WO2019019413A1 - 金属锂负极、其制备方法和包含该金属锂负极的锂电池 - Google Patents

金属锂负极、其制备方法和包含该金属锂负极的锂电池 Download PDF

Info

Publication number
WO2019019413A1
WO2019019413A1 PCT/CN2017/105679 CN2017105679W WO2019019413A1 WO 2019019413 A1 WO2019019413 A1 WO 2019019413A1 CN 2017105679 W CN2017105679 W CN 2017105679W WO 2019019413 A1 WO2019019413 A1 WO 2019019413A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
micro
negative electrode
nano material
metal
Prior art date
Application number
PCT/CN2017/105679
Other languages
English (en)
French (fr)
Inventor
刘承浩
陈立桅
卢威
沈炎宾
王亚龙
康拓
郭峰
陈鹏
Original Assignee
中能中科(天津)新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中能中科(天津)新能源科技有限公司 filed Critical 中能中科(天津)新能源科技有限公司
Publication of WO2019019413A1 publication Critical patent/WO2019019413A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of nano materials, in particular to a metal lithium negative electrode, a preparation method thereof and an application thereof.
  • Metal lithium is expected to become the next generation of digital devices due to its large gram capacity (3860 mAh/g), low electrode potential (-3.040 V vs standard hydrogen electrode), low density (0.53 g/cm 3 , lightest metal)
  • Anode material for lithium batteries used in energy storage equipment for power generation equipment such as electric vehicles and solar wind energy.
  • lithium-sulfur batteries and lithium-air batteries with large gram capacity have become more and more important, while lithium-sulfur batteries and lithium-air batteries use metallic lithium as a negative electrode material.
  • Research on lithium anode materials has gradually attracted the attention of researchers.
  • the main problem faced by metallic lithium anodes is the problem of metallic lithium dendrites. Due to the non-uniformity of the solid electrolyte interface film (SEI film) formed on the surface of metallic lithium, the deposition of lithium ions on the surface of metallic lithium is also uneven. Therefore, metallic lithium will preferentially deposit in some local regions and grow outward, breaking through the metal.
  • SEI film on the lithium surface contacts and reacts with the electrolyte to form a new SEI, and a needle-like or dendritic lithium deposit (lithium dendrites) is formed during repeated deposition/precipitation.
  • lithium metal dendrites react with the electrolyte, which consumes lithium metal, reduces the charge and discharge efficiency of the battery, and consumes the electrolyte, resulting in battery failure.
  • the dendrites that are detached from the lithium metal lithium substrate are cut off and cannot participate in the electrochemical reaction to form "dead lithium".
  • the continuous growth of metal lithium dendrites will pierce the membrane, causing the battery to short-circuit and heat, which will cause the battery to explode, causing a series of safety problems.
  • a main object of the present invention is to provide a metal lithium negative electrode, a method for producing the same, and a lithium battery including the metal lithium negative electrode.
  • the metal lithium negative electrode of the invention is coated with a layer of conductive micro-nano material on the surface of the metal lithium, and the micro-nano material layer can effectively increase the specific surface area of the metal lithium, reduce the current density on the surface of the metal lithium, and thereby inhibit the growth of dendrites.
  • a metallic lithium negative electrode includes a metallic lithium substrate and a layer of electrically conductive micro-nano material on the surface of the metallic lithium substrate.
  • a method of preparing the above metal lithium negative electrode comprising forming a conductive micro/nano material layer on a surface of a metallic lithium substrate by a dry composite method or a wet composite method, wherein the dry composite method comprises by applying Pressure will be divided
  • the conductive micro-nano material scattered on the surface of the metal lithium substrate is pressure-composited to the metallic lithium substrate;
  • the wet composite method comprises coating a slurry containing the conductive micro-nano material on the surface of the metallic lithium substrate, and then drying to form the Coating of micro-nano materials.
  • a lithium battery that includes the metal lithium negative electrode described above.
  • the specific surface area of metallic lithium can be effectively increased, and the current density on the surface of metallic lithium can be reduced, thereby inhibiting the growth of dendrites.
  • the metal lithium anode with the conductive micro/nano material layer has a lower impedance and the battery capacity decays more slowly.
  • metal lithium In the process of dry-composite preparation of a metal lithium negative electrode, metal lithium only undergoes deformation due to pressure, and no chemical reaction occurs, so there is no consumption of metallic lithium.
  • Example 1 is a scanning electron micrograph of the surface of a metal lithium negative electrode having a nano-silicon cap layer structure prepared in Example 1.
  • FIG. 2 is a comparison diagram of a charge and discharge cycle curve of a metal lithium-to-metal lithium analog battery with untreated metal lithium and a nano-silicon cap layer structure in Example 1.
  • FIG. 2 is a comparison diagram of a charge and discharge cycle curve of a metal lithium-to-metal lithium analog battery with untreated metal lithium and a nano-silicon cap layer structure in Example 1.
  • FIG. 3 is a graph comparing the capacity retention curves of the untreated metal lithium and the lithium metal to lithium iron phosphate simulated battery having the nano silicon cap layer structure in Example 1.
  • FIG. 3 is a graph comparing the capacity retention curves of the untreated metal lithium and the lithium metal to lithium iron phosphate simulated battery having the nano silicon cap layer structure in Example 1.
  • Example 4 is a comparison diagram of a charge-discharge cycle curve of a metal lithium-to-metal lithium analog battery of untreated metal lithium and a nano-silicon cap layer in Example 2.
  • Example 5 is a graph comparing the capacity retention curves of the unalloyed metallic lithium and the metallic lithium-to-sulphur carbon material having a nano-silicon material overcoat structure in Example 2.
  • Example 6 is an SEM image of a lithium carbon composite material prepared in Example 3.
  • Fig. 7 is a comparison diagram of the simulated battery capacity retention curve in the third embodiment.
  • Figure 8 is a comparison diagram of the simulated battery capacity retention curve in the fourth embodiment.
  • Figure 9 is a topographical view of the treated lithium metal strip of Example 5.
  • Fig. 10 is a graph showing the comparison of charge and discharge curves of the lithium metal strip and the untreated metal lithium strip to the metal lithium analog battery in the fifth embodiment.
  • One aspect of the invention provides a metallic lithium negative electrode comprising a metallic lithium substrate and a layer of electrically conductive micro-nano material on the surface of the metallic lithium substrate.
  • the electrically conductive micro-nano material has a particle size ranging from 10 nanometers to 100 micrometers.
  • the electrically conductive micro-nano material is selected from the group consisting of micro-nano silicon (elemental silicon having a particle size of 60 nm to 10 ⁇ m); micro-nano graphite (having a particle size of 50 nm to 10 ⁇ m); acetylene black (particle size 20-) 100 nm, after thermal cracking by acetylene gas at high temperature to isolate air, cooling and collecting the obtained carbon black); micro-nano copper powder (particle size 50 nm - 1 ⁇ m); and lithium carbon composite material (particle size 20 nm - At least one of 100 microns).
  • micro-nano silicon alloy having a particle size of 60 nm to 10 ⁇ m
  • micro-nano graphite having a particle size of 50 nm to 10 ⁇ m
  • acetylene black particle size 20- 100 nm, after thermal cracking by acetylene gas at high temperature to isolate air, cooling and collecting the obtained carbon black
  • the lithium carbon composite comprises a porous carbon skeleton material and metallic lithium distributed in and on the pores of the carbon skeleton material.
  • the porous carbon skeleton material includes at least one of carbon fiber microspheres, porous carbon nanotube microspheres, and acetylene black.
  • the porous carbon skeleton material is a porous carbon nanotube microsphere, wherein
  • the porous carbon nanotube microspheres have a specific surface area of 100 to 1500 m 2 /g;
  • the pores of the carbon nanotubes have a pore diameter of 1 to 200 nm;
  • the carbon nanotube has at least one of a microscopic spherical solid aggregate structure, a spherical aggregate structure, a spherical aggregate structure, a porous spherical aggregate structure, and a doughnut aggregate structure;
  • the carbon nanotubes include any one or a combination of two or more of multi-walled carbon nanotubes, double-walled carbon nanotubes, and single-walled carbon nanotubes, optionally subjected to surface functionalization deal with.
  • the carbon nanotube microspheres can be prepared by dispersing carbon nanotubes in a solvent to form a dispersion, followed by spray drying.
  • the preparation method may include the following steps:
  • the carbon nanotubes are dispersed by ultrasonic treatment into a dispersion solvent (without a surfactant) to obtain a dispersion;
  • step B The dispersion obtained in the step A is sprayed through the nozzle of the spray dryer, and the inlet air temperature and the outlet air temperature are preset, and the solution is kept in a stirring state during the spraying process;
  • Cooling that is, obtaining carbon nanotube microspheres.
  • the solvent employs an organic and/or inorganic liquid capable of uniformly dispersing carbon nanotubes/carbon nanofibers and nanocarbon particles, for example, water, ammonia, hydrochloric acid solution, ethanol, acetone, isopropanol. Any combination of one or more.
  • an organic and/or inorganic liquid capable of uniformly dispersing carbon nanotubes/carbon nanofibers and nanocarbon particles, for example, water, ammonia, hydrochloric acid solution, ethanol, acetone, isopropanol. Any combination of one or more.
  • the solvent may be a mixture of ethanol and water in a volume ratio of 1:10.
  • the conditions of spray drying may include: an inlet air temperature of 150 to 250 ° C, an outlet air temperature of 75 ° C or higher, such as 75 to 150 ° C, or 90 ° C or higher; a preferred spray drying condition includes: The inlet air temperature is 190 to 210 ° C, and the outlet air temperature is 90 to 110 ° C.
