WO2019019451A1 - 一种闪烁探测器的增益校正装置和方法 - Google Patents

一种闪烁探测器的增益校正装置和方法 Download PDF

Info

Publication number
WO2019019451A1
WO2019019451A1 PCT/CN2017/108116 CN2017108116W WO2019019451A1 WO 2019019451 A1 WO2019019451 A1 WO 2019019451A1 CN 2017108116 W CN2017108116 W CN 2017108116W WO 2019019451 A1 WO2019019451 A1 WO 2019019451A1
Authority
WO
WIPO (PCT)
Prior art keywords
gain
voltage
scintillation detector
temperature
scintillation
Prior art date
Application number
PCT/CN2017/108116
Other languages
English (en)
French (fr)
Inventor
姜浩
邢明俊
朱玉珍
谢庆国
Original Assignee
苏州瑞派宁科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州瑞派宁科技有限公司 filed Critical 苏州瑞派宁科技有限公司
Priority to FIEP17919344.6T priority Critical patent/FI3637147T3/fi
Priority to JP2020522767A priority patent/JP6978125B2/ja
Priority to EP17919344.6A priority patent/EP3637147B1/en
Publication of WO2019019451A1 publication Critical patent/WO2019019451A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
    • G01T1/40Stabilisation of spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/208Circuits specially adapted for scintillation detectors, e.g. for the photo-multiplier section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • G01T7/005Details of radiation-measuring instruments calibration techniques
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a signal correction apparatus and method in the field of nuclear medicine imaging and ionizing radiation measurement, and more particularly to a gain correction apparatus and method for a scintillation detector.
  • Scintillation detectors are widely used in nuclear medicine imaging and ionizing radiation measurement, and are the core devices for imaging or radiation measurement.
  • the scintillation detector includes scintillation crystals and optoelectronic devices coupled to each other, and the scintillation crystal is used to convert ionizing radiation rays (including X-rays, gamma photons, neutrons, alpha photons, and beta photons, etc.) into optical signals, and the optoelectronic device is used to The optical signal is converted into an electrical signal, and the electrical signal is processed by a corresponding electronic design to obtain information such as the corresponding arrival time, the arrival position, and the energy of the gamma photon.
  • ionizing radiation rays including X-rays, gamma photons, neutrons, alpha photons, and beta photons, etc.
  • scintillation crystals include sodium iodide (NaI) crystal, yttrium silicate (LYSO) crystal, strontium silicate (LSO) crystal, yttrium silicate (YSO) crystal and cesium iodide (CsI) crystal, etc.
  • Photoelectric devices include photodiodes (APDs), photomultiplier tubes (PMTs), and emerging silicon photomultipliers (SiPMs).
  • the scintillation detector Since the scintillation detector is the core device for imaging or radiation measurement, its gain parameters will directly affect the accuracy of the radiation measurement. However, since there is a difference between the individual light output of the scintillation crystal (the light output is the number of ionizing rays that the scintillation crystal absorbs per unit of energy is converted into photons), this difference will cause a change in the gain of the scintillation detector, especially in silicon.
  • the photomultiplier is a scintillation detector of the photoelectric device, and its gain is extremely sensitive to temperature. The gain can be more than 56% in the temperature range of -20 to 50 °C, which seriously affects the accuracy of the system. Therefore, the gain of the scintillation detector needs to be corrected in actual use.
  • the method of correcting the gain of the scintillation detector is mostly added at the back end of the scintillation detector.
  • the amplifier and multi-channel analysis equipment are used to measure the energy spectrum of the scintillation detector to obtain the photo-peak position of the test source, and then the photo-peak position is used as the gain of the scintillation detector, and the gain of the scintillation detector is compensated by adjusting the gain of the amplifier.
  • the effect is such that the photon peak position remains the same to achieve gain calibration.
  • the prior art can perform gain correction by secondarily amplifying the output signal by adding an amplifier at the rear end of the scintillation detector, since the scintillation detector using the silicon photomultiplier has a relatively fixed amplitude noise floor. Signal, when the gain of the silicon photomultiplier drops, part of the output signal will be submerged in the noise floor signal, even if the amplifier is added at the back end, its signal-to-noise ratio will not increase, eventually leading to loss of signal information. Secondly, after using the amplifier, it is necessary to measure the complete energy spectrum of the calibration source and obtain the position of its photo-peak to achieve calibration. Usually, the data acquisition amount is not less than 5000 events, which will result in slow system calibration and increased hardware cost. Big. Again, after the amplifier is used, the calibration measurement process needs to be repeated when the temperature changes, and the calibration efficiency is lowered.
  • the first step is to determine the gain temperature voltage equation of the standard scintillation detector.
  • the specific steps are as follows:
  • Step S1 Take a standard scintillation detector, in case of a fixed temperature T 0 and X 0 voltage measuring said standard gain G 0 scintillation detector, the scintillation detector of the standard gain G 0 as a test scintillation detection Target gain of the device;
  • Step S4 Substituting the parameters k 1 , k 2 , p 1 and p 2 into the gain temperature voltage equation, and calculating the parameters a, b and c of the standard scintillation detector, thereby determining the gain temperature voltage equation of the standard scintillation detector is :
  • Step S5 When the target gain is G 0 , the relationship between the voltage x and the temperature t of the scintillation detector can be determined according to the gain temperature voltage equation:
  • the second step measuring a gain difference between the flicker detector to be tested and the standard scintillation detector, and obtaining a voltage temperature equation of the flicker detector to be tested under the target gain condition;
  • the voltage temperature equation obtained in the second step is used as a reference for correction, and a corresponding correction voltage is calculated according to the measured temperature of the scintillation detector to be tested, and the voltage of the scintillation detector is changed according to the correction voltage. To achieve gain correction of the scintillation detector to be tested.
  • Step S6 adjusting the temperature to T 0 and the voltage to X 0 , and measuring the gain G′ of the flicker detector to be tested, the gain temperature voltage equation of the flicker detector to be tested is:
  • Step S7 When the target gain is G 0 , the voltage temperature equation of the scintillation detector to be tested is:
  • the measured temperature of the surface of the scintillation detector to be tested is obtained by using a temperature sensor, and the corresponding correction voltage is calculated by using a single-chip microcomputer.
  • the first step only needs to be performed once, and the other scintillation detectors to be tested perform the second step to obtain the voltage temperature equation under the target gain.
  • the present invention provides a gain correction device for a scintillation detector, the scintillation detector comprising a scintillation crystal and a photoelectric device coupled to each other, the gain correction device comprising: a calibration source, the scintillation crystal receiving the ionizing radiation emitted by the calibration source and Converting the ionizing radiation into visible light, the optoelectronic device converting the visible light into an analog voltage signal; at least two comparators, each of the comparators being in communication with the optoelectronic device to connect different energy segments Converting the analog voltage signal into a digital pulse signal; a counting module, wherein the counting module is respectively communicably connected with each of the comparators to receive a digital pulse signal sent by each of the comparators, and the counting module simultaneously measures the a count rate of the digital pulse signal; a temperature sensor disposed on an outer surface of the optoelectronic device to measure temperature data; a single-chip microcomputer, the single-chip microcomputer communicatively coupled to the
  • the calibration source uses a single energy source.
  • the radionuclide used to calibrate the source is Cs-137, Co-60 or Eu-152.
  • the relative position between the calibration source and the scintillation crystal remains fixed.
  • the multi-channel comparator includes two comparators, respectively, and the optoelectronic device and The computing module communication connection.
  • the optoelectronic device is a silicon photomultiplier.
  • the gain correction device and method of the scintillation detector provided by the invention can directly perform gain calibration from the scintillation detector end, solve the problem of missing information, and replace the multi-channel analyzer with a multi-channel comparator, thereby simplifying the measuring device of the calibration process. Demand speeds up calibration.
  • the invention establishes a mathematical model of the gain, temperature and voltage of the scintillation detector, and can directly adjust the gain according to the temperature without re-measurement, thereby improving the efficiency of the gain correction.
  • FIG. 1 is a power segmentation diagram of a gain correction method of a scintillation detector according to an embodiment of the present invention
  • FIG. 2 is a diagram showing the relationship between gain and temperature of a gain correction method of a scintillation detector according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing a calibration flow of a gain correction method of a scintillation detector according to a preferred embodiment of the present invention
  • FIG. 4 is a system diagram of a gain correcting device of a scintillation detector according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram showing the arrangement of a multi-channel comparator of a gain correcting device of a scintillation detector according to an embodiment of the present invention.
  • the energy spectrum in the present invention refers to an energy distribution histogram obtained by using a scintillation detector to acquire energy and quantity information of ionizing radiation rays and energy segmentation.
  • Each source emits several fixed-energy ionizing radiation rays, so each source has a relatively fixed energy spectrum.
  • E n different energy limits
  • E 1 , E 2 , and E 3 divide the energy spectrum into three energy segments. The intervals of the three energy segments are [E 1 , E 2 ), [E 2 , E 3 ), [E 3 , + ⁇ , respectively.
  • the count rates in the three energy segments are CR 1 , CR 2 , and CR 3 , respectively, and the energy channel count rate ratio is CR 1 : CR 2 : CR 3 .
  • the energy spectrum of the same kind of source is also relatively fixed, that is, the count ratio of each energy channel is stable, so the total count rate ratio of different energy segments is also stable.
  • any two comparators with different reverse voltages can be used to record the count rate ratio of different energy segments as a reference standard for calibration, and the ratio of the different count rates is used as the gain of the photoelectric device of the scintillation detector. .
  • the energy spectrum of Cs-137 can be divided into two energy segments, as shown by the dotted line segment in the figure.
  • the gain of the photoelectric device of the scintillation detector can be determined as:
  • CountRate refers to the count rate recorded by the comparators of different channels
  • CountRate1 is the count rate of comparator 1 with lower energy limit
  • CountRate2 is the count rate of comparator 2 with higher energy limit.
  • FIG. 2 is a schematic diagram showing the relationship between the gain and the temperature of the scintillation detector according to a preferred embodiment of the present invention.
  • the gain and temperature of the photovoltaic device are substantially linear, and the gain is The voltage also has a linear relationship. Therefore, the following equations are satisfied between the gain G and the temperature t and the voltage x:
  • a is the temperature coefficient
  • b is the voltage coefficient
  • c is the gain deviation constant determined by the properties of the scintillation detector independent of voltage and temperature, such as the light loss caused by the coupling of the scintillation crystal and the optoelectronic device. Wait.
  • the steps of the present invention for performing gain correction are as follows:
  • the first step is to determine the gain temperature and voltage equation of the standard scintillation detector to achieve gain correction at different temperatures.
  • the specific steps are:
  • the gain difference between the flicker detector to be tested and the standard scintillation detector is measured under the condition of the standard scintillation detector, and the voltage temperature equation of the scintillation detector under test is obtained under a fixed target gain condition; the sample here
  • the condition refers to the fixed temperature T 0 and voltage X 0 in the first step.
  • the voltage temperature equation obtained in step S7 is used as a reference for correction, and the corresponding corrected voltage is calculated by using the temperature measured by the temperature sensor.
  • the chip microcomputer (MCU) controls the high voltage power supply to change the voltage according to the correction voltage to achieve correction of the scintillation detector to be tested.
  • the first step only needs to be performed once, that is, steps S1-S5 need only be executed once, and other scintillation detectors to be tested only need to perform subsequent steps (S6-S7) in sequence.
