WO2019019517A1 - 色轮及应用所述色轮的光源系统、投影系统 - Google Patents

色轮及应用所述色轮的光源系统、投影系统 Download PDF

Info

Publication number
WO2019019517A1
WO2019019517A1 PCT/CN2017/114719 CN2017114719W WO2019019517A1 WO 2019019517 A1 WO2019019517 A1 WO 2019019517A1 CN 2017114719 W CN2017114719 W CN 2017114719W WO 2019019517 A1 WO2019019517 A1 WO 2019019517A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
region
film
color
color wheel
Prior art date
Application number
PCT/CN2017/114719
Other languages
English (en)
French (fr)
Inventor
戴达炎
李屹
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2019019517A1 publication Critical patent/WO2019019517A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence

Definitions

  • the present invention relates to the field of projection display, and in particular to a color wheel and a light source system and a projection system using the color wheel.
  • FIG. 1 is a schematic diagram of a layer structure of a color wheel in the prior art.
  • the color wheel includes a glass sheet 11, a phosphor layer 12 and a filter layer 13.
  • the fluorescent layer 12 is coated on one surface of the glass sheet layer 11, and the filter layer 13 is disposed on the fluorescent layer 12.
  • the excitation light penetrates the glass sheet layer 11 to reach the phosphor layer 12, and the phosphor layer 12 absorbs the excitation light and generates a laser beam. Since the laser beam follows the Lambertian distribution, it will be emitted toward the periphery, so that in addition to a part of the transmission filter layer, another portion The laser light is emitted from the incident side of the excitation light, resulting in loss of laser light, resulting in low light utilization.
  • the present invention provides a color wheel, a light source system and a projection system with high utilization of light energy.
  • the present invention provides a color wheel including a front substrate and a rear substrate that allow light to pass therethrough, and a light-splitting film, a first low refractive index layer, sequentially disposed between the front substrate and the rear substrate, a fluorescent film, a second refractive index layer, and a filter film, wherein the light-splitting film transmits the first light and the reflected second light, the fluorescent film includes at least one first color light region, and the first color light region absorbs a light to generate a second light, the filter film comprising at least one first light transmissive region corresponding to the first color light region, the first light transmissive region allowing a second light or a second light split
  • the three lights pass through and reflect other light, wherein the first light not absorbed by the first color light region is at least partially reflected by the first light transmissive region, via the second low fold
  • the luminosity layer enters the first color light region, is absorbed by the first color light region and generates second light again, and the second light generated
  • the present invention also provides a light source system including a light emitting unit and the color wheel, and the monochromatic light emitted by the light emitting unit is converted into multicolor light by the color wheel.
  • the present invention also provides a projection system including the above-described light source system and a spatial light modulator and a projection lens, and the multi-color light emitted from the light source system is modulated to be carried by the spatial light modulator.
  • Image light of image information that is emitted to a screen via the projection lens is modulated to be carried by the spatial light modulator.
  • the color wheel, the light source system and the projection system provided by the embodiments of the present invention have the advantages that: a spectroscopic film is disposed inside the color wheel, and a low refractive index layer is disposed between the fluorescent film and the spectroscopic film and the filter film, thereby allowing fluorescence to pass through
  • the first light energy that is not absorbed by the fluorescent film is reflected back by the filter film, is again absorbed by the fluorescent film and is again generated by the fluorescent film, and the second light generated again is at least partially reflected by the spectral film back to the fluorescent film.
  • passing through the fluorescent film and the filter film, or the second light is separated by the second light generated again, and the third light is emitted through the filter film, thereby improving the light utilization efficiency.
  • FIG. 1 is a schematic structural view of a color wheel in the prior art.
  • FIG. 2 is a schematic structural view of a color wheel according to an embodiment of the present invention.
  • FIG. 3 is a schematic view showing a section division of a fluorescent film in the color wheel shown in FIG. 2.
  • FIG. 4 is a schematic view showing a section division of a filter film in the color wheel shown in FIG. 2.
  • Fig. 5 is a schematic view showing the laser light emitted when the fluorescent film and the filter film are directly bonded together.
  • Fig. 6 is a schematic view showing the laser light emitted when the fluorescent film is directly bonded to the blue anti-yellow film.
  • Figure 7 is a block schematic diagram of a light source system in accordance with one embodiment of the present invention.
  • Figure 8 is a block schematic diagram of a projection system in accordance with one embodiment of the present invention.
  • FIG. 2 is a schematic structural view of an embodiment of a color wheel of the present invention.
  • the color wheel 2 has a substantially disk shape (not shown) when viewed from the front and the back, and includes a sapphire sheet 21 disposed on the front surface and a glass sheet 22 disposed on the back surface.
  • the sapphire sheet 21 and the glass sheet 22 are spaced apart from each other as viewed from the side.
  • an adhesive layer 23 is provided between the sapphire sheet 21 and the glass sheet 22, and the sapphire sheet 21 and the glass sheet layer 22 are bonded and fixed by an adhesive layer 23.
  • an anti-reflection film 24 is disposed on a side of the sapphire sheet 21 facing away from the glass sheet 22, and a blue anti-yellow film 25 and a fluorescent film 26 are sequentially disposed between the sapphire sheet 21 and the glass sheet 22.
  • a filter film 27 With a filter film 27.
  • the antireflection film 24, the blue anti-yellow film 25, the fluorescent film 26, and the filter film 27 are all substantially annular, so that they can be disposed around the periphery of the color wheel 2, and the blue anti-yellow film 25 is superposed.
  • the filter film 27 is stacked on the glass sheet 22, and the fluorescent film 26 is spaced apart from the blue anti-yellow film 25 and the filter film 27.
  • the fluorescent film 26 is transparent.
  • the blue anti-yellow film 25 and the filter film 27 are substantially separated by 10 ⁇ m, and dry glass powder layers 28 and 29 are respectively disposed between the fluorescent film 26 and the blue anti-yellow film 25 and the filter film 27, and each dry glass is provided.
  • the thickness of the powder layers 28, 29 is also approximately 10 ⁇ m, so that the sapphire sheet 21 and the glass sheet 22 physically support or clamp the fluorescent film 26.
  • the fluorescent film 26 contains the resin and the glue. Therefore, the dry glass frit layers 28 and 29 can be respectively adsorbed on both sides of the fluorescent film 26 by spraying, thereby exerting a certain hardening effect on the fluorescent film.