  • the spray rate at spray drying can range from 1 milliliter per minute to 100 liters per minute.
  • the porous carbon skeleton material is carbon fiber microspheres having a morphology, structure similar to that of the porous carbon nanotube microspheres, and can be prepared by a similar spray drying method.
  • the porous carbon skeleton material is acetylene black having a particle size range of 20-100 nm, preferably 70-80 nm; specific surface: 120-200 m 2 /g, preferably 140-160 m 2 /g; Spherical or nearly spherical; can be obtained by pyrolysis of acetylene gas at high temperature to isolate air.
  • the lithium carbon composite may be obtained by mixing molten metal with a porous carbon skeleton material and cooling.
  • the mixing may include stirring and mixing the metallic lithium with the porous carbon skeleton material under heating (for example, about 200 ° C) or immersing the porous carbon skeleton material in the molten metallic lithium.
  • the preparation of the lithium carbon composite is carried out in an inert atmosphere, for example in a glove box in an argon atmosphere (water content ⁇ 10 ppm, oxygen content ⁇ 10 ppm).
  • the lithium carbon composite is subjected to a screening step prior to use.
  • a 50-100 mesh standard screen is passed through an argon-protected glove box to collect the lithium carbon composite through the mesh.
  • the micro-nano material layer can have a thickness of from 0.1 to 100 microns.
  • the thickness of the layer of conductive micro-nano material may be 50 microns or less, more advantageously 5 microns or less.
  • the thickness of the conductive micro-nano material layer is too large, for example, when it exceeds 100 ⁇ m, an increase in internal resistance of the battery may occur, resulting in a problem of accelerated battery failure.
  • the micro-nano material may have a mass on the surface of the unit metal lithium of from 0.1 to 150 mg/cm 2 , such as from 0.5 to 50 mg/cm 2 .
  • the surface density of the micro/nano material and the thickness of the micro/nano material can be adjusted to meet the needs of different charge and discharge current density batteries.
  • the material used to form the metallic lithium substrate comprises a metallic lithium tape or a metallic lithium-copper foil composite tape.
  • the metal lithium tape may have a thickness of 5 to 400 ⁇ m, for example, 100 to 400 ⁇ m
  • the metal lithium-copper foil composite tape may have a thickness of 10 to 400 ⁇ m, for example, 50 to 200 ⁇ m.
  • Another aspect of the present invention provides a method of preparing a metallic lithium negative electrode comprising forming a conductive micro-nano material layer on a surface of a metallic lithium substrate by a dry composite method or a wet composite method.
  • the micro-nano material is composited with a metallic lithium substrate using a dry composite process, which includes:
  • the micro-nano material may be flattened on the surface of the metallic lithium foil with a brush;
  • micro-nano material dispersed on the surface of the metallic lithium substrate is pressure-compressed to the metallic lithium substrate by applying pressure. Pressure recombination allows the micro-nano material to be firmly embedded in the metallic lithium surface.
  • Steps (1) and (2) are carried out in an inert atmosphere, for example, in an argon-protected glove box (water content ⁇ 10 ppm, oxygen content ⁇ 10 ppm) or in a dry room (dew point below -40 ° C) get on.
  • an inert atmosphere for example, in an argon-protected glove box (water content ⁇ 10 ppm, oxygen content ⁇ 10 ppm) or in a dry room (dew point below -40 ° C) get on.
  • the application of pressure can be accomplished by a roller press or a static press.
  • the micro-nano material can be firmly embedded in the surface of the metallic lithium by repeated rolling (for example, rolling 3-6 times) with a roll press or by applying a pressure of 3-5 MPa under a static press.
  • the mass of the micro-nano material dispersed in the unit metal lithium area can be adjusted to adjust the quality of the micro-nano material per unit metal lithium substrate area to meet the requirements of different current density batteries.
  • the micro-nano material is composited with a metallic lithium substrate using a wet composite process, which includes:
  • anhydrous solvent means a water content of ⁇ 50 ppm
  • the slurry obtained in the step (1) is coated on the surface of the metallic lithium substrate, and then dried to form a coating layer containing the micro-nano material.
  • Steps (1) and (2) are carried out in an inert atmosphere, for example, in an argon-protected glove box (water content ⁇ 10 ppm, oxygen content ⁇ 10 ppm) or in a dry room (dew point below -40 ° C) get on.
  • an inert atmosphere for example, in an argon-protected glove box (water content ⁇ 10 ppm, oxygen content ⁇ 10 ppm) or in a dry room (dew point below -40 ° C) get on.
  • the binder may be a mixture of styrene butadiene rubber and polystyrene (the mass ratio of the two may be 1:1), which results in micro-nano material particles, micro-nanoparticles and Metal lithium sheets are stuck together.
  • the styrene-butadiene rubber may have a molecular weight of 2 million and the polystyrene may have a melt index of 6 g/min (200 ° C / 5 kg).
  • the mass ratio of the binder (styrene-butadiene rubber and polystyrene) to the micro-nano material may be from 5 to 10:95 to 90.
  • the solvent may be para-xylene for dissolving the binder while the binder is uniformly mixed with the micro-nanoparticles.
  • the mass ratio of the solvent to the binder and micro-nanoparticles dispersed therein may be from 10 to 15:1.
  • a slurry containing a micro-nano material can be applied to the surface of a metallic lithium substrate by electrostatic spraying, knife coating, painting, spin coating, and dispensing.
  • the thickness of the coating may be from 1 to 5 microns and the areal density of the nanomaterial is from 0.1 to 10 mg/cm 2 /cm.
  • the mass of the unit metal lithium area micro-nano material can be controlled by adjusting the ratio of the different components in the slurry or adjusting the thickness of the slurry coated on the metal lithium surface.
  • Another aspect of the present invention provides a lithium battery comprising a metallic lithium negative electrode having a layer of a conductive micro-nano material on a surface of a metallic lithium substrate.
  • the material prepared according to the above method can be directly used as a negative electrode tab of a lithium battery.
  • a lithium battery includes a lithium ion battery, a lithium sulfur battery, a lithium empty battery, or a symmetric battery with a layer of electrically conductive micro-nano material both positive and negative.
  • the positive electrode tab of the lithium battery is made of a positive electrode active material such as lithium cobaltate, lithium iron phosphate, lithium manganate, lithium titanate, nickel cobalt manganese, nickel cobalt aluminum ternary material, elemental sulfur or sulfur carbon. to make.
  • a positive electrode active material such as lithium cobaltate, lithium iron phosphate, lithium manganate, lithium titanate, nickel cobalt manganese, nickel cobalt aluminum ternary material, elemental sulfur or sulfur carbon. to make.
  • a metallic lithium negative electrode comprising a metallic lithium substrate and a layer of conductive micro-nano material on the surface of the metallic lithium substrate.
  • Embodiment 2 is the metal lithium negative electrode according to Embodiment 1, wherein the micro/nano material has a particle size of 10 nm to 100 ⁇ m.
  • Embodiment 3 is the metal lithium negative electrode according to the embodiment 1 or 2, wherein the micro-nano material is selected from the group consisting of micro-nano silicon (particle size 60 nm to 10 ⁇ m); micro-nano graphite (particle size 50 nm- 10 ⁇ m); acetylene black (particle size 20-100 nm); micro-nano copper powder (particle size 50 nm - 1 ⁇ m); and at least one of lithium carbon composite materials (particle size 20 nm - 100 ⁇ m).
  • the micro-nano material is selected from the group consisting of micro-nano silicon (particle size 60 nm to 10 ⁇ m); micro-nano graphite (particle size 50 nm- 10 ⁇ m); acetylene black (particle size 20-100 nm); micro-nano copper powder (particle size 50 nm - 1 ⁇ m); and at least one of lithium carbon composite materials (particle size 20 n
  • the fourth embodiment is the metal lithium negative electrode according to the third embodiment, wherein the lithium carbon composite material comprises a porous carbon skeleton material and metallic lithium distributed in and on the pores of the carbon skeleton material.
  • porous carbon skeleton material comprises at least one of carbon fiber microspheres, porous carbon nanotube microspheres, and acetylene black.
  • Embodiment 6 is the metal lithium negative electrode according to Embodiment 5, wherein
  • the porous carbon nanotube microspheres have a specific surface area of 100 to 1500 m 2 /g;
  • the pores of the carbon nanotubes have a pore diameter of 1 to 200 nm;
  • the carbon nanotube has at least one of a microscopic spherical solid aggregate structure, a spherical aggregate structure, a spherical aggregate structure, a porous spherical aggregate structure, and a doughnut aggregate structure;
  • the carbon nanotubes include any one or a combination of two or more of multi-walled carbon nanotubes, double-walled carbon nanotubes, and single-walled carbon nanotubes, optionally subjected to surface functionalization deal with.
  • Embodiment 9 is the metal lithium negative electrode according to Embodiment 8, wherein the metal lithium tape has a thickness of 5 to 400 ⁇ m; and the metal lithium-copper foil composite tape has a thickness of 10 to 400 ⁇ m.
  • the present invention is a method for producing a metallic lithium negative electrode according to any one of the embodiments 1-9, which comprises forming a conductive micro on a surface of a metallic lithium substrate by a dry composite method or a wet composite method.
  • Nanomaterial layer
  • the dry composite method comprises pressure-combining a conductive micro-nano material dispersed on a surface of a metallic lithium substrate to a metallic lithium substrate by applying pressure;
  • the wet composite method includes coating a slurry containing a conductive micro-nano material on a surface of a metallic lithium substrate and then drying to form a coating containing the micro-nano material.
