WO2019019161A1 - 螺旋桨、动力组件及飞行器 - Google Patents
螺旋桨、动力组件及飞行器 Download PDFInfo
- Publication number
- WO2019019161A1 WO2019019161A1 PCT/CN2017/094933 CN2017094933W WO2019019161A1 WO 2019019161 A1 WO2019019161 A1 WO 2019019161A1 CN 2017094933 W CN2017094933 W CN 2017094933W WO 2019019161 A1 WO2019019161 A1 WO 2019019161A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blade
- paddle
- propeller
- center
- attack
- Prior art date
Links
- 230000000452 restraining effect Effects 0.000 claims description 23
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 230000007423 decrease Effects 0.000 claims 3
- 230000002401 inhibitory effect Effects 0.000 abstract 2
- 230000001629 suppression Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C11/00—Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
- B64C11/16—Blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/32—Rotors
- B64C27/46—Blades
- B64C27/473—Constructional features
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/32—Rotors
- B64C27/46—Blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/32—Rotors
- B64C27/46—Blades
- B64C27/463—Blade tips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/32—Rotors
- B64C27/46—Blades
- B64C27/467—Aerodynamic features
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/32—Rotors
- B64C27/46—Blades
- B64C27/473—Constructional features
- B64C27/50—Blades foldable to facilitate stowage of aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U30/00—Means for producing lift; Empennages; Arrangements thereof
- B64U30/20—Rotors; Rotor supports
- B64U30/29—Constructional aspects of rotors or rotor supports; Arrangements thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/10—Propulsion
- B64U50/19—Propulsion using electrically powered motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/30—Fixing blades to rotors; Blade roots ; Blade spacers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
- B64U10/10—Rotorcrafts
- B64U10/13—Flying platforms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U30/00—Means for producing lift; Empennages; Arrangements thereof
- B64U30/20—Rotors; Rotor supports
- B64U30/29—Constructional aspects of rotors or rotor supports; Arrangements thereof
- B64U30/293—Foldable or collapsible rotors or rotor supports
Definitions
- the invention relates to a propeller, a power component and an aircraft, and belongs to the technical field of aircraft.
- a propeller is an important component of a rotary wing aircraft that is used to convert the rotation of an output shaft in a motor or engine into thrust or lift to effect take-off, turn, hover, and the like of the aircraft. Due to the structure and working characteristics of the propeller, when it rotates, the blade with a certain thickness periodically sweeps through the surrounding air medium, causing periodic unsteady movement of the air micelles, thereby generating thickness noise, and at the same time, paddle The pressure field of the leaf surface also changes, resulting in load noise. These thick noises and load noise are added together to form a major part of the aircraft noise, which not only pollutes the surrounding airspace environment, but also spreads to the fuselage of the aircraft, causing vibration of the aircraft fuselage, seriously affecting the flight of the aircraft. Safety.
- embodiments of the present invention provide a propeller, a power assembly, and an aircraft.
- a propeller including a blade; the blade includes a blade root and a blade tip facing away from the blade root; the blade has a leaf surface, a leaf back, a connecting leaf surface, and a blade a leading edge on one side of the back, and a trailing edge connecting the other side of the blade and the back of the blade; and the portion of the leading edge near the tip of the blade is bent in the first direction to form a portion for suppressing the flow of air a suppressing portion, wherein the first direction is a direction from the leading edge to the trailing edge.
- a power assembly in accordance with some embodiments of the present invention, includes a drive member and a propeller.
- the propeller includes a paddle and a hub; the hub is coupled to an output shaft of the drive member.
- the blade includes a blade root and a blade tip facing away from the blade root; the blade has a leading edge of a leaf surface, a leaf back, a connecting leaf surface and a leaf back side, and a connecting leaf surface and a leaf back a trailing edge of the side; and the portion of the leading edge adjacent to the tip of the blade is bent in the first direction to form a first portion for suppressing the flow of air.
- a restraining portion wherein the first direction is a direction from the leading edge to the trailing edge.
- an aircraft comprising: a frame, an arm, and a power assembly; one end of the arm is coupled to the frame, and the other end of the arm is for mounting the Power components.
- the power assembly includes a drive member and a propeller.
- the propeller includes a paddle and a hub; the hub is coupled to an output shaft of the drive member.
- the blade includes a blade root and a blade tip facing away from the blade root; the blade has a leading edge of a leaf surface, a leaf back, a connecting leaf surface and a leaf back side, and a connecting leaf surface and a leaf back a trailing edge of the side; and a portion of the leading edge adjacent to the tip of the blade is bent in a first direction to form a first restraining portion for suppressing air-converging flow, wherein the first direction is the leading edge to the rear The direction of the edge.
