WO2019019443A1 - 氯化聚丙撑碳酸酯/生物质复合材料及其制备方法 - Google Patents

氯化聚丙撑碳酸酯/生物质复合材料及其制备方法 Download PDF

Info

Publication number
WO2019019443A1
WO2019019443A1 PCT/CN2017/107813 CN2017107813W WO2019019443A1 WO 2019019443 A1 WO2019019443 A1 WO 2019019443A1 CN 2017107813 W CN2017107813 W CN 2017107813W WO 2019019443 A1 WO2019019443 A1 WO 2019019443A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorinated polypropylene
polypropylene carbonate
weight
biomass composite
composite according
Prior art date
Application number
PCT/CN2017/107813
Other languages
English (en)
French (fr)
Inventor
姜伟
高云宝
崔西华
崔杰
刘静川
Original Assignee
中国科学院长春应用化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院长春应用化学研究所 filed Critical 中国科学院长春应用化学研究所
Priority to EP17919501.1A priority Critical patent/EP3660102A4/en
Priority to US16/630,336 priority patent/US11236230B2/en
Publication of WO2019019443A1 publication Critical patent/WO2019019443A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/02Manufacture of substantially flat articles, e.g. boards, from particles or fibres from particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/002Manufacture of substantially flat articles, e.g. boards, from particles or fibres characterised by the type of binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/007Manufacture of substantially flat articles, e.g. boards, from particles or fibres and at least partly composed of recycled material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • C08L93/04Rosin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L99/00Compositions of natural macromolecular compounds or of derivatives thereof not provided for in groups C08L89/00 - C08L97/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the antioxidant is contained in an amount of 0% by weight to 0.2% by weight; and the filler is contained in an amount of 0% by weight to 1% by weight.
  • the temperature of the tile preheating is preferably 170 ° C; the time of the tile preheating is preferably 5 min.
  • the temperature of the hot pressing is preferably 170 ° C; the pressure of the hot pressing is preferably 10 MPa; and the time of the hot pressing is preferably 5 min.
  • the pressure of the cold press forming is preferably 10 MPa; the cold pressing is The time of the type is preferably 8 min.
  • FIG. 1 is a graph showing the elastic modulus and the static bending strength of a composite sheet prepared in Example 1.
  • 1A is an elastic modulus diagram of the composite material sheet prepared in Example 1; and
  • FIG. 1B is a static bending strength diagram of the composite material sheet prepared in Example 1. The results show that the elastic modulus of the composite sheet is not less than 1800 MPa, and the static bending strength is not less than 15 MPa.
  • the above composite material sheet is measured according to the method for determining the nail holding force of 4.21 in the physical and chemical properties test method of the artificial board and the finished panel, and the panel nail holding force and the panel side nail of the composite material sheet are obtained.
  • the force situation is shown in Figure 6.
  • Fig. 6 is a view showing the nail holding force and the nail holding force of the panel of the composite material sheet prepared in Example 3.
  • 6A is a panel nail holding force diagram of the composite material sheet prepared in Example 3; and
  • FIG. 6B is a panel side nail holding force diagram of the composite material sheet prepared in Example 3.
  • the results show that the nail holding force of the composite sheet is not less than 3900N, and the nail holding force of the panel is not less than 2180N.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Forests & Forestry (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)

Abstract

本发明提供了一种氯化聚丙撑碳酸酯/生物质复合材料,包括:3wt%~57wt%的氯化聚丙撑碳酸酯;40wt%~94wt%的生物材料;2wt%~20wt%的松香或松香衍生物;0wt%~1wt%的抗氧剂;0wt%~5wt%的填充料;所有组份用量之和为100wt%。氯化聚丙撑碳酸酯为粘结剂,还对复合材料的抗湿性起着重要作用。松香或松香衍生物为增粘剂和润滑剂,还可以提高复合材料的抗湿性和力学性能。在上述组分的协同作用下,本发明获得的复合材料力学性能和抗湿性能均较优。另外,由于原料中生物质材料比重大,成本较低,原料中没有甲醛、苯等,环保性优异。

