WO2019019693A1 - 多孔超声波轴承 - Google Patents

多孔超声波轴承 Download PDF

Info

Publication number
WO2019019693A1
WO2019019693A1 PCT/CN2018/081801 CN2018081801W WO2019019693A1 WO 2019019693 A1 WO2019019693 A1 WO 2019019693A1 CN 2018081801 W CN2018081801 W CN 2018081801W WO 2019019693 A1 WO2019019693 A1 WO 2019019693A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
bearing bushing
axial
bushing
vibration plate
Prior art date
Application number
PCT/CN2018/081801
Other languages
English (en)
French (fr)
Inventor
陈学锋
凃明霞
Original Assignee
顺德职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 顺德职业技术学院 filed Critical 顺德职业技术学院
Publication of WO2019019693A1 publication Critical patent/WO2019019693A1/zh
Priority to US16/408,379 priority Critical patent/US10641329B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0629Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/30Electric properties; Magnetic properties
    • F16C2202/36Piezoelectric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/30Electric properties; Magnetic properties
    • F16C2202/40Magnetic
    • F16C2202/42Magnetic soft-magnetic, ferromagnetic

Definitions

  • the invention belongs to the field of coupling and transmission technology of modern mechanical equipment, and particularly relates to a porous ultrasonic bearing.
  • bearings are the most widely used support and transmission parts, especially in the transmission of high-precision precision machines, because of their high transmission accuracy and extremely low frictional resistance, they are widely used, but It also has the disadvantages of complicated manufacturing process, high production cost, high use and maintenance cost.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a porous ultrasonic bearing, which can generate high frequency vibration, greatly reduce the friction between the contact surfaces of the transmission pairs, thereby reducing bearing transmission friction, improving motion transmission accuracy, and long service life. Reduce manufacturing and usage costs.
  • a porous ultrasonic bearing comprising a ring, a high-strength outer casing and a bearing bushing, the high-strength outer sleeve being sleeved on the bearing bushing.
  • the bearing bushing is provided with a penetrating radial hole set, characterized in that it further comprises a vibration collar, the vibration collar is arranged between the high-strength outer casing and the bearing bushing, the outer cylindrical surface of the vibration collar and the high strength
  • the inner holes of the outer sleeve are consolidated together, and there is a certain gap between the inner hole of the vibrating collar and the outer cylindrical surface of the bearing bushing, and the vibrating collar can be subjected to radial high frequency vibration.
  • the vibration collar may be a piezoelectric material or a magnetostrictive material; the vibration collar may be an integral type, or may be an axial segmentation or a circumferential segmentation.
  • a porous ultrasonic bearing comprising a ring, a high-strength outer casing and a bearing bushing, the high-strength outer casing being sleeved on a bearing bushing
  • the bearing bushing is provided with a penetrating radial hole group, wherein the inner hole of the high-strength outer casing is a regular polygonal hole, and the outer part of the bearing bushing is a regular polygon, and the inner hole of the high-strength outer casing is A radial vibration plate is fixed on each side of the regular polygon, and the radial vibration plate has a certain gap with a face of the outer regular polygon of the bearing bushing, and the radial vibration plate can be used for high-frequency vibration in the thickness direction during operation.
  • the radial vibration plate can be used for high-frequency vibration in the thickness direction during operation.
  • the vibration plate may be a piezoelectric material or a magnetostrictive material.
  • a third technical solution of the present invention is achieved by a porous ultrasonic bearing including a bearing bush and an end cap, and a through hole axial hole group is provided at the bottom of the bearing bush
  • the end cap is coupled with the bottom of the bearing bushing, and is characterized in that an axial vibration plate is arranged between the bottom of the bearing bush and the end cover, and the axial vibration plate is fixed together with the end cover, the axial vibration plate and There is a gap in the bearing bushing portion. When working, the axial vibration plate can vibrate in the thickness direction.
  • the bottom of the bearing bushing may be a flat bottom shape or a spherical shape or other shape;
  • the axial vibration plate may be a piezoelectric material or a magnetostrictive material.
  • a porous ultrasonic bearing comprising a ring, a high-strength outer casing, and a bearing bushing end cap, the high-strength outer sleeve being sleeved on a bearing bushing
  • the bearing bushing is provided with a penetrating radial hole group, and a through hole axial hole group is arranged at the bottom of the bearing bushing, and the end cap is coupled with the bottom of the bearing bushing, and is characterized in that the vibration sleeve is further included a ring and an axial vibration plate, the vibration collar is disposed between the high-strength outer casing and the bearing bushing, and the outer cylindrical surface of the vibration collar is consolidated with the inner hole of the high-strength outer casing, and the inner hole and the bearing of the vibration collar a bushing has a certain gap between the outer cylindrical faces; the axial vibrating plate is disposed between the bottom of the
  • the bottom of the bearing bushing may be flat bottom, the bottom of the bearing bush may be spherical, and the bottom may have other shapes;
  • the vibrating collar may be a piezoelectric material or a magnetostrictive material;
  • the vibrating collar It may be a unitary type, or may be an axial segmentation or a circumferential segmentation;
  • the axial vibration plate may be a piezoelectric material or a magnetostrictive material.
  • an ultrasonic bearing comprising a ring, a high-strength outer casing, a bearing bushing and an end cap, the high-strength outer sleeve being sleeved on the bearing bushing
  • a bearing radial bushing is provided on the bearing bushing
  • the end cap is coupled with the bottom of the bearing bushing
  • a through hole axial hole group is provided at the bottom of the bearing bushing, characterized in that the high strength
  • the inner hole of the outer sleeve is a regular polygonal hole
  • the outer part of the bearing bushing is a regular polygon
  • a radial vibration plate is fixed on each side of the regular polygon of the inner hole of the high-strength outer casing, the radial vibration plate and the bearing
  • One face of the outer regular polygon of the bushing has a certain gap, and the radial vibrating plate can be vibrated in the thickness direction during operation;
  • the bottom of the bearing bushing may be flat bottom, the bottom may be spherical, and the bottom may be other shapes; the radial vibration plate and the axial vibration plate may be piezoelectric materials, magnetic
  • the stretchable material can also be other materials that generate high frequency vibration.
  • the invention Compared with the prior art, the invention has the advantages of simple structure, high-frequency vibration, greatly reduced friction between the contact surfaces of the transmission pairs, reduced bearing transmission friction, improved motion transmission accuracy, long service life, reduced manufacturing and use. cost.
  • Embodiment 1 is a schematic structural view of Embodiment 1 and Embodiment 2 of the present invention
  • Figure 2 is a cross-sectional view of the vibration collar of Figure 1 as a unitary A-A;
  • Figure 3 is a cross-sectional view of the vibration collar of Figure 1 taken along the circumferential direction of the section A-A;
  • Embodiment 3 of the present invention is a schematic structural view of Embodiment 3 of the present invention.
  • Figure 5 is a cross-sectional view taken along line B-B of Figure 4.
  • Figure 6 is a schematic structural view of Embodiment 4 of the present invention.
  • Figure 7 is a schematic structural view of Embodiment 5 of the present invention.
  • Embodiment 8 is a schematic structural diagram of Embodiment 6 and Embodiment 7 of the present invention.
  • Figure 9 is a cross-sectional view taken along line C-C of the vibration collar of Figure 8.
  • Figure 10 is a cross-sectional view taken along line C-C of the vibration collar of Figure 8 in a circumferential direction;
  • FIG 11 is a schematic structural view of Embodiment 8 of the present invention.
  • Figure 12 is a schematic structural view of Embodiment 9 of the present invention.
  • Figure 13 is a cross-sectional view taken along line D-D of Figure 12;