- the expanding flow of the air on the blade can be cut off, thereby reducing the formation of the tip vortex Or weaken the strength of the tip vortex, thereby reducing the rotational noise during the rotation of the propeller and improving the safety of including manned or unmanned aircraft (such as drones or airships).
- manned or unmanned aircraft such as drones or airships
- FIG. 1 is a schematic structural view of a blade according to an embodiment of the present invention.
- Figure 2 is a front elevational view of Figure 1;
- Figure 3 is a right side view of Figure 1;
- Figure 4 is a left side view of Figure 1;
- Figure 5 is a bottom view of Figure 1;
- Figure 6 is a bottom view of Figure 1;
- FIG. 7 is a schematic cross-sectional view of a blade according to an embodiment of the present invention.
- Figure 8 is a cross-sectional view taken along line A-A of Figure 7;
- Figure 9 is a cross-sectional view taken along line B-B of Figure 7;
- Figure 10 is a cross-sectional view taken along line C-C of Figure 7;
- Figure 11 is a cross-sectional view taken along line D-D of Figure 7;
- Figure 12 is a cross-sectional view taken along line E-E of Figure 7;
- Figure 13 is a cross-sectional view taken along line F-F of Figure 7;
- Figure 14 is a cross-sectional view taken along line G-G of Figure 7;
- Figure 15 is a schematic structural view of a propeller according to an embodiment of the present invention.
- Figure 16 is a schematic structural view of a hub according to an embodiment of the present invention.
- FIG. 17 is a schematic structural diagram of an aircraft according to an embodiment of the present invention.
- connection hole 210, a connection hole; 220, a first connection portion;
- the eddy current formed in part 120 reduces the intensity of the eddy current of the tip 120, thereby weakening the degree of pressure change near the blade, and also reducing the degree of periodic cutting airflow of the blade with a certain thickness, thereby reducing the blade of the propeller. Rotational noise generated when rotating.
- the specific position of the first suppression portion 180 can be designed according to the specific requirements for the overall noise and aerodynamic efficiency of the aircraft. Specifically, when designing the position of the first suppressing portion 180, it is possible to consider both the position of the first suppressing portion 180 and the tip 120 and the distance between the first suppressing portion 180 and the center of the paddle:
- the blade has a central axis (indicated by a dashed line in the middle of the blade) and one of the leading edge 150 and the trailing edge 160 of the blade.
- a tangent to the central axis (indicated by solid lines on the left and right sides of the blade, respectively), the first suppression portion 180 and the tip 120 may be disposed between the two tangent lines.
- the positions of the first suppressing portion 180 and the tip 120 are not specifically limited to the propeller of the embodiment, and only the first suppressing portion 180 or the tip 120 may be disposed in the actual design process. Between these two tangent lines.
- the rotational noise of the propeller can be reduced without affecting the aerodynamic efficiency of the propeller, thereby achieving good flight performance in the propeller. Balanced with less noise.
- the propeller can maintain the aerodynamic efficiency substantially consistent with that of a conventional rectangular propeller while reducing the rotational noise, wherein the rectangular propeller refers to a propeller having a rectangular portion of the tip 120. .
- the leaf back 140 and the leaf surface 130 are optionally provided as curved surfaces, and the tendency to bend is: when the entire blade is in a horizontal state, the leading edge 150 is located The position is lower than the position at which the trailing edge 160 is located.
- the thickness of the blade is optionally tapered from the root 110 to the tip 120 such that the end of the blade away from the center of the pad is the thinnest portion of the blade to reduce air resistance. Improve the flight performance of the propeller.
- the propeller of the present embodiment forms a first restraining portion 180 bent toward the trailing edge 160 at a portion of the leading edge 150 close to the tip 120, thereby cutting off the flow of air on the blade, thereby reducing the formation of the tip vortex. Or weaken the strength of the tip vortex, thereby reducing the rotational noise during the rotation of the propeller and improving the safety of including manned or unmanned aircraft (such as drones or airships).
- Figure 7 is a cross-sectional view of the blade provided in the embodiment of the present invention
- Figure 8 is a cross-sectional view taken along the line BB in Figure 7
- Figure 9 is a cross-sectional view taken along line BB in Figure 7
- Figure 10 is a cross-sectional view taken along line CC in Figure 7
- FIG. 12 is a cross-sectional view taken along the line EE in FIG. 7
- FIG. 13 is a cross-sectional view taken along the line FF in FIG.