  • Embodiment 11 is the method according to Embodiment 10, wherein the "applying pressure" in the dry compounding method is achieved by a roll press or a static press.
  • Embodiment 12 is the method of embodiment 10, wherein the wet compounding comprises:
  • the slurry obtained in the step (1) is coated on the surface of the metallic lithium substrate, and then dried to form a coating layer containing the micro-nano material.
  • Embodiment 13 is the method of embodiment 12, wherein the mass ratio of the binder to the micro/nano material is from 5 to 10:95 to 90.
  • the method of any one of embodiments 12 or 13 wherein the mass ratio of the solvent to the binder and the micro-nanoparticle dispersed therein may be from 10 to 15:1.
  • micro-nano material has an areal density of from 0.1 to 150 mg/cm.
  • the embodiment 18 is a lithium battery comprising the metal lithium negative electrode according to any one of the embodiments 1-9.
  • the lithium battery according to the embodiment 18, wherein the positive electrode tab of the lithium battery is composed of lithium cobaltate, lithium iron phosphate, lithium manganate, lithium titanate, nickel cobalt manganese ternary material, elemental sulfur or Made of sulfur-carbon positive electrode active material.
  • the nano-silicon material used in Example 1 has a diameter of 60-80 nm, and the metal lithium used is a metal lithium foil having a thickness of 200 ⁇ m (Tianjin Zhongneng Lithium Co., Ltd., the same below), and the method used is dry.
  • the compounding process was carried out in an argon-filled glove box having a moisture content of less than 1 ppm and an oxygen content of less than 5 ppm.
  • the nano-silica powder was uniformly dispersed on a metal lithium strip having a thickness of 200 ⁇ m, and the areal density of the silicon powder was 1 mg/cm 2 .
  • the lithium strip is manually rolled and rolled using a roller of a roller press, and the thickness of the nano silicon powder layer on the final surface is 30 micrometers.
  • the above material was punched into a pellet electrode having a diameter of 15 mm as a negative electrode material of a lithium battery.
  • LiPF 6 lithium hexafluorophosphate
  • a metal lithium-to-metal lithium analog battery having a nano-silicon cap layer structure prepared in 3 was subjected to a constant current discharge-constant current charging cycle, the current density was 0.5 mA/cm 2 , and the discharge charging time was 1 hour.
  • the prepared double-layer structure metal lithium to lithium iron phosphate positive electrode simulated battery was subjected to a constant current discharge-constant current charging cycle, and the charge and discharge current was 1 C (0.1 charge and discharge 3 times to activate the electrode).
  • 1 is a scanning electron micrograph of a surface of a metal lithium negative electrode prepared with a nano-silicon cap layer structure.
  • FIG. 2 is a comparison of charging and discharging cycle curves of untreated metal lithium and metallic lithium-to-metal lithium analog battery having a nano-silicon cap layer structure.
  • Metallic lithium having a nano-silicon cap layer structure exhibits a lower overpotential than untreated metal lithium flakes.
  • the micro-nano silicon material used in Example 2 has a diameter of 60-80 nm, and the metal lithium used is a metal lithium foil having a thickness of 200 ⁇ m.
  • the method used is dry compounding, and the preparation process is low in moisture content. It was carried out in an argon-filled glove box at 1 ppm with an oxygen content of less than 5 ppm.
  • the nano-silica powder was uniformly dispersed on a metal lithium strip having a thickness of 200 ⁇ m, and the areal density of the silicon powder was 1 mg/cm 2 .
  • the lithium strip is manually rolled and rolled using a roller of a roller press, and the thickness of the nano silicon powder layer on the final surface is 5 micrometers.
  • the above material was punched into a pellet electrode having a diameter of 15 mm as a negative electrode material of a lithium battery.
  • the polypropylene microporous film is a separator with sulfur carbon (the sulfur content in the sulfur carbon material is 60%, the binder is the aqueous binder LA133, the conductive agent is acetylene black, and the pole piece has a unit area capacity of 1.7 mAh, the same below) Or metal lithium is assembled
  • a metal lithium-to-metal lithium analog battery having a nano-silicon cap layer structure prepared in 3 was subjected to a constant current discharge-constant current charging cycle, the current density was 0.5 mA/cm 2 , and the discharge charging time was 1 hour.
  • the prepared lithium-sulfur carbon cathode material with nano-silicon coating structure is composed of lithium-sulfur cathode battery, and subjected to constant current discharge-constant current charging cycle, charging and discharging current is 0.2C (0.5C cycle 3 times to activate the electrode) .
  • Figure 5 is a comparison of the capacity of the untreated metal lithium with the metallic lithium-to-sulphur carbon material with a nano-silicon overlay structure.
  • Metal lithium with a nano-silicon cap layer structure has a slower capacity decay.
  • Li represents untreated metal lithium
  • Li-Si represents metallic lithium having a nano-silicon cap layer structure.
  • a 2 g multi-wall carbon tube (Shandong Dazhan Nano Co., Ltd.) was added to 200 ml of deionized water and 20 ml of ethanol, and treated with a 130 W ultrasonic probe for 5 hours to uniformly disperse the carbon tube in the solvent. After that, the sample was added to a spray dryer (Shanghai Yacheng Instrument Equipment Co., Ltd., model YC-015).
  • the setting parameters were: inlet air temperature of 200 ° C, outlet air temperature of 150 ° C, spray pressure of 40 MPa, injection.
  • the amount is 500 mL/h, and the obtained by spray drying is a carbon nanotube microsphere. The above procedure was repeated to prepare carbon nanotube microspheres that were sufficiently used.
  • the prepared metallic lithium-porous carbon nanotube microsphere composite was passed through a 100 mesh standard sieve, and the lithium carbon composite material passing through the sieve was collected.
  • the lithium carbon composite material was dispersed on a 200 ⁇ m thick metal lithium foil in an amount of 4 mg per square centimeter, and the lithium carbon composite material was uniformly dispersed on the surface of the lithium sheet by a brush.
  • the lithium foil is manually rolled and rolled using a roller of a roller, so that the lithium carbon composite is firmly embedded in the surface of the metal lithium.
  • the above material was punched into a disk electrode having a diameter of 15 mm as a negative electrode material of a lithium battery.
  • Figure 6 is an SEM image of the prepared lithium carbon composite.
  • Figure 7 is a comparison of the simulated battery capacity retention curves.
  • the lithium metal anode with lithium-carbon composite coating structure has a slower capacity decay, especially in the late stage of the cycle (0.1 charge and discharge 3 times to activate the electrode, Li in the figure represents untreated metal lithium, Li- LCH means metallic lithium having a lithium carbon composite covering layer structure.
  • a 2 g multi-wall carbon tube (Shandong Dazhan Nano Co., Ltd.) was added to 200 ml of deionized water and 20 ml of ethanol, and treated with a 130 W ultrasonic probe for 5 hours to uniformly disperse the carbon tube in the solvent. After that, the sample was added to a spray dryer (Shanghai Yacheng Instrument Equipment Co., Ltd., model YC-015).
  • the setting parameters were: inlet air temperature of 200 ° C, outlet air temperature of 150 ° C, spray pressure of 40 MPa, injection.
  • the amount is 500 mL/h, and the obtained by spray drying is a carbon nanotube microsphere. The above procedure was repeated to prepare carbon nanotube microspheres that were sufficiently used.
  • the prepared lithium carbon composite material was passed through a 100 mesh standard sieve to collect the lithium carbon composite material passing through the screen.
  • the lithium carbon composite lithium carbon composite material was dispersed in a 200 ⁇ m thick metal lithium foil in an amount of 4 mg per square centimeter, and the lithium carbon composite material was uniformly dispersed on the surface of the lithium sheet by a brush.
  • the lithium foil is manually rolled and rolled using a roller of a roller, so that the lithium carbon composite is firmly embedded in the surface of the metal lithium.
  • the above material was punched into a disk electrode having a diameter of 15 mm as a negative electrode material of a lithium battery.
  • Figure 8 is a comparison of the simulated battery capacity retention curves.
  • the capacity of the lithium metal negative electrode having a lithium carbon composite modified layer structure is better maintained during the cycle. (0.5C cycle 3 times to activate the electrode, Li in the figure represents untreated metal lithium, and Li-LCH means metal lithium having a lithium carbon composite coating layer structure)
  • the nano-silicon material used in Example 5 has a diameter of 60-80 nm, and the metal lithium used is a metal lithium foil having a thickness of 200 ⁇ m.
  • the method used is wet compounding, and the preparation process is in a moisture content lower than that. 1 ppm, in an argon-filled glove box with an oxygen content below 5 ppm.
  • the above materials are dropped on the surface of the metal lithium sheet, and the mass of the slurry is 2 mg per unit square centimeter area, first air dried first, and then dried overnight at 60 degrees Celsius (>10 hours).
  • the resulting micro-nano material layer had a thick bottom of 2 microns.
  • the above material was punched into a pellet electrode having a diameter of 15 mm as a negative electrode material of a lithium battery.
  • the analog battery Into the analog battery.
  • a metal lithium-to-metal lithium analog battery having a nano-silicon cap layer structure prepared in 3 was subjected to a constant current discharge-constant current charging cycle, the current density was 0.5 mA/cm 2 , and the discharge charging time was 1 hour.
  • Figure 9 is a surface topography of the metallic lithium subjected to the above treatment.
  • Fig. 10 is a graph showing the comparison of charge and discharge curves of the metal lithium ribbon and the untreated metal lithium ribbon to the metal lithium analog battery after the above treatment.
  • the metal lithium anode after nano-silicon coverage has a lower and smoother overpotential.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