  • Figure 14 is a schematic view showing the structure of a tenth embodiment of the present invention.
  • FIG. 1 and FIG. 2 it is a porous ultrasonic bearing, comprising a ring 1, a high-strength outer sleeve 2, a vibrating collar 3 and a bearing bushing 4; wherein the high-strength outer sleeve 2 is sleeved on a bearing bushing 4, a bearing radial bushing 41 is provided on the bearing bushing 4, and the vibrating collar 3 is disposed between the high-strength outer casing 2 and the bearing bushing 4, and the outer cylindrical surface of the vibrating collar 3 and the high strength
  • the inner holes of the outer casing 2 are consolidated together, and there is a certain gap between the inner hole of the vibrating collar 3 and the outer cylindrical surface of the bearing bushing 4, and the vibrating collar 3 can be subjected to radial high-frequency vibration.
  • the lubricating oil is filled in the diameter of the vibrating collar 3 Under the action of high-frequency vibration, a high-strength lubricating oil film is formed between the inner hole of the bearing bushing 4 and the journal, which greatly reduces the friction between the inner hole and the journal of the bearing bushing 4.
  • the vibrating collar 3 is a unitary type.
  • FIG. 1 and FIG. 3 it is a porous ultrasonic bearing, comprising a ring 1, a high-strength outer casing 2, a vibrating collar 3 and a bearing bushing 4; wherein the high-strength outer casing 2 is sleeved on a bearing bushing 4, a bearing radial bushing 41 is provided on the bearing bushing 4, and the vibrating collar 3 is disposed between the high-strength outer casing 2 and the bearing bushing 4, and the outer cylindrical surface of the vibrating collar 3 and the high strength
  • the inner holes of the outer casing 2 are consolidated together, and there is a certain gap between the inner hole of the vibrating collar 3 and the outer cylindrical surface of the bearing bushing 4, and the vibrating collar 3 can be subjected to radial high-frequency vibration.
  • the vibrating collar 3 is segmented in a circumferential direction, as shown in FIG.
  • FIG. 4 and FIG. 5 it is a porous ultrasonic bearing, comprising a ring 1, a high-strength outer casing 2 and a bearing bushing 4; wherein the high-strength outer casing 2 is sleeved on the bearing bushing 4, in the bearing
  • the bushing 4 is provided with a through-hole radial hole group 41.
  • the inner hole of the high-strength outer casing 2 is a regular polygonal hole
  • the outer part of the bearing bushing 4 is a regular polygon
  • the regular polygon of the inner hole of the high-strength outer casing 2 A radial vibration plate 5 is fixed on each side thereof, and the radial vibration plate 5 has a certain gap with a face of the outer regular polygon of the bearing bushing 4, and the radial vibration plate 5 can be made thick in the thickness direction during operation. Frequency vibration, the radial vibration plate 5 can be used for high-frequency vibration in the thickness direction during operation.
  • the lubricating oil is filled in Under the high-frequency vibration of the radial vibration plate 5, a high-strength lubricating oil film is formed between the inner hole of the bearing bushing 4 and the journal, which greatly reduces the friction between the inner hole and the journal of the bearing bushing 4.
  • FIG. 6 it is a porous ultrasonic bearing including a bearing bushing 4 and an end cover 6.
  • the bottom of the bearing bushing 4 is provided with a through-hole axial hole set 42, an end cover 6 and a bearing bushing.
  • the bottoms of the 4 are coupled together, and an axial vibration plate 7 is disposed between the bottom of the bearing bushing 4 and the end cover 6, and the axial vibration plate 7 is consolidated with the end cover 6, the axial vibration plate 7 and the bearing bushing 4 There is a gap at the bottom.
  • the axial vibration plate 7 can vibrate in the thickness direction.
  • the axial bore group 42 at the bottom of the bearing bushing 4, and the bottom gap between the axial vibrating plate 7 and the bearing bushing 4 are filled with lubricating oil, at the thickness of the vibrating plate 8.
  • a high-strength lubricating oil film is formed between the shaft and the bottom of the bearing bushing 4, which greatly reduces the friction between the shaft and the bottom of the bearing bushing 4; such an ultrasonic bearing can withstand a large radial Force and axial force.
  • the bottom of the bearing bushing 4 is flat.
  • Fig. 7 it is a porous ultrasonic bearing comprising a bearing bushing 4 and an end cap 6, at the bottom of which is provided a through-hole axial hole set 42, end cap 6 and bearing bushing
  • the bottoms of the sleeves 4 are coupled together, and an axial vibration plate 7 is disposed between the bottom of the bearing bushing 4 and the end cover 6, and the axial vibration plate 7 is consolidated with the end cover 6, the axial vibration plate 7 and the bearing bushing
  • the axial direction between the shaft and the bottom of the bearing bushing 4, the axial hole group 42 at the bottom of the bearing bushing 4, and the bottom gap between the axial vibrating plate 7 and the bearing bushing 4 are filled with lubricating oil, and the vibrating plate 8 is vibrated in the thickness direction.
  • a high-strength lubricating oil film is formed between the shaft and the bottom of the bearing bushing 4, which greatly reduces the friction between the shaft and the bottom of the bearing bushing 4; the ultrasonic bearing can withstand large radial force and axial direction. force.
  • the bottom of the bearing bushing 4 is spherical.
  • FIG. 8 and FIG. 9 it is a porous ultrasonic bearing, comprising a ring 1, a high-strength outer casing 2, a vibration collar 3, a bearing bushing 4, an end cover 6 and an axial vibration plate 7;
  • Two sets of high-strength outer sleeves are arranged on the bearing bushing 4, and a radial hole group 41 is formed in the bearing bushing 4, and a through-hole axial hole group 42 is provided at the bottom of the bearing bushing 4, and the end cap 6 is The bottom of the bearing bushing 4 is coupled together, and the vibrating collar 3 is disposed between the high-strength outer casing 2 and the bearing bushing 4, and the outer cylindrical surface of the vibrating collar 3 is consolidated with the inner hole of the high-strength outer casing 2, vibrating There is a certain gap between the inner hole of the collar 3 and the outer cylindrical surface of the bearing bushing 4, and the axial vibration plate 7 is disposed between the bottom of the bearing bushing 4 and the end cover 6, the axial vibration plate 7 and
  • the lubricating oil is filled, and the vibrating collar 3 is high.
  • a high-strength lubricating oil film is formed between the inner bore of the bearing bushing 4 and the journal, which greatly reduces the friction between the inner bore and the journal of the bearing bushing 4, and at the same time, the axial vibrating plate 7 can be used.
  • High-frequency vibration in the thickness direction, between the shaft and the bottom of the bearing bushing 4, in the axial hole group 42 at the bottom of the bearing bushing 4, and in the gap between the axial vibration plate 7 and the bottom of the bearing bushing 4 are filled with lubricating oil in the axial direction.
  • a high-strength lubricating oil film is formed between the shaft and the bottom of the bearing bushing 4, which greatly reduces the friction between the shaft and the bottom of the bearing bushing 4; the ultrasonic bearing can withstand Large radial and axial forces.
  • the bottom of the bearing bushing 4 is flat and the vibrating collar 3 is of a unitary type.
  • FIG. 8 and FIG. 10 it is a porous ultrasonic bearing, comprising a ring 1, a high-strength outer casing 2, a vibrating collar 3, a bearing bushing 4, an end cap 6 and an axial vibrating plate 7; wherein the high The strength sleeve 2 is disposed on the bearing bushing 4, and the bearing bushing 4 is provided with a penetrating radial hole group 41, and the end cap 6 is coupled with the bottom of the bearing bushing 4, and is provided at the bottom of the bearing bushing 4 a through-hole group 42 is disposed between the high-strength outer sleeve 2 and the bearing bushing 4, and the outer cylindrical surface of the vibrating collar 3 is consolidated with the inner hole of the high-strength outer sleeve 2, and the vibrating sleeve There is a certain gap between the inner hole of the ring 3 and the outer cylindrical surface of the bearing bushing 4, and the axial vibration plate 7 is disposed between the bottom of the bearing bushing 4 and
  • the lubricating oil is filled, and the vibrating collar 3 is high.
  • a high-strength lubricating oil film is formed between the inner bore of the bearing bushing 4 and the journal, which greatly reduces the friction between the inner bore and the journal of the bearing bushing 4, and at the same time, the axial vibrating plate 7 can be used.