Description

氯化聚丙撑碳酸酯/生物质复合材料及其制备方法 技术领域
本发明涉及生物质复合材料领域,尤其涉及一种氯化聚丙撑碳酸酯/生物质复合材料及其制备方法。
背景技术
秸秆、木(含竹子)屑、稻壳、麦秆等生物质是农业生产和林业加工的副产品,产量巨大,但利用率却极低,有的甚至已经成为社会的负担。比如:中国每年生产的秸秆超过10亿吨,仅吉林省年产玉米秸秆就可以达到3500万吨。而当前玉米秸秆的处理主要有三种方式:1、青贮饲料;2、粉碎还田;3、收集利用。而这些方式处理的玉米秸秆的量不到总量的1/3,大部分还是无法得到有效处理,只能直接燃烧,造成严重的环境污染。
中国专利CN1475455A和CN1833839A公开了将生物质与高分子树脂复合制备高分子/生物质复合材料,变废为宝,以用于汽车、建筑等领域。然而,上述方法需要对生物质表面改性,工艺较为复杂,同时,对应的生物质填充量也非常有限,通常在40wt%以下,生物质的利用率并不高。
中国专利CN1360994A和中国专利CN201136203Y公开了由秸秆和高分子树脂制得的秸秆密度板和纤维复合板,解决了上述问题,但由于原料中不可避免地需要采用甲醛,危害到了人类的健康,环保性较差。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种氯化聚丙撑碳酸酯/生物质复合材料及其制备方法,本发明公开的复合材料中生物质材料比重大,环保性较优,同时,材料的力学性能较优。
本发明提供了一种氯化聚丙撑碳酸酯/生物质复合材料,包括:
Figure PCTCN2017107813-appb-000001
Figure PCTCN2017107813-appb-000002
优选的,所述氯化聚丙撑碳酸酯的含量为5wt%~50wt%。
优选的,所述氯化聚丙撑碳酸酯的重均分子量在3-65万的范围内。
优选的,所述氯化聚丙撑碳酸酯的氯化度在2重量%至15重量%的范围内。
优选的,所述氯化聚丙撑碳酸酯具有下式(I)所示的结构:
Figure PCTCN2017107813-appb-000003
其中,x为0~3的整数、y为0~2的整数、z为0~1的整数,条件是x、y和z不同时为0;并且n为50~5000的聚合度。
优选的,所述生物材料选自秸秆、木屑、稻草、稻壳竹粉和麦秆中的一种或几种。
优选的,所述生物材料的含量为50wt%~94wt%。
优选的,所述松香衍生物选自松香皂、松香酯或松香改性酚醛树脂。
优选的,所述松香或松香衍生物的含量为3wt%~15wt%。
优选的,所述抗氧剂为抗氧剂1010。
优选的,所述填充料选自碳酸钙或石蜡。
优选的,所述抗氧剂的含量为0wt%~0.2wt%;所述填充料的含量为0wt%~1wt%。
本发明还提供了一种氯化聚丙撑碳酸酯/生物质复合材料的制备方法,包括:
A)将3wt%~57wt%的氯化聚丙撑碳酸酯、40wt%~94wt%的生物材料、2wt%~20wt%的松香或松香衍生物、0wt%~1wt%的抗氧剂和0wt%~5wt%的填充料混合,得到混合物料,其中所有组份用量之和为100wt%;
B)将所述混合物料挤出成型,得到氯化聚丙撑碳酸酯/生物质复合材料;或将所述混合物料平铺预热、热压,然后冷压成型,得到氯化聚丙撑碳酸酯/生物质复合材料;或将所述混合物料熔融共混、造粒,然后注塑成型,得到氯化聚丙撑碳酸酯/生物质复合材料。
优选的,在以上方法中,所述氯化聚丙撑碳酸酯的含量为5wt%~50wt%。
优选的,在以上方法中,所述氯化聚丙撑碳酸酯的重均分子量在3-65万的范围内。
优选的,在以上方法中,所述氯化聚丙撑碳酸酯的氯化度在2重量%至15重量%的范围内。
优选的,在以上方法中,所述氯化聚丙撑碳酸酯具有下式(I)所示的结构:
Figure PCTCN2017107813-appb-000004
其中,x为0~3的整数、y为0~2的整数、z为0~1的整数,条件是x、y和z不同时为0;并且n为50~5000的聚合度。