- the embodiment provides a size suitable for a rotary wing type drone. Examples are improved, but those skilled in the art can apply to other manned or non-manned aircraft directly or after simple modifications according to the following description.
- the dimensions at the seven sections in the blades of the rotary wing type unmanned aerial vehicle are improved, wherein the improvements in the dimensions of the CC section, the DD section and the EE section are optimal. effect:
- the chord length means that at the cross section, the leading edge 150 is located at the leftmost end of the section and the trailing edge 160 is located at the rightmost end of the section in the horizontal direction, and the angle of attack is the leading edge 150.
- the angle between the leftmost end point of the section and the trailing edge 160 between the rightmost end point of the section and the horizontal direction, or the angle of attack can also be understood as the blade wing and gas. The angle of the flow direction.
- the angle of attack 44 is 11.55 ° ⁇ 2.5 °.
- the EE section of the paddle center is H5
- the chord length L5 of the blade shown in Fig. 12 is 11.42 mm ⁇ 5 mm
- the angle of attack 55 is 10.69 ° ⁇ 2.5 °.
- the rotation noise generated by the propeller during the rotation can be reduced, the safety of the aircraft can be improved, and the aerodynamic efficiency of the aircraft is not affected.
- chord length and the attack angle of the AA section, the BB section, the FF section and the GG section in the blade are respectively improved, which can further reduce the rotation noise generated by the propeller during rotation, thereby improving the safety of the aircraft. performance.
- the angle of attack 11 is 20.96 ° ⁇ 2.5 °.
- the chord length L2 of the blade shown in Fig. 9 is 20.03 mm ⁇ 5 mm
- the angle of attack 22 is 16.61 ° ⁇ 2.5 °.
- the angle of attack 66 is 10.04 ° ⁇ 2.5 °.
- the angle of attack 77 is 9.35 ° ⁇ 2.5 °.
- cross section A-A, cross section B-B, cross section F-F, and cross section G-G are not limited to the above-described scheme, and may be slightly changed.
- the present embodiment provides a specific propeller having a diameter of 107 mm, wherein the length of the blade is optionally 95 mm.
- the chord length of the blade is specifically 16.39 mm and the angle of attack is 12.94.
- the blade has a chord length of 15.05 mm and an angle of attack of 11.55°.
- the blade has a chord length of 11.42 mm and an angle of attack of 10.69.
- the blade has a chord length of 23.98 mm and an angle of attack of 20.96.
- the blade has a chord length of 20.03 mm and an angle of attack of 16.61°.
- the blade has a chord length of 8.29 mm and an angle of attack of 10.04.
- the blade has a chord length of 6.18 mm and an angle of attack of 9.35.
- the pitch of the propeller may be 31 mm, that is, the blade rotates one revolution, and the theoretical rising distance is 31 mm.
- the total noise of the propeller can be reduced from 72 dB to 69 dB by comparison with the propeller in the prior art, and the hovering power consumption of the propeller is only reduced by 4-5%, that is,
- the above-described propeller of the embodiment has good aerodynamic efficiency while reducing noise.
- the propeller may be a self-tightening paddle as shown in FIG. 15, and a coupling hole 210 for connecting to an output shaft of the motor is formed in the hub 200 of the self-tightening paddle.
- the self-tightening paddle means that the hub 200 of the propeller is formed with a self-locking mechanism matched with the air body.
- a groove may be formed in the hub 200, and a pawl controlled by a cam mechanism may be disposed on the body, so that when the aircraft is started, the cam mechanism rotates to move the pawl along the axial movement of the hub 200 to lock The hub 200 is tightened.
- the disk-like structure controlled by the electromagnet can be moved along the axial direction of the hub 200 to press the hub between the disk structure and the body to achieve locking of the multi-hub 200.
- the propeller can also be a folding paddle so that it can be easily transported and stored by folding a plurality of blades and arms into or parallel to the fuselage to reduce the volume of the entire aircraft.
- Figure 16 is a schematic view showing the structure of a hub in a folding paddle provided by this embodiment.
- the hub 200 of the folding paddle may include a first connecting portion 220, a second connecting portion 230, and a third connecting portion 240.
- the first connecting portion 220 is coupled to the blade, for example, using a fastener to pass through a mounting hole 170 formed in the blade root 110 of the blade to fix the blade to the first connecting portion 220.
- the second connecting portion 230 is connected to the driving member.