  • High-frequency vibration in the thickness direction, between the shaft and the bottom of the bearing bushing 4, in the axial hole group 42 at the bottom of the bearing bushing 4, and in the gap between the axial vibration plate 7 and the bottom of the bearing bushing 4 are filled with lubricating oil in the axial direction.
  • a high-strength lubricating oil film is formed between the shaft and the bottom of the bearing bushing 4, which greatly reduces the friction between the shaft and the bottom of the bearing bushing 4; the ultrasonic bearing can withstand Large radial and axial forces.
  • the bottom of the bearing bushing 4 is flat-bottomed; the vibrating collar 3 is of a circumferentially segmented type.
  • FIG. 11 it is a porous ultrasonic bearing, comprising a ring 1, a high-strength outer casing 2, a vibration collar 3, a bearing bushing 4, an end cover 6 and an axial vibration plate 7, wherein the high-strength outer casing 2
  • the bearing bushing 4 is sleeved on the bearing bushing 4 with a through-hole radial hole group 41.
  • the bottom of the bearing bushing 4 is provided with a through-hole axial hole group 42, the end cap 6 and the bearing bushing 4
  • the bottom is coupled together, the vibrating collar 3 is disposed between the high-strength outer sleeve 2 and the bearing bushing 4, and the outer cylindrical surface of the vibrating collar 3 is consolidated with the inner hole of the high-strength outer casing 2, and the vibrating collar 3 is
  • the inner hole has a certain gap with the outer cylindrical surface of the bearing bushing 4, and the axial vibration plate 7 is disposed between the bottom of the bearing bushing 4 and the end cover 6, and the axial vibration plate 7 is fixed together with the end cover 6,
  • the axial vibration plate 7 has a gap with the bottom of the bearing bushing 4.
  • the vibration collar 3 can be subjected to radial high-frequency vibration, and the axial vibration plate 7 can be used for high-frequency vibration in the thickness direction.
  • the lubricating oil is filled, and the vibrating collar 3 is high.
  • a high-strength lubricating oil film is formed between the inner bore of the bearing bushing 4 and the journal, which greatly reduces the friction between the inner bore and the journal of the bearing bushing 4, and at the same time, the axial vibrating plate 7 can be used.
  • High-frequency vibration in the thickness direction, between the shaft and the bottom of the bearing bushing 4, in the axial hole group 42 in which the bearing bushing 4 is closed, and in the gap between the axial vibration plate 7 and the bottom of the bearing bushing 4 are filled with lubricating oil in the axial direction.
  • a high-strength lubricating oil film is formed between the shaft and the bottom of the bearing bushing 4, which greatly reduces the friction between the shaft and the bottom of the bearing bushing 4; the ultrasonic bearing can withstand Large radial and axial forces.
  • the bottom of the bearing bushing 4 is spherical; the vibrating collar 3 may be integral or circumferentially segmented.
  • FIG. 12 and FIG. 13 it is an ultrasonic bearing, comprising a ring 1, a high-strength outer casing 2, a bearing bushing 4, an end cover 6 and an axial vibration plate 7; wherein the high-strength outer casing 2 is set in
  • the bearing bushing 4 is provided with a through-hole radial hole group 41 on the bearing bushing 4, and a through-hole axial hole group 42 is provided at the bottom of the bearing bushing 4, and the end cap 6 is coupled to the bottom of the bearing bushing 4
  • the inner hole of the high-strength outer casing 2 is a regular polygonal hole
  • the outer portion of the bearing bushing 4 is a regular polygon
  • a radial vibration plate is fixed on each side of the regular polygon of the inner hole of the high-strength outer casing 2.
  • the radial vibration plate 5 is opposite to a face of the outer regular polygon of the bearing bushing 4 and has a certain gap.
  • the radial vibration plate 5 is fixed on the regular polygon of the inner hole of the high-strength outer casing 2, and each radial vibration The plate 5 is opposite to a face of the outer regular polygon of the bearing bushing 4 and has a certain gap.
  • the radial vibration plate 5 can vibrate in a thickness direction; the axial vibration plate 7 is disposed at the bottom of the bearing bush 4 Between the end caps 6, the axial vibrating plate 7 is consolidated with the end cap 6, the axial vibrating plate 7 and the bottom of the bearing bushing 4 There is a gap, during operation, the vibrating collar 3 can be used for radial high-frequency vibration, and the axial vibrating plate 7 can be used for high-frequency vibration in the thickness direction.
  • Lubricating oil is filled in the gap between the inner bore of the bearing bushing 4 and the journal, the radial bore group 41 of the bearing bushing 4, and the regular polygon outside the bearing bushing 4 and the radial diaphragm 5, Under the high-frequency vibration of the radial vibration plate 5, a high-strength lubricating oil film is formed between the inner hole and the journal of the bearing bush 4, which greatly reduces the friction between the inner hole and the journal of the bearing bush 4, and at the same time
  • the axial vibration plate 7 can be used for high frequency vibration in the thickness direction, between the shaft and the bottom of the bearing bushing 4, in the axial hole group 42 at the bottom of the bearing bushing 4, and in the gap between the axial vibration plate 7 and the bottom of the bearing bushing 4.
  • the oil is filled with lubricating oil.
  • a high-strength lubricating oil film is formed between the shaft and the bottom of the bearing bushing 4, which greatly reduces the relationship between the shaft and the bottom of the bearing bushing 4. friction.
  • the bottom of the bearing bushing 4 is flat.
  • FIG. 14 it is an ultrasonic bearing, comprising a ring 1, a high-strength outer casing 2, a bearing bushing 4, an end cover 6 and an axial vibration plate 7; wherein the high-strength outer casing 2 is sleeved on a bearing lining
  • the sleeve 4 is provided with a through-hole radial hole group 41 on the bearing bushing 4, and a through-hole axial hole group 42 is provided at the bottom of the bearing bushing 4, and the end cap 6 is coupled with the bottom of the bearing bushing 4,
  • the inner hole of the high-strength outer casing 2 is a regular polygonal hole
  • the outer part of the bearing bushing 4 is a regular polygon
  • a radial vibration plate 5 is fixed on each side of the regular polygon of the inner hole of the high-strength outer casing 2
  • the radial vibration plate 5 is opposite to a face of the outer regular polygon of the bearing bushing 4 and has a certain gap.
  • the radial vibration plate 5 is fixed on the regular polygon of the inner hole of the high-strength outer casing 2, and each radial vibration plate 5 Both of them face a face of the outer regular polygon of the bearing bushing 4 and have a certain gap.
  • the radial vibrating plate 5 can vibrate in a thickness direction;
  • the axial vibrating plate 7 is disposed at the bottom of the bearing bushing 4 and the end cap Between 6 and 6, the axial vibration plate 7 is consolidated with the end cover 6, and the axial vibration plate 7 and the bottom of the bearing bush 4 are Gap, in operation, the vibration of the collar 3 may be radially high-frequency vibration, axial vibration plate thickness direction 7 can be used for dithering.
  • Lubricating oil is filled in the gap between the inner bore of the bearing bushing 4 and the journal, the radial bore group 41 of the bearing bushing 4, and the regular polygon outside the bearing bushing 4 and the radial diaphragm 5, Under the high-frequency vibration of the radial vibration plate 5, a high-strength lubricating oil film is formed between the inner hole and the journal of the bearing bush 4, which greatly reduces the friction between the inner hole and the journal of the bearing bush 4, and at the same time
  • the axial vibration plate 7 can be used for high frequency vibration in the thickness direction, between the shaft and the bottom of the bearing bushing 4, in the axial hole group 42 at the bottom of the bearing bushing 4, and in the gap between the axial vibration plate 7 and the bottom of the bearing bushing 4.
  • the oil is filled with lubricating oil.
  • a high-strength lubricating oil film is formed between the shaft and the bottom of the bearing bushing 4, which greatly reduces the relationship between the shaft and the bottom of the bearing bushing 4. friction.
  • the bottom of the bearing bushing 4 is spherical.
  • the vibration collar 3, the radial vibration plate 5, and the axial vibration plate 7 may be piezoelectric materials, magnetostrictive materials, or other materials capable of generating high frequency vibrations;