  • the thickness of the fluorescent film 26 is approximately 100 ⁇ m.
  • the fluorescent film 26 is provided with a red light region 261, a green light region 262, a blue light region 263, and a yellow light region 264 in this order.
  • the red light region 261 and the yellow light region 264 are formed by mixing a resin, a glue and a yellow phosphor
  • the green light region 262 is formed by mixing a resin, a glue and a green phosphor
  • the blue light region is formed by mixing a resin, a glue and a scattering powder.
  • the central angles corresponding to the red region 261, the green region 262, the blue region 263, and the yellow region 264 are 115 degrees, 92 degrees, 70 degrees, and 83 degrees, respectively.
  • the filter film 27 is sequentially provided with a red light transmitting region 271 along the circumferential direction thereof.
  • the red transmissive region 271 is provided with a red transmissive film
  • the translucent green region 272 is provided with a translucent green film
  • the antireflection region is provided.
  • An anti-reflection film is provided at 273, and a yellow-transparent film is provided through the yellow light-transmissive region 274.
  • the dry glass frit layers 28, 29 are formed by adsorbing dry glass particles on the fluorescent film 26, the dry glass frit layer 28 and the blue anti-yellow film 25, the fluorescent film 26, and the filter film 27 are formed. There is an air gap between them. Due to the presence of the blue anti-yellow film 25 and the air gap, the portion of the light reflected by the filter film 27 is reused and finally passes through the filter film 27 and the glass sheet 22, thereby improving light utilization efficiency.
  • the optical effect of the color wheel 2 will be described below by taking blue light, specifically the blue laser incident color wheel 2, and the red light generated by the color wheel 2.
  • the excitation light blue light sequentially transmits the antireflection film 24, the sapphire film 21, the blue anti-yellow film 25, and passes through the air gap and the dry glass powder layer 28, and is irradiated to the fluorescent film 26 to excite the yellow color in the red light region 261 of the fluorescent film 26.
  • the phosphor produces yellow light from the laser.
  • the yellow light emitted from the fluorescent film 26 is irradiated to the red color of the filter film 27 at least partially through the air gap and the dry glass frit layer 29.
  • the yellow light is divided into red light and green light, wherein the red light transmits the filter film 27 and further transmits the glass sheet 22 and exits, and the green light and the unabsorbed blue light are transmitted through the red light-emitting region 271 of the filter film 27. reflection. After the reflected blue light passes through the fluorescent film 26, the fluorescent film 26 is excited to generate yellow light again, and the regenerated yellow light is irradiated to the blue anti-yellow film 25 through the dry glass powder layer 28 and the air gap, and the blue anti-yellow film is passed through.
  • the dry glass frit layer 28, the fluorescent film 26, and the dry glass frit layer 29 are at least partially emitted through the red light transmitting region 271 and the glass sheet 22 of the filter film 27, thereby improving the brightness of the emitted red light and improving Light utilization.
  • the dry glass frit layer 29 is not completely bonded to the fluorescent film 26 and the filter film 27. Between the dry glass frit layer 29 and the fluorescent film 26, some dry glass particles in the dry glass frit layer 29 are in contact with the fluorescent film 26, and in addition to the areas where the dry glass particles are in contact with the fluorescent film 26, dry An air gap is formed between most of the region of the glass frit layer 29 and the fluorescent film 26, and since the refractive indices of air (refractive index of 1) and the fluorescent film 26 (refractive index of 1.5 to 1.8) are far apart, a large angle is obtained. The incident light is totally reflected when it reaches the interface of the fluorescent film 26 and the dry glass frit layer 29.
  • an air gap is formed between most of the dry glass frit layer 29 and the filter film 27, and since the refractive indices of the air and the filter film 27 are far apart, the light incident at a large angle reaches the filter. Total reflection occurs at the interface between the film 27 and the dry glass frit layer 29.
  • the fluorescent film 26 and the filter film 27 are prevented from being directly bonded together, and since the refractive index of the fluorescent film 26 and the filter film 27 are close to each other, the incident light is transmitted through the filter film 27 and the glass sheet 22, thereby enabling The portion of the blue light absorbed by the fluorescent film 26 is reflected by the filter film 27 to the fluorescent film 26, and is absorbed by the fluorescent film 26 to generate yellow light again.
  • the green light or the blue light that is not absorbed by the fluorescent film 26 is emitted during the red light period of the color wheel 2.
  • the filter film 27 is penetrated and further transmitted to the glass sheet 22, and at least part of the green or blue light is emitted from the circumferential surface of the glass sheet 22, so that the effect of reflecting blue light and green light is not obtained. If an anti-reflection film is provided on the side of the glass sheet 22 away from the filter film 27, it will cause partial blue light and green. Light is emitted from the side of the glass sheet 22 away from the filter film 27, and the effect of reflecting blue light and green light is not achieved.
  • a dry glass frit layer 28 is disposed between the fluorescent film 26 and the blue anti-yellow film 25, since the refractive index difference between the air and the fluorescent film 26 and the blue anti-yellow film 25 is far apart, thereby avoiding the penetration.
  • the blue anti-yellow film 25 is directly bonded to the fluorescent film 26, and the incident light passes through the blue anti-yellow film 25 and the sapphire sheet 21 due to the close refractive index of the two, so that the yellow light which can be generated again by the fluorescent film 26 can be blue-transparent.
  • the anti-yellow film 25 reflects and eventually exits from the filter film 27 to improve light utilization. Referring to FIG.
  • the anti-reflection film is not disposed on the side of the sapphire sheet 21 away from the blue anti-yellow film 25.
  • part of the yellow light is emitted from the circumferential surface of the sapphire sheet 21 and is lost.
  • the anti-reflection film 24 is provided on the side of the sapphire sheet 21 away from the blue anti-yellow film 25, at least part of the yellow light will further penetrate the anti-reflection film 24 and be lost.
  • the position of the sapphire sheet 21 and the blue anti-yellow film 25 is changed, and the laser is also lost based on the same principle.
  • the dry glass frit layers 28 and 29 having a low refractive index are disposed on both sides of the fluorescent film 26, so that the blue light which is not absorbed by the fluorescent film 26 can be reflected back to the fluorescent film 26 again, so that the fluorescent film 26 can reproduce yellow light again.
  • the generated yellow light is at least partially reflected and finally passes through the filter film 27 and the glass sheet 22 to emit red light, thereby improving red light brightness and improving light utilization efficiency.
