WO2019019700A1 - 上电极组件、反应腔室及半导体加工设备 - Google Patents

上电极组件、反应腔室及半导体加工设备 Download PDF

Info

Publication number
WO2019019700A1
WO2019019700A1 PCT/CN2018/082678 CN2018082678W WO2019019700A1 WO 2019019700 A1 WO2019019700 A1 WO 2019019700A1 CN 2018082678 W CN2018082678 W CN 2018082678W WO 2019019700 A1 WO2019019700 A1 WO 2019019700A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
upper electrode
electrode assembly
power feed
reaction chamber
Prior art date
Application number
PCT/CN2018/082678
Other languages
English (en)
French (fr)
Inventor
陈鹏
徐奎
丁培军
常大磊
姜鑫先
张璐
刘建生
苏振宁
宋巧丽
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Publication of WO2019019700A1 publication Critical patent/WO2019019700A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • H01J37/32504Means for preventing sputtering of the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32577Electrical connecting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32871Means for trapping or directing unwanted particles

Definitions

  • the present invention relates to the field of semiconductor manufacturing technology, and in particular to an upper electrode assembly, a reaction chamber, and a semiconductor processing device.
  • an inductive coupled plasma (ICP) device can obtain a high-density plasma at a low working pressure, and has a simple structure and a low cost, so it is widely used in plasma etching ( IC, physical vapor deposition (PVD), plasma chemical vapor deposition (CVD), microelectromechanical systems (MEMS), and light-emitting diodes (LED).
  • IC plasma etching
  • PVD physical vapor deposition
  • CVD plasma chemical vapor deposition
  • MEMS microelectromechanical systems
  • LED light-emitting diodes
  • the wafer is first pre-cleaned (Preclean) to remove impurities such as oxides on the surface of the wafer before performing the deposition process.
  • the basic principle of a general pre-cleaning chamber is to excite a cleaning gas such as argon, helium or hydrogen that is introduced into the cleaning chamber to form a plasma, chemically react and physically bombard the wafer, thereby removing the surface of the wafer. Impurities.
  • the pre-cleaning chamber includes a cavity 1 at a top of which is disposed a dielectric cylinder 2, and a radio frequency coil 3 is disposed around the dielectric cylinder 2, and the RF coil 3 passes through the upper matching device.
  • 4 is electrically connected to the upper RF power source 5 for loading RF power to the RF coil 3, and the electromagnetic field generated by the RF coil 3 can be fed into the cavity 1 through the dielectric cylinder 2 to excite the cavity 1
  • the process gas forms a plasma.
  • a susceptor 6 is provided in the cavity 1 for carrying the wafer 7.
  • the susceptor 6 is electrically connected to the lower RF power source 9 through the lower matching unit 8 for loading the susceptor 6 with a radio frequency negative bias to attract the plasma to etch the surface of the substrate.
  • the input end of the radio frequency coil 3 is electrically connected to the upper matching unit 4 as a power feeding point, and the output end of the radio frequency coil 3 is grounded.
  • This has the following problem: due to the high frequency standing wave effect, there is a large difference in the potential distribution of each turn of the RF coil 3, and there is a large difference in the potential between the different turns of the RF coil 3.
  • the difference causes the electromagnetic field generated by the RF coil 3 to be unevenly distributed in the reaction chamber, thereby causing a low uniformity of plasma distribution, thereby affecting process uniformity.
  • the present invention aims to at least solve one of the technical problems existing in the prior art, and proposes an upper electrode assembly and a reaction chamber, which can reduce the difference in potential distribution existing on the coil, thereby improving the uniformity of plasma distribution. , in turn, can improve process uniformity.
  • an upper electrode assembly comprising a coil in which n power feed points are disposed, wherein n is an integer greater than or equal to 1; and n+1 is provided in the coil a grounding end point, the arrangement relationship of the power feeding point and the grounding end point follows a rule that, for each of the power feeding points, a winding direction along the coil is upstream of the power feeding point and A grounding end point is respectively disposed downstream, a coil between the power feeding point and an upstream grounding end thereof constitutes a first coil portion, and a coil between the power feeding point and a downstream grounding end thereof constitutes a second coil The first coil section and the second coil section are connected in parallel between the power feed point and ground.
  • the coil is a multi-cylindrical spiral three-dimensional coil.
  • a ratio of a length of one of the first coil portion and the second coil portion to a total length of the sum of the two ranges from 0.5/ Between 5.5 and 2.5/5.5; further, the ratio of the length of one of the first coil portion and the second coil portion to the total length of the sum of the two ranges from 0.7/5.5 to 1.5/ Between 5.5; further, the ratio of the length of one of the first coil portion and the second coil portion to the total length of the sum of the two ranges from 0.9/5.5 to 1.1/5.5 between.
  • the ratio of the length of one of the first coil section and the second coil section to the total length of the sum of the two is 2.5/5.5, 2.0/5.5, 1.8/5.5, 1.5/5.5, 1.4/ 5.5, 1.3/5.5, 1.2/5.5, 1.1/5.5, 1.05/5.5, 1.02/5.5, 1/5.5, 0.97/5.5, 0.95/5.5, 0.9/5.5, 0.8/5.5, 0.7/5.5, 0.6/5.5 or 0.5/5.5.
  • the coil is a single turn coil.
  • At least one of an upstream ground end point and a downstream ground end point is grounded through an impedance arrangement device, and two different impedance configurations of the impedance configuration device are used to make two The current directions of the first coil segment and the second coil segment are the same or opposite.
  • the impedance matching device includes a tunable capacitor, and the tunable capacitor has a capacitance ranging from 0 to 2000 pF.
  • the upper electrode assembly further includes a matcher and a power source, the power source being electrically connected to the power feed point via the matcher; and the impedance configuring device and the matcher are integrated
  • One housing is provided in a different housing or separately.
  • the upper electrode assembly further includes a dielectric cylinder, and the coil is disposed around the dielectric cylinder and disposed at a periphery of the dielectric cylinder.
  • the present invention provides a reaction chamber comprising the upper electrode assembly of any of the foregoing aspects, the upper electrode assembly further comprising a dielectric cylinder, the coil being disposed around the dielectric cylinder a periphery of the dielectric cylinder; the reaction chamber further includes a Faraday shield, the Faraday shield is disposed around the inside of the dielectric cylinder, and the Faraday shield includes a conductive ring body on the conductive ring body Forming a slit; the slit includes a first sub-slot, the first sub-slot is disposed along a circumferential direction of the conductive ring body, and forms an angle with an axis of the conductive ring body, The total coupling efficiency of the electromagnetic field is increased by increasing the coupling efficiency of the electromagnetic field in the circumferential direction of the conductive ring.
  • the upper end surface of the Faraday shield is higher than the upper end surface of the dielectric cylinder; the lower end surface of the Faraday shield is lower than the lower end surface of the dielectric cylinder.
  • reaction chamber is a pre-cleaning chamber.
  • the present invention provides a semiconductor processing apparatus comprising the reaction chamber of any of the foregoing aspects.
  • the present invention provides an upper electrode assembly that places a power feed point at a position other than an end point of the coil, and an end point of the coil is grounded to form a coil from the power feed point to form a plurality of coils connected in parallel with each other
  • the overall impedance of the coil is lowered, and accordingly, the overall voltage of the coil is also lowered, so that the difference in potential distribution on the coil can be reduced, the uniformity of plasma distribution can be improved, and the process uniformity can be improved.
  • the upper electrode assembly includes the dielectric cylinder, since the overall voltage of the coil is lowered, bombardment of ions in the plasma to the dielectric cylinder can be reduced, thereby reducing particle contamination in the reaction chamber.
  • the reaction chamber and the semiconductor processing apparatus provided by the present invention can improve the uniformity of plasma distribution by using the above-mentioned upper electrode assembly provided by the present invention, thereby improving process uniformity.
  • Figure 1 is a cross-sectional view of a prior pre-cleaning chamber
  • FIG. 2 is a schematic view showing the position of a power feeding point of a radio frequency coil
  • 3A is a structural diagram of an upper electrode assembly according to an embodiment of the present invention.
  • FIG. 3B is another structural diagram of an upper electrode assembly according to an embodiment of the present invention.
  • 4A is a etch depth profile of a wafer obtained by performing an etching process using a coil in the prior art
  • 4B is a etch depth profile of a wafer obtained by performing an etching process using a coil in an embodiment of the invention
  • 4C is a etch depth profile of a wafer obtained by performing an etching process using another coil in the embodiment of the present invention.
  • 4D is a etch depth profile of a wafer obtained by performing an etching process using another coil in the embodiment of the present invention.
  • 4E is a diagram showing a wafer etching depth profile obtained by performing an etching process using another coil in the embodiment of the present invention.
  • FIG. 5 is a structural diagram of an upper electrode assembly having two power feeding points according to an embodiment of the present invention.
  • Figure 6 is a cross-sectional view of a reaction chamber according to an embodiment of the present invention.
  • Figure 7 is a structural view of a Faraday shield used in an embodiment of the present invention.
  • the upper electrode assembly provided in this embodiment includes a coil 10 on which a power feed point 103 is disposed, which is located at the ends of the coil 10 (the first end 101 and the second end 102). The location. Further, the end of the coil 10 is grounded, whereby the coil 10 forms a plurality of coil sections connected in parallel from the power feed point 103.