一种金属锂负极、其制备方法和包含该金属锂负极的锂电池。金属锂负极包括金属锂基底和在金属锂基底表面上的导电性微纳米材料层。导电性微纳米材料层可有效增加金属锂比表面积,降低金属锂表面的电流密度,从而抑制枝晶的生长。

Description

金属锂负极、其制备方法和包含该金属锂负极的锂电池 技术领域
本发明涉及纳米材料技术领域,特别涉及一种金属锂负极、其制备方法和应用。
背景技术
金属锂由于其大的克容量(3860mAh/g),低的电极电势(-3.040V vs标准氢电极),低的密度(0.53g/cm3,最轻的金属),有望成为下一代数码设备、电动车用和太阳能风能等发电设备的储能设备所用的锂电池的负极材料。随着人们对于大容量电池需求的增加,具有大的克比容量的锂硫电池和锂空电池愈来愈受重视,而锂硫电池和锂空电池都是以金属锂作为负极材料,因此金属锂负极材料的研究逐渐受到研究人员的关注。
金属锂负极所面临的主要问题是金属锂枝晶问题。由于金属锂表面形成的固体电解质界面膜(SEI膜)的不均匀,锂离子在金属锂表面的沉积也是不均匀的,因此金属锂会在某些局部地区优先沉积,并向外生长,突破金属锂表面的SEI膜,与电解液接触并反应,形成新的SEI,在反复的沉积/析出过程中,就会形成针状或者树状的锂沉积物(锂枝晶)。一方面金属锂枝晶会与电解液反应,会消耗金属锂,降低电池的充放电效率,同时消耗电解液,导致电池失效。脱离锂金属锂基底的枝晶,其电子通道被切断,不能够在参与电化学反应,形成“死锂”。另一方面,金属锂枝晶不断生长会刺穿隔膜,导致电池短路发热,严重的会引起电池爆炸,引起一系列的安全问题。
发明内容
本发明的主要目的在于提供一种金属锂负极、其制备方法和包含该金属锂负极的锂电池。本发明的金属锂负极在金属锂表面覆盖一层导电性微纳米材料,该微纳米材料层可有效增加金属锂比表面积,降低金属锂表面的电流密度,从而抑制枝晶的生长。
本发明采用的技术方案包括:
在一些实施方式中提供一种金属锂负极,其包括金属锂基底和在金属锂基底表面上的导电性微纳米材料层。
在一些实施方式中提供了一种制备上述金属锂负极的方法,包括通过干法复合方法或湿法复合方法在金属锂基底表面上形成导电性微纳米材料层,其中干法复合方法包括通过施加压力将分 散在金属锂基底表面上的导电性微纳米材料压力复合至金属锂基底;湿法复合方法包括将含有导电性微纳米材料的浆料涂覆在金属锂基底表面上,然后干燥以形成含有所述微纳米材料的涂层。
在一些实施方式中提供一种锂电池,其包括上述的金属锂负极。
本发明具有以下有益效果中的至少一种:
(1)通过在金属锂表面覆盖一层导电性微纳米材料,可有效增加金属锂比表面积,降低金属锂表面的电流密度,从而抑制枝晶的生长。与未保护的金属锂负极相比,带有导电性微纳米材料层的金属锂负极具有更低的阻抗,电池容量衰减更为缓慢。
(2)制备过程只有两步,所用设备简单,因此适合大规模制备。
(3)干法复合制备金属锂负极的过程中,金属锂仅发生由于压力作用发生的形变,而没有化学反应发生,因此没有金属锂的消耗。
附图说明
图1为实施例1中制备的具有纳米硅覆盖层结构的金属锂负极表面的扫描电镜照片。
图2是实施例1中未处理金属锂与具有纳米硅覆盖层结构的金属锂对金属锂模拟电池充放电循环曲线对比图。
图3是实施例1中未处理金属锂与具有纳米硅覆盖层结构的金属锂对磷酸铁锂模拟电池容量保持曲线对比图。
图4是实施例2中未处理金属锂与具有纳米硅覆盖层的金属锂对金属锂模拟电池充放电循环曲线对比图。
图5是实施例2中未处理金属锂与具有纳米硅材料覆盖层结构的金属锂对硫碳材料模拟电池容量保持曲线对比图。
图6为实施例3中制备的锂碳复合材料SEM图。
图7为实施例3中模拟电池容量保持曲线对比图。
图8为实施例4中模拟电池容量保持曲线对比图。
图9为实施例5中经过处理的金属锂带的表面形貌图。
图10为实施例5中为经过上述处理的金属锂带和未处理的金属锂带对金属锂模拟电池的充放电曲线对比图。
具体实施方式
本发明的一个方面提供一种金属锂负极,该金属锂负极包括金属锂基底和在金属锂基底表面上的导电性微纳米材料层。
在一些实施例中,导电性微纳米材料的粒径大小为10纳米-100微米。
在一些实施例中,导电性微纳米材料为选自微纳米硅(粒径60纳米-10微米的单质硅);微纳米石墨(粒径50纳米-10微米);乙炔黑(粒径20-100纳米,通过乙炔气在高温下隔绝空气进行热裂解后,冷却收集制得的炭黑);微纳米铜粉(粒径50纳米-1微米);和锂碳复合材料(粒径20纳米-100微米)中的至少一种。
在一些实施例中,所述锂碳复合材料包含多孔碳骨架材料以及分布于所述碳骨架材料的孔隙中和表面上的金属锂。
在一些实施例中,所述多孔碳骨架材料包括碳纤维微球、多孔碳纳米管微球和乙炔黑中的至少一种。
在一些实施例中,所述多孔碳骨架材料是多孔碳纳米管微球,其中
所述多孔碳纳米管微球的比表面积为100~1500m2/g;
和/或,所述碳纳米管所含孔隙的孔径为1~200nm;
和/或,所述碳纳米管至少具有微小球状实体聚集结构、球形聚集结构、类球形聚集结构、多孔球形聚集结构和面包圈形聚集结构中的任意一种;
和/或,所述碳纳米管包括多壁碳纳米管、双壁碳纳米管和单壁碳纳米管中的任意一种或两种以上的组合,所述碳纳米管任选经过表面功能化处理。
在一些实施例中,所述碳纳米管微球可以通过将碳纳米管分散于溶剂中形成分散液,然后喷雾干燥而制备。例如,制备方法可以包括以下步骤:
A、将碳纳米管通过超声处理分散到分散溶剂(不含表面活性剂)中,获得分散液;
B、将步骤A中获得的分散液通过喷雾干燥机的喷嘴喷出,预设定进风温度和出风温度,喷雾过程中保持溶液为搅拌状态;
C、冷却,即获得碳纳米管微球。
在一些实施例中,所述溶剂采用能够使碳纳米管/碳纳米纤维和纳米碳颗粒均匀分散的有机和/或无机液体,例如,水、氨水、盐酸溶液、乙醇、丙酮、异丙醇的任意一种或多种的组合。
在一些实施例中,所述溶剂可以是体积比为1:10的乙醇与水的混合物。
在一些实施例中,喷雾干燥的条件可以包括:进风温度为150~250℃,出风温度为75℃以上,如75~150℃,或者为90℃以上;一个优选的喷雾干燥条件包括:进风温度为190~210℃,出风温度为90~110℃。
在一些实施例中,喷雾干燥时的喷雾速度可以为1毫升/分钟至100升/分钟。
在一些实施例中,多孔碳骨架材料是碳纤维微球,所述碳纤维微球具有与多孔碳纳米管微球类似的形貌、结构,并且可以通过类似的喷雾干燥方法制备。
在一些实施例中,多孔碳骨架材料是乙炔黑,其粒径范围:20-100纳米,优选70-80纳米;比表面:120-200m2/g,优选140-160m2/g;形状为球形或者近球形;可以通过净化的乙炔气体高温隔绝空气裂解所得。
在一些实施例中,锂碳复合材料可以通过将熔融金属锂与多孔碳骨架材料混合,冷却后获得。所述混合可以包括将金属锂与多孔碳骨架材料在加热下(例如约200℃)搅拌混合或者将多孔碳骨架材料浸入熔融金属锂中。锂碳复合材料的制备在惰性气氛中进行,例如在氩气气氛的手套箱中(水含量<10ppm,氧气含量<10ppm)。
在一些实施例中,锂碳复合材料在使用前还经过筛选步骤。例如,在氩气保护的手套箱中过50-100目的标准筛,收集通过筛孔的锂碳复合材料。
在一些实施例中,所述微纳米材料层的厚度可以为0.1-100微米。在采用纳米材料的情况下,传导性微纳米材料层的厚度可以为50微米以下,更有利地为5微米以下。传导性微纳米材料层的厚度过大,例如超过100微米时,可能出现电池内阻增加,导致电池失效加速的问题。
在一些实施例中,所述微纳米材料在单位金属锂表面上的质量可以为0.1-150毫克/平方厘米,例如0.5-50毫克/平方厘米。可以通过调整微纳米材料的面密度和微纳米材料的厚度,以满足不同充放电电流密度电池的需要。
在一些实施例中,用于形成所述金属锂基底的材料包括金属锂带或者金属锂-铜箔复合带。金属锂带的厚度可以为5-400微米,例如100-400微米,金属锂-铜箔复合带的厚度可以为10-400微米,例如50-200微米。
本发明的另一个方面提供一种制备金属锂负极的方法,其包括通过干法复合方法或湿法复合方法在金属锂基底表面上形成导电性微纳米材料层。