优选的,在以上方法中,所述生物材料选自秸秆、木屑、稻草、稻壳、竹粉和麦秆中的一种或几种。
优选的,在以上方法中,所述生物材料的含量为50wt%~94wt%。
优选的,在以上方法中,所述松香衍生物选自松香皂、松香酯或松香改性酚醛树脂。
优选的,在以上方法中,所述松香或松香衍生物的含量为3wt%~15wt%。
优选的,在以上方法中,所述抗氧剂为抗氧剂1010。
优选的,在以上方法中,所述填充料选自碳酸钙或石蜡。
优选的,在以上方法中,所述抗氧剂的含量为0wt%~0.2wt%;所述填充料的含量为0wt%~1wt%。
本发明提供了一种氯化聚丙撑碳酸酯/生物质复合材料,包括:
Figure PCTCN2017107813-appb-000005
本发明提供的氯化聚丙撑碳酸酯/生物质复合材料中,氯化聚丙撑碳酸酯除了可以起到粘结剂的作用之外,还赋予了复合材料热缩性和流动性,并对所形成的复合材料的抗湿性起着重要的作用。加入松香或松香衍生物除了可 以作为增粘剂和润滑剂之外,还可以提高复合材料的抗湿性;同时,松香或松香衍生物还可以提高氯化聚丙撑碳酸酯的浸润性,从而提高氯化聚丙撑碳酸酯/生物质复合材料的力学性能。在上述组分的协同作用下,本发明获得的氯化聚丙撑碳酸酯/生物质复合材料抗湿性能和力学性能均较优。另外,本发明公开的复合材料中生物质材料比重大,原料中无需采用甲醛、苯等,因而,成本较低,环保性较优。
附图说明
图1为实施例1制备的复合材料板材的弹性模量和静曲强度图;
图2为实施例1制备的复合材料板材的板面握钉力和板侧握钉力情况图;
图3为实施例2制备的复合材料板材的弹性模量和静曲强度图;
图4为实施例2制备的复合材料板材的板面握钉力和板侧握钉力情况图;
图5为实施例3制备的复合材料板材的弹性模量和静曲强度图;
图6为实施例3制备的复合材料板材的板面握钉力和板侧握钉力情况图;
图7为实施例4制备的复合材料板材的弹性模量和静曲强度图;
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种氯化聚丙撑碳酸酯/生物质复合材料,包括:
Figure PCTCN2017107813-appb-000006
本发明提供的氯化聚丙撑碳酸酯/生物质复合材料包括新材料氯化聚丙撑碳酸酯。所述氯化聚丙撑碳酸酯的重均分子量在3-65万、优选15-40万的范围内。
优选的,所述氯化聚丙撑碳酸酯具有式(I)所示的结构:
Figure PCTCN2017107813-appb-000007
其中,x为0~3的整数、y为0~2的整数、z为0~1的整数,条件是x、y和z不同时为0;并且n为聚合度,优选为50~5000。
所述氯化聚丙撑碳酸酯除了可以起到粘结剂的作用之外,还赋予了所形成的复合材料热缩性和流动性,并对所形成的复合材料的抗湿性起着重要的作用。所述氯化聚丙撑碳酸酯的含量为3wt%~57wt%,优选为5wt%~50wt%;更优选为5wt%~30wt%。含量在30wt%~57wt%的氯化聚丙撑碳酸酯,对复合材料抗湿性能的影响更为明显。
本发明提供的氯化聚丙撑碳酸酯/生物质复合材料包括生物材料。生物材料作为一种可再生资源,将其用于复合材料的原料中,既解决了生物材料因无法消化而燃烧带来的污染,又减少了复合材料的制作成本,带来了极为可观的社会和经济效益。在本发明中,所述生物材料优选为秸秆、木屑、稻草、稻壳、竹粉和麦秆中的一种或几种;更优选为秸秆粉、木屑粉、稻草粉、稻壳粉、竹粉和麦秆中的一种或几种。本发明提供的复合材料中,生物材料的含量较高,所述生物材料的含量为40wt%~94wt%,优选为50wt%~94wt%;更优选为70wt%~90wt%。
本发明提供的氯化聚丙撑碳酸酯/生物质复合材料包括松香或松香衍生物。松香或松香衍生物除了可以作为增粘剂和润滑剂之外,还可以提高复合材料的抗湿性;同时,松香或松香衍生物还可以提高氯化聚丙撑碳酸酯的浸润性,从而提高氯化聚丙撑碳酸酯/生物质复合材料的力学性能。在本发明中,所述松香衍生物优选为松香皂、松香酯或松香改性酚醛树脂。所述松香或松香衍生物的含量为2wt%~20wt%;优选为3wt%~15wt%;更优选为5wt%~15wt%。