  • the refractive index of the fluorescent film 26 and the air gap are largely different, the fluorescence generated from the inside of the fluorescent film 26 is emitted at a large angle to the interface between the fluorescent film 26 and the air gap, and the fluorescence is reflected, and the small angle is small.
  • the fluorescence is emitted from the fluorescent film 26, so that the fluorescence emitted from the side of the fluorescent film 26 close to the filter film 27 is substantially the same as the direction in which the excitation light is incident, and the fluorescent film 26 is closer to the side of the blue anti-yellow film 25 Most of the emitted fluorescence is substantially opposite to the direction in which the excitation light is incident, and the fluorescence emitted from the side of the fluorescent film 26 near the blue anti-yellow film 25 is reflected by the anti-blue transparent film 25 and further penetrates the fluorescent film 26 from the fluorescent film 26. It is emitted near the side of the filter film 27. Therefore, the presence of air gaps helps More fluorescence is emitted from the side of the fluorescent film 26 close to the filter film 27 in substantially the same direction as the incident direction of the excitation light, which contributes to the collection of fluorescence and improves the light utilization efficiency.
  • the blue light and the yellow light generated by the blue light through the color wheel 2 can increase the brightness of the emitted green light and yellow light.
  • the fluorescent film 26 may be sintered by mixing phosphor powder and glass powder, and the phosphor and the glass powder are mixed and placed on a substrate for sintering. After sintering, the substrate is further formed. Separated from the fluorescent film 26.
  • the blue anti-yellow film 25 may only allow transmission of blue light incident at a small angle, such as only allowing blue light transmission within 0 to 20 degrees from the optical axis of the blue anti-yellow film 25.
  • the dry glass frit layers 28 and 29 may also be replaced by other low refractive index layers such as a porous silicon dioxide layer having a refractive index of 1.3 or less, preferably 1.2 or less. .
  • an anti-reflection coating may also be provided on the side of the glass sheet 22 remote from the fluorescent film 26.
  • the thickness of the dry glass frit layers 28, 29 is not limited to 10 [mu]m and may be any value less than 50 [mu]m, preferably 10-15 [mu]m.
  • the thickness of the fluorescent film 26 is also not limited to 100 ⁇ m, and may be any value less than 200 ⁇ m.
  • the fluorescent film 26 may include only the red light region 261, the green light region 262, and the blue light region 263.
  • the filter film 27 may also include only the red light transmitting region 271, the transparent green light region 272, and the antireflection region. 273.
  • the blue anti-yellow film 25 transmits the first light (blue light) and reflects the second light (yellow light). Therefore, the blue light can enter the fluorescent film 26 via the blue anti-yellow film 25, and the fluorescent film 26 At least one first color light region, such as a red light region 261, a green light region 262, and/or a yellow light region 264, wherein the first color light region absorbs the first light to generate the second light, and the second The light splits the third light (red or green) and transmits the third light through the filter film 27, or the second light is directly transmitted through the filter film 27, and the fluorescent film 26 may further include a second color region.
  • the second color light region allows the first light to pass directly through the fluorescent film 26 and ultimately through the filter film 27, such as a blue light region.
  • the filter film 27 includes at least one first light transmitting region such as a red light transmitting region 271, a transparent green light region 272, and/or a yellow light transmitting region 274 to correspond to the first color light region of the fluorescent film 26.
  • the first light transmissive region allows the second light or the third light to transmit and reflect other light.
  • the first light that is not absorbed by the fluorescent film 26 is reflected back to the fluorescent film 26 by the first light transmitting region, and the fluorescent film 26 is The second light is absorbed and regenerated, and the second light generated again is emitted to the blue anti-yellow film 25, is reflected by the blue anti-yellow film 25, and finally passes through the first transparent region of the filter film 27 via the fluorescent film 26. Transmitted, or, the second light generated again is separated by the first light transmission of the filter film 27 to the third light and transmits the third light.
  • the filter film 27 may include a second light transmitting region to correspond to the second color light region of the fluorescent film 26, the second light transmitting region allowing the first light to pass therethrough.
  • the blue anti-yellow film 25 can also be split by a composite film.
  • the blue anti-yellow color The film 25 may be composed of a combination of a blue-transparent red film and a blue-transparent anti-green film.
  • the first light is not limited to blue light
  • the second light is not limited to yellow light
  • the third light is not limited to red light or green light, based on the selected first light, second light, and / or the difference in the third light
  • the blue anti-yellow film 25 can also be replaced by other spectroscopic films.
  • the sapphire sheet 21 and the glass sheet 22 respectively constitute the front substrate and the rear substrate of the color wheel 2, and the front substrate of the color wheel 2 may be a quartz plate or a glass plate in other embodiments, and the rear substrate is in other embodiments. It can also be quartz or sapphire.
  • the light source system 100 includes a color wheel 2 and a light emitting unit 3 .
  • Monochromatic light emitted from the light emitting unit 3 such as blue light, is converted into multicolor light by the color wheel 2 .
  • FIG. 8 is a block diagram of a projection system
  • the projection system. 200 includes a light source system 100, a spatial light modulator 4, and a projection lens 5.
  • the multicolor light emitted from the light source system 100 is modulated by the spatial light modulator 4 into image light carrying image information, and finally emitted to the screen via the projection lens 5.
  • the color wheel, the light source system, and the projection system have a spectroscopic film disposed inside the color wheel and a low refractive index layer disposed between the fluorescent film and the spectroscopic film and the filter film.
  • the first light energy that has passed through the fluorescent film and is not absorbed by the fluorescent film is reflected back by the filter film, is again absorbed by the fluorescent film and is again generated by the fluorescent film, and the second light generated again is at least partially reflected back to the fluorescent film by the spectral film.
  • the film exits through the fluorescent film and the filter film, or the third light is separated by the second light generated again, and the third light is emitted through the filter film, thereby improving light utilization efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Optical Filters (AREA)
  • Projection Apparatus (AREA)