  • steps S1-S5 need only be executed once
  • other scintillation detectors to be tested only need to perform subsequent steps (S6-S7) in sequence.
  • the correction voltage is calculated by the MCU and the high voltage is controlled.
  • the gain can be continuously measured by performing step S6, and compared with the target gain by step S7. If the corrected gain does not meet the target gain, steps S6-S7 are repeated and the adjustment is repeated until the Claim Range; if the corrected gain meets the target gain, the gain calibration of the next scintillation detector to be tested is automatically performed.
  • the system schematic diagram of the gain correcting device of the scintillation detector provided by the present invention is as shown in FIG. 4.
  • the gain correcting device of the scintillation detector 10 of the present invention includes the calibration source 20 and multiple paths.
  • the scintillation detector 10 includes a scintillation crystal 11 and a photovoltaic device 12 coupled to each other;
  • the calibration source 20 uses a single energy A source, such as Cs-137, calibrates the source 20 to emit ionizing radiation, such as X-rays, gamma photons, neutrons, alpha photons, and beta photons, etc.;
  • the scintillation crystal 11 receives the ionizing radiation emitted by the calibration source 20 and The ionizing radiation ray is converted to visible light, and the optoelectronic device 12 coupled to the scintillation crystal 11 receives the visible light and converts the visible light into an analog voltage signal;
  • the multiplexer 30 is in communication with the optoelectronic device 12 and receives a simulation from the optoelectronic device 12.
  • the multi-channel comparator 30 converts the analog voltage signal into a digital pulse signal according to different energy segment settings and sends it to the counting module 40; counting
  • the block 40 is communicatively coupled to the multi-channel comparator 30 to receive the digital pulse signal, and the counting module 40 simultaneously measures the number of digital pulse signals transmitted by the multi-channel comparator 30 per unit time, that is, the count rate, and then transmits the count rate to the MCU 50.
  • the temperature sensor 70 is disposed on the surface of the optoelectronic device 12 to accurately measure the real-time temperature of the surface of the optoelectronic device 12, and the temperature sensor 70 transmits the measured real-time temperature data to the MCU 50; the MCU 50 transmits the comparators 30 according to the received counter module 40.
  • the count rate data is calculated to obtain the target gain, and the correction voltage is calculated according to the voltage temperature equation and the real-time temperature data.
  • the MCU 50 determines the correction voltage and sends an adjustment command to the high voltage power source 60 to adjust the voltage to the voltage required for calibration, thereby completing the calibration. Control the progress of the calibration operation.
  • FIG. 5 is a schematic diagram showing the arrangement of a multi-channel comparator of a gain correcting device of a scintillation detector according to an embodiment of the present invention, wherein the comparators are a total of n channels, and the optoelectronic devices 12 are respectively
  • the comparators 30 are communicatively coupled, that is, the optoelectronic devices 12 are communicatively coupled to the first comparator 31, the second comparator 32, ..., and the nth comparator, respectively, the first comparator 31, the second comparator 32, ... And the nth comparator is in communication with the counting module 40, respectively.
  • each comparator converts the analog digital signals in each energy segment into digital pulse signals, and the counting module 40 simultaneously measures each channel in a unit time.
  • the number of digital pulse signals sent by the device and the count rate data of each channel are sent to the MCU 50, and the energy channel count rate ratio is determined by the MCU to determine the target gain.
  • the multiplexer 30 uses only two comparators 31, 32 having different reverse voltages, and the counting ratio of different energy segments is recorded by the counting module 40 as a reference standard for calibration. And the ratio of the different count rates is corrected by the MCU as the gain of the scintillation detector.
  • the ionizing radiation emitted by the calibration source 20 is susceptible to reflection and refraction by surrounding objects, this will affect the morphology of the spectrum of the scintillation crystal measurement, and therefore, it is necessary to avoid calibrating the source 20 and the scintillation crystal 11 There are objects with high density, such as metal plates.
  • the relative position between the calibration source 20 and the scintillation crystal 11 should remain fixed. When the same type of scintillation detector is calibrated, the relative position between the calibration source 20 and the scintillation crystal 11 should also be consistent. Otherwise it will cause a calibration error.
  • the calibration source 20 is a single-energy source such as Cs-137, Co-60 or Eu-152, not necessarily Cs-137, since the energy spectrum of the single-energy source is relatively simple. A relatively stable channel count ratio can be obtained. It should be understood that the calibration source of the present invention is not limited to a single energy source, but may be other types of sources.
  • the photovoltaic device 12 employs a silicon photomultiplier (SiPM), and the temperature sensor 70 is mounted in close proximity to the SiPM; the temperature sensor 70 can also be mounted on the outer casing of the photovoltaic device, The PCB on the underside of the SiPM or the side of the SiPM.
  • SiPM silicon photomultiplier
  • the gain correction device and method of the scintillation detector provided by the invention can realize gain correction from the scintillation detector end, and ensure that the signal-to-noise ratio of the scintillation detector is constant under different temperature and different performance scintillation crystal conditions, so that the flicker detection is performed.
  • the energy detection limit after calibration is unchanged, maintaining the integrity of the information.
  • the invention adopts two-way or multi-channel comparators and counters instead of multi-channel analyzers, and can realize gain measurement without measuring complete energy spectrum, and only needs 1000 events to measure accurate gain, compared with energy spectrum acquisition. Gain, the number of measurement events drops by 80% and the calibration speed is faster.
  • the invention establishes a mathematical model of the gain, temperature and voltage of the optoelectronic device, and only needs to measure the data at two temperatures, so that the complete temperature range can be corrected, and the calibration efficiency is higher.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Abstract