在本发明中,所述氯化聚丙撑碳酸酯/生物质复合材料还包括抗氧剂。其可以延缓或者抑制聚合物氧化过程的进行,进而阻止聚合物的老化并延缓其使用寿命。所述抗氧剂优选为抗氧剂1010。所述抗氧剂的含量为0wt%~1wt%;优选为0.1wt%~0.5wt%。
在本发明中,所述氯化聚丙撑碳酸酯/生物质复合材料还包括填充料。
所述填充料优选为碳酸钙或石蜡。所述填充料的含量为0wt%~5wt%;优选为0wt%~1wt%。
本发明提供的氯化聚丙撑碳酸酯/生物质复合材料,包括:
Figure PCTCN2017107813-appb-000008
在上述组分的协同作用下,本发明获得的氯化聚丙撑碳酸酯/生物质复合材料抗湿性能和力学性能均较优。
本发明还提供了一种氯化聚丙撑碳酸酯/生物质复合材料的制备方法,包括:
A)将氯化聚丙撑碳酸酯、生物材料、松香或松香衍生物、抗氧剂和填充料混合,得到混合物料;
B)将所述混合物料挤出成型,得到氯化聚丙撑碳酸酯/生物质复合材料;或将所述混合物料平铺预热、热压,然后冷压成型,得到氯化聚丙撑碳酸酯/生物质复合材料;或将所述混合物料熔融共混、造粒,然后注塑成型,得到氯化聚丙撑碳酸酯/生物质复合材料。
本发明提供的氯化聚丙撑碳酸酯/生物质复合材料包括新材料氯化聚丙撑碳酸酯。所述氯化聚丙撑碳酸酯的重均分子量在3-65万、优选15-40万的范围内。所述氯化聚丙撑碳酸酯具有式(I)所示的结构:
Figure PCTCN2017107813-appb-000009
其中,x为0~3的整数、y为0~2的整数、z为0~1的整数,条件是x、y和z不同时为0;并且n为聚合度,优选为50~5000。
本发明对所述氯化聚丙撑碳酸酯的来源并无特殊的限定,可以自制,也可以由市场购买得到。特殊说明的是,氯化聚丙撑碳酸酯的不同分子链中的x、y、z及n的值一般各不相同,也就是说氯化聚丙撑碳酸酯是上述x、y、 z及n在其取值范围内的各种结构分子的混合物。通常用重均分子量和氯化度作为氯化聚丙撑碳酸酯的基本参数。所述氯化度是指氯化聚丙撑碳酸酯中所有氯的总重量(不区分其在分子链所处的位置)占氯化聚丙撑碳酸酯的总重量的百分数。优选地,所述氯化聚丙撑碳酸酯的氯化度在2重量%至15重量%的范围内。本发明优选采用山东潍坊天瑞化工有限公司生产的氯化聚丙撑碳酸酯(例如,CPPC-SY01,其具有以上式(I)所示的结构并且重均分子量为25万,氯化度为4重量%;CPPC-SY02,其具有以上式(I)所示的结构并且重均分子量为30万,氯化度为3重量%;和CPPC-SY03,其具有以上式(I)所示的结构并且重均分子量为20万,氯化度为5重量%)。
所述生物材料、松香或松香衍生物、抗氧剂和填充料的组分及含量同上,在此不再赘述。本发明对这几种原料的来源并无特殊的限制,可以为一般市售。
本发明将所述氯化聚丙撑碳酸酯、生物材料、松香或松香衍生物、抗氧剂和填充料混合后,得到混合物料。具体的,优选为:将所述氯化聚丙撑碳酸酯、生物材料、松香或松香衍生物、抗氧剂和填充料混合后,将所述混合后的物料搅拌均匀,得到混合物料。本发明对所述搅拌的方式并无特殊的限制,采用本领域技术人员熟知的搅拌方式即可。
然后,本发明将所述混合物料挤出成型,得到氯化聚丙撑碳酸酯/生物质复合材料。所得到的氯化聚丙撑碳酸酯/生物质复合材料为型材。本发明对所述挤出成型的工艺方法及参数并无特殊的限制,采用本领域技术人员熟知的工艺方法及参数即可。
具体的,优选为:将所述混合物料加入XSS-300转矩流变仪内,在150℃的温度下,转速60r/min,共混5min,得到氯化聚丙撑碳酸脂与秸杆的共混复合材料,然后利用模板进行压片成型。
或将所述混合物料平铺预热、热压,然后冷压成型,得到氯化聚丙撑碳酸酯/生物质复合材料。所得到的氯化聚丙撑碳酸酯/生物质复合材料为板材。本发明对所述平铺预热、热压,然后冷压成型的方法及参数并无特殊的限制,采用本领域技术人员熟知的方法及参数即可。