- the second connecting portion 230 is sleeved on the output shaft of the motor or the engine to drive the blade to rotate by the motor or the engine driving hub to form the paddle, thereby generating lift or thrust. Manned or unmanned aircraft movement.
- the third connecting portion 240 is disposed between the first connecting portion 220 and the second connecting portion 230 for connecting the first connecting portion 220 and the second connecting portion 230.
- the third connecting portion 240 may be two, three or more, and is disposed between the first connecting portion 220 and the second connecting portion 230 at intervals.
- the plurality of third connecting portions 240 may be evenly disposed between the first connecting portion 220 and the second connecting portion 230.
- three evenly spaced third connecting portions 240 may be disposed between the first connecting portion 220 and the second connecting portion 230.
- the first connecting portion 220 and the second connecting portion 230 are connected together by the third connecting portion 240, so that the weight of the propeller can be reduced, and the flying performance of the propeller can be improved.
- the flight performance can be greatly improved.
- the third connecting portion 240 disposed between the first connecting portion 220 and the second connecting portion 230 is not only spaced apart The structural strength of the propeller can be improved, and the stability of the propeller during flight can be further improved, thereby improving the flight performance of the propeller.
- the connection position of the third connecting portion 240 and the first connecting portion 220 and the second connecting portion 230 can be smoothly transitioned, thereby reducing the stress at the connection position and improving the reliability of the hub 200. .
- the present embodiment also provides a power assembly including a drive member and a propeller as provided above, the propeller being coupled to the output shaft of the drive member via a hub.
- the driving component may specifically be a motor, and the KV value of the motor is 1300 rpm (minute volt), 1500 rpm / (minute volt), or any value between the two, for example, 1400 rpm / (minute ⁇ volt ).
- the air flow on the blade can be cut off, thereby reducing The formation of the tip vortex or the weakening of the strength of the tip vortex, thereby reducing the rotational noise during the rotation of the propeller and improving the safety of including manned or unmanned aircraft (such as drones or airships).
- FIG. 17 is a schematic structural diagram of an aircraft provided by this embodiment.
- the embodiment further provides an aircraft including a frame 10, an arm 20, and at least one power component 30.
- One end of the arm 20 is connected to the frame 10, and the other end of the arm 20 is used.
- the power assembly 30 is mounted.
- the aircraft as described above may be a manned aircraft, such as an airship, or a rotary wing unmanned aerial vehicle, such as a quadrotor.
