于根据终端的下行控制信道条件,为所述终端配置对应的AL;
第一确定单元42,用于利用配置的AL并结合第一检测条件,确定所述 下行控制信道的调制方式为第一调制方式或第二调制方式;所述第一调制方式的编码效率低于所述第二调制方式的编码效率;所述第一检测条件至少包括:所述下行控制信道对应的DCI格式的比特数是否大于或等于第一预设值;
调制单元43,用于利用确定的调制方式调制所述下行控制信道对应的下行控制信息;
发送单元44,用于将调制后的下行控制信道发送给所述终端。
其中,所述第一确定单元42,具体用于:
当AL为第一值,且所述下行控制信道对应的DCI格式的比特数大于或等于第一预设值时,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;
或者,当AL不为第一值时,确定所述下行控制信道的调制方式为第一调制方式;
或者,当所述下行控制信道对应的DCI格式的比特数小于第一预设值时,确定所述下行控制信道的调制方式为第一调制方式。
这里,所述第一检测条件还可以包括:所述终端反馈的MCS索引值是否超过第二预设值;
所述第一确定单元42,用于:
当AL为第一值,所述行控制信道对应的DCI格式的比特数大于或等于第一预设值,且所述MCS索引值超过第二预设值时,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;
或者,当AL不为第一值时,确定所述下行控制信道的调制方式为第一调制方式;
或者,满足以下条件之一时,确定所述下行控制信道的调制方式为第一调制方式:
当所述下行控制信道对应的DCI格式的比特数小于第一预设值;
所述MCS索引值未超过第二预设值。
在一些实施例中,所述发送单元44,还用于通过RRC信令或系统信息将第一预设值和/或第二预设值配置给所述终端,配置给所述终端的预设值用于供所述终端确定解调方式。
对应地,为了实现本公开实施例终端侧的方法,本公开实施例还提供了一种下行控制信道处理装置,设置在终端,如图5所示,该装置包括:
接收单元51,用于检测下行控制信道;
第二确定单元52,用于基于盲检测的AL并结合第二检测条件,确定所述下行控制信道的解调方式;所述第二检测条件至少包括:所述下行控制信道对应的DCI格式的比特数是否大于或等于第一预设值;确定的解调方式包括第一解调方式和第二解调方式中的至少一种;所述第一解调方式的编码效率低于所述第二解调方式的编码效率;
解调单元53,用于利用确定所述下行控制信道的解调方式,解调所述下行控制信道。
其中,在一实施例中,所述第二确定单元52,具体用于:
当检测到AL为第一值,且所述下行控制信道对应的DCI格式的比特数大于或等于第一预设值时,确定所述下行控制信道的解调方式为第一解调方式、或第二解调方式,或同时是第一解调方式和第二解调方式;相应地,利用所述第一解调方式、第二解调方式或同时利用第一解调方式和第二解调方式,盲检测所述下行控制信道;
或者,当检测到AL不为第一值时,确定所述下行控制信道的调制方式为第一解调方式;
或者,当所述下行控制信道对应的DCI格式的比特数小于第一预设值时,确定所述下行控制信道的解调方式为第一解调方式。
这里,在一些实施例中,所述第二检测条件还可以包括:所述终端反馈的MCS索引值是否超过第二预设值;
相应地,所述第二确定单元52,用于:
当检测到AL为第一值,所述下行控制信道对应的DCI格式的比特数大于或等于第一预设值,且所述MCS索引值超过第二预设值时,确定所述下行控制信道的调制方式为第一解调方式,或第二解调方式,或同时是第一解调方式和第二解调方式;相应地,利用所述第一解调方式、第二解调方式或同时利用所述第一解调方式和第二解调方式,解调所述下行控制信道;
当检测到AL不为第一值时,确定所述下行控制信道的调制方式为第一 解调方式;
或者,当满足一下条件之一时,确定所述下行控制信道的解调方式为第一解调方式:
所述下行控制信道对应的DCI格式的比特数小于第一预设值;
所述MCS索引值未超过第二预设值。
在一些实施例中,该装置还可以包括:解析单元;其中,
所述接收单元51,还用于接收RRC信令或系统信息;
所述解析单元,用于解析所述RRC信令或系统信息,得到所述第一预设值和/或第二预设值。
其中,所述解析单元,还用于解析RRC信令或系统信息,得到当AL为所述第一值时,所述下行控制信道的调制方式为第一调制方式、或第二调制方式、或调制方式包括第一调制方式和第二调制方式;
相应地,所述第二确定单元52根据调制方式确定所述下行控制信道的解调方式为第一解调方式、或第二解调方式,或同时是第一解调方式和第二解调方式。
需要说明的是:上述实施例提供的下行控制信道处理装置在进行控制信道处理时,仅以上述各程序模块的划分进行举例说明,实际应用中,可以根据需要而将上述处理分配由不同的程序模块完成,即将装置的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分处理。另外,上述实施例提供的下行控制信道处理装置与下行控制信道处理方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
为实现本公开实施例的方法,本公开实施例还提供了一种基站,如图6所示,该基站60包括:
第一收发器61,能够与终端进行信息交互;
第一处理器62,与所述第一收发器连接,以实现与终端进行信息交互,用于运行计算机程序时,执行上述一个或多个技术方案提供的方法。