  • the RF power source 12 is electrically coupled to the power feed point 103 via the matcher 11 for loading RF power to the coil 10 through the power feed point 103.
  • the upper electrode assembly further includes a dielectric cylinder 22 through which RF energy on the coil 10 is fed into the reaction chamber.
  • the dielectric cylinder 22 has an annular structure, and the coil 10 is a multi-cylindrical spiral three-dimensional coil and surrounds the dielectric cylinder 22.
  • the power feeding point 103 is one, and is located at a specified position of the coil 10 except the first end 101 and the second end 102, so that the coil 10 is fed from the power point 103.
  • Two coil sections are formed, specifically (see FIG. 3A): a first coil section 104 and a second coil section 105.
  • the first coil sub-portion 104 is located above the power feed point 103; the second coil sub-portion 105 is located below the power feed point 103.
  • the overall impedance of the coil 10 is lowered, and accordingly, the overall voltage of the coil 10 is also lowered, so that the difference in potential distribution on the coil can be reduced, for example, each can be reduced.
  • the difference in potential distribution on each of the coil sections and the potential difference between the different turns so that the distribution uniformity of the electromagnetic field generated by the coil 10 in the reaction chamber can be improved, and the plasma uniformity can be improved. Improve process uniformity.
  • the upper electrode assembly includes the dielectric cylinder 22 since the overall voltage of the coil 10 is lowered, bombardment of the dielectric cylinder 22 by ions in the plasma can be reduced, thereby reducing particle contamination in the reaction chamber.
  • the distribution of the electromagnetic field generated by the coil 10 in the reaction chamber can be adjusted by changing the position of the power feed point 103 on the coil 10.
  • the position of the power feed point 103 on the coil 10 can be varied by setting different lengths of the second coil subsection 105.
  • the total number of turns of the coil 10 is 5.5 and the length of the second coil subsection 105 (
  • the ratio of the unit to ⁇ ) and the total length of the coil 10 (in ⁇ ) ranges from 0.9/5.5 to 1.1/5.5.
  • the following is a comparative test for etching processes using the coils of the prior art and the coils of the embodiments of the present invention, and the coils of the positions of the different power feed points in the embodiments of the present invention.
  • the total number of turns of the coil 10 was 5.5.
  • the etch depth distribution of the wafer obtained by the etching process in the prior art is as shown in FIG. 4A.
  • the etch depth contour is in a gradient eccentricity distribution, so that the etching uniformity is low, generally It is about 3% and does not meet the process requirements (2%).
  • the gradient depth contour of the etch depth contour may cause damage to the surface of the wafer.
  • the coil 10 in the embodiment of the present invention is used, and the ratio of the length of the second coil section 105 to the total length of the coil 10 is 1.15/5.5, and the coil 10 of the power feeding point 103 is used for the etching process.
  • the etch depth distribution of the wafer is as shown in FIG. 4B, and the etch depth contour is still in a gradient eccentricity distribution, the etching uniformity is low, and the wafer surface damage may be caused.
  • the coils of the two positions of the power feeding point 103 are employed.
  • the etching depth distribution of the wafer obtained by the etching process is as shown in FIG. 4C and FIG. 4D, the etching depth contours tend to be concentrically distributed, and the etching uniformity is improved (up to 2%), thereby satisfying the process. Requires, and can avoid wafer surface damage.
  • the coil 10 in the embodiment of the present invention is used, and the ratio of the length of the second coil sub-portion 105 to the total length of the coil 10 is 1/5.5, and the coil 10 of the power feeding point 103 is used for the etching process.
  • the wafer etch depth profile is shown in Figure 4E, and the concentric distribution of the etch depth contours is superior to that shown in Figures 4C and 4D.
  • the first end 101 of the coil 10 is grounded through the impedance arranging means 13, and the second end 102 is directly grounded.
  • the current directions of the first coil division 104 and the second coil division 105 are the same or opposite by setting the impedance of the impedance arrangement device 13. Specifically, the lower end of the first coil section 104 is grounded, and the upper end is the power feed point 103, whereby the current in the first coil section 104 flows from the power feed point 103 to the lower end of the ground.
  • the impedance of the impedance arranging means 13 If the impedance of the impedance arranging means 13 is made sufficiently large, the current in the second coil section 105 flows from the upper end (i.e., the first end 101) of the connection impedance arranging means 13 of the second coil section 105 toward the power feeding point 103. Thus, the current directions of the first coil section 104 and the second coil section 105 are the same. On the other hand, if the impedance of the impedance arranging device 13 is made sufficiently small, the current in the second coil sub-portion 105 flows from the power feeding point 103 toward the upper end of the second coil sub-portion 105 connected to the impedance arranging device 13, whereby The current directions of the first coil section 104 and the second coil section 105 are opposite. Therefore, by setting the magnitude of the impedance of the impedance arranging means 13, for example, making it large enough or small enough, the direction of the current in the second coil section 105 can be changed.
  • the current directions of the first coil section 104 and the second coil section 105 are opposite, the two electromagnetic fields generated by the first coil section 104 and the second coil section 105 respectively cancel each other, which will be in both The difference in magnetic field strength existing between them is compensated, thereby further improving the uniformity of distribution of the superimposed magnetic field formed by the above two electromagnetic fields.
  • the mutual cancellation of the above two electromagnetic fields reduces the magnetic field strength of the superimposed magnetic field, thereby reducing the plasma density, and therefore, the method is suitable for a process that does not require a high plasma density.
  • the current directions of the first coil section 104 and the second coil section 105 can be made the same to increase the plasma density.
  • the impedance configuration device 13 described above may include a tunable capacitor. Before the process is performed, the size of the tunable capacitor can be set according to specific needs to obtain the required impedance value, thereby improving the flexibility of impedance adjustment.
  • the adjustable capacitor can be adjusted in the range of 0 to 2000 pF, for example, 0 pF, 20 pF, 50 pF, 100 pF, 200 pF, 300 pF, 500 pF, 800 pF, 900 pF, 1000 pF, 1200 pF, 1500 pF, 2000 pF, and the like.
  • the impedance arranging device 13 can determine the current direction, and can also achieve impedance matching by the matching unit 11 by selecting an appropriate impedance.
  • the capacitance of the above-mentioned adjustable capacitor can be It is set in the range of 200 to 500 pF, 200 pF, 250 pF, 300 pF, 350 pF, 400 pF, 450 pF, 500 pF, etc., preferably 350 pF.
  • the impedance arranging device 13 and the matching device 111 may be integrated in the same housing, or may be respectively disposed in different housings. It can be understood that the two are integrated in the same housing, which can reduce the space occupied by the device.
  • the first end 101 of the coil 10 is grounded through the impedance arranging device 13, and the second end 102 is directly grounded, but the present invention is not limited thereto, and in practical applications, The first end 101 of the coil 10 is directly grounded, and the second end 102 is grounded through the impedance arrangement 13; alternatively, the impedance arrangement 13 can be configured for the first end 101 and the second end 102 of the coil 10, respectively, and the impedance configuration can be configured.
  • the device 13 is grounded; alternatively, the first end 101 and the second end 102 of the coil 10 can be directly grounded.
  • the coil 10 is a multi-cylindrical spiral three-dimensional coil, that is, the coil 10 extends in a spiral manner in a spiral manner to form a three-dimensional structure having a contour as a cylinder.
  • the coil 10 can also be a single turn coil. Regardless of whether it is a single turn coil or a multi turn coil, the shape of the cross section obtained by cutting the wire constituting the coil in a direction perpendicular to the axial direction of the wire is not limited, for example, trapezoidal, rectangular, square, circular, Oval and so on.
  • the number of power feed points is one, but the present invention is not limited thereto. In practical applications, the number of power feed points may be multiple, and different.
  • the power feed point is located at a different position of the coil than the end point, and a ground end point is provided between the adjacent two power feed points, ie, on the coil, corresponding to each power feed point,
  • the upstream end and the downstream end are each provided with a grounding end point such that for each of the power feeding points, two coil sections connected in parallel between the power feeding point and the ground are provided, so that in the coil, the coil is divided
  • the number of parts is twice the number of power feed points.
  • the number of power feed points 103 is n
  • the number of coil sections is 2n
  • the number of ground terminals is n+1, where n is an integer greater than or equal to 1.
  • the arrangement relationship between the power feed point and the ground end point follows the following rule: for each power feed point, a ground end point is respectively disposed upstream and downstream of the power feed point in the winding direction of the coil, the power feed
  • the coil between the ingress point and its upstream grounded end constitutes a first coil section corresponding to the power feed point
  • the coil between the power feed point and its downstream ground end constitutes a portion corresponding to the power feed point
  • a second coil section the first coil section and the second coil section being connected in parallel between the power feed point and ground.
  • Figure 5 shows a block diagram of an upper electrode assembly having two power feed points.