一种闪烁探测器的增益校正装置和方法,该装置包括校准射源(20)和至少两路比较器(30)、计数模块(40)、温度传感器(70)和单片微型计算机(50),每一路比较器(30)均与光电器件(12)通信连接以将不同能量段的模拟电压信号转换为数字脉冲信号;计数模块(40)分别与每一路比较器(30)通信连接并同时测量数字脉冲信号的计数率;温度传感器(70)实测闪烁探测器表面温度数据;单片微型计算机(50)与计数模块(40)通信连接并根据计数率和实测温度数据计算目标增益以及校正电压;高压电源(60)与单片微型计算机(50)连接以接收校正电压,高压电源(60)还与光电器件(12)连接以根据校正电压实现光电器件的增益校正。本发明可根据温度直接调整增益,可避免信息缺失,加快了校准速度,提高了增益校正的效率。

Description

一种闪烁探测器的增益校正装置和方法 技术领域
本发明涉及核医学成像领域以及电离辐射测量领域中的一种信号校正装置和方法,更具体地涉及一种闪烁探测器的增益校正装置和方法。
背景技术
闪烁探测器广泛应用于核医学成像和电离辐射测量领域,是实现成像或辐射测量的核心器件。闪烁探测器包括相互耦合的闪烁晶体和光电器件,闪烁晶体用以将电离辐射射线(包括X射线、伽马光子、中子、α光子和β光子等)转换为光信号,光电器件用以将该光信号转换为电信号,通过相应的电子学设计处理该电信号后可以获取到对应的到达时间、到达位置以及伽马光子的能量等信息。目前常用的闪烁晶体包括碘化钠(NaI)晶体、硅酸钇镥(LYSO)晶体、硅酸镥(LSO)晶体、硅酸钇(YSO)晶体和碘化铯(CsI)晶体等,常用的光电器件有光电二极管(APD),光电倍增管(PMT)以及新兴的硅光电倍增器(SiPM)等。
由于闪烁探测器是实现成像或辐射测量的核心器件,其增益参数将直接影响辐射测量的准确性。然而,由于闪烁晶体的个体光输出(光输出是指闪烁晶体吸收单位能量的电离射线转换为光子的数量)之间存在差异,这种差异将会引起闪烁探测器的增益变化,尤其是以硅光电倍增器为光电器件的闪烁探测器,其增益对温度极度敏感,在-20~50℃温度范围下增益可相差56%以上,严重影响系统的准确性。因此,实际使用中需要对闪烁探测器的增益进行校正。
目前,对闪烁探测器的增益进行校正的方法多为在闪烁探测器后端增加 放大器,并采用多道分析设备测量闪烁探测器的能谱,从而获取测试射源的光电峰位置,再以光电峰位置作为闪烁探测器的增益,通过调整放大器的增益以弥补闪烁探测器增益变化造成的影响,使光电峰位置保持不变以实现增益的校准。
虽然现有技术可通过在闪烁探测器后端增加放大器,将输出的信号进行二次放大以实现增益校正,但是,由于采用硅光电倍增器的闪烁探测器自身具有幅值相对固定的本底噪声信号,当硅光电倍增器的增益下降时,部分输出的信号将淹没于本底噪声信号中,即使在后端增加放大器,其信噪比也并不会提高,最终导致损失信号信息。其次,采用放大器后,需要测量校准射源的完整的能谱,并获取其光电峰位置以实现校准,通常其数据获取量不低于5000个事件,这将造成系统校准速度慢,硬件成本增大。再次,采用放大器后,当温度变化时需要重复校准测量流程,校准效率降低。
发明内容
本发明的目的是提供一种闪烁探测器的增益校正装置和方法,从而解决现有技术中闪烁探测器的增益校正速度慢、校准效率低且成本较高的问题。
为了解决上述技术问题,本发明的技术方案是提供一种闪烁探测器的增益校正装置和方法,闪烁探测器的增益G、温度t和电压x之间满足增益温度电压方程G(x,t)=at+bx+c,其中参数a、b、c为常数;所述增益校正方法包括以下步骤:
第一步,确定标准闪烁探测器的增益温度电压方程,具体步骤为:
步骤S1:取一标准闪烁探测器,在温度T0和电压X0固定的情况下测量所述标准闪烁探测器的增益G0,将所述标准闪烁探测器的增益G0作为待测闪烁探测器的目标增益;
步骤S2:将温度固定为T0,将电压调整为X2,测量所述标准闪烁探测 器的增益G2,代入所述增益温度电压方程,计算得到参数k2和p2,其中k2=b,p2=at0+c;
步骤S3:将电压固定为X0,将温度调整为T1,测量标准闪烁探测器的增益G1,代入所述增益温度电压方程,计算得到参数k1和p1,其中,k1=a,p1=bx0+c;
步骤S4:将参数k1、k2、p1和p2代入所述增益温度电压方程,计算得到标准闪烁探测器的参数a、b和c,从而确定标准闪烁探测器的增益温度电压方程为:
G(x,t)=at+bx+c
步骤S5:当目标增益为G0时,根据增益温度电压方程可确定所述闪烁探测器的电压x和温度t之间的关系为:
x=(G0-at-c)/b
第二步,测量待测闪烁探测器与所述标准闪烁探测器的增益差,获取待测闪烁探测器在所述目标增益条件下的电压温度方程;
第三步,将所述第二步中获得的电压温度方程作为校正的参考,根据待测闪烁探测器的实测温度计算得到对应的校正电压,根据所述校正电压改变所述闪烁探测器的电压以实现待测闪烁探测器的增益校正。
第二步的具体步骤如下:
步骤S6:调整温度为T0、电压为X0,测量待测闪烁探测器的增益G',则待测闪烁探测器的增益温度电压方程为:
G(x,t)=at+bx+c+(G'-G0)            ;
步骤S7:当目标增益为G0时,待测闪烁探测器的电压温度方程为:
x=(-at-c+2G0-G')/b             。
根据本发明的一个实施例,利用温度传感器得到待测闪烁探测器表面的实测温度,利用单片微型计算机计算得到对应的所述校正电压。
对于同尺寸同规格的闪烁探测器,第一步只需执行一次,其他待测的闪烁探测器执行第二步以获取目标增益下的电压温度方程。