Abstract

一种色轮及应用色轮的光源系统与投影系统,色轮(2)包括允许光通过的前基板(21)与后基板(22)、以及顺序置于前基板(21)与后基板(22)之间的分光膜(25)、第一低折射率层(28)、荧光膜(26)、第二低折射率层(29)及滤光膜(27),分光膜(25)透射第一光与反射第二光,分光膜(25)包括至少一第一色光区,第一色光区吸收第一光以生成第二光,滤光膜(27)包括至少一第一透光区对应第一色光区,第一透光区允许第二光或由第二光分出的第三光通过并反射其他光。使得光能利用率高。

Description

色轮及应用所述色轮的光源系统、投影系统 技术领域
本发明涉及投影显示领域,尤其涉及一种色轮及应用所述色轮的光源系统、投影系统。
背景技术
请参阅图1所示,为一种现有技术中的色轮的层结构示意图。所述色轮包括一玻璃片层11、一荧光层12与一滤光片层13。其中荧光层12涂布于玻璃片层11的一个表面上,滤光片层13设置于荧光层12上。激发光穿透玻璃片层11到达荧光层12,荧光层12吸收激发光并产生受激光,由于受激光遵循朗伯分布,其会朝向四周出射,因此除了一部分透射滤光片层外,另一部分受激光会从激发光的入射侧出射,从而造成受激光损失,导致光利用率低。
发明内容
鉴于上述状况,本发明提供一种光能利用率高的色轮、光源系统与投影系统。
一方面,本发明提供一种色轮,所述色轮包括允许光通过的前基板与后基板、以及顺序置于所述前基板与后基板之间的分光膜、第一低折射率层、荧光膜、第二第折射率层及滤光膜,所述分光膜透射第一光与反射第二光,所述荧光膜包括至少一第一色光区,所述第一色光区吸收第一光以生成第二光,所述滤光膜包括至少一第一透光区对应所述第一色光区,所述第一透光区允许第二光或由第二光分出的第三光通过并反射其他光,其中,未被所述第一色光区吸收的第一光至少部分被所述第一透光区反射、经由所述第二低折 射率层进入所述第一色光区,被所述第一色光区吸收并再次生成第二光,再次生成的所述第二光被所述分光膜反射、经由所述第一低折射率层进入所述第一色光区,再经由所述第一色光区与所述第二低折射率层到达所述第一透光区,所述第一透光区透射所述第二光或将第二光中分出第三光并透射所述第三光。
另一方面,本发明还提供一种光源系统,所述光源系统包括发光单元以及上述色轮,所述发光单元发出的单色光被所述色轮转换成多色光出射。
再一方面,本发明还提供一种投影系统,所述投影系统包括上述的光源系统以及空间光调制器与投影镜头,从所述光源系统出射的多色光经由所述空间光调制器调制成携带图像信息的图像光,所述图像光经由所述投影镜头出射至一荧幕。
本发明实施例提供的色轮、光源系统与投影系统的优点在于:由于色轮内部设置了分光膜以及在荧光膜与分光膜及滤光膜之间设置了低折射率层,从而使经过荧光膜而未被荧光膜吸收的第一光能被滤光膜反射回来,再次经过荧光膜而被吸收并再次产生第二光,再次产生的第二光至少部分能被分光膜反射回荧光膜,并穿过荧光膜与滤光膜出射,或者,由再次产生的第二光分出第三光,第三光经由滤光膜出射,因此,提升了光利用率。
附图说明
图1为现有技术中一色轮的结构示意图。
图2为本发明一种实施方式的色轮的结构示意图。
图3为图2所示色轮中荧光膜的区段分割示意图。
图4为图2所示色轮中滤光膜的区段分割示意图。
图5为荧光膜与滤光膜直接贴合时受激光出射示意图。
图6为荧光膜与透蓝反黄膜直接贴合时受激光出射示意图。
图7为本发明一种实施方式中的光源系统的方框示意图。
图8为本发明一种实施方式中的投影系统的方框示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图2所示,为本发明色轮的一种实施方式的结构示意图。所述色轮2从正面与背面看大致呈圆盘状(图未示),包括一设置于正面的蓝宝石片21与一设置于背面的玻璃片22。从侧面看,所述蓝宝石片21与玻璃片22之间隔开设置。在色轮2的中间区域,蓝宝石片21与玻璃片22之间设置粘接层23,蓝宝石片21与玻璃片层22之间通过粘接层23粘接固定。在色轮2的周边区域,蓝宝石片21背离玻璃片22的一侧设置了一增透膜24,蓝宝石片21与玻璃片22之间依次设置了一透蓝反黄膜25、一荧光膜26与一滤光膜27。其中增透膜24、透蓝反黄膜25、荧光膜26以及滤光膜27均大致呈圆环状,从而使其能环绕设置在色轮2周边区域,透蓝反黄膜25叠置于蓝宝石片21上,滤光膜27叠置于玻璃片22上,荧光膜26与透蓝反黄膜25、滤光膜27之间均隔开设置,在本实施方式中,荧光膜26与透蓝反黄膜25、滤光膜27之间均大致隔开10μm,在荧光膜26与透蓝反黄膜25、滤光膜27之间分别设置了干玻璃粉层28、29,每一干玻璃粉层28、29的厚度亦大致为10μm,从而使蓝宝石片21与玻璃片22对荧光膜26在物理上起支撑或夹紧作用。