  • the upper electrode assembly provided in this embodiment includes a coil 10 on which a first power feed point 1031 and a second power feed point 1032 are disposed, which are located at the upper end 101 of the coil 10. And at a position other than the lower end point 1022, and the upper end point 101 is defined as a first end point, and the lower end point 1022 is defined as a second end point, and the winding direction of the coil 10 is from top to bottom.
  • the first RF power source 121 is electrically connected to the first power feeding point 1031 through the first matching unit 111
  • the second RF power source 122 is electrically connected to the second power feeding point 1032 through the second matching unit 112.
  • a power feed point 1031 and a second power feed point 1032 load RF power to the coil 10.
  • ground terminals 101 and 1021 are respectively arranged upstream and downstream of the first power feeding point 1031 in the winding direction of the coil 10, the power feeding point 1031 and its upstream ground terminal 101.
  • the segment of the coil forms a first coil portion
  • the segment of the coil between the power feed point 1031 and its downstream ground terminal 1021 forms a second coil portion, the first coil portion and the second coil portion. Parallel between the power feed point 1031 and ground.
  • ground terminals 1021 and 1022 are respectively disposed upstream and downstream of the second power feed point 1032 along the winding direction of the coil 10, the power feed point 1032 and its upstream ground terminal 1021.
  • the first segment of the coil forms a first coil portion
  • the segment of the coil between the power feed point 1032 and its downstream ground terminal 1022 forms a second coil portion, the first coil portion and the second coil portion. Parallel between the power feed point 1032 and ground.
  • each of the power feed points and their corresponding two ground terminals, the first coil portion and the second coil portion, and the corresponding impedance arranging device constitute an upper electrode unit assembly
  • Each of the upper electrode unit assemblies is similar to the upper electrode assembly of the embodiment described above in connection with FIGS. 3A and 3B, and the structure, configuration, parameter selection, and corresponding effects of the respective upper electrode unit assemblies are Similar to the foregoing embodiment shown in FIGS. 3A to 4E, for example, the effect of the relationship between the number of turns of the first coil portion and the second coil portion corresponding to each power feed point is similar to that of the aforementioned FIG. 3A to FIG.
  • the ratio of the ratio of the length of one of the first coil portion and the second coil portion to the total length of the sum of the two is preferably selected. It is between 0.5/5.5 and 2.5/5.5. Further preferably, the ratio of the length of one of the first coil portion and the second coil portion to the total length of the sum of the two may range between 0.7/5.5 and 1.5/5.5. Further preferably, the ratio of the length of one of the first coil section and the second coil section to the total length of the sum of the two may range between 0.9/5.5 and 1.1/5.5.
  • the ratio of the length of one of the first coil portion and the second coil portion to the total length of the sum of the two may be set to 2.5/5.5, 2.0/5.5, 1.8/5.5, 1.5/5.5, 1.4/5.5, 1.3/5.5, 1.2/5.5, 1.1/5.5, 1.05/5.5, 1.02/5.5, 1/5.5, 0.97/5.5, 0.95/5.5, 0.9/5.5, 0.8/5.5, 0.7/5.5, 0.6/ 5.5 or 0.5/5.5 for better electromagnetic field distribution uniformity.
  • grounding end point is disposed between two adjacent power feeding points, that is, the two power feeding points share one grounding end point.
  • multiple ground terminals can be placed between the two power feed points, and since these ground terminals are equipotential, these ground terminals are considered to be one ground terminal.
  • the coil is divided into coil sections twice the number of power feed points, so that the overall voltage of the coil is lowered, so that the difference in potential distribution on the coil can be reduced, and the coil can be adjusted more finely.
  • the uniformity of the generated electromagnetic field in the reaction chamber can further improve the uniformity of plasma distribution.
  • each power feed point requires a set of matchers and RF power supplies.
  • the present invention has been described in detail in the foregoing embodiment with the upper electrode assembly including the dielectric cylinder, the present invention is not limited thereto.
  • the dielectric tube for feeding the RF energy on the coil into the reaction chamber may not be provided, but the coil is directly disposed in the reaction chamber, for example, online.
  • the ring is a consumable coil (the coil itself is a sputtering target, or the material of the coil is identical to the sputtering target).
  • the present invention also provides a reaction chamber 21 comprising the upper electrode assembly provided by the above embodiment of the present invention.
  • the upper electrode assembly includes a dielectric cylinder 22 and a coil 10 surrounding the dielectric cylinder 22, wherein the dielectric cylinder 22 is disposed in the sidewall 211 of the reaction chamber 21; the RF power source 12 passes through the matching device 11 and the coil 10 described above.
  • the power feed point 103 is electrically coupled for loading RF power to the coil 10 through the power feed point 103. RF energy is fed into the reaction chamber 21 through the media barrel 22.
  • a pedestal 24 is further disposed in the reaction chamber 21, and the susceptor 24 is electrically connected to the susceptor RF power source 26 through the pedestal matcher 25, and the pedestal RF power source 26 is used to apply a negative bias voltage to the pedestal 24.
  • the surface of the wafer is etched with a suction plasma.
  • the reaction chamber 21 further includes a Faraday shield 23 disposed around the inside of the dielectric cylinder 22 for protecting the dielectric cylinder 22 from plasma etching while avoiding splashing from the wafer surface.
  • the ejected residue adheres to the inner wall of the medium cylinder 22, so that the energy coupling efficiency of the medium cylinder 22 can be improved, and particle contamination in the reaction chamber 21 can be reduced.
  • the Faraday shield member 23 includes a conductive ring body on which a slit is formed to prevent eddy current loss and heat generation of the Faraday shield member 23.
  • the potential difference existing in the coil 10 can be further reduced, and the distribution of the electromagnetic field can be affected by the secondary distribution, thereby further improving the uniformity of the plasma distribution and improving the process uniformity.
  • the physical blocking action of the Faraday shield 23 it is possible to effectively prevent metal from being deposited on the inner wall of the dielectric cylinder 22, so that the magnetic field coupling efficiency can be prevented from being lowered.
  • the slit includes a first sub-slit 232 and a second sub-slit 231, wherein the first sub-slit 232 is disposed along the circumferential direction of the conductive ring, and An angle is formed between the axes of the conductive loops to increase the total coupling efficiency of the electromagnetic field by increasing the coupling efficiency of the electric field component of the electromagnetic field in the circumferential direction of the conductive ring.
  • An angle formed between the first sub-slit 232 and the axis of the conductive ring is 90°.
  • the first sub- slits 232 are plural and are evenly distributed along the circumferential direction of the conductive ring body.
  • the second sub-slit 231 is disposed along the axial direction of the conductive ring body, and the second sub-slot 231 is plural and evenly distributed along the circumferential direction of the conductive ring body.
  • the electromagnetic field generated by the coil 10 can be divided into a magnetic field component in the axial direction of the conductive ring body and an electric field component in the circumferential direction of the conductive ring body.
  • the magnetic field component in the axial direction of the conductive ring body can be fed into the reaction chamber 21 through the second sub-slot 231, and the electric field component in the circumferential direction of the conductive ring body is fed through the first sub-slit 232.
  • first sub-slot 232 may be disposed, and the first sub-slit 232 is inclined with respect to the axis of the conductive ring.
  • first sub-slit 232 and the conductive The angle formed between the axes of the rings is preferably 45°.
  • the sub-component of the magnetic field component in the axial direction of the conductive ring body in the oblique direction of the first sub-slit 232 can be fed into the reaction chamber 21 through the first sub-slit 232 while the circumferential direction of the conductive ring body
  • the sub-component of the upper electric field component in the oblique direction of the first sub-slit 232 can be fed into the reaction chamber 21 through the first sub-slit 232.
  • the Faraday shield 23 described above may be grounded or may be electrically suspended.
  • the Faraday shield 23 may be a single-layered cylindrical structure; or two or more layers of cylindrical structures formed by nesting two tubular structures of different diameters.
  • the upper end surface of the Faraday shield 23 is higher than the upper end surface of the dielectric cylinder 22; the lower end surface of the Faraday shield 23 is lower than the lower end surface of the dielectric cylinder 22 to ensure that the Faraday shield 23 completely covers the inner surface of the dielectric cylinder 22.
  • a roughening treatment such as spraying may be performed on the inner surface of the Faraday shield 23 to prevent the particles adhering to the inner surface of the Faraday shield 23 from falling off and contaminating the surface of the wafer.
  • the reaction chamber can be a pre-cleaning chamber.
  • the upper RF power source 28 in the pre-cleaning chamber can adopt a lower frequency (below 13.56 MHz), for example 2 MHz, which can slow down the excitation and ionization of hydrogen atoms, thereby
  • the low-temperature pre-cleaning process can be achieved by reducing the amount of heat released by the reaction of hydrogen atoms with the surface of the wafer.
  • the reaction chamber provided by the embodiment of the present invention can improve the uniformity of plasma distribution by using the upper electrode assembly provided by the above embodiment of the present invention, thereby improving process uniformity.
  • the present invention also provides a semiconductor processing apparatus including the reaction chamber described in the foregoing embodiments.
  • the semiconductor processing apparatus provided by the present invention can improve the uniformity of plasma distribution by using the above-described reaction chamber provided by the present invention, thereby improving process uniformity.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