具体来说,第一处理器62,用于根据终端的下行控制信道条件,为所述终端配置对应的AL;利用配置的AL并结合第一检测条件,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;所述第一调制方式的编 码效率低于所述第二调制方式的编码效率;所述第一检测条件至少包括:所述下行控制信道对应的DCI格式的比特数是否大于或等于第一预设值;以及利用确定的调制方式调制所述下行控制信道对应的下行控制信息;
第一收发器61,用于将调制的所述下行控制信道发送给所述终端。
在一实施例中,所述第一处理器61,具体用于:当AL为第一值,且所述下行控制信道对应的DCI格式的比特数大于或等于第一预设值时,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;
或者,当AL不为第一值时,确定所述下行控制信道的调制方式为第一调制方式;
或者,当所述下行控制信道对应的DCI格式的比特数小于第一预设值时,确定所述下行控制信道的调制方式为第一调制方式。
在一实施例中,所述第一检测条件还包括:所述终端反馈的MCS索引值是否超过第二预设值;
所述第一处理器61,用于:
当AL为第一值,所述行控制信道对应的DCI格式的比特数大于或等于第一预设值,且所述MCS索引值超过第二预设值时,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;
或者,当AL不为第一值时,确定所述下行控制信道的调制方式为第一调制方式;
或者,满足以下条件之一时,确定所述下行控制信道的调制方式为第一调制方式:
当所述下行控制信道对应的DCI格式的比特数小于第一预设值;
所述MCS索引值未超过第二预设值。
在一实施例中,所述第一收发器61,还用于:
通过RRC信令或系统信息将第一预设值和/或第二预设值配置给所述终端,配置给所述终端的预设值用于供所述终端确定解调方式。
所述第一处理器62可以通过集成电路总线等系统总线,与所述第一收发器61连接。
示例性实施例中,如图7所示,该基站60包括:第一处理器62、第一 存储器63及存储在所述第一存储器63上并能够在所述第一处理器62上运行的计算机程序;
其中,所述第一处理器62用于运行所述计算机程序时,执行:
根据终端的下行控制信道条件,为所述终端配置对应的AL;
利用配置的AL并结合第一检测条件,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;所述第一调制方式的编码效率低于所述第二调制方式的编码效率;所述第一检测条件至少包括:所述下行控制信道对应的DCI格式的比特数是否大于或等于第一预设值;
利用确定的调制方式调制所述下行控制信道对应的下行控制信息,并发送给所述终端。
在一实施例中,所述第一处理器62用于运行所述计算机程序时,执行:
当AL为第一值,且所述下行控制信道对应的DCI格式的比特数大于或等于第一预设值时,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;
或者,当AL不为第一值时,确定所述下行控制信道的调制方式为第一调制方式;
或者,当所述下行控制信道对应的DCI格式的比特数小于第一预设值时,确定所述下行控制信道的调制方式为第一调制方式。
在一实施例中,所述第一检测条件还包括:所述终端反馈的调制与编码策略MCS索引值是否超过第二预设值;
所述第一处理器62用于运行所述计算机程序时,执行:
当AL为第一值,所述行控制信道对应的DCI格式的比特数大于或等于第一预设值,且所述MCS索引值超过第二预设值时,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;
或者,当AL不为第一值时,确定所述下行控制信道的调制方式为第一调制方式;
或者,满足以下条件之一时,确定所述下行控制信道的调制方式为第一调制方式:
当所述下行控制信道对应的DCI格式的比特数小于第一预设值;
所述MCS索引值未超过第二预设值。
在一实施例中,所述第一处理器62还用于运行所述计算机程序时,执行:
通过RRC信令或系统信息将第一预设值和/或第二预设值配置给所述终端,配置给所述终端的预设值用于供所述终端确定解调方式。
其中,所述第一调制方式可以为QPSK;所述第二调制方式可以为16QAM。
当然,实际应用时,如图7所示,该基站60还可以包括:至少一个网络接口64。基站60中的各个组件通过总线系统65耦合在一起。可理解,总线系统65用于实现这些组件之间的连接通信。总线系统65除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图7中将各种总线都标为总线系统65。
其中,所述第一处理器62的个数可以为至少一个。
网络接口64用于基站60与其他设备(比如终端等)之间有线或无线方式的通信。在本公开实施例中,基站通过网络接口64(相当于图6中第一收发机61的功能)与终端进行交互。
本公开实施例中的第一存储器63用于存储各种类型的数据以支持基站60的操作。
上述本公开实施例揭示的方法可以应用于第一处理器62中,或者由第一处理器62实现。第一处理器62可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过第一处理器62中的硬件的集成逻辑电路或者软件形式的指令完成。上述的第一处理器62可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。第一处理器62可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本公开实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于第一存储器63,第一处理器62读取第一存储器63中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,基站60可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