在本发明中,所述平铺预热的温度优选为170℃;所述平铺预热的时间优选为5min。所述热压的温度优选为170℃;所述热压的压强优选为10MPa;所述热压的时间优选为5min。所述冷压成型的压强优选为10MPa;所述冷压成 型的时间优选为8min。
再或者是,将所述混合物料熔融共混、造粒,然后注塑成型,得到氯化聚丙撑碳酸酯/生物质复合材料。所得到的氯化聚丙撑碳酸酯/生物质复合材料为各种器件及零部件。本发明对所述熔融共混、造粒,然后注塑成型的方法及参数并无特殊的限制,采用本领域技术人员熟知的方法及参数即可。
在本发明中,所述熔融共混优选为:生物质材料含量50%-60%,氯化聚丙撑碳酸酯25%-35%,松香或松香脂10%-20%,抗氧剂1010-0.1%-0.2%。将所述混合物料加入XSS-300转矩流变仪内,在150℃的温度下,转速60r/min,共混5min。
本发明制备的氯化聚丙撑碳酸酯/生物质复合材料中,氯化聚丙撑碳酸酯除了可以起到粘结剂的作用之外,还赋予了复合材料热缩性和流动性,并对所形成的复合材料的抗湿性起着重要的作用。加入松香或松香衍生物除了可以作为增粘剂和润滑剂之外,还可以提高复合材料的抗湿性;同时,松香或松香衍生物还可以提高氯化聚丙撑碳酸酯的浸润性,从而提高氯化聚丙撑碳酸酯/生物质复合材料的力学性能。在上述组分的协同作用下,本发明获得的氯化聚丙撑碳酸酯/生物质复合材料抗湿性能和力学性能均较优。另外,本发明公开的复合材料中生物质材料比重大,原料中无需采用甲醛、苯等,因而,成本较低,环保性较优。
为了进一步说明本发明,以下结合实施例对本发明提供的一种氯化聚丙撑碳酸酯/生物质复合材料及其制备方法进行详细描述,但不能将其理解为对本发明保护范围的限定。
实施例1
将秸秆粉、氯化聚丙撑碳酸酯(CPPC-SY01;山东潍坊天瑞化工有限公司)、松香酯、抗氧剂1010和碳酸钙混合,搅拌均匀后,得到混合物料。配制4组混合物料,混合物料中各组份的质量分数如表1所示。
表1 实施例1得到的4组混合物料中各组份的质量分数
Figure PCTCN2017107813-appb-000010
将上述混合物料搅拌均匀后,进行铺装,170℃预热5min,保持温度加压至10MPa,保持温度和压力5min,然后保持10MPa冷压8min,得到氯化聚丙撑碳酸脂与秸杆粉的复合材料板材。
考察本实施例获得的复合材料板材的弹性形变和所能承受的压力强度情况,如图1所示。图1为实施例1制备的复合材料板材的弹性模量和静曲强度图。其中,图1A为实施例1制备的复合材料板材的弹性模量图;图1B为实施例1制备的复合材料板材的静曲强度图。结果表明,复合材料板材的弹性模量不低于1800MPa,静曲强度不低于15MPa。
将上述复合材料板材按照GB/T17657-2013《人造板及饰面人造板理化性能试验方法》中4.21握钉力的测定方法进行测定,得到复合材料板材的板面握钉力和板侧握钉力情况,如图2所示。图2为实施例1制备的复合材料板材的板面握钉力和板侧握钉力情况图。其中,图2A为实施例1制备的复合材料板材的板面握钉力图;图2B为实施例1制备的复合材料板材的板侧握钉力图。结果表明,复合材料板材的板面握钉力不低于1400N,板侧握钉力不低于1600N。
实施例2
将木屑粉、氯化聚丙撑碳酸酯(CPPC-SY01;山东潍坊天瑞化工有限公司)、松香酯、抗氧剂1010和碳酸钙混合,搅拌均匀后,得到混合物料。配制4组混合物料,混合物料中各组份的质量分数如表2所示。
表2 实施例2得到的4组混合物料中各组份的质量分数
Figure PCTCN2017107813-appb-000011
将上述混合物料搅拌均匀后,进行铺装,170℃预热5min,保持温度加压至10MPa,保持温度和压力5min,然后保持10MPa冷压8min,得到氯化聚丙撑碳酸脂与木屑粉的复合材料板材。