一种上电极组件及反应腔室。该上电极组件包括线圈(10),所述线圈(10)中设置有n个功率馈入点(103),其中,n为大于等于1的整数;并且所述线圈(10)中设置有n+1个接地端点,所述功率馈入点(103)和所述接地端点的排布关系遵循以下规律:对于每一个所述功率馈入点(103)而言,沿线圈(10)的缠绕方向在所述功率馈入点(103)的上游和下游分别设置有一个接地端点,所述功率馈入点(103)和其上游接地端点之间的线圈构成第一线圈分部,所述功率馈入点(103)和其下游接地端点之间的线圈构成第二线圈分部,所述第一线圈分部和第二线圈分部并联在所述功率馈入点(103)和地之间。上述上电极组件和反应腔室(21),可以减小线圈(10)上存在的电位分布差异,从而可以提高等离子体的分布均匀性,进而可以提高工艺均匀性。

Description

上电极组件、反应腔室及半导体加工设备 技术领域
本发明涉及半导体制造技术领域,具体地,涉及一种上电极组件、反应腔室及半导体加工设备。
背景技术
在半导体制造工艺中,电感耦合等离子体(ICP,Inductive Coupled Plasma)发生装置可以在较低的工作气压下获得高密度的等离子体,而且结构简单,造价低,因此广泛应用于等离子体刻蚀(IC)、物理气相沉积(PVD)、等离子体化学气相沉积(CVD)、微电子机械系统(MEMS)和发光二极管(LED)等工艺中。
在进行工艺的过程中,为了提高产品的质量,在实施沉积工艺之前,首先要对晶片进行预清洗(Preclean),以去除晶片表面的氧化物等杂质。一般的预清洗腔室的基本原理是:将通入清洗腔室内的诸如氩气、氦气或氢气等的清洗气体激发形成等离子体,对晶片进行化学反应和物理轰击,从而可以去除晶片表面的杂质。
图1为现有的一种预清洗腔室的剖视图。请参阅图1,预清洗腔室包括腔体1,在该腔体1的顶部设置有介质筒2,且在该介质筒2的周围环绕设置有射频线圈3,该射频线圈3通过上匹配器4与上射频电源5电连接,上射频电源5用于向射频线圈3加载射频功率,由射频线圈3产生的电磁场能够通过介质筒2馈入至腔体1中,以激发腔体1中的工艺气体形成等离子体。并且,在腔体1中还设置有基座6,用于承载晶片7。并且,基座6通过下匹配器8和下射频电源9电连接,下射频电源9用于向基座6加载射频负偏压,以吸引等离子体刻蚀衬底表面。
如图2所示,上述射频线圈3的输入端用作功率馈入点与上匹配器4 电连接,上述射频线圈3的输出端接地。这会存在以下问题:由于高频的驻波效应,射频线圈3的每一匝的电位分布存在较大的差异,而且射频线圈3的不同匝之间的电位也存在较大的差异,这种差异会造成由射频线圈3产生的电磁场在反应腔室内分布不均匀,从而造成等离子体的分布均匀性较低,进而影响工艺均匀性。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种上电极组件及反应腔室,其可以减小线圈上存在的电位分布差异,从而可以提高等离子体的分布均匀性,进而可以提高工艺均匀性。
为实现本发明的目的而提供一种上电极组件,包括线圈,所述线圈中设置有n个功率馈入点,其中,n为大于等于1的整数;并且所述线圈中设置有n+1个接地端点,所述功率馈入点和所述接地端点的排布关系遵循以下规律:对于每一个所述功率馈入点而言,沿线圈的缠绕方向在所述功率馈入点的上游和下游分别设置有一个接地端点,所述功率馈入点和其上游接地端点之间的线圈构成第一线圈分部,所述功率馈入点和其下游接地端点之间的线圈构成第二线圈分部,所述第一线圈分部和第二线圈分部并联在所述功率馈入点和地之间。
其中,所述线圈为多匝柱状螺旋立体线圈。
其中,对于每一个所述功率馈入点来说,所述第一线圈分部和第二线圈分部二者其一的长度与二者之和的总长度的比值的取值范围在0.5/5.5~2.5/5.5之间;进一步,所述第一线圈分部和第二线圈分部二者其一的长度与二者之和的总长度的比值的取值范围在0.7/5.5~1.5/5.5之间;更进一步地,所述第一线圈分部和第二线圈分部二者其一的长度与二者之和的总长度的比值的取值范围在0.9/5.5~1.1/5.5之间。例如,所述第一线圈分部和第二线圈分部二者其一的长度与二者之和的总长度的比值为2.5/5.5、2.0/5.5、 1.8/5.5、1.5/5.5、1.4/5.5、1.3/5.5、1.2/5.5、1.1/5.5、1.05/5.5、1.02/5.5、1/5.5、0.97/5.5、0.95/5.5、0.9/5.5、0.8/5.5、0.7/5.5、0.6/5.5或者0.5/5.5。
其中,所述线圈为单匝线圈。
其中,对于每一个所述功率馈入点而言,其上游接地端点和下游接地端点中的至少一个通过阻抗配置装置接地,通过设定不同的所述阻抗配置装置的阻抗大小,来使两个所述第一线圈分部和第二线圈分部的电流方向相同或相反。
其中,所述阻抗匹配装置包括可调电容,所述可调电容的容值范围为0~2000pF。
其中,所述上电极组件还包括匹配器和功率源,所述功率源经由所述匹配器而与所述功率馈入点电连接;并且,所述阻抗配置装置和所述匹配器集成于同一个壳体中或者分别设置在不同的壳体中。
其中,所述上电极组件还包括介质筒,所述线圈环绕所述介质筒而设置在所述介质筒的外围。
作为另一个方面,本发明还提供一种反应腔室,其包括前述任意一方案所述的上电极组件,所述上电极组件还包括介质筒,所述线圈环绕所述介质筒而设置在所述介质筒的外围;所述反应腔室还包括法拉第屏蔽件,所述法拉第屏蔽件环绕设置在所述介质筒的内侧,并且所述法拉第屏蔽件包括导电环体,在所述导电环体上形成有开缝;所述开缝包括第一子开缝,所述第一子开缝沿所述导电环体的圆周方向设置,且与所述导电环体的轴线之间形成夹角,用以通过增加电磁场在所述导电环体的圆周方向上的电场分量的耦合效率,来增加该电磁场的总耦合效率。
其中,所述法拉第屏蔽件的上端面高于所述介质筒的上端面;所述法拉第屏蔽件的下端面低于所述介质筒的下端面。
其中,所述反应腔室为预清洗腔室。
作为再一个方面,本发明还提供一种半导体加工设备,其包括前述任意 一方案所述的反应腔室。
本发明具有以下有益效果:
本发明提供的上电极组件,其将功率馈入点设置在线圈的除端点之外的位置处,且该线圈的端点接地,以将线圈自该功率馈入点形成相互并联的多个线圈分部,使得线圈的整体阻抗降低,相应地,线圈的整体电压也降低,从而可以减小线圈上的电位分布差异,提高等离子体的分布均匀性,进而提高工艺均匀性。进一步地,在上电极组件包括介质筒的情况下,由于线圈的整体电压被降低,因而可以减少等离子体中的离子对介质筒的轰击,从而减少了反应腔室内的颗粒污染。
本发明提供的反应腔室及半导体加工设备,其通过采用本发明提供的上述上电极组件,可以提高等离子体的分布均匀性,从而可以提高工艺均匀性。
附图说明
图1为现有的一种预清洗腔室的剖视图;
图2为射频线圈的功率馈入点的位置示意图;
图3A为本发明实施例提供的上电极组件的一种结构图;
图3B为本发明实施例提供的上电极组件的另一种结构图;
图4A为采用现有技术中的线圈进行刻蚀工艺获得的晶片刻蚀深度分布图;
图4B为采用本发明实施例中的一种线圈进行刻蚀工艺获得的晶片刻蚀深度分布图;
图4C为采用本发明实施例中的另一种线圈进行刻蚀工艺获得的晶片刻蚀深度分布图;
图4D为采用本发明实施例中的又一种线圈进行刻蚀工艺获得的晶片刻蚀深度分布图;
图4E为采用本发明实施例中的再一种线圈进行刻蚀工艺获得的晶片刻 蚀深度分布图;
图5为本发明实施例提供的具有两个功率馈入点的上电极组件的结构图;
图6为本发明实施例提供的反应腔室的剖视图;
图7为本发明实施例采用的法拉第屏蔽件的结构图。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图来对本发明提供的上电极组件、反应腔室及半导体加工设备进行详细描述。
请参阅图3A,本实施例提供的上电极组件包括线圈10,在该线圈10上设置有功率馈入点103,其位于线圈10的除端点(第一端101和第二端102)之外的位置处。并且,线圈10的端点接地,由此,上述线圈10自功率馈入点103形成相互并联的多个线圈分部。射频电源12通过匹配器11与上述功率馈入点103电连接,用于通过该功率馈入点103向线圈10加载射频功率。