为实现本公开实施例的方法,本公开实施例还提供了一种终端,如图8所示,该终端80包括:
第二收发器81,能够与基站进行信息交互;
第二处理器82,与所述第二收发器连接,以实现与基站进行信息交互,用于运行计算机程序时,执行上述一个或多个技术方案提供的方法。
具体来说,第二收发器91,用于检测下行控制信道;
第二处理器82,用于基于盲检测的AL并结合第二检测条件,确定所述下行控制信道的解调方式;所述第二检测条件至少包括:所述下行控制信道对应的DCI格式的比特数是否大于或等于第一预设值;确定的解调方式包括第一解调方式和第二解调方式中的至少一种;所述第一解调方式的编码效率低于所述第二解调方式的编码效率;以及利用确定所述下行控制信道的解调方式,解调所述下行控制信道。
在一实施例中,所述第二处理器82,具体用于:
当检测到AL为第一值,且所述下行控制信道对应的DCI格式的比特数大于或等于第一预设值时,确定所述下行控制信道的解调方式为第一解调方式、或第二解调方式,或同时是第一解调方式和第二解调方式;相应地,利用所述第一解调方式、第二解调方式或同时利用第一解调方式和第二解调方式,盲检测所述下行控制信道;
或者,当检测到AL不为第一值时,确定所述下行控制信道的调制方式为第一解调方式;
或者,当所述下行控制信道对应的DCI格式的比特数小于第一预设值时,确定所述下行控制信道的解调方式为第一解调方式。
在一实施例中,所述第二检测条件还包括:所述终端反馈的MCS索引值 是否超过第二预设值;
所述第二处理器82,用于:
当检测到AL为第一值,所述下行控制信道对应的DCI格式的比特数大于或等于第一预设值,且所述MCS索引值超过第二预设值时,确定所述下行控制信道的调制方式为第一解调方式,或第二解调方式,或同时是第一解调方式和第二解调方式;相应地,利用所述第一解调方式、第二解调方式或同时利用所述第一解调方式和第二解调方式,解调所述下行控制信道;
当检测到AL不为第一值时,确定所述下行控制信道的调制方式为第一解调方式;
或者,当满足一下条件之一时,确定所述下行控制信道的解调方式为第一解调方式:
所述下行控制信道对应的DCI格式的比特数小于第一预设值;
所述MCS索引值未超过第二预设值。
在一实施例中,所述第二收发器81,还用于接收RRC信令或系统信息;
所述第二处理器82,还用于解析所述RRC信令或系统信息,得到所述第一预设值和/或第二预设值。
在一实施例中,所述第二收发器81,还用于接收RRC信令或系统信息;
所述第二处理器82,还用于解析所述RRC信令或系统信息,得到当AL为所述第一值时,所述下行控制信道的调制方式为第一调制方式、或第二调制方式、或调制方式包括第一调制方式和第二调制方式;
相应地,所述第二处理器82根据调制方式确定所述下行控制信道的解调方式为第一解调方式、或第二解调方式,或同时是第一解调方式和第二解调方式。
所述第二处理器82可以通过集成电路总线等系统总线,与所述第二收发器81连接。
示例性实施例中,如图9所示,该终端80包括:第二处理器82、第二存储器83及存储在所述第二存储器83上并能够在所述第二处理器82上运行的计算机程序;
其中,所述第二处理器82用于运行所述计算机程序时,执行:
检测下行控制信道;
基于盲检测的AL并结合第二检测条件,确定所述下行控制信道的解调方式;所述第二检测条件至少包括:所述下行控制信道对应的DCI格式的比特数是否大于或等于第一预设值;确定的解调方式包括第一解调方式和第二解调方式中的至少一种;所述第一解调方式的编码效率低于所述第二解调方式的编码效率;
利用确定所述下行控制信道的解调方式,解调所述下行控制信道。
在一实施例中,所述第二处理器82用于运行所述计算机程序时,执行:
当检测到AL为第一值,且所述下行控制信道对应的DCI格式的比特数大于或等于第一预设值时,确定所述下行控制信道的解调方式为第一解调方式、或第二解调方式,或同时是第一解调方式和第二解调方式;相应地,利用所述第一解调方式、第二解调方式或同时利用第一解调方式和第二解调方式,盲检测所述下行控制信道;
或者,当检测到AL不为第一值时,确定所述下行控制信道的调制方式为第一解调方式;
或者,当所述下行控制信道对应的DCI格式的比特数小于第一预设值时,确定所述下行控制信道的解调方式为第一解调方式。
在一实施例中,所述第二检测条件还包括:所述终端反馈的MCS索引值是否超过第二预设值;
所述第二处理器82用于运行所述计算机程序时,执行:
当检测到AL为第一值,所述下行控制信道对应的DCI格式的比特数大于或等于第一预设值,且所述MCS索引值超过第二预设值时,确定所述下行控制信道的调制方式为第一解调方式,或第二解调方式,或同时是第一解调方式和第二解调方式;相应地,利用所述第一解调方式、第二解调方式或同时利用所述第一解调方式和第二解调方式,解调所述下行控制信道;
当检测到AL不为第一值时,确定所述下行控制信道的调制方式为第一解调方式;
或者,当满足一下条件之一时,确定所述下行控制信道的解调方式为第一解调方式:
所述下行控制信道对应的DCI格式的比特数小于第一预设值;
所述MCS索引值未超过第二预设值。
在一实施例中,所述第二处理器82还用于运行所述计算机程序时,执行:
接收RRC信令或系统信息;
解析所述RRC信令或系统信息,得到所述第一预设值和/或第二预设值。