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Abstract

一种多孔超声波轴承,包括环(1)、高强度外套(2)及轴承衬套(4),所述高强度外套(2)套设在轴承衬套(4)上,在所述轴承衬套(4)上设有贯通的径向孔组(41),还包括振动套环(3),所述振动套环(3)设在高强度外套(2)与轴承衬套(4)之间,振动套环(3)的外圆柱面与高强度外套(2)的内孔固结一起,振动套环(3)的内孔与轴承衬套(4)的外圆柱面间有一定间隙,振动套环(3)可作径向高频振动。其优点为:结构简单,能产生高频振动,大大降低各传动副接触表面间摩擦,以降低轴承传动摩擦,提高运动传递精度,使用寿命长,减少制造和使用成本。

Description

多孔超声波轴承 技术领域
本发明属于现代机械装备的联结、传动技术领域,尤其涉及一种多孔超声波轴承。
背景技术
在现有的机械装备领域,轴承是应用最广泛的支承和传动件,尤其在高档精密机器的传动中,因其具有很高的传动精度高和极低的摩擦阻力而得到广泛应用,但其也具有制造工艺复杂、生产成本高、使用和维护成本高等缺点。
超声波振动表面所具有的悬浮支撑与减摩能力,已被证实,并获得多种实际应用,有研究发现超声波能使接触面间摩擦阻力降低90%以上,国内外已有诸多研究者开始使用超声波轴承,但总体实用效果并不理想。
发明内容
本发明的目的是克服现有技术的不足而提供一种多孔超声波轴承,能产生高频振动,大大降低各传动副接触表面间摩擦,以降低轴承传动摩擦,提高运动传递精度,使用寿命长,减少制造和使用成本。
为了达到上述目的,本发明的第一种技术方案是这样实现的,其是一种多孔超声波轴承,包括环、高强度外套及轴承衬套,所述高强度外套套设在轴承衬套上,在轴承衬套上设有贯通的径向孔组,其特征在于还包括振动套环,所述振动套环设在高强度外套与轴承衬套之间,振动套环的外圆柱面与高强度外套的内孔固结一起,振动套环的内孔与轴承衬套的外圆柱面间有一定间隙,振动套环可作径向高频振动。
在本技术方案中,所述振动套环可以是压电材料或磁致伸缩材料;振动套环可为整体式,也可以为轴向分段式或者圆周方向分段式。
为了达到上述目的,本发明的第二种技术方案是这样实现的,其是一种一种多孔超声波轴承,包括环、高强度外套及轴承衬套,所述高强度外套套设在轴承衬套上,在轴承衬套上设有贯通的径向孔组,其特征在于所述高强度外套的内孔为正多边形孔,所述轴承衬套的外部为正多边形,在高强度外套内孔的正多边形的每一边上均固定有一块径向振动板,所述径向振动板与轴承衬套外部正多边形的一个面相对并有一定间隙,工作时径向振动板可作厚度方向高频振动,工作时径向振动板可作厚度方向高频振动。
在本技术方案中,所述振动板可以是压电材料或磁致伸缩材料。
为了达到上述目的,本发明的第三种技术方案是这样实现的,其是一种多孔超声波 轴承,包括轴承衬套和端盖,在所述轴承衬套的底部设有贯通的轴向孔组,端盖与轴承衬套底部联结在一起,其特征在于在轴承衬套的底部与端盖间设有轴向振动板,所述轴向振动板与端盖固结一起,轴向振动板与轴承衬套部有间隙,工作时,轴向振动板可作厚度方向高频振动。
在本技术方案中,所述其轴承衬套的底部可以是平底状或球形状或其它形状;所述轴向振动板可以是压电材料或磁致伸缩材料。
为了达到上述目的,本发明的第四种技术方案是这样实现的,其是一种多孔超声波轴承,包括环、高强度外套、轴承衬套端盖,所述高强度外套套设在轴承衬套上,在轴承衬套上设有贯通的径向孔组,在轴承衬套的底部设有贯通的轴向孔组,端盖与轴承衬套的底部联结在一起,其特征在于还包括振动套环和轴向振动板,所述振动套环设在高强度外套与轴承衬套之间,振动套环的外圆柱面与高强度外套的内孔固结一起,振动套环的内孔与轴承衬套的外圆柱面间有一定间隙;所述轴向振动板设在轴承衬套的底部与端盖之间,轴向振动板与端盖固结一起,轴向振动板与轴承衬套底部有间隙,工作时,振动套环可作径向高频振动,轴向振动板可作厚度方向高频振动。
在本技术方案中,所述轴承衬套底部可以是平底状,其底部可以是球形,其底部也可为其它形状;所述振动套环可以是压电材料或磁致伸缩材料;振动套环可为整体式,也可以为轴向分段式或者圆周方向分段式;所述轴向振动板可以是压电材料或磁致伸缩材料。
为了达到上述目的,本发明的第五种技术方案是这样实现的,其是一种超声波轴承,包括环、高强度外套、轴承衬套及端盖,所述高强度外套套设在轴承衬套上,在轴承衬套上设有贯通的径向孔组,端盖与轴承衬套的底部联结在一起,在轴承衬套的底部设有贯通的轴向孔组,其特征在于所述高强度外套的内孔为正多边形孔,所述轴承衬套的外部为正多边形,在高强度外套内孔的正多边形的每一边上均固定有一块径向振动板,所述径向振动板与轴承衬套外部正多边形的一个面相对并有一定间隙,工作时径向振动板可作厚度方向高频振动;在轴承衬套底部与端盖之间设有轴向振动板,轴向振动板与端盖固结一起,轴向振动板与轴承衬套的底部有间隙,工作时,振动套环可作径向高频振动,轴向振动板可作厚度方向高频振动。
在本技术方案中,所述其轴承衬套底部可以是平底状,其底部可以是球形,其底部也可为其它形状;所述径向振动板和轴向振动板可以是压电材料、磁致伸缩材料,也可以是其他能产生高频振动的材料。
本发明与现有技术相比的优点为:结构简单,能产生高频振动,大大降低各传动副 接触表面间摩擦,以降低轴承传动摩擦,提高运动传递精度,使用寿命长,减少制造和使用成本。
附图说明
图1是本发明实施例一、实施例二的结构示意图;
图2是图1中振动套环为整体式的A-A剖面图;
图3是图1中振动套环为圆周方向分段式的A-A剖面图;
图4是本发明实施例三的结构示意图;
图5是本图4中B-B剖面图;
图6是本发明实施例四的结构示意图;
图7是本发明实施例五的结构示意图;
图8是本发明实施例六、实施例七的结构示意图;
图9是图8中振动套环为整体式的C-C剖面图;
图10是图8中振动套环为圆周方向分段式的C-C剖面图;
图11是本发明实施例八的结构示意图;
图12是本发明实施例九的结构示意图;
图13是图12中D-D的剖面图;