本发明提供的闪烁探测器的增益校正装置,闪烁探测器包括相互耦合的闪烁晶体和光电器件,增益校正装置包括:校准射源,所述闪烁晶体接收所述校准射源发出的电离辐射射线并将所述电离辐射射线转换为可见光,所述光电器件将所述可见光转换为模拟电压信号;至少两路比较器,每一路所述比较器均与所述光电器件通信连接以将不同能量段的所述模拟电压信号转换为数字脉冲信号;计数模块,所述计数模块分别与每一路所述比较器通信连接以接收每一路所述比较器发送的数字脉冲信号,所述计数模块同时测量所述数字脉冲信号的计数率;温度传感器,所述温度传感器设置于所述光电器件外侧表面以实测温度数据;单片微型计算机,所述单片微型计算机与所述计数模块通信连接以接收所述计数率,所述单片微型计算机还与所述温度传感器通信连接以接收所述实测温度数据,所述单片微型计算机根据所述计数率和所述实测温度数据计算目标增益以及校正电压;以及高压电源,所述高压电源与所述单片微型计算机连接以接收所述校正电压,所述高压电源还与所述光电器件连接以根据所述校正电压实现所述光电器件的增益校正。
校准射源采用单能射源。
校准射源采用的放射性核素为Cs-137、Co-60或者Eu-152。
对同种闪烁探测器进行校准时,所述校准射源与所述闪烁晶体之间的相对位置保持固定。
多路比较器包括两路比较器,所述两路比较器分别与所述光电器件和所 述计算模块通信连接。
光电器件为硅光电倍增器。
本发明提供的闪烁探测器的增益校正装置和方法,能够从闪烁探测器端直接进行增益校准,解决了信息缺失的问题,使用多路比较器替代多道分析仪,简化了校准过程的测量设备需求,加快了校准速度。同时,本发明建立了闪烁探测器的增益和温度、电压的数学模型,可以根据温度直接调整增益,无需重新测量,提高了增益校正的效率。
附图说明
图1是根据本发明的一个实施例的闪烁探测器的增益校正方法的能量分段示意图;
图2是根据本发明的一个实施例的闪烁探测器的增益校正方法的增益与温度的关系示意图;
图3是根据本发明的一个优选实施例的闪烁探测器的增益校正方法的校正流程示意图;
图4是根据本发明的一个实施例的闪烁探测器的增益校正装置的系统示意图;
图5是根据本发明的一个实施例的闪烁探测器的增益校正装置的多路比较器的布置示意图。
具体实施方式
以下结合具体实施例,对本发明做进一步说明。应理解,以下实施例仅用于说明本发明而非用于限制本发明的范围。
本发明中的能谱指使用闪烁探测器获取电离辐射射线的能量和数量信息,并以能量分段绘制的能量分布直方图。每一种射源都可发出几种固定能 量的电离辐射射线,因此每一种射源都有相对固定的能谱形态。若采用n个不同的能量限值En将能谱划分为若干个能量段,则各个能量段内单位时间所有的脉冲计数率的比即为能量通道计数率比,比如使用3个能量限值E1、E2、E3将能谱划分为三个能量段,这三个能量段的区间分别为[E1,E2)、[E2,E3)、[E3,+∞),三个能量段内的计数率分别为CR1、CR2、CR3,则能量通道计数率比为CR1:CR2:CR3。对于确定尺寸的闪烁晶体,其对于同种射源的能谱形态也是相对固定的,即各能量通道的计数率比是稳定的,因此不同能量段的总计数率比也是稳定的。基于以上原理,可以采用任意两个反向电压不同的比较器记录不同能量段的计数率比,以此作为校准的参考标准,并且将该不同计数率的比值作为闪烁探测器的光电器件的增益。具体地,如图1所示,Cs-137的能谱可以分为两个能量段,如图中点画线分割所示,通过上述原理可确定闪烁探测器的光电器件的增益为:
G=CountRate2/CountRate1
其中,CountRate指不同通道的比较器所记录的计数率,CountRate1为能量限值较低的比较器1的计数率,CountRate2为能量限值较高的比较器2的计数率。
进一步地,图2为根据本发明的一个优选实施例的闪烁探测器的增益与温度的关系示意图,由图2可知,根据实际测量结果,光电器件的增益和温度基本呈一次线性关系,增益和电压也呈一次线性关系,因此,增益G和温度t、电压x之间满足如下方程:
G(x,t)=at+bx+c           (1)
其中,a为温度系数,b为电压系数,c为与电压和温度无关的由闪烁探测器性质决定的增益偏差常数,比如闪烁晶体和光电器件耦合引起的光损失 等。
通过式(1)的关系测量获取a、b、c即可实现温度范围内的校正,具体如下:
第一,当温度t0固定时,可得
G(x,t0)=k2x+p2                     (2)
其中,k2=b,p2=at0+c;
第二,当电压x0固定时,可得
G(x0,t)=k1t+p1                     (3)
其中,k1=a,p1=bx0+c。
根据以上关系,结合图3可知,本发明进行增益校正的步骤如下:
第一步,确定标准闪烁探测器的增益温度电压方程,以便在不同温度下实现增益校正,具体步骤为:
S1:取一标准闪烁探测器,在温度T0和电压X0固定的情况下测量标准闪烁探测器的增益G0,将标准闪烁探测器的增益G0作为其他待测闪烁探测器的目标增益;
S2:将温度固定为T0,将电压调整为X2,测量标准闪烁探测器的增益G2,代入上文中的式(2),计算得到参数k2和p2
S3:将电压固定为X0,将温度调整为T1,测量标准闪烁探测器的增益G1,代入上文中的式(3),计算得到参数k1和p1
S4:将参数k1、k2、p1和p2代入上文中的式(1),计算得到标准闪烁探测器的参数a、b和c,从而确定标准闪烁探测器的增益温度电压方程为:
G(x,t)=at+bx+c                       (1)
S5:当目标增益为G0时,根据上式可确定闪烁探测器的电压x和温度t 之间的关系为:
x=(G0-at-c)/b
第二步,在标准闪烁探测器的样品条件下测量待测闪烁探测器与标准闪烁探测器的增益差,获取待测闪烁探测器在固定的目标增益条件下的电压温度方程;此处的样品条件指第一步中固定的温度T0和电压X0,具体步骤如下:
S6:调整温度为T0、电压为X0,测量待测闪烁探测器的增益G',则待测闪烁探测器的增益温度电压方程为:
G(x,t)=at+bx+c+(G'-G0)
S7:当目标增益为G0时,待测闪烁探测器的电压温度方程为:
x=(-at-c+2G0-G')/b
第三步,根据实际测量的待测闪烁探测器与标准闪烁探测器的增益差,将步骤S7中获得的电压温度方程作为校正的参考,利用温度传感器实测的温度计算得到对应的校正电压,单片微型计算机(MCU)根据校正电压控制高压电源改变电压以实现待测闪烁探测器的校正。
对于同尺寸同规格的闪烁探测器,第一步只需执行一次,也即步骤S1-S5仅需执行一次,其他待测的闪烁探测器只需按序执行后续步骤(S6-S7)即可获取目标增益下的电压温度方程。
需要注意的是,实际使用中实际测量的增益和目标增益之间可能存在误差,通过步骤S6-S7确定待测闪烁探测器的电压和温度关系后,通过MCU计算出校正电压并控制高压电压进行校正电压输出进行校准后,可通过执行步骤S6持续测量增益,并通过步骤S7与目标增益进行比较,若校正后的增益不符合目标增益,则重复执行步骤S6-S7并重新进行调整,直至达到要求 的范围;若校正后的增益符合目标增益,则自动进行下一个待测闪烁探测器的增益校准。
因此,根据上述原理,本发明提供的闪烁探测器的增益校正装置的系统示意图如图4所示,由图4可知,本发明的闪烁探测器10的增益校正装置包括校准射源20、多路比较器30、计数模块40、单片微型计算机(MCU)50、高压电源60以及温度传感器70,其中,闪烁探测器10包括相互耦合的闪烁晶体11和光电器件12;校准射源20采用单能射源,比如Cs-137,校准射源20发出电离辐射射线,比如X射线、伽马光子、中子、α光子和β光子等;闪烁晶体11接收校准射源20发出的电离辐射射线并将该电离辐射射线转换为可见光,与闪烁晶体11耦合的光电器件12接收该可见光并将该可见光转换为模拟电压信号;多路比较器30与光电器件12通信连接并接收来自于光电器件12的模拟电压信号,多路比较器30根据不同的能量段设置将模拟电压信号转换为数字脉冲信号并发送至计数模块40;计数模块40与多路比较器30通信连接以接收数字脉冲信号,计数模块40同时测量单位时间内多路比较器30发送的数字脉冲信号的数量,也即计数率,然后将该计数率发送至MCU50;温度传感器70设置于光电器件12的表面以便准确的测量光电器件12表面的实时温度,温度传感器70将测量的实时温度数据发送至MCU50;MCU50根据接收的计数模块40发送的各路比较器30的计数率数据进行计算以获取目标增益,同时根据电压温度方程以及实时温度数据计算校正电压,MCU50确定校正电压后发送调整命令至高压电源60以将电压调整为校准所需电压,从而完成校准,控制校准操作的进行。
更具体地,图5为根据本发明的一个实施例的闪烁探测器的增益校正装置的多路比较器的布置示意图,其中比较器共n路,光电器件12分别与多 路比较器30通信连接,即光电器件12分别与第一比较器31、第二比较器32、……,以及第n比较器通信连接,第一比较器31、第二比较器32、……,以及第n比较器分别与计数模块40通信连接。由于能谱被n个不同的能量限值划分为若干个能量段,每一路比较器相应的将各个能量段内的模拟数字信号转换为数字脉冲信号,计数模块40同时测量单位时间内每一路比较器发送的数字脉冲信号的数量并将各个通道的计数率数据发送至MCU50,通过MCU确定能量通道计数率比,进而确定目标增益。
根据本发明的一个优选实施例,多路比较器30仅采用两个反向电压不同的比较器31、32,通过计数模块40记录不同能量段的计数率比,以此作为校准的参考标准,并且通过MCU将该不同计数率的比值作为闪烁探测器的增益进行校正。
应当注意的是,由于校准射源20发出的电离辐射射线易受到周围物体的反射和折射,这将影响到闪烁晶体测量的能谱的形态,因此,需要避免校准射源20和闪烁晶体11之间有密度较大的物体阻挡,比如金属板等。同时还需注意,校准射源20与闪烁晶体11之间的相对位置应保持固定,对同种闪烁探测器进行校准时,校准射源20与闪烁晶体11之间的相对位置也应保持一致,否则将引起校准误差。
根据本发明的一个实施例,校准射源20采用单能射源,比如Cs-137、Co-60或者Eu-152,不一定是Cs-137,因为单能射源的能谱相对比较简单,可以获取比较稳定的通道计数比。应当理解的是,本发明的校准射源并不局限于单能射源,还可为其他类型的射源。
根据本发明的一个优选实施例,光电器件12采用硅光电倍增器(SiPM),温度传感器70紧贴SiPM安装;温度传感器70还可安装于光电器件的外壳、 SiPM底面的PCB板上或者SiPM的侧面。
本发明提供的闪烁探测器的增益校正装置和方法,能够从闪烁探测器端实现增益校正,保证了闪烁探测器在不同的温度和不同性能的闪烁晶体条件下信噪比不变,使闪烁探测器校准后的能量探测下限不变,保持了信息的完整性。本发明采用两路或者多路比较器和计数器代替多道分析器,不需要测量完整的能谱即可实现增益的测量,仅需1000个事件即可测量准确的增益,相比能谱法获取增益,测量事件数量下降80%,校准速度更快。同时,本发明建立了光电器件的增益对温度、电压的数学模型,仅需要测量两个温度下的数据,即可实现完整温度范围的校正,校准效率更高。
以上所述的,仅为本发明的较佳实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化,比如本发明中对增益、温度、电压建立的模型可以使用二次或更高阶函数进行拟合。即凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。本发明未详尽描述的均为常规技术内容。