考察本实施例获得的复合材料板材的弹性形变和所能承受的压力强度情况,如图3所示。图3为实施例2制备的复合材料板材的弹性模量和静曲强度图。其中,图3A为实施例2制备的复合材料板材的弹性模量图;图3B为实施例2制备的复合材料板材的静曲强度图。结果表明,复合材料板材的弹性模量不低于1300MPa,静曲强度不低于13MPa。
将上述复合材料板材按照GB/T17657-2013《人造板及饰面人造板理化性能试验方法》中4.21握钉力的测定方法进行测定,得到复合材料板材的板面握钉力和板侧握钉力情况,如图4所示。图4为实施例2制备的复合材料板材的板面握钉力和板侧握钉力情况图。其中,图4A为实施例2制备的复合材料板材的板面握钉力图;图4B为实施例2制备的复合材料板材的板侧握钉力图。结果表明,复合材料板材的板面握钉力不低于1300N,板侧握钉力不低于1000N。
实施例3
将竹粉、氯化聚丙撑碳酸酯(CPPC-SY02;山东潍坊天瑞化工有限公司)、松香酯、抗氧剂1010和碳酸钙混合,搅拌均匀后,得到混合物料。配制4组混合物料,混合物料中各组份的质量分数如表5所示。
表5 实施例3得到的4组混合物料中各组份的质量分数
Figure PCTCN2017107813-appb-000012
将上述混合物料搅拌均匀后,进行铺装,170℃预热5min,保持温度加压至10MPa,保持温度和压力5min,然后保持10MPa冷压8min,得到氯化聚丙撑碳酸脂与竹粉的复合材料板材。
考察本实施例获得的复合材料板材的弹性形变和所能承受的压力强度情况,如图5所示。图5为实施例3制备的复合材料板材的弹性模量和静曲强度图。其中,图5A为实施例3制备的复合材料板材的弹性模量图;图5B为实施例3制备的复合材料板材的静曲强度图。结果表明,复合材料板材的弹性模量不低于3100MPa,静曲强度不低于23MPa。
将上述复合材料板材按照GB/T17657-2013《人造板及饰面人造板理化性能试验方法》中4.21握钉力的测定方法进行测定,得到复合材料板材的板面握钉力和板侧握钉力情况,如图6所示。图6为实施例3制备的复合材料板材的板面握钉力和板侧握钉力情况图。其中,图6A为实施例3制备的复合材料板材的板面握钉力图;图6B为实施例3制备的复合材料板材的板侧握钉力图。结果表明,复合材料板材的板面握钉力不低于3900N,板侧握钉力不低于2180N。
实施例4
将秸秆粉、氯化聚丙撑碳酸酯(CPPC-SY03;山东潍坊天瑞化工有限公司)、松香酯、抗氧剂1010和碳酸钙混合,搅拌均匀后,得到混合物料。配制4组混合物料,混合物料中各组份的质量分数如表7所示。
表7 实施例4得到的4组混合物料中各组份的质量分数
Figure PCTCN2017107813-appb-000013
将所述混合物料加入XSS-300转矩流变仪内,在150℃的温度下,转速60r/min,共混5min,得到氯化聚丙撑碳酸脂与秸杆的共混复合材料,然后利用模板进行压片成型。考察本实施例获得的复合材料板材的弹性形变和所能承受的压力强度情况,如图7所示。图7为实施例4制备的复合材料板材的弹性模量和静曲强度图。其中,图7A为实施例4制备的复合材料板材的弹性模量图;图7B为实施例4制备的复合材料板材的静曲强度图。结果表明,复合材料板材的弹性模量不低于2500MPa,静曲强度不低于13MPa。
将上述第1组混合物料得到的复合材料板材按照GB/T17657-2013《人造板及饰面人造板理化性能试验方法》中的4.4吸水厚度膨胀率测定方法一进行检测,即:将上述复合材料板材放入水深10cm处,每小时检测一次厚度,厚度变化如表8所示。
表8 实施例4得到的复合材料的吸水膨胀测试
Figure PCTCN2017107813-appb-000014
实验结果表明,本发明制备的复合材料板材浸泡在水中6h后,厚度变化不大,说明复合材料板材的抗湿性能较优。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (24)