在一实施例中,所述第二处理器82还用于运行所述计算机程序时,执行:
接收RRC信令或系统信息;
解析所述RRC信令或系统信息,得到当AL为所述第一值时,所述下行控制信道的调制方式为第一调制方式、或第二调制方式、或调制方式包括第一调制方式和第二调制方式;
相应地,根据调制方式确定所述下行控制信道的解调方式为第一解调方式、或第二解调方式,或同时是第一解调方式和第二解调方式。
其中,所述第一解调方式可以为QPSK;所述第二解调方式可以为16QAM。
示例性实施例中,如图9所示,该终端80还可以包括:至少一个网络接口84和用户接口85。该终端80中的各个组件通过总线系统86耦合在一起。可理解,总线系统86用于实现这些组件之间的连接通信。总线系统86除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图9中将各种总线都标为总线系统86。
其中,用户接口85可以包括显示器、键盘、鼠标、轨迹球、点击轮、按键、按钮、触感板或者触摸屏等。
所述第二处理器82的个数可以为至少一个。
网络接口84用于终端80与其他设备(比如基站等)之间有线或无线方式的通信。在本公开实施例中,终端通过网络接口84(相当于图8中第二收发机81的功能)与终端进行交互。
本公开实施例中的第二存储器83用于存储各种类型的数据以终端80的操作。
上述本公开实施例揭示的方法可以应用于第二处理器82中,或者由第二处理器82实现。第二处理器82可能是一种集成电路芯片,具有信号的处理 能力。在实现过程中,上述方法的各步骤可以通过第二处理器82中的硬件的集成逻辑电路或者软件形式的指令完成。上述的第二处理器82可以是通用处理器、DSP,或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。第二处理器82可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本公开实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于第二存储器83,第二处理器82读取第二存储器83中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,终端80可以被一个或多个ASIC、DSP、PLD、CPLD、FPGA、通用处理器、控制器、MCU、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
可以理解,本公开实施例中的存储器(比如第一存储器63及第二存储器83),可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(ROM,Read Only Memory)、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous  Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本公开实施例描述的存储器旨在包括但不限于这些和任意其他适合类型的存储器。
在示例性实施例中,本公开实施例还提供了一种计算机可读存储介质,例如包括存储计算机程序的第一存储器63,上述计算机程序可由基站60的第一处理器62执行,以完成前述基站侧方法所述步骤;或者包括存储计算机程序的第二存储器83,这些计算机程序可由终端80的第二处理器82执行,以完成前述终端侧方法所述步骤。
需要说明的是:本公开实施例提供的计算机可读存储介质可以是FRAM、ROM、PROM、EPROM、EEPROM、快闪存储器、磁表面存储器、光盘、或CD-ROM等存储器;也可以是包括上述存储器之一或任意组合的各种设备。
为实现本公开实施例的方法,本公开实施例还提供了一种下行控制信道处理系统,如图10所示,该系统包括:
基站101,用于根据终端的下行控制信道条件,为所述终端配置对应的AL;并利用配置的AL并结合第一检测条件,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;所述第一调制方式的编码效率低于所述第二调制方式的编码效率;所述第一检测条件至少包括:所述下行控制信道对应的下行控制信息DCI格式的比特数是否大于或等于第一预设值;以及利用确定的调制方式调制所述下行控制信道对应的下行控制信息,并发送给所述终端;
终端102,用于检测下行控制信道;并基于盲检测的AL并结合第二检测条件,确定所述下行控制信道的解调方式;所述第二检测条件至少包括:所述下行控制信道对应的DCI格式的比特数是否大于或等于第一预设值;确定的解调方式包括第一解调方式和第二解调方式中的至少一种;所述第一解调方式的编码效率低于所述第二解调方式的编码效率;以及利用确定所述下行控制信道的解调方式,解调所述下行控制信道。
需要说明的是:基站101和终端102的功能已在上文详述,这里不再赘述。
以上所述,仅为本公开的较佳实施例而已,并非用于限定本公开的保护范围。

Claims (26)

  1. 一种下行控制信道处理方法,包括:
    根据终端的下行控制信道条件,为所述终端配置对应的汇聚等级AL;
    利用配置的AL并结合第一检测条件,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;所述第一调制方式的编码效率低于所述第二调制方式的编码效率;所述第一检测条件至少包括:所述下行控制信道对应的下行控制信息DCI格式的比特数是否大于或等于第一预设值;
    利用确定的调制方式调制所述下行控制信道对应的下行控制信息,并发送给所述终端。