如图3B所示,在本实施例中,上电极组件还包括介质筒22,线圈10上的射频能量通过该介质筒22馈入反应腔室中。该介质筒22呈环状结构,且线圈10为多匝柱状螺旋立体线圈,并环绕在该介质筒22周围。在本实施例中,功率馈入点103为一个,且位于线圈10的除第一端101与第二端102之外的某一指定位置处,以使该线圈10自该功率馈入点103形成两个线圈分部,具体为(参照图3A):第一线圈分部104和第二线圈分部105。其中,第一线圈分部104位于功率馈入点103的上方;第二线圈分部105位于功率馈入点103的下方。
通过将线圈10分成相互并联的两个线圈分部,使得线圈10的整体阻抗降低,相应地,线圈10的整体电压也降低,从而可以减小线圈上的电位分 布差异,例如,可以减小每个线圈分部中的每匝上的电位分布差异以及不同匝之间的电位差异,从而可以提高由线圈10产生的电磁场在反应腔室内的分布均匀性,进而可以提高等离子体的分布均匀性,提高工艺均匀性。进一步地,在上电极组件包括介质筒22的情况下,由于线圈10的整体电压被降低,因而可以减少等离子体中的离子对介质筒22的轰击,从而减少反应腔室内的颗粒污染。
在实际应用中,可以通过改变功率馈入点103在线圈10上的位置,来调节由线圈10产生的电磁场在反应腔室内的分布情况。可以通过设定第二线圈分部105的不同长度,来改变功率馈入点103在线圈10上的位置,优选的,线圈10的总匝数为5.5,而第二线圈分部105的长度(单位为匝)与线圈10的总长度(单位为匝)的比值的取值范围在0.9/5.5~1.1/5.5之间。采用上述范围内的比值,可以获得较好的电磁场分布均匀性。
下面为采用现有技术中的线圈和本发明实施例中的线圈进行刻蚀工艺,以及采用本发明实施例中的不同功率馈入点的位置的线圈进行刻蚀工艺的对比试验。在该对比试验中,线圈10的总匝数为5.5。
采用现有技术中的线圈进行刻蚀工艺获得的晶片刻蚀深度分布如图4A所示,在晶片表面上,刻蚀深度等高线呈梯度式偏心分布,从而刻蚀均匀性较低,一般为3%左右,没有达到工艺要求(2%)。另外,刻蚀深度等高线呈梯度式偏心分布可能会引起晶片表面损伤的问题。
采用本发明实施例中的线圈10,且使第二线圈分部105的长度与线圈10的总长度的比值为1.15/5.5,采用该功率馈入点103位置的线圈10进行刻蚀工艺获得的晶片刻蚀深度分布如图4B所示,刻蚀深度等高线仍然呈梯度式偏心分布,刻蚀均匀性较低,而且可能会引起晶片表面损伤的问题。
采用本发明实施例中的线圈10,且使第二线圈分部105的长度与线圈10的总长度的比值为1.1/5.5或1.05/5.5,采用这两种该功率馈入点103位置的线圈10进行刻蚀工艺获得的晶片刻蚀深度分布如图4C和图4D所示,刻 蚀深度等高线趋于同心分布,刻蚀均匀性有所提高(可达到2%),从而可以满足工艺要求,而且可以避免晶片表面损伤。
采用本发明实施例中的线圈10,且使第二线圈分部105的长度与线圈10的总长度的比值为1/5.5,采用这该功率馈入点103位置的线圈10进行刻蚀工艺获得的晶片刻蚀深度分布如图4E所示,刻蚀深度等高线的同心分布情况优于图4C和图4D所示。
另外,在本实施例中,如图3A所示,线圈10的第一端101通过阻抗配置装置13接地,而第二端102直接接地。通过设定阻抗配置装置13的阻抗大小,来使第一线圈分部104和第二线圈分部105的电流方向相同或相反。具体来说,第一线圈分部104的下端接地,上端为功率馈入点103,由此第一线圈分部104中的电流自功率馈入点103向接地的下端流动。若使阻抗配置装置13的阻抗足够大,则第二线圈分部105中的电流自第二线圈分部105的连接阻抗配置装置13的上端(即第一端101)朝向功率馈入点103流动,由此,第一线圈分部104和第二线圈分部105的电流方向相同。反之,若使阻抗配置装置13的阻抗足够小,则第二线圈分部105中的电流自功率馈入点103朝向第二线圈分部105的与阻抗配置装置13连接的上端流动,由此,第一线圈分部104和第二线圈分部105的电流方向相反。因此,通过设定阻抗配置装置13的阻抗大小,例如,使之足够大或者足够小,能够改变第二线圈分部105中的电流方向。
若第一线圈分部104和第二线圈分部105的电流方向相反,则分别由第一线圈分部104和第二线圈分部105产生的两个电磁场相互抵消,这会对在二者之间存在的磁场强度差异进行补偿,从而进一步提高了由上述两个电磁场形成的叠加磁场的分布均匀性。但是,上述两个电磁场的相互抵消会减小叠加磁场的磁场强度,从而减小了等离子体密度,因此,该方式适用于对等离子体密度要求不高的工艺。而对于对等离子体密度要求较高的工艺,则可以使第一线圈分部104和第二线圈分部105的电流方向相同,以提高等离子 体密度。
上述阻抗配置装置13可以包括可调电容。在进行工艺之前,可以根据具体需要设置可调电容的大小,以获得所需的阻抗值,从而提高了阻抗调节的灵活性。上述可调电容的可调范围在0~2000pF,例如,0pF,20pF,50pF,100pF,200pF,300pF,500pF,800pF,900pF,1000pF,1200pF,1500pF,2000pF等。
另外,上述阻抗配置装置13在起到决定电流方向的基础上,还可以通过选择合适的阻抗大小,来使匹配器11更容易实现阻抗匹配。例如,当线圈10的总匝数为5.5,第二线圈分部105的长度与线圈10的总长度的比值为1.1/5.5、1.05/5.5或者1/5.5时,上述可调电容的电容值可以在200~500pF的范围内设定,200pF,250pF,300pF,350pF,400pF,450pF,500pF等,优选为350pF。
在实际应用中,上述阻抗配置装置13和匹配器111可以集成于同一个壳体,也可以分别设置在不同的壳体中。可以理解,二者集成在同一个壳体中,可以减小设备的占用空间。
需要说明的是,在本实施例中,线圈10的第一端101通过阻抗配置装置13接地,而第二端102直接接地,但是本发明并不局限于此,在实际应用中,也可以使线圈10的第一端101直接接地,而第二端102通过阻抗配置装置13接地;或者,也可以分别为线圈10的第一端101和第二端102配置阻抗配置装置13,且使阻抗配置装置13接地;或者,还可以使线圈10的第一端101和第二端102均直接接地。
还需要说明的是,在本实施例中,线圈10为多匝柱状螺旋立体线圈,即,该线圈10以螺旋线方式沿轴线方向延伸形成轮廓为柱体的立体结构,但是,本发明并不局限于此,在实际应用中,线圈10也可以为单匝线圈。无论是单匝线圈还是多匝线圈,构成该线圈的导线沿垂直于该导线的轴向的方向进行剖切所得到的截面的形状不受限制,例如,为梯形、矩形、正方形、 圆形、椭圆形等。
进一步需要说明的是,在本实施例中,功率馈入点的数量为一个,但是本发明并不局限于此,在实际应用中,功率馈入点的数量还可以为多个,且不同的功率馈入点位于线圈的除端点之外的不同位置,并且在相邻的两个功率馈入点之间设置有接地端点,即,在该线圈上,对应于每一个功率馈入点,在其上游端和下游端均设置有接地端点,使得对于每一个功率馈入点均设置有并联在该功率馈入点和地之间的两个线圈分部,这样,在该线圈中,线圈分部的数量为功率馈入点数量的两倍。例如,功率馈入点103为n个,线圈分部的数量为2n个,接地端点的数量为n+1个,其中,n为大于等于1的整数。功率馈入点和接地端点的排布关系遵循以下规律:对于每一个功率馈入点而言,沿线圈的缠绕方向在该功率馈入点的上游和下游分别设置有一个接地端点,该功率馈入点和其上游接地端点之间的线圈构成对应于该功率馈入点的第一线圈分部,该功率馈入点和其下游接地端点之间的线圈构成对应于该功率馈入点的第二线圈分部,该第一线圈分部和第二线圈分部并联在该功率馈入点和地之间。