  1. 一种氯化聚丙撑碳酸酯/生物质复合材料,包括:
    Figure PCTCN2017107813-appb-100001
  2. 根据权利要求1所述的氯化聚丙撑碳酸酯/生物质复合材料,其特征在于,所述氯化聚丙撑碳酸酯的含量为5wt%~50wt%。
  3. 根据权利要求1所述的氯化聚丙撑碳酸酯/生物质复合材料,其特征在于,所述氯化聚丙撑碳酸酯的重均分子量在3-65万的范围内。
  4. 根据权利要求1所述的氯化聚丙撑碳酸酯/生物质复合材料,其特征在于,所述氯化聚丙撑碳酸酯的氯化度在2重量%至15重量%的范围内。
  5. 根据权利要求1所述的氯化聚丙撑碳酸酯/生物质复合材料,其特征在于,所述氯化聚丙撑碳酸酯具有下式(I)所示的结构:
    Figure PCTCN2017107813-appb-100002
    其中,x为0~3的整数、y为0~2的整数、z为0~1的整数,条件是x、y和z不同时为0;并且n为50~5000的聚合度。
  6. 根据权利要求1所述的氯化聚丙撑碳酸酯/生物质复合材料,其特征在于,所述生物材料选自秸秆、木屑、稻草、稻壳、竹粉和麦秆中的一种或几种。
  7. 根据权利要求1所述的氯化聚丙撑碳酸酯/生物质复合材料,其特征在于,所述生物材料的含量为50wt%~94wt%。
  8. 根据权利要求1所述的氯化聚丙撑碳酸酯/生物质复合材料,其特征在于,所述松香衍生物选自松香皂、松香酯或松香改性酚醛树脂。
  9. 根据权利要求1所述的氯化聚丙撑碳酸酯/生物质复合材料,其特征在 于,所述松香或松香衍生物的含量为3wt%~15wt%。
  10. 根据权利要求1所述的氯化聚丙撑碳酸酯/生物质复合材料,其特征在于,所述抗氧剂为抗氧剂1010。
  11. 根据权利要求1所述的氯化聚丙撑碳酸酯/生物质复合材料,其特征在于,所述填充料选自碳酸钙或石蜡。
  12. 根据权利要求1所述的氯化聚丙撑碳酸酯/生物质复合材料,其特征在于,所述抗氧剂的含量为0wt%~0.2wt%;所述填充料的含量为0wt%~1wt%。
  13. 一种氯化聚丙撑碳酸酯/生物质复合材料的制备方法,包括:
    A)将3wt%~57wt%的氯化聚丙撑碳酸酯、40wt%~94wt%的生物材料、2wt%~20wt%的松香或松香衍生物、0wt%~1wt%的抗氧剂和0wt%~5wt%的填充料混合,得到混合物料,其中所有组份用量之和为100wt%;
    B)将所述混合物料挤出成型,得到氯化聚丙撑碳酸酯/生物质复合材料;或将所述混合物料平铺预热、热压,然后冷压成型,得到氯化聚丙撑碳酸酯/生物质复合材料;或将所述混合物料熔融共混、造粒,然后注塑成型,得到氯化聚丙撑碳酸酯/生物质复合材料。
  14. 根据权利要求13所述的氯化聚丙撑碳酸酯/生物质复合材料的制备方法,其特征在于,所述氯化聚丙撑碳酸酯的含量为5wt%~50wt%。
  15. 根据权利要求13所述的氯化聚丙撑碳酸酯/生物质复合材料的制备方法,其特征在于,所述氯化聚丙撑碳酸酯的重均分子量在3-65万的范围内。
  16. 根据权利要求13所述的氯化聚丙撑碳酸酯/生物质复合材料的制备方法,其特征在于,所述氯化聚丙撑碳酸酯的氯化度在2重量%至15重量%的范围内。
  17. 根据权利要求13所述的氯化聚丙撑碳酸酯/生物质复合材料的制备方法,其特征在于,所述氯化聚丙撑碳酸酯具有下式(I)所示的结构:
    Figure PCTCN2017107813-appb-100003
    其中,x为0~3的整数、y为0~2的整数、z为0~1的整数,条件是x、y和z不同时为0;并且n为50~5000的聚合度。
  18. 根据权利要求13所述的氯化聚丙撑碳酸酯/生物质复合材料的制备方法,其特征在于,所述生物材料选自秸秆、木屑、稻草、稻壳、竹粉和麦秆 中的一种或几种。
  19. 根据权利要求13所述的氯化聚丙撑碳酸酯/生物质复合材料的制备方法,其特征在于,所述生物材料的含量为50wt%~94wt%。
  20. 根据权利要求13所述的氯化聚丙撑碳酸酯/生物质复合材料的制备方法,其特征在于,所述松香衍生物选自松香皂、松香酯或松香改性酚醛树脂。
  21. 根据权利要求13所述的氯化聚丙撑碳酸酯/生物质复合材料的制备方法,其特征在于,所述松香或松香衍生物的含量为3wt%~15wt%。
  22. 根据权利要求13所述的氯化聚丙撑碳酸酯/生物质复合材料的制备方法,其特征在于,所述抗氧剂为抗氧剂1010。
  23. 根据权利要求13所述的氯化聚丙撑碳酸酯/生物质复合材料的制备方法,其特征在于,所述填充料选自碳酸钙或石蜡。
  24. 根据权利要求13所述的氯化聚丙撑碳酸酯/生物质复合材料的制备方法,其特征在于,所述抗氧剂的含量为0wt%~0.2wt%;所述填充料的含量为0wt%~1wt%。
PCT/CN2017/107813 2017-07-25 2017-10-26 氯化聚丙撑碳酸酯/生物质复合材料及其制备方法 WO2019019443A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17919501.1A EP3660102A4 (en) 2017-07-25 2017-10-26 CHLORINATED POLY (PROPYLENE CARBONATE) / BIOMASS COMPOSITE MATERIAL AND METHOD FOR MANUFACTURING THE SAME
US16/630,336 US11236230B2 (en) 2017-07-25 2017-10-26 Chlorinated poly(propylene carbonate)/biomass composite material and method for preparing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710613749.7A CN107236323A (zh) 2017-07-25 2017-07-25 氯化聚丙撑碳酸酯/生物质复合材料及其制备方法
CN201710613749.7 2017-07-25