图14是本发明实施例十的结构示意图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以互相结合。
在本发明描述中,术语“左”及“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不能理解为对本发明的限制。
实施例一
如图1及图2所示,其是一种多孔超声波轴承,包括环1、高强度外套2、振动套环3及轴承衬套4;其中,所述高强度外套2套设在轴承衬套4上,在轴承衬套4上设有贯通的径向孔组41,所述振动套环3设在高强度外套2与轴承衬套4之间,振动套环3的外圆柱面与高强度外套2的内孔固结一起,振动套环3的内孔与轴承衬套4的外圆柱面间有一定间隙,振动套环3可作径向高频振动。在轴承衬套4内孔与轴颈间、轴承衬套4的径向孔组41内 以及轴承衬套4外面与振动套环3的间隙中,都充满润滑油,在振动套环3的径向高频振动作用下,轴承衬套4内孔与轴颈间会形成高强度润滑油膜,极大降低了轴承衬套4内孔与轴颈间摩擦。
本实施例中,所述振动套环3是整体式。
实施例二
如图1及图3所示,其是一种多孔超声波轴承,包括环1、高强度外套2、振动套环3及轴承衬套4;其中,所述高强度外套2套设在轴承衬套4上,在轴承衬套4上设有贯通的径向孔组41,所述振动套环3设在高强度外套2与轴承衬套4之间,振动套环3的外圆柱面与高强度外套2的内孔固结一起,振动套环3的内孔与轴承衬套4的外圆柱面间有一定间隙,振动套环3可作径向高频振动。在轴承衬套4内孔与轴颈间、轴承衬套4的径向孔组41内以及轴承衬套4外面与振动套环3的间隙中,都充满润滑油,在振动套环3的高频振动作用下,轴承衬套4内孔与轴颈间会形成高强度润滑油膜,极大降低了轴承衬套4内孔与轴颈间摩擦。
本实施例中,所述振动套环3为圆周方向分段式,如图3所示。
实施例三
如图4及图5所示,其是一种多孔超声波轴承,包括环1、高强度外套2及轴承衬套4;其中,所述高强度外套2套设在轴承衬套4上,在轴承衬套4上设有贯通的径向孔组41,所述高强度外套2的内孔为正多边形孔,所述轴承衬套4的外部为正多边形,在高强度外套2内孔的正多边形的每一边上均固定有一块径向振动板5,所述径向振动板5与轴承衬套4外部正多边形的一个面相对并有一定间隙,工作时径向振动板5可作厚度方向高频振动,工作时径向振动板5可作厚度方向高频振动。
在轴承衬套4的内孔与轴颈间、轴承衬套4的径向孔组41内、轴承衬套4外面的正多边形与径向振动板5之间的间隙中都充满润滑油,在径向振动板5的高频振动作用下,轴承衬套4内孔与轴颈间会形成高强度润滑油膜,极大降低了轴承衬套4内孔与轴颈间摩擦。
实施例四
如图6图所示,其是一种多孔超声波轴承,包括轴承衬套4和端盖6,所述轴承衬套4的底部设有贯通的轴向孔组42,端盖6与轴承衬套4的底部联结在一起,在轴承衬套4的底部与端盖6间设有轴向振动板7,轴向振动板7与端盖6固结一起,轴向振动板7与轴承衬套4底部有间隙,工作时,轴向振动板7可作厚度方向高频振动。
在轴与轴承衬套4的底部之间、轴承衬套4的底部的轴向孔组42内以及轴向振动板 7与轴承衬套4的底部间隙中间都充满润滑油,在振动板8厚度方向高频振动作用下,在轴与轴承衬套4底部之间会形成高强度润滑油膜,极大降低了轴与轴承衬套4底部之间摩擦;此种超声轴承,可以承受较大径向力和轴向力。
在本实施例中,轴承衬套4底部是平底状。
实施例五
如图7图所示,其是一种多孔超声波轴承,包括轴承衬套4和端盖6,在所述轴承衬套4的底部设有贯通的轴向孔组42,端盖6与轴承衬套4的底部联结在一起,在轴承衬套4底部与端盖6之间设有轴向振动板7,轴向振动板7与端盖6固结一起,轴向振动板7与轴承衬套4底部有间隙,工作时,轴向振动板7可作厚度方向高频振动。
轴与轴承衬套4底部之间、轴承衬套4底部的轴向孔组42内以及轴向振动板7与轴承衬套4底部间隙中间都充满润滑油,在振动板8厚度方向高频振动作用下,在轴与轴承衬套4底部之间会形成高强度润滑油膜,极大降低了轴与轴承衬套4底部之间摩擦;此种超声轴承,可以承受较大径向力和轴向力。
本实施例中,轴承衬套4底部是球形。
实施例六
如图8及图9所示,其是一种多孔超声波轴承,包括环1、高强度外套2、振动套环3、轴承衬套4、端盖6及轴向振动板7;其中,所述高强度外套2套设在轴承衬套4上,在轴承衬套4上设有贯通的径向孔组41,在轴承衬套4的底部设有贯通的轴向孔组42,端盖6与轴承衬套4底部联结在一起,所述振动套环3设在高强度外套2与轴承衬套4之间,振动套环3的外圆柱面与高强度外套2的内孔固结一起,振动套环3的内孔与轴承衬套4的外圆柱面间有一定间隙,所述轴向振动板7设在轴承衬套4底部与端盖6之间,轴向振动板7与端盖6固结一起,轴向振动板7与轴承衬套4底部有间隙,工作时,振动套环3可作径向高频振动,轴向振动板7可作厚度方向高频振动。
在轴承衬套4内孔与轴颈间、轴承衬套4的径向孔组41内以及轴承衬套4外面与振动套环3的间隙中,都充满润滑油,在振动套环3的高频振动作用下,轴承衬套4内孔与轴颈间会形成高强度润滑油膜,极大降低了轴承衬套4内孔与轴颈间摩擦,而与此同时,轴向振动板7可作厚度方向高频振动,轴与轴承衬套4底部之间、轴承衬套4底部的轴向孔组42内以及轴向振动板7与轴承衬套4底部间隙中都充满润滑油,在轴向振动板7厚度方向高频振动作用下,在轴与轴承衬套4底部之间会形成高强度润滑油膜,极大降低了轴与轴承衬套4底部之间摩擦;此种超声轴承,可以承受较大径向力和轴向力。
在本实施例中,轴承衬套4底部是平底状,振动套环3为整体式。
实施例七
如图8及图10所示,其是一种多孔超声波轴承,包括环1、高强度外套2、振动套环3、轴承衬套4、端盖6及轴向振动板7;其中所述高强度外套2套设在轴承衬套4上,在轴承衬套4上设有贯通的径向孔组41,端盖6与轴承衬套4底部联结在一起,在轴承衬套4的底部设有贯通的轴向孔组42,所述振动套环3设在高强度外套2与轴承衬套4之间,振动套环3的外圆柱面与高强度外套2的内孔固结一起,振动套环3的内孔与轴承衬套4的外圆柱面间有一定间隙,所述轴向振动板7设在轴承衬套4底部与端盖6之间,轴向振动板7与端盖6固结一起,轴向振动板7与轴承衬套4底部有间隙,工作时,振动套环3可作径向高频振动,轴向振动板7可作厚度方向高频振动。