  2. 根据权利要求1所述的方法,其中,所述利用配置的AL以及第一检测条件,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式,包括:
    当AL为第一值,且所述下行控制信道对应的DCI格式的比特数大于或等于第一预设值时,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;
    或者,当AL不为第一值时,确定所述下行控制信道的调制方式为第一调制方式;
    或者,当所述下行控制信道对应的DCI格式的比特数小于第一预设值时,确定所述下行控制信道的调制方式为第一调制方式。
  3. 根据权利要求2所述的方法,其中,所述第一检测条件还包括:所述终端反馈的调制与编码策略MCS索引值是否超过第二预设值;
    所述确定所述下行控制信道的调制方式为第一调制方式或第二调制方式时,所述方法包括:
    当AL为第一值,所述行控制信道对应的DCI格式的比特数大于或等于第一预设值,且所述MCS索引值超过第二预设值时,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;
    或者,当AL不为第一值时,确定所述下行控制信道的调制方式为第一调制方式;
    或者,满足以下条件之一时,确定所述下行控制信道的调制方式为第一 调制方式:
    当所述下行控制信道对应的DCI格式的比特数小于第一预设值;
    所述MCS索引值未超过第二预设值。
  4. 根据权利要求3所述的方法,还包括:
    通过无线资源控制RRC信令或系统信息将第一预设值和/或第二预设值配置给所述终端,配置给所述终端的预设值用于供所述终端确定解调方式。
  5. 根据权利要求1至4任一项所述的方法,其中,所述第一调制方式为正交相移键控QPSK;所述第二调制方式为16QAM。
  6. 一种下行控制信道处理方法,包括:
    检测下行控制信道;
    基于盲检测的AL并结合第二检测条件,确定所述下行控制信道的解调方式;所述第二检测条件至少包括:所述下行控制信道对应的DCI格式的比特数是否大于或等于第一预设值;确定的解调方式包括第一解调方式和第二解调方式中的至少一种;所述第一解调方式的编码效率低于所述第二解调方式的编码效率;
    利用确定所述下行控制信道的解调方式,解调所述下行控制信道。
  7. 根据权利要求6所述的方法,其中,所述基于盲检测的AL并结合第二检测条件,确定所述下行控制信道的解调方式,包括:
    当检测到AL为第一值,且所述下行控制信道对应的DCI格式的比特数大于或等于第一预设值时,确定所述下行控制信道的解调方式为第一解调方式、或第二解调方式,或同时是第一解调方式和第二解调方式;相应地,利用所述第一解调方式、第二解调方式或同时利用第一解调方式和第二解调方式,盲检测所述下行控制信道;
    或者,当检测到AL不为第一值时,确定所述下行控制信道的调制方式为第一解调方式;
    或者,当所述下行控制信道对应的DCI格式的比特数小于第一预设值时,确定所述下行控制信道的解调方式为第一解调方式。
  8. 根据权利要求7所述的方法,其中,所述第二检测条件还包括:所述终端反馈的MCS索引值是否超过第二预设值;
    所述确定所述下行控制信道的解调方式时,所述方法包括:
    当检测到AL为第一值,所述下行控制信道对应的DCI格式的比特数大于或等于第一预设值,且所述MCS索引值超过第二预设值时,确定所述下行控制信道的调制方式为第一解调方式,或第二解调方式,或同时是第一解调方式和第二解调方式;相应地,利用所述第一解调方式、第二解调方式或同时利用所述第一解调方式和第二解调方式,解调所述下行控制信道;
    当检测到AL不为第一值时,确定所述下行控制信道的调制方式为第一解调方式;
    或者,当满足一下条件之一时,确定所述下行控制信道的解调方式为第一解调方式:
    所述下行控制信道对应的DCI格式的比特数小于第一预设值;
    所述MCS索引值未超过第二预设值。
  9. 根据权利要求8所述的方法,还包括:
    接收RRC信令或系统信息;
    解析所述RRC信令或系统信息,得到所述第一预设值和/或第二预设值。
  10. 根据权利要求7所述的方法,还包括:
    接收RRC信令或系统信息;
    解析所述RRC信令或系统信息,得到当AL为所述第一值时,所述下行控制信道的调制方式为第一调制方式、或第二调制方式、或调制方式包括第一调制方式和第二调制方式;
    相应地,根据调制方式确定所述下行控制信道的解调方式为第一解调方式、或第二解调方式,或同时是第一解调方式和第二解调方式。
  11. 根据权利要求6至10任一项所述的方法,其中,所述第一解调方式为QPSK;所述第二解调方式为16QAM。
  12. 一种行控制信道处理装置,包括:
    配置单元,用于根据终端的下行控制信道条件,为所述终端配置对应的AL;
    第一确定单元,用于利用配置的AL并结合第一检测条件,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;所述第一调制方式 的编码效率低于所述第二调制方式的编码效率;所述第一检测条件至少包括:所述下行控制信道对应的DCI格式的比特数是否大于或等于第一预设值;
    调制单元,用于利用确定的调制方式调制所述下行控制信道对应的下行控制信息;
    发送单元,用于将调制后的下行控制信道发送给所述终端。
  13. 一种下行控制信道处理装置,包括:
    接收单元,用于检测下行控制信道;
    第二确定单元,用于基于盲检测的AL并结合第二检测条件,确定所述下行控制信道的解调方式;所述第二检测条件至少包括:所述下行控制信道对应的DCI格式的比特数是否大于或等于第一预设值;确定的解调方式包括第一解调方式和第二解调方式中的至少一种;所述第一解调方式的编码效率低于所述第二解调方式的编码效率;
    解调单元,用于利用确定所述下行控制信道的解调方式,解调所述下行控制信道。
  14. 一种基站,包括:
    第一处理器,用于根据终端的下行控制信道条件,为所述终端配置对应的AL;利用配置的AL并结合第一检测条件,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;所述第一调制方式的编码效率低于所述第二调制方式的编码效率;所述第一检测条件至少包括:所述下行控制信道对应的DCI格式的比特数是否大于或等于第一预设值;以及利用确定的调制方式调制所述下行控制信道对应的下行控制信息;
    第一收发器,用于将调制的所述下行控制信道发送给所述终端。
  15. 根据权利要求14所述的基站,其中,所述第一处理器,具体用于:当AL为第一值,且所述下行控制信道对应的DCI格式的比特数大于或等于第一预设值时,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;
    或者,当AL不为第一值时,确定所述下行控制信道的调制方式为第一调制方式;
    或者,当所述下行控制信道对应的DCI格式的比特数小于第一预设值时, 确定所述下行控制信道的调制方式为第一调制方式。
  16. 根据权利要求15所述的基站,其中,所述第一检测条件还包括:所述终端反馈的MCS索引值是否超过第二预设值;
    所述第一处理器,用于:
    当AL为第一值,所述行控制信道对应的DCI格式的比特数大于或等于第一预设值,且所述MCS索引值超过第二预设值时,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;
    或者,当AL不为第一值时,确定所述下行控制信道的调制方式为第一调制方式;
    或者,满足以下条件之一时,确定所述下行控制信道的调制方式为第一调制方式:
    当所述下行控制信道对应的DCI格式的比特数小于第一预设值;
    所述MCS索引值未超过第二预设值。
  17. 根据权利要求16所述的基站,其中,所述第一收发器,还用于:
    通过RRC信令或系统信息将第一预设值和/或第二预设值配置给所述终端,配置给所述终端的预设值用于供所述终端确定解调方式。
  18. 一种终端,包括:
    第二收发器,用于检测下行控制信道;
    第二处理器,用于基于盲检测的AL并结合第二检测条件,确定所述下行控制信道的解调方式;所述第二检测条件至少包括:所述下行控制信道对应的DCI格式的比特数是否大于或等于第一预设值;确定的解调方式包括第一解调方式和第二解调方式中的至少一种;所述第一解调方式的编码效率低于所述第二解调方式的编码效率;以及利用确定所述下行控制信道的解调方式,解调所述下行控制信道。
  19. 根据权利要求18所述的终端,其中,所述第二处理器,具体用于:
    当检测到AL为第一值,且所述下行控制信道对应的DCI格式的比特数大于或等于第一预设值时,确定所述下行控制信道的解调方式为第一解调方式、或第二解调方式,或同时是第一解调方式和第二解调方式;相应地,利用所述第一解调方式、第二解调方式或同时利用第一解调方式和第二解调方 式,盲检测所述下行控制信道;
    或者,当检测到AL不为第一值时,确定所述下行控制信道的调制方式为第一解调方式;
    或者,当所述下行控制信道对应的DCI格式的比特数小于第一预设值时,确定所述下行控制信道的解调方式为第一解调方式。
  20. 根据权利要求19所述的终端,其中,所述第二检测条件还包括:所述终端反馈的MCS索引值是否超过第二预设值;
    所述第二处理器,用于:
    当检测到AL为第一值,所述下行控制信道对应的DCI格式的比特数大于或等于第一预设值,且所述MCS索引值超过第二预设值时,确定所述下行控制信道的调制方式为第一解调方式,或第二解调方式,或同时是第一解调方式和第二解调方式;相应地,利用所述第一解调方式、第二解调方式或同时利用所述第一解调方式和第二解调方式,解调所述下行控制信道;
    当检测到AL不为第一值时,确定所述下行控制信道的调制方式为第一解调方式;
    或者,当满足一下条件之一时,确定所述下行控制信道的解调方式为第一解调方式:
    所述下行控制信道对应的DCI格式的比特数小于第一预设值;
    所述MCS索引值未超过第二预设值。
  21. 根据权利要求20所述的终端,其中,
    所述第二收发器,还用于接收RRC信令或系统信息;
    所述第二处理器,还用于解析所述RRC信令或系统信息,得到所述第一预设值和/或第二预设值。
  22. 根据权利要求19所述的终端,其中,
    所述第二收发器,还用于接收RRC信令或系统信息;
    所述第二处理器,还用于解析所述RRC信令或系统信息,得到当AL为所述第一值时,所述下行控制信道的调制方式为第一调制方式、或第二调制方式、或调制方式包括第一调制方式和第二调制方式;
    相应地,所述第二处理器根据调制方式确定所述下行控制信道的解调方 式为第一解调方式、或第二解调方式,或同时是第一解调方式和第二解调方式。
  23. 一种基站、包括:第一处理器、第一存储器及存储在所述第一存储器上并能够在所述第一处理器上运行的计算机程序;