Claims (10)

  1. 一种闪烁探测器的增益校正方法,其特征在于,所述闪烁探测器的增益G、温度t和电压x之间满足增益温度电压方程G(x,t)=at+bx+c,其中参数a、b、c为常数;所述增益校正方法包括以下步骤:
    第一步,确定标准闪烁探测器的增益温度电压方程,具体步骤为:
    步骤S1:取一标准闪烁探测器,在温度T0和电压X0固定的情况下测量所述标准闪烁探测器的增益G0,将所述标准闪烁探测器的增益G0作为待测闪烁探测器的目标增益;
    步骤S2:将温度固定为T0,将电压调整为X2,测量所述标准闪烁探测器的增益G2,代入所述增益温度电压方程,计算得到参数k2和p2,其中k2=b,p2=at0+c;
    步骤S3:将电压固定为X0,将温度调整为T1,测量标准闪烁探测器的增益G1,代入所述增益温度电压方程,计算得到参数k1和p1,其中,k1=a,p1=bx0+c;
    步骤S4:将参数k1、k2、p1和p2代入所述增益温度电压方程,计算得到标准闪烁探测器的参数a、b和c,从而确定标准闪烁探测器的增益温度电压方程为:
    G(x,t)=at+bx+c,
    步骤S5:当目标增益为G0时,根据增益温度电压方程可确定所述闪烁探测器的电压x和温度t之间的关系为:
    x=(G0-at-c)/b;
    第二步,测量待测闪烁探测器与所述标准闪烁探测器的增益差,获取待测闪烁探测器在所述目标增益条件下的电压温度方程;
    第三步,将所述第二步中获得的电压温度方程作为校正的参考,根据待测闪烁探测器的实测温度计算得到对应的校正电压,根据所述校正电压改变所述闪烁探测器的电压以实现待测闪烁探测器的增益校正。
  2. 根据权利要求1所述的闪烁探测器的增益校正方法,其特征在于,所述第二步的具体步骤如下:
    步骤S6:调整温度为T0、电压为X0,测量待测闪烁探测器的增益G',则待测闪烁探测器的增益温度电压方程为:
    G(x,t)=at+bx+c+(G'-G0);
    步骤S7:当目标增益为G0时,待测闪烁探测器的电压温度方程为:
    x=(-at-c+2G0-G')/b。
  3. 根据权利要求1所述的闪烁探测器的增益校正方法,其特征在于,利用温度传感器得到待测闪烁探测器的实测温度,利用单片微型计算机计算得到对应的所述校正电压。
  4. 根据权利要求1所述的闪烁探测器的增益校正方法,其特征在于,对于同尺寸同规格的闪烁探测器,第一步只需执行一次,其他待测的闪烁探测器执行第二步以获取目标增益下的电压温度方程。
  5. 一种闪烁探测器的增益校正装置,所述闪烁探测器包括相互耦合的闪烁晶体和光电器件,其特征在于,所述增益校正装置包括:
    校准射源,所述闪烁晶体接收所述校准射源发出的电离辐射射线并将所述电离辐射射线转换为可见光,所述光电器件将所述可见光转换为模拟电压信号;
    至少两路比较器,每一路所述比较器均与所述光电器件通信连接以将不同能量段的所述模拟电压信号转换为数字脉冲信号;
    计数模块,所述计数模块分别与每一路所述比较器通信连接以接收每一路所述比较器发送的数字脉冲信号,所述计数模块同时测量所述数字脉冲信号的计数率;
    温度传感器,所述温度传感器设置于所述光电器件外侧以实测温度数据;
    单片微型计算机,所述单片微型计算机与所述计数模块通信连接以接收所述计数率,所述单片微型计算机还与所述温度传感器通信连接以接收所述实测温度数据,所述单片微型计算机根据所述计数率和所述实测温度数据计算目标增益以及校正电压;以及
    高压电源,所述高压电源与所述单片微型计算机连接以接收所述校正电压,所述高压电源还与所述光电器件连接以根据所述校正电压实现所述光电器件的增益校正。
  6. 根据权利要求5所述的闪烁探测器的增益校正装置,其特征在于,所述校准射源采用单能射源。
  7. 根据权利要求6所述的闪烁探测器的增益校正装置,其特征在于,所述校准射源采用的放射性核素为Cs-137、Co-60或者Eu-152。
  8. 根据权利要求5所述的闪烁探测器的增益校正装置,其特征在于,对同种闪烁探测器进行校准时,所述校准射源与所述闪烁晶体之间的相对位置保持固定。
  9. 根据权利要求5所述的闪烁探测器的增益校正装置,其特征在于,所述多路比较器包括两路比较器,所述两路比较器分别与所述光电器件和所述 计算模块通信连接。
  10. 根据权利要求5所述的闪烁探测器的增益校正装置,其特征在于,所述光电器件为硅光电倍增器。
PCT/CN2017/108116 2017-07-25 2017-10-27 一种闪烁探测器的增益校正装置和方法 WO2019019451A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FIEP17919344.6T FI3637147T3 (fi) 2017-07-25 2017-10-27 Vahvistuksen korjauslaitteisto ja -menetelmä tuikeilmaisimelle
JP2020522767A JP6978125B2 (ja) 2017-07-25 2017-10-27 シンチレーション検出器のゲイン補正装置及び方法
EP17919344.6A EP3637147B1 (en) 2017-07-25 2017-10-27 Gain correction apparatus and method for scintillation detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710614096.4 2017-07-25
CN201710614096.4A CN107247284B (zh) 2017-07-25 2017-07-25 一种闪烁探测器的增益校正装置和方法

Publications (1)

Publication Number Publication Date
WO2019019451A1 true WO2019019451A1 (zh) 2019-01-31

Family

ID=60012275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108116 WO2019019451A1 (zh) 2017-07-25 2017-10-27 一种闪烁探测器的增益校正装置和方法

Country Status (5)