在本实施方式中,荧光膜26中包含树脂和胶水,因此干玻璃粉层28、29可通过喷涂分别吸附于荧光膜26两侧,从而对荧光膜起到一定的硬化作用。
在本实施方式中,荧光膜26的厚度大致为100μm。
请参阅图3所示,荧光膜26沿其圆周方向依次设置了红光区261、绿光区262、蓝光区263与黄光区264。其中红光区261与黄光区264由树脂、胶水和黄色荧光粉混合形成,绿光区262由树脂、胶水与绿色荧光粉混合形成,蓝光区由树脂、胶水和散射粉混合形成。在本实施方式中,红光区261、绿光区262、蓝光区263与黄光区264所对应圆心角分别为115度、92度、70度、83度。
请参阅图4所示,对应荧光膜26上红光区261、绿光区262、蓝光区263与黄光区264的设置,滤光膜27沿其圆周方向依次设置了透红光区271、透绿光区272、增透区273与透黄光区274,在本实施方式中,透红光区271设置了透红光膜、透绿光区272设置了透绿光膜、增透区273设置了增透膜、透黄光区274设置了透黄光膜。
在本实施方式中,由于干玻璃粉层28、29是通过将干玻璃颗粒吸附于荧光膜26上形成,因此干玻璃粉层28与透蓝反黄膜25、荧光膜26以及滤光膜27之间存在空气隙。由于透蓝反黄膜25与空气隙的存在,被滤光膜27反射回来的光部分会被重新利用并最终透过滤光膜27与玻璃片22出射,从而提高光利用率。以下以蓝光、具体为蓝激光入射色轮2、经由色轮2产生红光为例说明色轮2的光学作用。
激发光蓝光依次透射增透膜24、蓝宝石片21、透蓝反黄膜25,并穿过空气隙和干玻璃粉层28,照射至荧光膜26,激发荧光膜26红光区261中的黄色荧光粉产生受激光黄光。从荧光膜26出射的黄光至少部分经过空气隙和干玻璃粉层29后照射至滤光膜27的透红 光区271,黄光被分成红光与绿光,其中红光透射滤光膜27后进一步透射玻璃片22并出射,绿光以及未被吸收的蓝光被滤光膜27的透红光区271反射。被反射的蓝光经过荧光膜26后,激发荧光膜26再一次产生黄光,再次产生的黄光经过干玻璃粉层28和空气隙后照射至透蓝反黄膜25,经透蓝反黄膜25反射后,再经由干玻璃粉层28、荧光膜26以及干玻璃粉层29,至少部分经由滤光膜27的透红光区271和玻璃片22出射,从而提高出射的红光亮度,提高光利用率。
在上述实施方式中,干玻璃粉层29与荧光膜26以及滤光膜27之间并不是完全贴合。在干玻璃粉层29与荧光膜26之间,干玻璃粉层29中有一些干玻璃颗粒与荧光膜26之间贴合接触,而除了这些干玻璃颗粒与荧光膜26接触的区域外,干玻璃粉层29的大部分区域与荧光膜26之间形成空气隙,由于空气(折射率为1)与荧光膜26(折射率为1.5~1.8)二者的折射率相差较远,因此大角度入射的光在到达荧光膜26与干玻璃粉层29的交界界面时会发生全反射。同理,干玻璃粉层29的大部分区域与滤光膜27之间形成空气隙,由于空气与滤光膜27二者的折射率相差较远,因此在大角度入射的光在到达滤光膜27与干玻璃粉层29的交界界面时会发生全反射。如此,避免了将荧光膜26与滤光膜27直接贴合,由于荧光膜26与滤光膜27二者折射率相近而让入射光穿过滤光膜27与玻璃片22出射,从而能使未被荧光膜26吸收的蓝光部分被滤光膜27反射至荧光膜26,并被荧光膜26吸收而再次产生黄光。请参阅图5所示,若荧光膜26与滤光膜27之间未加干玻璃粉层29而直接贴合,在色轮2出射红光时段,绿光或未被荧光膜26吸收的蓝光会穿透滤光膜27并进一步透射至玻璃片22,至少部分绿光或蓝光从玻璃片22的圆周面出射,从而达不到反射蓝光和绿光的效果。而若在玻璃片22远离滤光膜27的一侧设置增透膜,则更会导致部分蓝光和绿 光从玻璃片22远离滤光膜27一侧出射,亦达不到反射蓝光和绿光的效果。
同理,在荧光膜26与透蓝反黄膜25之间设置干玻璃粉层28,由于空气与荧光膜26以及透蓝反黄膜25之间的折射率相差较远,因此避免了将透蓝反黄膜25与荧光膜26直接贴合,由于二者折射率相近而让入射光穿过透蓝反黄膜25与蓝宝石片21出射,从而能使荧光膜26再次产生的黄光能被透蓝反黄膜25反射并最终从滤光膜27出射,以提高光利用率。请参阅图6所示,若荧光膜26与透蓝反黄膜25之间未设置干玻璃粉层28而直接贴合,在蓝宝石片21远离透蓝反黄膜25一侧未设置增透膜24的情况下,部分黄光从蓝宝石片21的圆周面出射而损失掉。在蓝宝石片21远离透蓝反黄膜25一侧设置增透膜24的情况下,至少部分黄光会进一步穿透增透膜24而损失掉。而调换蓝宝石片21与透蓝反黄膜25的位置,基于同样的原理,受激光同样会损失。
因此,在荧光膜26两侧设置低折射率的干玻璃粉层28、29,利于未被荧光膜26吸收的蓝光能再次被反射回荧光膜26,使荧光膜26能再次产生黄光,再次产生的黄光至少部分能被反射并最终通过滤光膜27与玻璃片22出射红光,从而提高红光亮度、提升光利用率。