在一些实施例中,采用干法复合方法将微纳米材料与金属锂基底复合,其包括:
(1)将微纳米材料均匀分散在金属锂表面,例如,可以用毛刷将微纳米材料在金属锂箔表面铺平;
(2)通过施加压力将分散在金属锂基底表面上的微纳米材料压力复合至金属锂基底。压力复合可以使得微纳米材料牢固的嵌入到金属锂表面。
步骤(1)和(2)是在惰性气氛中进行的,例如,在氩气保护的手套箱(水含量<10ppm,氧气含量<10ppm)中或者在干燥间(露点低于-40℃)中进行。
在一些干法复合的实施例中,施加压力可以通过辊压机或者静压机实现。可以通过用辊压机反复辊压(例如辊压3-6次),或者在静压机下,施加3-5MPa的压力,使得微纳米材料牢固的嵌入金属锂表面。为防止金属锂层与辊压机辊轮或者静压机不锈钢垫片粘连,需要将表面分散有微纳米材料的金属锂基底放置在塑料薄膜中(两面覆盖塑料薄膜),再压力复合。
在一些干法复合的实施例中,可以调整分散在单位金属锂面积上微纳米材料的质量,以调整复合后单位金属锂基底面积微纳米材料的质量,以满足不同电流密度电池的需求。
在一些实施例中,采用湿法复合方法将微纳米材料与金属锂基底复合,其包括:
(1)将导电性微纳米材料和粘结剂分散在无水溶剂(此处,“无水”是指水含量<50ppm)中,形成微纳米材料均匀分散在其中的浆料;
(2)将步骤(1)中获得的浆料涂覆在金属锂基底表面上,然后干燥以形成含有所述微纳米材料的涂层。
步骤(1)和(2)是在惰性气氛中进行的,例如,在氩气保护的手套箱(水含量<10ppm,氧气含量<10ppm)中或者在干燥间(露点低于-40℃)中进行。
在一些湿法复合的实施例中,粘结剂可以是丁苯橡胶和聚苯乙烯的混合物(两者的质量比可以为1:1),其使得微纳米材料颗粒之间,微纳米颗粒和金属锂片之间粘连在一起。丁苯橡胶的分子量可以为200万,聚苯乙烯的熔融指数可以为6g/min(200℃/5kg)。粘结剂(丁苯橡胶和聚苯乙烯)与微纳米材料的质量比可以为5~10:95~90。
在一些湿法复合的实施例中,溶剂可以为对二甲苯,用于溶解粘结剂,同时将粘结剂与微纳米颗粒混合均匀。在某些情况下,溶剂与分散在其中的粘结剂和微纳米颗粒的质量比可以为10~15:1。
在一些湿法复合的实施例中,可以通过以下方法将含有微纳米材料的浆料涂覆在金属锂基底表面上:静电喷涂,刮涂,粉刷,旋涂和滴涂法。
在一些湿法复合的实施例中,涂层的厚度(干燥后厚度)可以为1-5微米,纳米材料面密度为0.1-10毫克/平方厘米毫克/平方厘米。单位金属锂面积微纳米材料的质量可以通过调整浆料中不同成分的比例,或者调整涂覆在金属锂表面浆料的厚度来控制。
本发明的另一个方面提供一种锂电池,其包括在金属锂基底表面上具有导电性微纳米材料层的金属锂负极。按照上述方法制备的材料可以直接作为锂电池的负极极片。
在一些实施例中,锂电池包括锂离子电池、锂硫电池、锂空电池、或者正负极均带有导电性微纳米材料层的对称电池。
在一些实施例中,锂电池的正极极片由钴酸锂、磷酸铁锂、锰酸锂、钛酸锂、镍钴锰、镍钴铝三元材料、单质硫或者硫碳等正极活性材料制成。
下列具体实施方式意在示例性地而非限定性地说明本公开。
具体实施方式1是一种金属锂负极,其包括金属锂基底和在金属锂基底表面上的导电性微纳米材料层。
具体实施方式2是根据具体实施方式1所述的金属锂负极,其中所述微纳米材料的粒径大小为10纳米-100微米。
具体实施方式3是根据具体实施方式1或2所述的金属锂负极,其中所述微纳米材料为选自微纳米硅(粒径60纳米-10微米);微纳米石墨(粒径50纳米-10微米);乙炔黑(粒径20-100纳米);微纳米铜粉(粒径50纳米-1微米);和锂碳复合材料(粒径20纳米-100微米)中的至少一种。
具体实施方式4是根据具体实施方式3所述的金属锂负极,其中所述锂碳复合材料包含多孔碳骨架材料以及分布于所述碳骨架材料的孔隙中和表面上的金属锂。
具体实施方式5是根据具体实施方式4所述的金属锂负极,其中所述多孔碳骨架材料包括碳纤维微球、多孔碳纳米管微球和乙炔黑中的至少一种。
具体实施方式6是根据具体实施方式5所述的金属锂负极,其中
所述多孔碳纳米管微球的比表面积为100~1500m2/g;
和/或,所述碳纳米管所含孔隙的孔径为1~200nm;
和/或,所述碳纳米管至少具有微小球状实体聚集结构、球形聚集结构、类球形聚集结构、多孔球形聚集结构和面包圈形聚集结构中的任意一种;
和/或,所述碳纳米管包括多壁碳纳米管、双壁碳纳米管和单壁碳纳米管中的任意一种或两种以上的组合,所述碳纳米管任选经过表面功能化处理。
具体实施方式7是根据具体实施方式1-6中任一项所述的金属锂负极,其中所述微纳米材料层的厚度为30微米以下。
具体实施方式8是根据具体实施方式1-7中任一项所述的金属锂负极,其中用于形成所述金属锂基底的材料包括金属锂带或者金属锂-铜箔复合带。
具体实施方式9是根据具体实施方式8所述的金属锂负极,其中所述金属锂带的厚度为5-400微米;所述金属锂-铜箔复合带的厚度为10-400微米。
具体实施方式10是一种制备根据具体实施方式1-9中任一项所述的金属锂负极的方法,其包括通过干法复合方法或湿法复合方法在金属锂基底表面上形成导电性微纳米材料层,
其中干法复合方法包括通过施加压力将分散在金属锂基底表面上的导电性微纳米材料压力复合至金属锂基底;
湿法复合方法包括将含有导电性微纳米材料的浆料涂覆在金属锂基底表面上,然后干燥以形成含有所述微纳米材料的涂层。
具体实施方式11是根据具体实施方式10所述的方法,其中所述干法复合方法中的“施加压力”通过辊压机或者静压机实现。
具体实施方式12是根据具体实施方式10所述的方法,其中所述湿法复合包括:
(1)将导电性微纳米材料和粘结剂分散在无水溶剂中,形成微纳米材料均匀分散在其中的浆料;
(2)将步骤(1)中获得的浆料涂覆在金属锂基底表面上,然后干燥以形成含有所述微纳米材料的涂层。
具体实施方式13是根据具体实施方式12所述的方法,其中粘结剂与微纳米材料的质量比为5~10:95~90。
具体实施方式14是根据具体实施方式12或13所述的方法,其中溶剂与分散在其中的粘结剂和微纳米颗粒的质量比可以为10~15:1。
具体实施方式15是根据具体实施方式12-14中任一项所述的方法,其中通过以下方法将含有微纳米材料的浆料涂覆在金属锂基底表面上:静电喷涂,刮涂,粉刷,旋涂和滴涂法,
具体实施方式16是根据具体实施方式12-15中任一项所述的方法,其中涂层的厚度为5-30微米。
具体实施方式17是根据具体实施方式12-16中任一项所述的方法,其中所述微纳米材料的面密度为0.1-150毫克/平方厘米。
具体实施方式18是一种锂电池,其包括具体实施方式1-9中任一项所述的金属锂负极。
具体实施方式19是根据具体实施方式18所述的锂电池,其中锂电池的正极极片由钴酸锂、磷酸铁锂、锰酸锂、钛酸锂、镍钴锰三元材料、单质硫或硫碳正极活性材料制成。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
又及,在如下实施例之中所采用的各种产品结构参数、各种反应参与物及工艺条件均是较为典型的范例,但经过本案发明人大量试验验证,于上文所列出的其它不同结构参数、其它类型的 反应参与物及其它工艺条件也均是适用的,并也均可达成本发明所声称的技术效果。
实施例1
实施例1中使用的纳米硅材料的直径为60-80纳米,所使用的金属锂为厚度为200微米的金属锂箔(天津中能锂业有限公司,下同),所使用的方法是干法复合,制备过程是在水分含量低于1ppm,氧气含量低于5ppm的充满氩气的手套箱中进行。
制备过程:
1.将纳米硅粉均匀分散在厚度为200微米的金属锂带上,硅粉的面密度为1mg/cm2
2.使用辊压机辊轮手动反复辊压锂带,最终表面的纳米硅粉层的厚度为30微米。