Country Link
EP (1) EP3637147B1 (zh)
JP (1) JP6978125B2 (zh)
CN (1) CN107247284B (zh)
FI (1) FI3637147T3 (zh)
WO (1) WO2019019451A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111413726A (zh) * 2020-04-22 2020-07-14 湖北大秦维康检验测试认证有限公司 一种测氡仪及其校准方法
CN112485440A (zh) * 2020-11-10 2021-03-12 深圳市科曼医疗设备有限公司 特定蛋白质反应检测方法、蛋白质检测装置和定标方法
CN115453606A (zh) * 2022-09-23 2022-12-09 西北核技术研究所 一种闪烁体抗辐照性能实时测量方法及预测方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107247284B (zh) * 2017-07-25 2023-09-22 苏州瑞派宁科技有限公司 一种闪烁探测器的增益校正装置和方法
CN109211946B (zh) * 2018-08-29 2021-08-27 苏州瑞迈斯医疗科技有限公司 校正X-ray探测器中的探测通道的方法
CN109581110A (zh) * 2018-12-10 2019-04-05 江苏赛诺格兰医疗科技有限公司 判断探测器增益状态的方法及探测器增益平衡校正方法
CN112129492A (zh) * 2020-09-08 2020-12-25 广州广电计量检测股份有限公司 基于发光二极管的简易光源频闪测试仪的校准方法及校准系统
CN113031050A (zh) * 2021-03-18 2021-06-25 捷创核仪(北京)科技有限公司 高稳定度超低本底γ谱仪系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101040567A (zh) * 2004-05-14 2007-09-19 目标系统电子有限责任公司 稳定led的光辐射的温度相关性的方法
CN101210970A (zh) * 2006-12-30 2008-07-02 同方威视技术股份有限公司 一种闪烁探测器系统及其方法
CN103424768A (zh) * 2012-05-25 2013-12-04 同方威视技术股份有限公司 一种用于探测器系统的增益稳定装置及其控制方法
KR20150025100A (ko) * 2013-08-28 2015-03-10 청주대학교 산학협력단 온도 보상기능을 구비한 섬광검출기 및 그 제어방법
CN107247284A (zh) * 2017-07-25 2017-10-13 苏州瑞派宁科技有限公司 一种闪烁探测器的增益校正装置和方法
CN207020320U (zh) * 2017-07-25 2018-02-16 苏州瑞派宁科技有限公司 一种闪烁探测器的增益校正装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4220851A (en) * 1978-07-03 1980-09-02 Texaco Inc. Gain stabilization for radioactivity well logging apparatus
JP4454840B2 (ja) * 2000-12-25 2010-04-21 株式会社東芝 放射線計装システムおよびその健全性診断方法ならびに放射線計測方法
JP4487640B2 (ja) * 2004-06-01 2010-06-23 ソニー株式会社 撮像装置
EP2237073B1 (de) * 2009-03-30 2012-10-31 Berthold Technologies GmbH & Co. KG Verfahren und Vorrichtung zur Überwachung einer automatischen Driftkompensation
US8022355B2 (en) * 2009-08-04 2011-09-20 Thermo Fisher Scientific Inc. Scintillation detector gain control system using reference radiation
JP6124663B2 (ja) * 2013-04-19 2017-05-10 三菱電機株式会社 線量率測定装置
CN105980885B (zh) * 2013-11-26 2018-11-02 菲力尔探测公司 基于SiPM的辐射检测系统和方法
WO2016065099A1 (en) * 2014-10-23 2016-04-28 Bridgeport Instruments, Llc Performance stabilization for scintillator-based radiation detectors
CN105030263B (zh) * 2015-07-22 2018-06-12 湖北锐世数字医学影像科技有限公司 一种数字pet的能量反馈校正方法及系统
CN105182402B (zh) * 2015-09-29 2018-08-03 沈阳东软医疗系统有限公司 一种闪烁晶体探测器增益的校正方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101040567A (zh) * 2004-05-14 2007-09-19 目标系统电子有限责任公司 稳定led的光辐射的温度相关性的方法
CN101210970A (zh) * 2006-12-30 2008-07-02 同方威视技术股份有限公司 一种闪烁探测器系统及其方法
CN103424768A (zh) * 2012-05-25 2013-12-04 同方威视技术股份有限公司 一种用于探测器系统的增益稳定装置及其控制方法
KR20150025100A (ko) * 2013-08-28 2015-03-10 청주대학교 산학협력단 온도 보상기능을 구비한 섬광검출기 및 그 제어방법
CN107247284A (zh) * 2017-07-25 2017-10-13 苏州瑞派宁科技有限公司 一种闪烁探测器的增益校正装置和方法
CN207020320U (zh) * 2017-07-25 2018-02-16 苏州瑞派宁科技有限公司 一种闪烁探测器的增益校正装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111413726A (zh) * 2020-04-22 2020-07-14 湖北大秦维康检验测试认证有限公司 一种测氡仪及其校准方法
CN111413726B (zh) * 2020-04-22 2023-11-28 湖北大秦维康检验测试认证有限公司 一种测氡仪及其校准方法
CN112485440A (zh) * 2020-11-10 2021-03-12 深圳市科曼医疗设备有限公司 特定蛋白质反应检测方法、蛋白质检测装置和定标方法
CN112485440B (zh) * 2020-11-10 2023-07-18 深圳市科曼医疗设备有限公司 特定蛋白质反应检测方法、蛋白质检测装置和定标方法
CN115453606A (zh) * 2022-09-23 2022-12-09 西北核技术研究所 一种闪烁体抗辐照性能实时测量方法及预测方法

Also Published As

Publication number Publication date
FI3637147T3 (fi) 2024-03-15
JP6978125B2 (ja) 2021-12-08
CN107247284B (zh) 2023-09-22
JP2020526777A (ja) 2020-08-31
EP3637147A4 (en) 2020-07-01
EP3637147A1 (en) 2020-04-15
EP3637147B1 (en) 2023-12-13
CN107247284A (zh) 2017-10-13

Similar Documents

Publication Publication Date Title
CN107247284B (zh) 一种闪烁探测器的增益校正装置和方法
US10634801B2 (en) Detector in an imaging system
Nadig et al. Evaluation of the PETsys TOFPET2 ASIC in multi-channel coincidence experiments
US7462816B2 (en) Afterglow DC-offset calibration in a nuclear imaging system
CN106997058B (zh) 一种闪烁体性能测试装置及其一致性校正方法
US11105940B2 (en) System and method of stabilization of a gamma and neutron detecting device
Grodzicka et al. MPPC Array in the Readout of CsI: Tl, LSO: Ce: Ca, LaBr $ _ {3}\! $: Ce, and BGO Scintillators
CN108398710B (zh) 一种用于反应堆内中子能谱实时测量的装置
Grodzicka et al. Characterization of 4× 4ch MPPC array in scintillation spectrometry
CN114252900A (zh) 一种用于测量放射源活度的计数活度计
Llosa et al. Energy, timing and position resolution studies with 16-pixel silicon photomultiplier matrices for small animal PET
CN108919333A (zh) 基于程控恒流源和光电二极管矫正的led稳谱装置及其方法
CN102841366B (zh) 脉冲幅度甄别器甄别阈测定方法及系统
JP3824211B2 (ja) 放射線モニタ装置
CN207020320U (zh) 一种闪烁探测器的增益校正装置
CN111965692A (zh) 闪烁体的性能测试系统及其标定方法
CN108693551B (zh) 一种用于铀矿石品位监测的探头及装置
Grodzicka et al. 2× 2 MPPC arrays in gamma spectrometry with CsI (Tl), LSO: Ce (Ca), LaBr 3, BGO
JPH05249247A (ja) シンチレーション検出装置
Zhang et al. A portable neutron gamma discrimination detector based on NaIL and SiPM
Ding et al. A Calculation Software for 4πβ–γ Coincidence Counting
SU526836A1 (ru) Способ калибровки радиометрической аппаратуры
KR102604818B1 (ko) 위치민감형 방사선 검출기의 교정 방법 및 시스템
WO2017084530A1 (en) Detector in an imaging system
US20200033487A1 (en) Radiation detector and compton camera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919344

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522767

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017919344

Country of ref document: EP

Effective date: 20200107

NENP Non-entry into the national phase

Ref country code: DE