例如图5就示出了具有两个功率馈入点的一种上电极组件的结构图。如图5所示,本实施例提供的上电极组件包括线圈10,在该线圈10上设置有第一功率馈入点1031和第二功率馈入点1032,其位于线圈10的除上端点101和下端点1022之外的位置处,且上端点101定义为第一端点,下端点1022定义为第二端点,线圈10的缠绕方向为自上向下。其中,第一射频电源121通过第一匹配器111与第一功率馈入点1031电连接,第二射频电源122通过第二匹配器112与第二功率馈入点1032电连接,用于通过第一功率馈入点1031和第二功率馈入点1032向线圈10加载射频功率。对应于第一功率馈入点1031,沿该线圈10的缠绕方向在第一功率馈入点1031的上游和下游分别设置有接地端点101和1021,该功率馈入点1031和其上游接地端点101之间的那一段线圈构成第一线圈分部,该功率馈入点1031 和其下游接地端点1021之间的那一段线圈构成第二线圈分部,该第一线圈分部和第二线圈分部并联在该功率馈入点1031和地之间。对应于第二功率馈入点1032,沿该线圈10的缠绕方向在第二功率馈入点1032的上游和下游分别设置有接地端点1021和1022,该功率馈入点1032和其上游接地端点1021之间的那一段线圈构成第一线圈分部,该功率馈入点1032和其下游接地端点1022之间的那一段线圈构成第二线圈分部,该第一线圈分部和第二线圈分部并联在该功率馈入点1032和地之间。
在图5所示的上电极组件中,每一个功率馈入点及其所对应的两个接地端点、第一线圈分部和第二线圈分部以及相应的阻抗配置装置构成一个上电极单元组件,每一个上电极单元组件均类同于前面结合图3A和图3B所描述的实施例中的上电极组件,各上电极单元组件的结构、配置、参数选择及由此带来的相应效果均类似于前述图3A至图4E所示实施例,例如,每一个功率馈入点所对应的第一线圈分部和第二线圈分部的匝数关系所产生的效果类似于前述图3A至图4E所示实施例,即,对于每一个功率馈入点来说,第一线圈分部和第二线圈分部二者其一的长度与二者之和的总长度的比值的取值范围优选在0.5/5.5~2.5/5.5之间。进一步优选地,第一线圈分部和第二线圈分部二者其一的长度与二者之和的总长度的比值的取值范围可在0.7/5.5~1.5/5.5之间。进一步优选地,第一线圈分部和第二线圈分部二者其一的长度与二者之和的总长度的比值的取值范围可在0.9/5.5~1.1/5.5之间。例如,可以将第一线圈分部和第二线圈分部二者其一的长度与二者之和的总长度的比值设定为2.5/5.5、2.0/5.5、1.8/5.5、1.5/5.5、1.4/5.5、1.3/5.5、1.2/5.5、1.1/5.5、1.05/5.5、1.02/5.5、1/5.5、0.97/5.5、0.95/5.5、0.9/5.5、0.8/5.5、0.7/5.5、0.6/5.5或者0.5/5.5,以获得较好的电磁场分布均匀性。
可以理解的是,当功率馈入点的数量为两个以上时,相邻两个功率馈入点之间设置有一个接地端点,即,这两个功率馈入点共享一个接地端点。事实上,在两个功率馈入点之间可以设置多个接地端子,由于这些接地端子等 电位,因此将这些接地端子视为一个接地端点。对于线圈端点附近的接地端点,也做上述理解,在此不再赘述。
进一步可以理解的是,线圈被分割为2倍于功率馈入点数量的线圈分部,这样,线圈的整体电压降低,从而可以减小线圈上的电位分布差异,并且更加细化地调节该线圈产生的电磁场在反应腔室内的分布均匀性,从而可以进一步提高等离子体的分布均匀性。另外,对于多个功率馈入点,每个功率馈入点需要配备一套匹配器和射频电源。
此外,还需要说明的是,尽管前述实施例中以包含有介质筒的上电极组件对本发明进行了详细说明,但是本发明并不局限于此。在实际应用中,在不影响工艺质量的情况下,也可以不设置用来将线圈上的射频能量馈入反应腔室中的介质筒,而是将线圈直接设置在反应腔室内,例如,在线圈为消耗型线圈(线圈本身即为溅射靶材,或者线圈的材质与溅射靶材一致)的情况下。
作为另一个技术方案,如图6所示,本发明还提供一种反应腔室21,其包括本发明上述实施例提供的上电极组件。该上电极组件包括介质筒22和环绕在该介质筒22周围的线圈10,其中,介质筒22设置在反应腔室21的侧壁211中;射频电源12通过匹配器11与线圈10上的上述功率馈入点103电连接,用于通过该功率馈入点103向线圈10加载射频功率。射频能量通过介质筒22馈入反应腔室21中。并且,在反应腔室21中还设置有基座24,该基座24通过基座匹配器25与基座射频电源26电连接,基座射频电源26用于向基座24加载负偏压,以吸引等离子体刻蚀晶片表面。
在本实施例中,反应腔室21还包括法拉第屏蔽件23,该法拉第屏蔽件23环绕设置在介质筒22的内侧,用于保护介质筒22不被等离子体刻蚀,同时避免自晶片表面溅射出来的残留物附着在介质筒22的内壁上,从而可以提高介质筒22的能量耦合效率,减少反应腔室21内的颗粒污染。并且,法拉第屏蔽件23包括导电环体,在该导电环体上形成有开缝,以避免法拉 第屏蔽件23产生涡流损耗和发热。
借助上述法拉第屏蔽件23的电磁屏蔽效应,可以进一步减小线圈10中存在的电位差异,而且可以对电磁场的分布产生二次分布影响,从而可以进一步提高等离子体的分布均匀性,提高工艺均匀性。另外,借助法拉第屏蔽件23的物理阻挡作用,可以有效防止金属沉积在介质筒22的内壁上,从而可以避免磁场耦合效率降低。
在本实施例中,如图7所示,上述开缝包括第一子开缝232和第二子开缝231,其中,第一子开缝232沿上述导电环体的圆周方向设置,且与该导电环体的轴线之间形成夹角,用以通过增加电磁场在导电环体的圆周方向上的电场分量的耦合效率,来增加该电磁场的总耦合效率。该第一子开缝232与该导电环体的轴线之间所形成的夹角为90°。上述第一子开缝232为多个,且沿上述导电环体的圆周方向均匀分布。第二子开缝231沿导电环体的轴向设置,且该第二子开缝231为多个,且沿上述导电环体的圆周方向均匀分布。
由线圈10产生的电磁场可以划分为导电环体的轴向上的磁场分量和导电环体的圆周方向上的电场分量。导电环体的轴向上的磁场分量能够通过上述第二子开缝231馈入反应腔室21内,同时,导电环体的圆周方向上的电场分量通过上述第一子开缝232馈入反应腔室21内,从而增加了电磁场的总耦合效率。
需要说明的是,在实际应用中,也可以仅设置上述第一子开缝232,且该第一子开缝232相对于导电环体的轴线倾斜,优选的,第一子开缝232与导电环体的轴线之间形成夹角优选为45°。这样,导电环体的轴向上的磁场分量在该第一子开缝232的倾斜方向上的子分量能够通过第一子开缝232馈入反应腔室21内,同时导电环体的圆周方向上的电场分量在该第一子开缝232的倾斜方向上的子分量能够通过第一子开缝232馈入反应腔室21内。
在实际应用中,上述法拉第屏蔽件23可以接地,或者也可以电位悬浮。 并且,法拉第屏蔽件23可以为单层的筒状结构;也可以为两个直径不同的筒状结构嵌套在一起而形成的2层或更多层的筒状结构。
优选的,法拉第屏蔽件23的上端面高于介质筒22的上端面;法拉第屏蔽件23的下端面低于介质筒22的下端面,以保证法拉第屏蔽件23完全覆盖介质筒22的内表面。另外,可以在法拉第屏蔽件23的内表面做熔射等的粗化处理,以防止附着在法拉第屏蔽件23的内表面上的颗粒脱落,污染晶片表面。
在实际应用中,反应腔室可以为预清洗腔室。
优选的,对于含氢的预清洗工艺,预清洗腔室中的上射频电源28可以采用较低的频率(13.56MHz以下),例如2MHz,这可以使氢原子的激发和离化程度减缓,从而减少氢原子与晶片表面反应释放出的热量,从而可以实现低温预清洗工艺。
综上所述,本发明实施例提供的反应腔室,其通过采用本发明上述实施例提供的上电极组件,可以提高等离子体的分布均匀性,从而可以提高工艺均匀性。
作为再一个技术方案,本发明还提供一种半导体加工设备,其包括前述实施例所述的反应腔室。本发明提供的半导体加工设备通过采用本发明提供的上述反应腔室,可以提高等离子体的分布均匀性,从而可以提高工艺均匀性。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (15)