在轴承衬套4内孔与轴颈间、轴承衬套4的径向孔组41内以及轴承衬套4外面与振动套环3的间隙中,都充满润滑油,在振动套环3的高频振动作用下,轴承衬套4内孔与轴颈间会形成高强度润滑油膜,极大降低了轴承衬套4内孔与轴颈间摩擦,而与此同时,轴向振动板7可作厚度方向高频振动,轴与轴承衬套4底部之间、轴承衬套4底部的轴向孔组42内以及轴向振动板7与轴承衬套4底部间隙中都充满润滑油,在轴向振动板7厚度方向高频振动作用下,在轴与轴承衬套4底部之间会形成高强度润滑油膜,极大降低了轴与轴承衬套4底部之间摩擦;此种超声轴承,可以承受较大径向力和轴向力。
在本实施例中,轴承衬套4底部是平底状;所述振动套环3为圆周方向分段式。
实施例八
如图11所示,其是一种多孔超声波轴承,包括环1、高强度外套2、振动套环3、轴承衬套4、端盖6及轴向振动板7,其中所述高强度外套2套设在轴承衬套4上,在轴承衬套4上设有贯通的径向孔组41,在轴承衬套4的底部设有贯通的轴向孔组42,端盖6与轴承衬套4底部联结在一起,所述振动套环3设在高强度外套2与轴承衬套4之间,振动套环3的外圆柱面与高强度外套2的内孔固结一起,振动套环3的内孔与轴承衬套4的外圆柱面间有一定间隙,所述轴向振动板7设在轴承衬套4底部与端盖6之间,轴向振动板7与端盖6固结一起,轴向振动板7与轴承衬套4底部有间隙,工作时,振动套环3可作径向高频振动,轴向振动板7可作厚度方向高频振动。
在轴承衬套4内孔与轴颈间、轴承衬套4的径向孔组41内以及轴承衬套4外面与振动套环3的间隙中,都充满润滑油,在振动套环3的高频振动作用下,轴承衬套4内孔与轴颈间会形成高强度润滑油膜,极大降低了轴承衬套4内孔与轴颈间摩擦,而与此同时,轴向 振动板7可作厚度方向高频振动,轴与轴承衬套4底部之间、轴承衬套4封闭的轴向孔组42内以及轴向振动板7与轴承衬套4底部间隙中都充满润滑油,在轴向振动板7厚度方向高频振动作用下,在轴与轴承衬套4底部之间会形成高强度润滑油膜,极大降低了轴与轴承衬套4底部之间摩擦;此种超声轴承,可以承受较大径向力和轴向力。
本实施例中,轴承衬套4底部是球形;所述振动套环3可为整体式,也可为圆周方向分段式。
实施例九
如图12及图13所示,其是一种超声波轴承,包括环1、高强度外套2、轴承衬套4、端盖6及轴向振动板7;其中所述高强度外套2套设在轴承衬套4上,在轴承衬套4上设有贯通的径向孔组41,在轴承衬套4的底部设有贯通的轴向孔组42,端盖6与轴承衬套4底部联结在一起,所述高强度外套2的内孔为正多边形孔,所述轴承衬套4的外部为正多边形,在高强度外套2内孔的正多边形的每一边上均固定有一块径向振动板5,所述径向振动板5与轴承衬套4外部正多边形的一个面相对并有一定间隙,径向振动板5固设在高强度外套2内孔的正多边形上,每一个径向振动板5都与轴承衬套4外部正多边形的一个面相对并有一定间隙,工作时径向振动板5可作厚度方向高频振动;所述轴向振动板7设在轴承衬套4底部与端盖6之间,轴向振动板7与端盖6固结一起,轴向振动板7与轴承衬套4底部有间隙,工作时,振动套环3可作径向高频振动,轴向振动板7可作厚度方向高频振动。
在轴承衬套4的内孔与轴颈间、轴承衬套4的径向孔组41内以及轴承衬套4外面的正多边形与径向振动板5之间的间隙中都充满润滑油,在径向振动板5的高频振动作用下,轴承衬套4的内孔与轴颈间会形成高强度润滑油膜,极大降低了轴承衬套4内孔与轴颈间摩擦,而与此同时,轴向振动板7可作厚度方向高频振动,轴与轴承衬套4底部之间、轴承衬套4底部的轴向孔组42内以及轴向振动板7与轴承衬套4底部的间隙中,都充满润滑油,在轴向振动板7厚度方向高频振动作用下,轴与轴承衬套4底部之间会形成高强度润滑油膜,极大降低了轴与轴承衬套4底部之间摩擦。
在本实施例中,如图12图所示,轴承衬套4的底部是平底状。
实施例十
如图图14所示,其是一种超声波轴承,包括环1、高强度外套2、轴承衬套4、端盖6及轴向振动板7;其中所述高强度外套2套设在轴承衬套4上,在轴承衬套4上设有贯通的径向孔组41,在轴承衬套4的底部设有贯通的轴向孔组42,端盖6与轴承衬套4底部联结在一起,所述高强度外套2的内孔为正多边形孔,所述轴承衬套4的外部为正多边形,在高强度 外套2内孔的正多边形的每一边上均固定有一块径向振动板5,所述径向振动板5与轴承衬套4外部正多边形的一个面相对并有一定间隙,径向振动板5固设在高强度外套2内孔的正多边形上,每一个径向振动板5都与轴承衬套4外部正多边形的一个面相对并有一定间隙,工作时径向振动板5可作厚度方向高频振动;所述轴向振动板7设在轴承衬套4底部与端盖6之间,轴向振动板7与端盖6固结一起,轴向振动板7与轴承衬套4底部有间隙,工作时,振动套环3可作径向高频振动,轴向振动板7可作厚度方向高频振动。
在轴承衬套4的内孔与轴颈间、轴承衬套4的径向孔组41内以及轴承衬套4外面的正多边形与径向振动板5之间的间隙中都充满润滑油,在径向振动板5的高频振动作用下,轴承衬套4的内孔与轴颈间会形成高强度润滑油膜,极大降低了轴承衬套4内孔与轴颈间摩擦,而与此同时,轴向振动板7可作厚度方向高频振动,轴与轴承衬套4底部之间、轴承衬套4底部的轴向孔组42内以及轴向振动板7与轴承衬套4底部的间隙中,都充满润滑油,在轴向振动板7厚度方向高频振动作用下,轴与轴承衬套4底部之间会形成高强度润滑油膜,极大降低了轴与轴承衬套4底部之间摩擦。
本实施例中,其轴承衬套4底部是球形。
在以上实施例中,振动套环3、径向振动板5和轴向振动板7可以是压电材料、磁致伸缩材料,也可以是其他能产生高频振动的材料;
由于压电材料、磁致伸缩材料以及与之相关的振动技术、换能技术和控制技术等相对成熟,且非本发明重点,故本发明中未对其进行详细说明;
另外,与本发明相关的液压、供油、管路、密封和保压等技术相对比较成熟,且非本发明的重点内容,故在本发明的相关原理图及文字说明中也未进行详细描述,并非本发明人疏漏,特此说明;
以上结合附图对本发明的实施方式作出详细说明,但本发明不局限于所描述的实施方式。对于本领域的普通技术人员而言,在不脱离本发明的原理和宗旨的情况下对这些实施方式进行多种变化、修改、替换及变形仍落入在本发明的保护范围内。