另一方面,由于荧光膜26与空气隙的折射率相差较大,从荧光膜26内部产生的荧光以大角度出射至荧光膜26与空气隙的交界界面时,荧光会发生反射,而小角度的荧光则从荧光膜26出射,从而使从荧光膜26靠近滤光膜27一侧出射的荧光大部分与激发光入射的方向大致相同,而从荧光膜26靠近透蓝反黄膜25一侧出射的荧光大部分与激发光入射的方向大致相反,从荧光膜26靠近透蓝反黄膜25一侧出射的荧光经反蓝透黄膜25反射后进一步穿透荧光膜26而从荧光膜26靠近滤光膜27一侧出射。因此,空气隙的存在有助 于更多的荧光从荧光膜26靠近滤光膜27一侧以与激发光入射方向大致相同的方向出射,有助于荧光的收集,提高光利用率。
同理,以蓝光经由色轮2产生绿光与黄光均能提高出射的绿光与黄光的亮度。
可以理解,在其他实施方式中,荧光膜26可以是由荧光粉和玻璃粉混合后烧结而成,将荧光粉和玻璃粉混合后置于一基板上进行烧结,在烧结成型后,再将基板与荧光膜26分离。
可以理解,在其他实施方式中,透蓝反黄膜25可以只允许小角度入射的蓝光透射,例如仅允许与透蓝反黄膜25光轴呈0至20度以内的蓝光透射。
可以理解,在其他实施方式中,干玻璃粉层28和29也可以用其它低折射率层例如多孔的二氧化硅层替代,低折射率层的折射率在1.3以下,优选的,在1.2以下。
可以理解,在其他实施方式中,在玻璃片22远离荧光膜26的一侧也可设置增透膜。
可以理解,在其他实施方式中,干玻璃粉层28、29的厚度不限于10μm,可以为小于50μm任何值,优选为10-15μm。荧光膜26的厚度也不限于100μm,可以为小于200μm的任何值。
可以理解,荧光膜26上红光区261、绿光区262、蓝光区263与黄光区264所对应圆心角度数可以根据实际需要更改。
可以理解,荧光膜26可以仅包括红光区261、绿光区262与蓝光区263,对应地,滤光膜27上也可以仅包括透红光区271、透绿光区272与增透区273。
在上述实施方式中,所述透蓝反黄膜25透射第一光(蓝光)而反射第二光(黄光),因此,蓝光可经由透蓝反黄膜25进入荧光膜26,荧光膜26至少包含一个第一色光区如红光区261、绿光区262及/或黄光区264,所述第一色光区吸收第一光而产生第二光,第二 光经由滤光膜27分出第三光(红光或绿光)并透射第三光,或者,第二光直接经由滤光膜27透射,所述荧光膜26还可包括一第二色光区如蓝光区,所述第二色光区允许第一光直接透过荧光膜26并最终经由滤光膜27透射。相应的,滤光膜27至少包含一个第一透光区如透红光区271、透绿光区272及/或透黄光区274以对应所述荧光膜26的第一色光区,所述第一透光区允许第二光或第三光透过并反射其他光,因此,未被荧光膜26吸收的第一光会被第一透光区反射回荧光膜26,被荧光膜26吸收并再次产生第二光,而再次产生的第二光出射至透蓝反黄膜25后,被透蓝反黄膜25反射、经由荧光膜26最终从滤光膜27的第一透光区透射,或者,再次产生的第二光被滤光膜27的第一透光区分出第三光并将第三光透射。滤光膜27可以包括一个第二透光区以对应荧光膜26的第二色光区,所述第二透光区允许第一光透过。在其他实施方式中,透蓝反黄膜25也可由一张组合膜来代替进行分光,例如,在色轮2入射蓝光并出射红光、绿光、与蓝光的实施方式中,透蓝反黄膜25可以由透蓝反红膜、透蓝反绿膜组合构成。此外,在其他实施方式中,第一光并不限于蓝光,第二光并不限于黄光,第三光也并不限于红光或绿光,基于选取的第一光、第二光、及/或第三光的不同,透蓝反黄膜25也可采用其他的分光膜来代替。
在以上实施方式中,蓝宝石片21与玻璃片22分别构成色轮2的前基板与后基板,色轮2的前基板在其他实施方式中可以是石英片或玻璃片,而后基板在其他实施方式中亦可以是石英片或蓝宝石片。
请参阅图7所示,为一光源系统的方框示意图,所述光源系统100包括色轮2与发光单元3,从发光单元3发出的单色光如蓝光被色轮2转换成多色光,如红、绿、蓝、黄四色光。
请参阅图8所示,为一投影系统的方框示意图,所述投影系统 200包括光源系统100、空间光调制器4与投影镜头5。从光源系统100出射的多色光经空间光调制器4调制成携带图像信息的图像光,经由投影镜头5最终出射至荧幕上。
综上所述,本发明实施方式提供的色轮、光源系统及投影系统,由于色轮内部设置了分光膜以及在荧光膜与分光膜及滤光膜之间设置了低折射率层,从而使经过荧光膜而未被荧光膜吸收的第一光能被滤光膜反射回来,再次经过荧光膜而被吸收并再次产生第二光,再次产生的第二光至少部分能被分光膜反射回荧光膜,并穿过荧光膜与滤光膜出射,或者,由再次产生的第二光分出第三光,第三光经由滤光膜出射,因此,提升了光利用率。
以上实施方式仅用以说明本发明的技术方案而非限制,尽管参照以上较佳实施方式对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换都不应脱离本发明技术方案的精神和范围。