    其中,所述第一处理器用于运行所述计算机程序时,执行权利要求1至5任一项所述方法的步骤。
  24. 一种终端,包括:第二处理器、第二存储器及存储在所述第二存储器上并能够在所述第二处理器上运行的计算机程序;
    其中,所述第二处理器用于运行所述计算机程序时,执行权利要求6至11任一项所述方法的步骤。
  25. 一种下行控制信道处理系统,包括:
    基站,用于根据终端的下行控制信道条件,为所述终端配置对应的AL;并利用配置的AL并结合第一检测条件,确定所述下行控制信道的调制方式为第一调制方式或第二调制方式;所述第一调制方式的编码效率低于所述第二调制方式的编码效率;所述第一检测条件至少包括:所述下行控制信道对应的下行控制信息DCI格式的比特数是否大于或等于第一预设值;以及利用确定的调制方式调制所述下行控制信道对应的下行控制信息,并发送给所述终端;
    终端,用于检测下行控制信道;并基于盲检测的AL并结合第二检测条件,确定所述下行控制信道的解调方式;所述第二检测条件至少包括:所述下行控制信道对应的DCI格式的比特数是否大于或等于第一预设值;确定的解调方式包括第一解调方式和第二解调方式中的至少一种;所述第一解调方式的编码效率低于所述第二解调方式的编码效率;以及利用确定所述下行控制信道的解调方式,解调所述下行控制信道。
  26. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至5任一项所述方法的步骤,或者实现权利要求6至11任一项所述方法的步骤。
PCT/CN2018/089536 2017-07-27 2018-06-01 控制信道处理方法、装置、系统、相关设备及存储介质 WO2019019803A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710623342.2 2017-07-27
CN201710623342.2A CN109309546A (zh) 2017-07-27 2017-07-27 控制信道处理方法、装置、系统、相关设备及存储介质

Publications (1)

Publication Number Publication Date
WO2019019803A1 true WO2019019803A1 (zh) 2019-01-31

Family

ID=65040966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089536 WO2019019803A1 (zh) 2017-07-27 2018-06-01 控制信道处理方法、装置、系统、相关设备及存储介质

Country Status (2)

Country Link
CN (1) CN109309546A (zh)
WO (1) WO2019019803A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2544482A1 (en) * 2010-03-04 2013-01-09 Sharp Kabushiki Kaisha Wireless communication system, base station apparatus, mobile station apparatus, wireless communication method and integrated circuit
CN103199974A (zh) * 2012-01-09 2013-07-10 中兴通讯股份有限公司 下行控制信息发送方法及装置
WO2013141530A1 (en) * 2012-03-19 2013-09-26 Samsung Electronics Co., Ltd. Method and apparatus for configuring search space of a downlink control channel
CN103929266A (zh) * 2013-01-15 2014-07-16 中兴通讯股份有限公司 控制信道传输、传输处理方法及装置、网络侧设备、终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468920B (zh) * 2010-11-01 2014-11-05 华为技术有限公司 自适应编码调制的方法、装置及系统
US9603125B2 (en) * 2012-01-19 2017-03-21 Samsung Electronics Co., Ltd. Reference signal design and association for physical downlink control channels
CN103312435B (zh) * 2012-03-09 2016-03-02 华为技术有限公司 一种控制信道的调制或传输层数的确定方法及设备
CN104065446A (zh) * 2013-03-21 2014-09-24 上海贝尔股份有限公司 用于信令发送和接收mcs的方法