Claims (10)

  1. 一种多孔超声波轴承,包括环(1)、高强度外套(2)及轴承衬套(4),所述高强度外套(2)套设在轴承衬套(4)上,在所述轴承衬套(4)上设有贯通的径向孔组(41),其特征在于还包括振动套环(3),所述振动套环(3)设在高强度外套(2)与轴承衬套(4)之间,振动套环(3)的外圆柱面与高强度外套(2)的内孔固结一起,振动套环(3)的内孔与轴承衬套(4)的外圆柱面间有一定间隙,振动套环(3)可作径向高频振动。
  2. 根据权利要求1所述的多孔超声波轴承,其特征在于所述振动套环(3)可以是压电材料或磁致伸缩材料,振动套环(3)可为整体式,也可以为轴向分段式或者圆周方向分段式。
  3. 一种多孔超声波轴承,包括环(1)、高强度外套(2)及轴承衬套(4),所述高强度外套(2)套设在轴承衬套(4)上,在所述轴承衬套(4)上设有贯通的径向孔组(41),其特征在于所述高强度外套(2)的内孔为正多边形孔,所述轴承衬套(4)的外部为正多边形,在高强度外套(2)内孔的正多边形的每一边上均固定有一块径向振动板(5),所述径向振动板(5)与轴承衬套(4)外部正多边形的一个面相对并有一定间隙,工作时径向振动板(5)可作厚度方向高频振动,工作时径向振动板(5)可作厚度方向高频振动。
  4. 根据权利要求3所述的多孔超声波轴承,其特征在于所述振动板(5)可以是压电材料或磁致伸缩材料。
  5. 一种多孔超声波轴承,包括轴承衬套(4)和端盖(6),在所述轴承衬套(4)的底部设有贯通的轴向孔组(42),端盖(6)与轴承衬套(4)底部联结在一起,其特征在于在轴承衬套(4)的底部与端盖(6)间设有轴向振动板(7),所述轴向振动板(7)与端盖(6)固结一起,轴向振动板(7)与轴承衬套(4)底部有间隙,工作时,轴向振动板(7)可作厚度方向高频振动。
  6. 根据权利要求5所述的多孔超声波轴承,其特征在于所述轴承衬套(4)的底部可以是平底状或球形状或其它形状,所述轴向振动板(7)可以是压电材料或磁致伸缩材料。
  7. 一种多孔超声波轴承,包括环(1)、高强度外套(2)、轴承衬套(4)及端盖(6),所述高强度外套(2)套设在轴承衬套(4)上,在轴承衬套(4)上设有贯通的径向孔组(41),在轴承衬套(4)的底部设有贯通的轴向孔组(42),端盖(6)与轴承衬套(4)的底部联结在一起,其特征在于还包括振动套环(3)和轴向振动板(7),所述振动套环(3)设在高强度外套(2)与轴承衬套(4)之间,振动套环(3)的外圆柱面与高强度外套(2)的内孔固结一起,振动套环(3)的内孔与轴承衬套(4)的外圆柱面间有一定间隙;所述轴向振动板(7)设在轴承衬套(4)的底部与端盖(6)之间,轴向振动板(7)与端盖(6)固结一起,轴向振动板(7)与轴承衬套(4)底部有间隙,工作时,振动套环(3)可作径向高频 振动,轴向振动板(7)可作厚度方向高频振动。
  8. 根据权利要求7所述的多孔超声波轴承,其特征在于所述轴承衬套(4)底部可以是平底状,其底部可以是球形,其底部也可为其它形状;所述振动套环(3)可以是压电材料或磁致伸缩材料,振动套环(3)可为整体式,也可以为轴向分段式或者圆周方向分段式;所述轴向振动板(7)可以是压电材料或磁致伸缩材料。
  9. 一种超声波轴承,包括环(1)、高强度外套(2)、轴承衬套(4)及端盖(6),所述高强度外套(2)套设在轴承衬套(4)上,在所述轴承衬套(4)上设有贯通的径向孔组(41),端盖(6)与轴承衬套(4)的底部联结在一起,在轴承衬套(4)的底部设有贯通的轴向孔组(42),其特征在于所述高强度外套(2)的内孔为正多边形孔,所述轴承衬套(4)的外部为正多边形,在高强度外套(2)内孔的正多边形的每一边上均固定有一块径向振动板(5),所述径向振动板(5)与轴承衬套(4)外部正多边形的一个面相对并有一定间隙,工作时径向振动板(5)可作厚度方向高频振动;在轴承衬套(4)底部与端盖(6)之间设有轴向振动板(7),轴向振动板(7)与端盖(6)固结一起,轴向振动板(7)与轴承衬套(4)的底部有间隙,工作时,振动套环(3)可作径向高频振动,轴向振动板(7)可作厚度方向高频振动。
  10. 根据权利要求7所述的多孔超声波轴承,其特征在于所述其轴承衬套(4)底部可以是平底状,其底部可以是球形,其底部也可为其它形状;所述径向振动板(5)和轴向振动板(7)可以是压电材料、磁致伸缩材料,也可以是其他能产生高频振动的材料。
PCT/CN2018/081801 2017-07-25 2018-04-04 多孔超声波轴承 WO2019019693A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/408,379 US10641329B2 (en) 2017-07-25 2019-05-09 Porous ultrasonic bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710611198.0 2017-07-25
CN201710611198.0A CN107152456B (zh) 2017-07-25 2017-07-25 多孔超声波轴承