3.将上述材料冲压成直径为15毫米的圆片电极作为锂电池的负极材料。电解液为1mol/L的LiPF6(六氟磷酸锂)的三组分混合溶剂EC:DMC:EMC=1:1:1(体积比v/v/v,EC:碳酸乙烯酯,DMC:碳酸二甲酯,EMC:碳酸甲乙酯,东莞杉杉电池材料有限公司,下同),聚丙烯微孔薄膜为隔膜(深圳市科晶智达科技有限公司,Celgard 2400,下同),以磷酸铁锂(苏州纳新新能源科技有限公司,面密度6.7毫克/平方厘米)或者金属锂为正极组装成模拟电池。
4.将3中所制备具有纳米硅覆盖层结构金属锂对金属锂模拟电池,进行恒流放电-恒流充电循环,电流密度为0.5mA/cm2,放电充电的时间为1小时。
5.将制备的双层结构金属锂对磷酸铁锂正极模拟电池,进行恒流放电-恒流充电循环,充放电流为1C(0.1充放电3次以活化电极)。
图1为所制备具有纳米硅覆盖层结构的金属锂负极表面的扫描电镜照片。
图2是未处理金属锂与具有纳米硅覆盖层结构的金属锂对金属锂模拟电池充放电循环曲线对比。与未处理的金属锂片相比,具有纳米硅覆盖层结构的金属锂表现出更低的过电势。
图3是未处理金属锂与具有纳米硅覆盖层结构的金属锂对磷酸铁锂模拟电池容量保持曲线对比。与未处理的金属锂片相比,具有纳米硅覆盖层的金属锂容量衰减更为缓慢(图中Li表示未经处理的金属锂,Li-Si表示具有具有纳米硅覆盖层结构的金属锂)。
实施例2
实施例2中所使用的微纳米硅材料的直径为60-80纳米,所使用的金属锂为厚度为200微米的金属锂箔,所使用的方法是干法复合,制备过程是在水分含量低于1ppm,氧气含量低于5ppm的充满氩气的手套箱中进行。
制备过程:
1.将纳米硅粉均匀的分散在厚度为200微米的金属锂带上,硅粉的面密度为1mg/cm2
2.使用辊压机辊轮手动反复辊压锂带,最终表面的纳米硅粉层的厚度为5微米。
3.将上述材料冲压成直径为15毫米的圆片电极作为锂电池的负极材料。电解液为1mol/L的LiTFSI(双三氟甲基磺酰亚胺锂或称二(三氟甲基磺酸)亚胺锂)的两组分混合溶剂DOL:DME=1:1(体积比v/v,DOL:1,3-二氧戊环,DME:乙二醇二甲醚,下同)(电解液购于苏州乾民化学试剂有限公司,下同)含2%LiNO3添加剂,聚丙烯微孔薄膜为隔膜,以硫碳(硫碳材料中硫含量为60%,粘结剂为水性粘结剂LA133,导电剂为乙炔黑,极片单位面积容量为1.7mAh,下同)或者金属锂为对正极组装成模拟电池。
4.将3中所制备具有纳米硅覆盖层结构金属锂对金属锂模拟电池,进行恒流放电-恒流充电循环,电流密度为0.5mA/cm2,放电充电的时间为1小时。
5.将制备的具有纳米硅覆盖层结构金属锂对硫碳正极材料组成锂硫模拟电池,进行恒流放电-恒流充电循环,充放电流为0.2C(0.5C循环3次以活化电极)。
图4是未处理金属锂与具有纳米硅覆盖层结构的金属锂对金属锂模拟电池充放电循环曲线对比。具有纳米硅覆盖层结构的金属锂表现出更低的过电池,且在200次循环的过程中,一直保持较低的过电势。
图5是未处理金属锂与具有纳米硅覆盖层结构的金属锂对硫碳材料模拟电池容量保持曲线对比。具有纳米硅覆盖层结构的金属锂容量衰减更为缓慢。(图中Li表示未经处理的金属锂,Li-Si表示具有具有纳米硅覆盖层结构的金属锂)。
实施例3
将2g多壁碳管(山东大展纳米有限公司)加入200毫升去离子水和20毫升乙醇中,130W超声探头处理5小时,使得碳管在溶剂中分散均匀。之后,将样品加入喷雾干燥机(上海雅程仪器设备有限公司,型号YC-015)中,设定参数为:进风温度为200℃,出风温度为150℃,喷雾压力为40MPa,进样量为500mL/h,喷雾干燥所得即为碳纳米管微球。重复上述过程,以制备出足够使用的碳纳米管微球。
在充满氩气的手套箱中(水分含量≤10ppm,氧气≤10ppm),将10克电池级金属锂(天津中能锂业有限公司)和5克碳纳米管微球加入带有不锈钢反应釜的加热器中,加热至200摄氏度,搅拌1分钟,搅拌速度100转/分钟,然后加热至230℃,搅拌20分钟,搅拌数据500转/分钟,冷却至室温,所得产品即为锂碳复合材料。所得锂碳复合材料中锂含量约为50%。
将所制备的金属锂-多孔碳纳米管微球复合材料过100目标准筛网,收集通过筛网的锂碳复合材料。
按照每平方厘米4毫克用量,将锂碳复合材料分散在200微米厚的金属锂箔上,并用毛刷将锂碳复合材料在锂片表面分散均匀。使用辊压机辊轮手动反复辊压锂箔,使得锂碳复合材料牢固的嵌入金属锂表面。
将上述材料冲压成直径为15毫米的圆片电极作为锂电池的负极材料。电解液为1mol/L的LiPF6的三组分混合溶剂EC:DMC:EMC=1:1:1(体积比v/v/v),聚丙烯微孔薄膜为隔膜,以磷酸铁锂为正极组装成模拟电池。
图6为所制备的锂碳复合材料SEM图。
图7为模拟电池容量保持曲线对比图。具有锂碳复合材料覆盖层结构的金属锂负极其容量衰减更为缓慢,特别是在循环后期表现尤为突出(0.1充放电3次以活化电极,图中Li表示未经处理的金属锂,Li-LCH表示具有具有锂碳复合材料覆盖层结构的金属锂)。
实施例4
将2g多壁碳管(山东大展纳米有限公司)加入200毫升去离子水和20毫升乙醇中,130W超声探头处理5小时,使得碳管在溶剂中分散均匀。之后,将样品加入喷雾干燥机(上海雅程仪器设备有限公司,型号YC-015)中,设定参数为:进风温度为200℃,出风温度为150℃,喷雾压力为40MPa,进样量为500mL/h,喷雾干燥所得即为碳纳米管微球。重复上述过程,以制备出足够使用的碳纳米管微球。
在充满氩气的手套箱中(水分含量≤10ppm,氧气≤10ppm),将10克电池级金属锂(天津中能锂业有限公司)和5克碳纳米管微球加入带有不锈钢反应釜的加热器中,加热至200摄氏度,搅拌1分钟,搅拌速度100转/分钟,然后加热至230℃,搅拌20分钟,搅拌数据500转/分钟,冷却至室温,所得产品即为锂碳复合材料。所得锂碳复合材料中锂含量约为50%。
将所制备的锂碳复合材料,过100目标准筛网,收集通过筛网的锂碳复合材料。
将按照每平方厘米4毫克用量,将锂碳复合材料锂碳复合材料分散在200微米厚的金属锂箔,并用毛刷将锂碳复合材料在锂片表面分散均匀。使用辊压机辊轮手动反复辊压锂箔,使得锂碳复合材料牢固的嵌入金属锂表面。
将上述材料冲压成直径为15毫米的圆片电极作为锂电池的负极材料。电解液为1mol/L的LiTFSI的二组分混合溶剂DOL:DME=1:1(体积比v/v),聚丙烯微孔薄膜为隔膜,以硫碳材料为正极组装成模拟电池。
图8为模拟电池容量保持曲线对比图。具有锂碳复合材料修饰层结构的金属锂负极容量在循环过程中更好的得以保持。(0.5C循环3次以活化电极,图中Li表示未经处理的金属锂,Li-LCH表示具有具有锂碳复合材料覆盖层结构的金属锂)
实施例5
实施例5中所使用的纳米硅材料的直径为60-80纳米,所使用的金属锂为厚度为200微米的金属锂箔,所使用的方法是湿法复合,制备过程是在水分含量低于1ppm,氧气含量低于5ppm的充满氩气的手套箱中进行。
制备过程:
1.按照苯橡胶(SBR,Sigma-Aldrich中国):聚苯乙烯(PS,Sigma-Aldrich中国):纳米硅材料:对二甲苯(PX)=0.025:0.025:0.95:10的将上述物质至于玻璃瓶中,加入磁子搅拌过夜,搅拌速度200-300转/分钟,搅拌过夜(>10小时)。
2.将上述材料滴在金属锂片表面,单位平方厘米面积滴加浆料的质量为2毫克,先自然风干,然后60摄氏度过夜(>10小时)烘干。所得到的微纳米材料层的厚底为2微米。
3.将上述材料冲压成直径为15毫米的圆片电极作为锂电池的负极材料。电解液为1mol/L的LiPF6的三组分混合溶剂EC:DMC:EMC=1:1:1(体积比v/v/v),聚丙烯微孔薄膜为隔膜,以金属锂为正极组装成模拟电池。
4.将3中所制备具有纳米硅覆盖层结构金属锂对金属锂模拟电池,进行恒流放电-恒流充电循环,电流密度为0.5mA/cm2,放电充电的时间为1小时。
图9为经过上述处理的金属锂的表面形貌。
图10为经过上述处理的金属锂带和未处理的金属锂带对金属锂模拟电池的充放电曲线对比图。经过纳米硅覆盖后的金属锂负极有着更低和更为平稳的过电势。
应当理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (19)