  1. 一种上电极组件,包括线圈,其特征在于,所述线圈中设置有n个功率馈入点,其中,n为大于等于1的整数;并且所述线圈中设置有n+1个接地端点,所述功率馈入点和所述接地端点的排布关系遵循以下规律:对于每一个所述功率馈入点而言,沿线圈的缠绕方向在所述功率馈入点的上游和下游分别设置有一个接地端点,所述功率馈入点和其上游接地端点之间的线圈构成第一线圈分部,所述功率馈入点和其下游接地端点之间的线圈构成第二线圈分部,所述第一线圈分部和第二线圈分部并联在所述功率馈入点和地之间。
  2. 根据权利要求1所述的上电极组件,其特征在于,所述线圈为多匝柱状螺旋立体线圈。
  3. 根据权利要求2所述的上电极组件,其特征在于,对于每一个所述功率馈入点来说,所述第一线圈分部和第二线圈分部二者其一的长度与二者之和的总长度的比值的取值范围在0.5/5.5~2.5/5.5之间。
  4. 根据权利要求3所述的上电极组件,其特征在于,所述第一线圈分部和第二线圈分部二者其一的长度与二者之和的总长度的比值的取值范围在0.7/5.5~1.5/5.5之间。
  5. 根据权利要求4所述的上电极组件,其特征在于,所述第一线圈分部和第二线圈分部二者其一的长度与二者之和的总长度的比值的取值范围在0.9/5.5~1.1/5.5之间。
  6. 根据权利要求3所述的上电极组件,其特征在于,所述第一线圈分 部和第二线圈分部二者其一的长度与二者之和的总长度的比值为2.5/5.5、2.0/5.5、1.8/5.5、1.5/5.5、1.4/5.5、1.3/5.5、1.2/5.5、1.1/5.5、1.05/5.5、1.02/5.5、1/5.5、0.97/5.5、0.95/5.5、0.9/5.5、0.8/5.5、0.7/5.5、0.6/5.5或者0.5/5.5。
  7. 根据权利要求1所述的上电极组件,其特征在于,所述线圈为单匝线圈。
  8. 根据权利要求1所述的上电极组件,其特征在于,对于每一个所述功率馈入点而言,其上游接地端点和下游接地端点中的至少一个通过阻抗配置装置接地,通过设定不同的所述阻抗配置装置的阻抗大小,来使两个所述第一线圈分部和第二线圈分部的电流方向相同或相反。
  9. 根据权利要求8所述的上电极组件,其特征在于,所述阻抗匹配装置包括可调电容,所述可调电容的容值范围为0~2000pF。
  10. 根据权利要求8所述的上电极组件,其特征在于,所述上电极组件还包括匹配器和功率源,所述功率源经由所述匹配器而与所述功率馈入点电连接;并且,所述阻抗配置装置和所述匹配器集成于同一个壳体中或者分别设置在不同的壳体中。
  11. 根据权利要求1-10中任意一项所述的上电极组件,其特征在于,所述上电极组件还包括介质筒,所述线圈环绕所述介质筒而设置在所述介质筒的外围。
  12. 一种反应腔室,其特征在于,包括权利要求1-10任意一项所述的上电极组件,所述上电极组件还包括介质筒,所述线圈环绕所述介质筒而设置在所述介质筒的外围;
    所述反应腔室还包括法拉第屏蔽件,所述法拉第屏蔽件环绕设置在所述介质筒的内侧,并且所述法拉第屏蔽件包括导电环体,在所述导电环体上形成有开缝;
    所述开缝包括第一子开缝,所述第一子开缝沿所述导电环体的圆周方向设置,且与所述导电环体的轴线之间形成夹角,用以通过增加电磁场在所述导电环体的圆周方向上的电场分量的耦合效率,来增加该电磁场的总耦合效率。
  13. 根据权利要求12所述的反应腔室,其特征在于,所述法拉第屏蔽件的上端面高于所述介质筒的上端面;所述法拉第屏蔽件的下端面低于所述介质筒的下端面。
  14. 根据权利要求12所述的反应腔室,其特征在于,所述反应腔室为预清洗腔室。
  15. 一种半导体加工设备,其特征在于,包括权利要求10-14任意一项所述的反应腔室。
PCT/CN2018/082678 2017-07-27 2018-04-11 上电极组件、反应腔室及半导体加工设备 WO2019019700A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710623176.6 2017-07-27
CN201710623176.6A CN107256822B (zh) 2017-07-27 2017-07-27 上电极组件及反应腔室