Claims (17)

  1. 一种色轮,其特征在于,所述色轮包括允许光通过的前基板与后基板、以及顺序置于所述前基板与后基板之间的分光膜、第一低折射率层、荧光膜、第二第折射率层及滤光膜,所述分光膜透射第一光与反射第二光,所述荧光膜包括至少一第一色光区,所述第一色光区吸收第一光以生成第二光,所述滤光膜包括至少一第一透光区对应所述第一色光区,所述第一透光区允许第二光或由第二光分出的第三光通过并反射其他光,其中,未被所述第一色光区吸收的第一光至少部分被所述第一透光区反射、经由所述第二低折射率层进入所述第一色光区,被所述第一色光区吸收并再次生成第二光,所述第二光被所述分光膜反射、经由所述第一低折射率层进入所述第一色光区,再经由所述第一色光区与所述第二低折射率层到达所述第一透光区,所述第一透光区透射所述第二光或将第二光中分出第三光并透射所述第三光。
  2. 如权利要求1所述的色轮,其特征在于,所述荧光膜包括一第二色光区,所述第二色光区透射第一光,所述滤光膜包括一第二透光区对应所述第二色光区,所述第二色光区透射经由所述第二色光区透射过来的第一光。
  3. 如权利要求1所述的色轮,其特征在于,还包括设置于所述前基板背离所述分光膜一侧的增透膜。
  4. 如权利要求1所述的色轮,其特征在于,所述分光膜、第一低折射率层、荧光膜、第二第折射率层及滤光膜设置于所述色轮的周边区域。
  5. 如权利要求4所述的色轮,其特征在于,所述色轮的中间区域包括一粘结层,所述粘结层用于将所述前基板与后基板之间粘结固定。
  6. 如权利要求1所述的色轮,其特征在于,所述前基板为蓝宝石片、玻璃片或石英片,及/或,所述后基板为玻璃片、石英片或蓝宝石片。
  7. 如权利要求2所述的色轮,其特征在于,所述分光膜为一透蓝反黄膜,所述第一光为蓝光,第二光为黄光。
  8. 如权利要求7所述的色轮,其特征在于,所述荧光膜包括三个第一色光区,分别为红光区、绿光区与黄光区,所述滤光膜包括三个第一透光区,分别为透红光区、透绿光区与透黄光区,其中所述透红光区对应所述红光区、所述透绿光区对应所述绿光区、所述透黄光区对应所述黄光区,所述第二色光区为蓝光区,所述第二透光区为增透区,所述第三光为红光或绿光。
  9. 如权利要求8所述的色轮,其特征在于,所述红光区与黄光区设置黄色荧光粉,所述绿光区设置绿色荧光粉,所述蓝光区设置散射粉,所述透红光区设置透红光膜,所述透绿光区设置透绿光膜,所述透黄光区设置透黄光膜,所述增透区设置增透膜。
  10. 如权利要求1所述的色轮,其特征在于,所述第一低折射率层的折射率为1.3或1.2以下,及/或,所述第二低折射率层的折射率为1.3或1.2以下。
  11. 如权利要求10所述的色轮,其特征在于,所述第一低折射率层为干玻璃粉层或二氧化硅层,及/或,所述第二低折射率层为干玻璃粉层或二氧化硅层。
  12. 如权利要求10所述的色轮,其特征在于,所述第一低折射率层的厚度小于50μm或为10-15μm,及/或,所述第二低折射率层的厚度小于50μm或为10-15μm。
  13. 如权利要求11所述的色轮,其特征在于,所述干玻璃粉层 通过将干玻璃颗粒吸附于所述荧光膜上形成。
  14. 如权利要求1所述的色轮,其特征在于,所述荧光膜的厚度为小于200μm,或者,所述荧光膜的厚度为100μm。
  15. 如权利要求1所述的色轮,其特征在于,所述分光膜仅允许与所述分光膜光轴呈0至20度的第一光透射。
  16. 一种光源系统,其特征在于,包括发光单元以及如权利要求1-15任一项所述的色轮,所述发光单元发出的单色光被所述色轮转换成多色光出射。
  17. 一种投影系统,其特征在于,包括如权利要求16所述的光源系统、以及空间光调制器与投影镜头,从所述光源系统出射的多色光经由所述空间光调制器调制成携带图像信息的图像光,所述图像光经由所述投影镜头出射至一荧幕。
PCT/CN2017/114719 2017-07-25 2017-12-06 色轮及应用所述色轮的光源系统、投影系统 WO2019019517A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710612351.1A CN109298523A (zh) 2017-07-25 2017-07-25 色轮及应用所述色轮的光源系统、投影系统
CN201710612351.1 2017-07-25