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/408,379 Continuation-In-Part US10641329B2 (en) 2017-07-25 2019-05-09 Porous ultrasonic bearing

Publications (1)

Publication Number Publication Date
WO2019019693A1 true WO2019019693A1 (zh) 2019-01-31

Family

ID=59796980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081801 WO2019019693A1 (zh) 2017-07-25 2018-04-04 多孔超声波轴承

Country Status (3)

Country Link
US (1) US10641329B2 (zh)
CN (1) CN107152456B (zh)
WO (1) WO2019019693A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6707312B2 (ja) * 2017-06-16 2020-06-10 株式会社ハーモニック・ドライブ・システムズ 波動歯車装置
CN107152456B (zh) * 2017-07-25 2023-04-18 顺德职业技术学院 多孔超声波轴承
CN108397536B (zh) * 2018-05-04 2023-07-25 顺德职业技术学院 新型波发生器的谐波传动机构
CN109780056B (zh) * 2019-01-15 2023-10-31 浙江大学 可自适应稳定轴承内圈位置的超声悬浮径向轴承

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032835A (ja) * 1999-07-16 2001-02-06 Mitsubishi Heavy Ind Ltd 座付き軸受
CN203130950U (zh) * 2013-03-12 2013-08-14 哈尔滨工业大学 一种具有低摩擦特性的贴片式超声波丝杠
CN104454986A (zh) * 2014-10-28 2015-03-25 湖南大学 超声波气体动压轴承
CN107152456A (zh) * 2017-07-25 2017-09-12 顺德职业技术学院 多孔超声波轴承

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316658A (ja) * 1994-05-30 1995-12-05 Unisia Jecs Corp 磁歪シャフトの製造方法
CN1201097C (zh) * 2003-02-25 2005-05-11 吉林大学 超声波轴承
US8550222B2 (en) * 2007-08-16 2013-10-08 GM Global Technology Operations LLC Active material based bodies for varying frictional force levels at the interface between two surfaces
CN102242769B (zh) * 2011-05-27 2013-02-20 大连交通大学 径向包容挤压膜气体静压轴承
CN103195772B (zh) * 2013-04-17 2016-05-04 哈尔滨工业大学 压电致缸筒弯曲振动的低摩擦特性气缸
CN103195770A (zh) * 2013-04-17 2013-07-10 哈尔滨工业大学 压电致缸筒纵向振动的低摩擦特性气缸
CN203230733U (zh) * 2013-05-10 2013-10-09 大连交通大学 六棱柱径向超声悬浮轴承
CN105333004B (zh) * 2015-11-25 2018-06-22 湖南大学 一种超声波气体动压轴承
CN107269697B (zh) * 2017-07-07 2019-07-16 哈尔滨工业大学 一种能够同时承受径向和轴向载荷的超声悬浮轴承
CN207609685U (zh) * 2017-07-25 2018-07-13 顺德职业技术学院 多孔超声波轴承

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032835A (ja) * 1999-07-16 2001-02-06 Mitsubishi Heavy Ind Ltd 座付き軸受
CN203130950U (zh) * 2013-03-12 2013-08-14 哈尔滨工业大学 一种具有低摩擦特性的贴片式超声波丝杠
CN104454986A (zh) * 2014-10-28 2015-03-25 湖南大学 超声波气体动压轴承
CN107152456A (zh) * 2017-07-25 2017-09-12 顺德职业技术学院 多孔超声波轴承

Also Published As

Publication number Publication date
US20190264741A1 (en) 2019-08-29
CN107152456B (zh) 2023-04-18
US10641329B2 (en) 2020-05-05
CN107152456A (zh) 2017-09-12

Similar Documents

Publication Publication Date Title
WO2019019693A1 (zh) 多孔超声波轴承
WO2019019754A1 (zh) 多孔超声波传动副
TWI666087B (zh) 一種切削刀把
CN104454774A (zh) 压电堆致活塞杆密封圈径向振动的低摩擦特性气缸
CN104454992A (zh) 一种径向弹性空气轴承
CN103016441A (zh) 一种采用微孔材料形成稳定气膜的气浮无摩擦气缸
CN212272829U (zh) 一种气浮支撑系统
CN101725660A (zh) 高频解耦型活塞式磁流变阻尼器
CN103052826B (zh) 用于对传动系中的振动进行阻尼的装置
RU199168U1 (ru) Магнитный подшипник
CN109812504B (zh) 能自适应调节超声悬浮力的推力轴承
CN207609685U (zh) 多孔超声波轴承
CN105822666A (zh) 一种双列圆锥滚子轴承及其安装结构
CN109780056B (zh) 可自适应稳定轴承内圈位置的超声悬浮径向轴承
CN203717697U (zh) 一种膜片联轴器
CN207064592U (zh) 多孔超声波传动副
CN113404778B (zh) 一种承载能力高且减振的水润滑尾轴承装置
CN105114630A (zh) 一种旋转密封环
CN109281939B (zh) 一种调节式船用轴承
CN209638257U (zh) 一种能自适应调节超声悬浮力的推力轴承
CN209638241U (zh) 一种可自适应稳定轴承内圈位置的超声悬浮径向轴承
CN205089970U (zh) 一种旋转密封环
CN107339318A (zh) 一种阻尼力可控的干摩擦阻尼轴承
WO2019019755A1 (zh) 全新超声波螺纹副
CN105587844A (zh) 具有波纹联接结构的柔轮

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18837364

Country of ref document: EP

Kind code of ref document: A1