  1. 一种金属锂负极,其特征在于包括金属锂基底和在金属锂基底表面上的导电性微纳米材料层。
  2. 根据权利要求1所述的金属锂负极,其特征在于所述微纳米材料的粒径大小为10纳米-100微米。
  3. 根据权利要求1或2所述的金属锂负极,其特征在于所述微纳米材料为选自微纳米硅(粒径60纳米-10微米);微纳米石墨(粒径50纳米-10微米);乙炔黑(粒径20-100纳米);微纳米铜粉(粒径50纳米-1微米);和锂碳复合材料(粒径20纳米-100微米)中的至少一种。
  4. 根据权利要求3所述的金属锂负极,其特征在于所述锂碳复合材料包含多孔碳骨架材料以及分布于所述碳骨架材料的孔隙中和表面上的金属锂。
  5. 根据权利要求4所述的金属锂负极,其特征在于所述多孔碳骨架材料包括碳纤维微球、多孔碳纳米管微球和乙炔黑中的至少一种。
  6. 根据权利要求5所述的金属锂负极,其特征在于
    所述多孔碳纳米管微球的比表面积为100~1500m2/g;
    和/或,所述碳纳米管所含孔隙的孔径为1~200nm;
    和/或,所述碳纳米管至少具有微小球状实体聚集结构、球形聚集结构、类球形聚集结构、多孔球形聚集结构和面包圈形聚集结构中的任意一种;
    和/或,所述碳纳米管包括多壁碳纳米管、双壁碳纳米管和单壁碳纳米管中的任意一种或两种以上的组合,所述碳纳米管任选经过表面功能化处理。
  7. 根据权利要求1-6中任一项所述的金属锂负极,其特征在于所述微纳米材料层的厚度为30微米以下。
  8. 根据权利要求1-7中任一项所述的金属锂负极,其特征在于用于形成所述金属锂基底的材料包括金属锂带或者金属锂-铜箔复合带。
  9. 根据权利要求8所述的金属锂负极,其特征在于所述金属锂带的厚度为5-400微米;所述金属锂-铜箔复合带的厚度为10-400微米。
  10. 一种制备根据权利要求1-9中任一项所述的金属锂负极的方法,其特征在于包括通过干法复合方法或湿法复合方法在金属锂基底表面上形成导电性微纳米材料层,
    其中干法复合方法包括通过施加压力将分散在金属锂基底表面上的导电性微纳米材料压力复合至金属锂基底;
    湿法复合方法包括将含有导电性微纳米材料的浆料涂覆在金属锂基底表面上,然后干燥以形成含有所述微纳米材料的涂层。
  11. 根据权利要求10所述的方法,其特征在于所述干法复合方法中的“施加压力”通过辊压机或者静压机实现。
  12. 根据权利要求10所述的方法,其特征在于所述湿法复合包括:
    (1)将导电性微纳米材料和粘结剂分散在无水溶剂中,形成微纳米材料均匀分散在其中的浆料;
    (2)将步骤(1)中获得的浆料涂覆在金属锂基底表面上,然后干燥以形成含有所述微纳米材料的涂层。
  13. 根据权利要求12所述的方法,其特征在于粘结剂与微纳米材料的质量比为5~10:95~90。
  14. 根据权利要求12或13所述的方法,其特征在于溶剂与分散在其中的粘结剂和微纳米颗粒的质量比可以为10~15:1。
  15. 根据权利要求12-14中任一项所述的方法,其特征在于通过以下方法将含有微纳米材料的浆料涂覆在金属锂基底表面上:静电喷涂,刮涂,粉刷,旋涂和滴涂法,
  16. 根据权利要求12-15中任一项所述的方法,其特征在于涂层的厚度为5-30微米。
  17. 根据权利要求12-16中任一项所述的方法,其特征在于所述微纳米材料的面密度为0.1-150毫克/平方厘米。
  18. 一种锂电池,其包括权利要求1-9中任一项所述的金属锂负极。
  19. 根据权利要求18所述的锂电池,其特征在于锂电池的正极极片由钴酸锂、磷酸铁锂、锰酸锂、钛酸锂、镍钴锰三元材料、单质硫或硫碳正极活性材料制成。
PCT/CN2017/105679 2017-07-26 2017-10-11 金属锂负极、其制备方法和包含该金属锂负极的锂电池 WO2019019413A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710617554.X 2017-07-26
CN201710617554.XA CN109309234B (zh) 2017-07-26 2017-07-26 金属锂负极、其制备方法和包含该金属锂负极的锂电池