Publications (1)

Publication Number Publication Date
WO2019019517A1 true WO2019019517A1 (zh) 2019-01-31

Family

ID=65039969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114719 WO2019019517A1 (zh) 2017-07-25 2017-12-06 色轮及应用所述色轮的光源系统、投影系统

Country Status (2)

Country Link
CN (1) CN109298523A (zh)
WO (1) WO2019019517A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112669728A (zh) * 2020-12-31 2021-04-16 厦门大学 一种基于激光激发荧光粉的透射式显示实现办法
CN114217499A (zh) * 2022-01-13 2022-03-22 扬州吉新光电有限公司 一种波长转换装置及投影系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101539270A (zh) * 2008-03-17 2009-09-23 绎立锐光科技开发(深圳)有限公司 具有发射角度选择特性的光波长转换方法
CN202040748U (zh) * 2011-03-08 2011-11-16 绎立锐光科技开发(深圳)有限公司 光波长转换轮组件
CN202275207U (zh) * 2011-10-21 2012-06-13 深圳市光峰光电技术有限公司 色轮和使用该色轮的光源组件
JP2012209228A (ja) * 2011-03-30 2012-10-25 Ushio Inc 光源装置
CN104765237A (zh) * 2014-01-03 2015-07-08 台达电子工业股份有限公司 光学投影装置
CN105659160A (zh) * 2013-11-13 2016-06-08 日本电气硝子株式会社 投影器用荧光轮和投影器用发光器件
CN207164363U (zh) * 2017-07-25 2018-03-30 深圳市光峰光电技术有限公司 色轮及应用所述色轮的光源系统、投影系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105549311B (zh) * 2011-08-27 2018-11-13 深圳市光峰光电技术有限公司 投影系统及其发光装置
CN202886822U (zh) * 2012-08-31 2013-04-17 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101539270A (zh) * 2008-03-17 2009-09-23 绎立锐光科技开发(深圳)有限公司 具有发射角度选择特性的光波长转换方法
CN202040748U (zh) * 2011-03-08 2011-11-16 绎立锐光科技开发(深圳)有限公司 光波长转换轮组件
JP2012209228A (ja) * 2011-03-30 2012-10-25 Ushio Inc 光源装置
CN202275207U (zh) * 2011-10-21 2012-06-13 深圳市光峰光电技术有限公司 色轮和使用该色轮的光源组件
CN105659160A (zh) * 2013-11-13 2016-06-08 日本电气硝子株式会社 投影器用荧光轮和投影器用发光器件
CN104765237A (zh) * 2014-01-03 2015-07-08 台达电子工业股份有限公司 光学投影装置
CN207164363U (zh) * 2017-07-25 2018-03-30 深圳市光峰光电技术有限公司 色轮及应用所述色轮的光源系统、投影系统

Also Published As

Publication number Publication date
CN109298523A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
US10423054B2 (en) Wavelength conversion structure and projection device
EP2869109B1 (en) Wavelenght conversion and filtering module and light source system
US10921695B2 (en) Wavelength-converting wheel and projection apparatus
US10774998B2 (en) Wavelength-converting wheel and projection apparatus
TWI542939B (zh) 光學輪盤
WO2012119515A1 (zh) 光波长转换轮组件
US10732496B2 (en) Color wheel and laser projection apparatus
TW201514603A (zh) 光波長轉換模組、照明系統以及投影裝置
CN207164363U (zh) 色轮及应用所述色轮的光源系统、投影系统
JP2012004009A (ja) 照明装置及び画像表示装置
JP2016061852A (ja) 波長変換素子、光源装置、およびプロジェクター
WO2015111145A1 (ja) 光源装置およびこれを用いた映像表示装置
US9977316B2 (en) Projection apparatus and illumination system thereof
US11114590B2 (en) Wavelength conversion module, method of forming the same and projection apparatus
TW202008065A (zh) 波長轉換模組、波長轉換模組的形成方法以及投影裝置
US10802385B2 (en) Phosphor plate, light source apparatus, and projection display apparatus
WO2019019517A1 (zh) 色轮及应用所述色轮的光源系统、投影系统
WO2020135299A1 (zh) 波长转换装置、发光装置及投影装置
US10824058B2 (en) Projector and wavelength conversion device thereof
JP2020112590A (ja) 波長変換素子、照明装置およびプロジェクター
CN113467170B (zh) 激光光学引擎模块及激光投影机
US20240103350A1 (en) Light source assembly and projection device
CN116009342A (zh) 光源模块
JP2021144162A (ja) 波長変換素子、光源装置、プロジェクター、および波長変換素子の製造方法
CN114609852A (zh) 一种波长转换装置及光源系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17919506

Country of ref document: EP

Kind code of ref document: A1