Publications (1)

Publication Number Publication Date
WO2019019443A1 true WO2019019443A1 (zh) 2019-01-31

Family

ID=59989632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107813 WO2019019443A1 (zh) 2017-07-25 2017-10-26 氯化聚丙撑碳酸酯/生物质复合材料及其制备方法

Country Status (4)

Country Link
US (1) US11236230B2 (zh)
EP (1) EP3660102A4 (zh)
CN (1) CN107236323A (zh)
WO (1) WO2019019443A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107236323A (zh) * 2017-07-25 2017-10-10 中国科学院长春应用化学研究所 氯化聚丙撑碳酸酯/生物质复合材料及其制备方法
CN111454485A (zh) * 2020-03-30 2020-07-28 嘉兴学院 一种抗静电木塑复合材料及其制备方法
CN112646347B (zh) * 2020-12-25 2021-09-21 中国科学院长春应用化学研究所 一种抗粘结ppc材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1360994A (zh) 2000-12-26 2002-07-31 马富生 秸秆密度板及其制造方法
CN1475455A (zh) 2003-07-04 2004-02-18 张光辉 秸秆制纤维板及其制造方法
CN1833839A (zh) 2006-04-24 2006-09-20 沈阳建筑大学 一种玉米秸秆制造非承重保温砌块的方法
CN201136203Y (zh) 2007-12-05 2008-10-22 广东威华股份有限公司 农作物秸秆木材纤维复合板
CN103881078A (zh) * 2014-04-17 2014-06-25 中国科学院长春应用化学研究所 氯化聚丙撑碳酸酯及其制备方法
CN106752007A (zh) * 2016-12-25 2017-05-31 符英 聚碳酸亚丙酯/农林生物质复合材料、制备方法及用途
CN107236323A (zh) * 2017-07-25 2017-10-10 中国科学院长春应用化学研究所 氯化聚丙撑碳酸酯/生物质复合材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6605245B1 (en) * 1997-12-11 2003-08-12 Boise Cascade Corporation Apparatus and method for continuous formation of composites having filler and thermoactive materials
CN101186754B (zh) * 2006-11-16 2010-06-16 滨州华晨新型建材有限公司 一种利用农业植物秸秆生产高分子复合木塑材料的方法
CN101698749B (zh) 2009-11-03 2011-10-26 北京林业大学 一种木塑复合材料及其制备方法
CN104449521B (zh) * 2014-12-23 2017-08-25 中国科学院长春应用化学研究所 一种热熔胶组合物及其制备方法
CN106433047A (zh) * 2016-09-28 2017-02-22 深圳市虹彩新材料科技有限公司 高强高韧生物降解薄膜及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1360994A (zh) 2000-12-26 2002-07-31 马富生 秸秆密度板及其制造方法
CN1475455A (zh) 2003-07-04 2004-02-18 张光辉 秸秆制纤维板及其制造方法
CN1833839A (zh) 2006-04-24 2006-09-20 沈阳建筑大学 一种玉米秸秆制造非承重保温砌块的方法
CN201136203Y (zh) 2007-12-05 2008-10-22 广东威华股份有限公司 农作物秸秆木材纤维复合板
CN103881078A (zh) * 2014-04-17 2014-06-25 中国科学院长春应用化学研究所 氯化聚丙撑碳酸酯及其制备方法
CN106752007A (zh) * 2016-12-25 2017-05-31 符英 聚碳酸亚丙酯/农林生物质复合材料、制备方法及用途
CN107236323A (zh) * 2017-07-25 2017-10-10 中国科学院长春应用化学研究所 氯化聚丙撑碳酸酯/生物质复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LICHEN, HAOYANG ET AL.: "Preparation and Properties of the Poly (propylene carbonate) /Straw Flour Composites Compatibilized", CHINESE JOURNAL OF APPLIED CHEMISTRY, vol. 34, no. 7, 1 July 2017 (2017-07-01), pages 744 - 748, XP055658040, DOI: 10.11944/j.issn.1000-0518.2017.07.160418 *
See also references of EP3660102A4

Also Published As

Publication number Publication date
EP3660102A1 (en) 2020-06-03
CN107236323A (zh) 2017-10-10
EP3660102A4 (en) 2021-05-05
US20200172727A1 (en) 2020-06-04
US11236230B2 (en) 2022-02-01

Similar Documents

Publication Publication Date Title
CN109401225B (zh) 一种生物可降解保鲜膜及其制备方法
CN101602884B (zh) 一种耐热聚乳酸复合材料及其制备方法
Versino et al. Sustainable use of cassava (Manihot esculenta) roots as raw material for biocomposites development
WO2019019443A1 (zh) 氯化聚丙撑碳酸酯/生物质复合材料及其制备方法
Salama et al. Reinforcement of polypropylene composites based on recycled wool or cotton powders
TWI682882B (zh) 生物可分解的組成物
CN106084697A (zh) 一种兼具耐热和力学性能的聚乳酸复合材料及其制备方法
CN105504727B (zh) 一种高韧性全降解聚乳酸基复合材料及其制备方法
Núñez-Decap et al. Mechanical, physical, thermal and morphological properties of polypropylene composite materials developed with particles of peach and cherry stones
Bajwa et al. Evaluation of cattail (Typha spp.) for manufacturing composite panels
CN100577380C (zh) 聚乙烯纤维-植物纤维复合材料的热压制造方法
CN104403134A (zh) 一种生物基复合材料的制备方法
CN102477170B (zh) 一种天然植物纤维增强淀粉基复合材料及其制备方法
Bahari et al. Thermal stability of processed PVC/bamboo blends: effect of compounding procedures
Gulati et al. Synthesis and characterization of PVA/Starch/CMC composite films reinforced with walnut (Juglans regia L.) shell flour
Taflick et al. Acacia bark residues as filler in polypropylene composites
Mohd Makhtar et al. Thermal behavior of Tacca leontopetaloides starch-based biopolymer
CN109401239B (zh) 一种用于保鲜盒的生物可降解材料、保鲜盒及其制备方法
CN110054838A (zh) 一种纤维素杂化填料增强聚合物复合材料及其制备方法
Cinelli et al. Hybrid composite based on poly (vinyl alcohol) and fillers from renewable resources
CN110938291A (zh) 聚乳酸复合材料及其制备方法
CN111070493A (zh) 一种环保热塑性橡胶鞋底的制备方法
CN112094487B (zh) 一种用于环保餐具的易清洁耐高温聚乳酸复合材料
CN101717497A (zh) 一种生物基相容剂和其制备方法及应用
CN103183938B (zh) 聚己内酯/聚丁二酸丁二醇酯/蛋壳粉复合材料及其制法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017919501

Country of ref document: EP

Effective date: 20200225