Publications (1)

Publication Number Publication Date
WO2019019413A1 true WO2019019413A1 (zh) 2019-01-31

Family

ID=65039490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105679 WO2019019413A1 (zh) 2017-07-26 2017-10-11 金属锂负极、其制备方法和包含该金属锂负极的锂电池

Country Status (2)

Country Link
CN (1) CN109309234B (zh)
WO (1) WO2019019413A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112701293A (zh) * 2019-10-23 2021-04-23 天津中能锂业有限公司 锂复合电极及其制备方法和应用
CN112072067B (zh) * 2020-09-18 2022-10-14 北京理工大学 一种锂硫电池用碳硫复合正极及其制备方法
CN114551782B (zh) * 2021-08-16 2023-07-07 万向一二三股份公司 一种涂覆有保护层的锂金属负极及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346343B1 (en) * 1999-11-11 2002-02-12 U.S. Philips Corporation Secondary lithium battery comprising lithium deposited on negative electrode material
CN105140449A (zh) * 2015-08-14 2015-12-09 中国人民解放军63971部队 一种保护锂硫电池负极的方法
CN105489944A (zh) * 2015-11-26 2016-04-13 中国电子科技集团公司第十八研究所 采用金属锂做负极的全固态电池制备方法
CN105845891A (zh) * 2016-05-13 2016-08-10 清华大学 一种具有双层结构的金属锂负极
CN106450422A (zh) * 2016-09-30 2017-02-22 上海空间电源研究所 一种具有多重保护层结构的锂硫电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097614B (zh) * 2010-12-23 2013-06-05 重庆昆瑜锂业有限公司 一种锂电池电极的滚压复合机
CN105374991B (zh) * 2014-08-13 2019-10-18 中国科学院苏州纳米技术与纳米仿生研究所 金属锂-骨架碳复合材料及其制备方法、负极和二次电池
CN204885286U (zh) * 2015-07-07 2015-12-16 李震祺 一种高安全性的金属锂负极

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346343B1 (en) * 1999-11-11 2002-02-12 U.S. Philips Corporation Secondary lithium battery comprising lithium deposited on negative electrode material
CN105140449A (zh) * 2015-08-14 2015-12-09 中国人民解放军63971部队 一种保护锂硫电池负极的方法
CN105489944A (zh) * 2015-11-26 2016-04-13 中国电子科技集团公司第十八研究所 采用金属锂做负极的全固态电池制备方法
CN105845891A (zh) * 2016-05-13 2016-08-10 清华大学 一种具有双层结构的金属锂负极
CN106450422A (zh) * 2016-09-30 2017-02-22 上海空间电源研究所 一种具有多重保护层结构的锂硫电池

Also Published As

Publication number Publication date
CN109309234B (zh) 2022-10-25
CN109309234A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
CN109216686B (zh) 一种锂离子电池硅碳复合材料及其制备方法
WO2016008455A2 (zh) 一种多元复合负极材料、其制备方法及包含其的锂离子电池
CN102479949B (zh) 一种锂离子电池的负极活性材料及其制备方法以及一种锂离子电池
CN110739485A (zh) 一种低温锂离子电池
WO2019063006A1 (zh) 一种碳基复合材料、其制备方法及包含其的锂离子电池
WO2021114747A1 (zh) 废旧磷酸铁锂选择性氧化-还原再生的方法、再生磷酸铁锂和锂离子电池
CN106058228A (zh) 一种核壳结构硅碳复合材料及其制备方法与用途
CN108306009B (zh) 一种氧化硅碳复合负极材料、其制备方法及锂离子电池
WO2022052994A1 (zh) 石墨负极材料、负极和锂离子电池及其制备方法
WO2019019410A1 (zh) 改性无锂负极、其制备方法和含有其的锂离子电池
WO2023241148A1 (zh) 一种负极材料及包括该负极材料的负极片和电池
CN109686952A (zh) 一种硅碳负极材料及包覆制备方法
CN110416522B (zh) 一种含锂复合负极材料、其制备方法和其在锂二次电池中的应用
WO2022021933A1 (zh) 非水电解质二次电池用负极材料及其制备方法
WO2022199389A1 (zh) 硅氧复合负极材料及其制备方法、锂离子电池
JP7062206B2 (ja) セリア‐炭素‐硫黄複合体、この製造方法、これを含む正極及びリチウム‐硫黄電池
CN112687853B (zh) 硅氧颗粒团聚体及其制备方法、负极材料、电池
CN112687843A (zh) 适用于硅基负极的复合导电剂、硅基负极、其制备方法和锂离子电池
CN111668474A (zh) 负极材料及其制备方法、二次电池
CN108682830B (zh) 一种锂离子电池硅碳复合负极材料及其制备方法
CN109309234B (zh) 金属锂负极、其制备方法和包含该金属锂负极的锂电池
CN107681125B (zh) 一种锂离子电池用负极材料、其制备方法及锂离子二次电池
WO2019242647A1 (zh) 锂离子电池负极材料及其制备方法、负极和锂离子电池
WO2023124025A1 (zh) 一种石墨复合负极材料及其制备方法和应用
Yuan et al. Modifying SiO as a ternary composite anode material ((SiOx/G/SnO2)@ C) for Lithium battery with high Li-ion diffusion and lower volume expansion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17919217

Country of ref document: EP

Kind code of ref document: A1