US10225041B2 (en) * 2016-01-15 2019-03-05 Qualcomm Incorporated Methods and apparatus for higher modulation support in LTE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2544482A1 (en) * 2010-03-04 2013-01-09 Sharp Kabushiki Kaisha Wireless communication system, base station apparatus, mobile station apparatus, wireless communication method and integrated circuit
CN103199974A (zh) * 2012-01-09 2013-07-10 中兴通讯股份有限公司 下行控制信息发送方法及装置
WO2013141530A1 (en) * 2012-03-19 2013-09-26 Samsung Electronics Co., Ltd. Method and apparatus for configuring search space of a downlink control channel
CN103929266A (zh) * 2013-01-15 2014-07-16 中兴通讯股份有限公司 控制信道传输、传输处理方法及装置、网络侧设备、终端

Also Published As

Publication number Publication date
CN109309546A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
US11716611B2 (en) Method for reporting blind decoding capability, blind decoding configuration, blind decoding method, terminal and base station
WO2021043010A1 (zh) 信息增强方法、装置、设备和存储介质
CN111435897B (zh) 信息传输的方法和通信装置
WO2019170084A1 (zh) 抢占信息的传输方法、设备及系统
CN111464271A (zh) 用于改进的harq反馈指示的装置、设备及无线通信装置
US20200153538A1 (en) Method and node for decoding or encoding user data based on a tbs index
US11451333B2 (en) TBS determination with multiple base graphs
US20220124683A1 (en) Method for Determining Sidelink Transmission Resource, Terminal Device, and Network Device
WO2021083153A1 (zh) Uci复用配置方法、装置、设备及计算机可读存储介质
WO2019192583A1 (zh) 信息反馈方法、装置和系统
US20230031932A1 (en) Control information transmission method, apparatus, and system
US20200295909A1 (en) Methods for determining activation of sps and user equipment
WO2018130054A1 (zh) 一种数据接收、发送方法和接收、发送设备
WO2019001065A1 (zh) 数据发送方法、装置及存储介质
WO2018098691A1 (zh) 一种控制信道生成方法、控制信道检测方法及相关设备
US11265102B2 (en) Downlink control channel detection method, downlink control channel transmission method, network side device and user equipment
EP3496480B1 (en) Method, apparatus and system for sending control information
CN113271672B (zh) Dl sps资源的确定方法和装置
WO2018137188A1 (zh) 一种用于覆盖增强的资源配置方法及装置
US11050602B2 (en) Methods and communication apparatuses for bit-to-symbol mapping
WO2019019803A1 (zh) 控制信道处理方法、装置、系统、相关设备及存储介质
US20220030609A1 (en) Communication method and apparatus
CN110391888B (zh) 终端能力的处理方法、装置、相关设备及存储介质
US20210297202A1 (en) Method and device for transmitting reference signals
WO2020244481A1 (zh) 处理方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18839010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/06/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18839010

Country of ref document: EP

Kind code of ref document: A1