Publications (1)

Publication Number Publication Date
WO2019019700A1 true WO2019019700A1 (zh) 2019-01-31

Family

ID=60025713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082678 WO2019019700A1 (zh) 2017-07-27 2018-04-11 上电极组件、反应腔室及半导体加工设备

Country Status (3)

Country Link
CN (1) CN107256822B (zh)
TW (1) TWI681693B (zh)
WO (1) WO2019019700A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107256822B (zh) * 2017-07-27 2019-08-23 北京北方华创微电子装备有限公司 上电极组件及反应腔室
CN109712859B (zh) * 2017-10-25 2021-06-08 北京北方华创微电子装备有限公司 一种腔室
CN110536533A (zh) * 2018-06-07 2019-12-03 北京北方华创微电子装备有限公司 上电极系统、等离子体腔室及等离子体产生方法
CN110660635B (zh) * 2018-06-29 2022-08-16 北京北方华创微电子装备有限公司 工艺腔室和半导体处理设备
CN111799197A (zh) * 2020-07-27 2020-10-20 上海邦芯半导体设备有限公司 感性耦合反应器及其工作方法
CN114446761B (zh) * 2022-01-26 2024-06-21 北京北方华创微电子装备有限公司 半导体工艺设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540824A (en) * 1994-07-18 1996-07-30 Applied Materials Plasma reactor with multi-section RF coil and isolated conducting lid
US6020686A (en) * 1995-05-08 2000-02-01 Applied Materials, Inc. Inductively and multi-capacitively coupled plasma reactor
US20040182319A1 (en) * 2003-03-18 2004-09-23 Harqkyun Kim Inductively coupled plasma generation system with a parallel antenna array having evenly distributed power input and ground nodes
CN101582322A (zh) * 2008-05-12 2009-11-18 北京北方微电子基地设备工艺研究中心有限责任公司 一种电感耦合线圈及采用该耦合线圈的等离子体处理装置
CN103014745A (zh) * 2011-09-28 2013-04-03 北京北方微电子基地设备工艺研究中心有限责任公司 一种等离子体预清洗装置
CN107256822A (zh) * 2017-07-27 2017-10-17 北京北方华创微电子装备有限公司 上电极组件及反应腔室

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW327236B (en) * 1996-03-12 1998-02-21 Varian Associates Inductively coupled plasma reactor with faraday-sputter shield
US6353206B1 (en) * 1996-05-30 2002-03-05 Applied Materials, Inc. Plasma system with a balanced source
JP2002237486A (ja) * 2001-02-08 2002-08-23 Tokyo Electron Ltd プラズマ処理装置およびプラズマ処理方法
KR100777151B1 (ko) * 2006-03-21 2007-11-16 주식회사 디엠에스 하이브리드형 플라즈마 반응장치
US9137884B2 (en) * 2006-11-29 2015-09-15 Lam Research Corporation Apparatus and method for plasma processing
JP5800532B2 (ja) * 2011-03-03 2015-10-28 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
US9293353B2 (en) * 2011-04-28 2016-03-22 Lam Research Corporation Faraday shield having plasma density decoupling structure between TCP coil zones
WO2016125606A1 (ja) * 2015-02-02 2016-08-11 株式会社日立国際電気 半導体装置の製造方法、記録媒体及び基板処理装置
CN207338296U (zh) * 2017-07-27 2018-05-08 北京北方华创微电子装备有限公司 上电极组件、反应腔室及半导体加工设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540824A (en) * 1994-07-18 1996-07-30 Applied Materials Plasma reactor with multi-section RF coil and isolated conducting lid
US6020686A (en) * 1995-05-08 2000-02-01 Applied Materials, Inc. Inductively and multi-capacitively coupled plasma reactor
US20040182319A1 (en) * 2003-03-18 2004-09-23 Harqkyun Kim Inductively coupled plasma generation system with a parallel antenna array having evenly distributed power input and ground nodes
CN101582322A (zh) * 2008-05-12 2009-11-18 北京北方微电子基地设备工艺研究中心有限责任公司 一种电感耦合线圈及采用该耦合线圈的等离子体处理装置
CN103014745A (zh) * 2011-09-28 2013-04-03 北京北方微电子基地设备工艺研究中心有限责任公司 一种等离子体预清洗装置
CN107256822A (zh) * 2017-07-27 2017-10-17 北京北方华创微电子装备有限公司 上电极组件及反应腔室

Also Published As

Publication number Publication date
TW201911977A (zh) 2019-03-16
TWI681693B (zh) 2020-01-01
CN107256822A (zh) 2017-10-17
CN107256822B (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
TWI681693B (zh) 上電極元件、反應腔室及半導體加工裝置
JP5277473B2 (ja) プラズマ処理装置
KR101456810B1 (ko) 플라즈마 가공 설비
CN106469636B (zh) 通电的静电法拉第屏蔽用于修复icp中的介电窗
KR101142411B1 (ko) 플라즈마처리장치
KR101480738B1 (ko) 환형 배플
US20150200078A1 (en) Plasma etching apparatus
US20150243483A1 (en) Tunable rf feed structure for plasma processing
US11705307B2 (en) Plasma system and filter device
JP6001963B2 (ja) プラズマ処理装置、プラズマ生成装置、アンテナ構造体及びプラズマ生成方法
CN110770880B (zh) 等离子处理装置
KR20100129368A (ko) 복합 주파수를 이용한 대면적 플라즈마 반응기
JP2013149960A (ja) プラズマ処理装置
CN207338296U (zh) 上电极组件、反应腔室及半导体加工设备
KR100931846B1 (ko) 유도성 결합 플라즈마의 내장형 rf 안테나 및 이를장착한 플라즈마 챔버
US20220208512A1 (en) Induction Coil Assembly for Plasma Processing Apparatus
US20210391150A1 (en) Plasma Source Configuration
KR101013729B1 (ko) 콘 형상의 3차원 헬릭스 인덕티브 코일을 가지는 플라즈마 반응장치
TW202145291A (zh) 電漿處理裝置及其導磁組件與方法
KR20050087138A (ko) 플라즈마 발생용 하이브리드 안테나
JP2018081761A (ja) プラズマ発生アンテナユニットおよびプラズマ処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18837544

Country of ref document: EP

Kind code of ref document: A1