- the aircraft adopts the power assembly 30, and by forming a first restraining portion 180 bent toward the trailing edge 160 at a portion of the leading edge 150 of the blade near the tip 120, the air can be cut off from the blade. Reduce the formation of the tip vortex or weaken the strength of the tip vortex, thereby reducing the rotational noise during the rotation of the propeller and improving the safety of including manned or unmanned aircraft (such as drones or airships).
- the arm 20 can be attached to or rotatably coupled to the frame 10.
- the volume occupied by the aircraft can be reduced to facilitate storage and transportation.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Toys (AREA)
Abstract
一种螺旋桨、动力组件及飞行器。所述螺旋桨包括桨叶;所述桨叶包括桨根(110)以及背离所述桨根(110)的桨尖(120);所述桨叶具有叶面(130)、叶背(140)、连接叶面(130)和叶背(140)一侧边的前缘(150)以及连接叶面(130)和叶背(140)另一侧边的后缘(160);且,所述前缘(150)靠近桨尖(120)的部分往第一方向弯折形成有用于抑制空气展向流动的第一抑制部(180),其中所述第一方向为所述前缘(150)到后缘(160)的方向。所述的螺旋桨能够降低螺旋桨转动过程中的噪声,提高飞机的安全性能。
Description
本发明涉及一种螺旋桨、动力组件及飞行器,属于飞行器技术领域。
螺旋桨是旋翼式飞行器的重要部件,其用于将电机或发动机中输出轴的转动转化为推力或升力以实现飞行器的起降、转向、悬停等。由于螺旋桨的结构和工作特性,在其旋转时,具有一定厚度的桨叶会周期性地扫过周围空气介质,导致空气微团的周期性非定常运动,从而产生厚度噪声,与此同时,桨叶叶面的压力场也会发生变化,从而产生负载噪声。这些厚度噪声和负载噪声叠加在一起形成了飞行器噪声的主要部分,其不仅污染了周围的空域环境,而且这些噪声会传播到飞行器的机身上,引起飞行器机身的振动,严重影响飞行器的飞行安全。
发明内容
为了解决现有技术中存在的上述或其他潜在问题,本发明实施例提供一种螺旋桨、动力组件及飞行器。
根据本发明的一些实施例,提供一种螺旋桨,包括桨叶;所述桨叶包括桨根以及背离所述桨根的桨尖;所述桨叶具有叶面、叶背、连接叶面和叶背一侧边的前缘、以及连接叶面和叶背另一侧边的后缘;且,所述前缘靠近桨尖的部分往第一方向弯折形成有用于抑制空气展向流动的第一抑制部,其中所述第一方向为所述前缘到后缘的方向。
根据本发明的一些实施例,提供一种动力组件,包括:驱动件、以及螺旋桨。所述螺旋桨包括桨叶和桨毂;所述桨毂与所述驱动件的输出轴连接。所述桨叶包括桨根以及背离所述桨根的桨尖;所述桨叶具有叶面、叶背、连接叶面和叶背一侧边的前缘、以及连接叶面和叶背另一侧边的后缘;且,所述前缘靠近桨尖的部分往第一方向弯折形成有用于抑制空气展向流动的第一
抑制部,其中所述第一方向为所述前缘到后缘的方向。
根据本发明的一些实施例,提供一种飞行器,包括:机架、机臂、以及动力组件;所述机臂的一端与所述机架连接,所述机臂的另一端用于安装所述动力组件。所述动力组件包括:驱动件、以及螺旋桨。所述螺旋桨包括桨叶和桨毂;所述桨毂与所述驱动件的输出轴连接。所述桨叶包括桨根以及背离所述桨根的桨尖;所述桨叶具有叶面、叶背、连接叶面和叶背一侧边的前缘、以及连接叶面和叶背另一侧边的后缘;且,所述前缘靠近桨尖的部分往第一方向弯折形成有用于抑制空气展向流动的第一抑制部,其中所述第一方向为所述前缘到后缘的方向。
根据本发明实施例的技术方案,通过在前缘靠近桨尖的部分形成往后缘方向弯折的第一抑制部,可以切断空气在桨叶上的展向流动,从而减少桨尖涡的形成或者削弱桨尖涡的强度,进而达到降低螺旋桨旋转过程中的旋转噪声,提高包括载人或者不载人飞行器(例如无人机或者飞艇)安全性的作用。
通过参照附图的以下详细描述,本发明实施例的上述和其他目的、特征和优点将变得更容易理解。在附图中,将以示例以及非限制性的方式对本发明的多个实施例进行说明,其中:
图1为本发明一实施例提供的桨叶的结构示意图;
图2为图1的正视图;
图3为图1的右视图;
图4为图1的左视图;
图5为图1的仰视图;
图6为图1的仰视图;
图7为本发明一实施例提供的桨叶的截面位置示意图;
图8为图7中A-A向剖视图;
图9为图7中B-B向剖视图;
图10为图7中C-C向剖视图;
图11为图7中D-D向剖视图;
图12为图7中E-E向剖视图;
图13为图7中F-F向剖视图;
图14为图7中G-G向剖视图;
图15为本发明一实施例提供的螺旋桨的结构示意图;
图16为本发明一实施例提供的轮毂的结构示意图;
图17为本发明一实施例提供的飞行器的结构示意图。
图中:
110、桨根; 120、桨尖;
130、叶面; 140、叶背;
150、前缘; 160、后缘;
170、安装孔; 180、第一抑制部;
190、第二抑制部; 200、桨毂;
210、连接孔; 220、第一连接部;
230、第二连接部; 240、第三连接部;
10、机架; 20、机臂;
30、动力组件。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
图1为本实施例提供的桨叶的结构示意图;图2为图1的正视图;图3为图1的右视图;图4为图1的左视图;图5为图1的仰视图;图6为图1的仰视图。
如图1-6所示,本实施例提供的螺旋桨,包括在动力组件,例如电机或者发动机的带动下旋转以产生升力或者推动力的桨叶。桨叶包括用于固定在轮毂上的桨根110以及背离该桨根110的桨尖120。当螺旋桨工作时,桨叶围绕一旋转中心旋转从而形成桨盘,以扰动气流产生升力或者推力带动载人或者不载人飞行器的运动,例如飞艇或者旋翼式无人机。本实施例的桨叶可以采用现有技术中任意的材质进行制造,包括但不限于钢材、铝合金、塑料、碳纤维等。在制造时,也可以采用包括模塑、冲压、锻造等各种现有技术的加工工艺。
桨叶还具有叶面130和叶背140、连接叶面130和叶背140一侧边的前缘150、以及连接叶面130和叶背140另一侧边的后缘160。其中,叶背140为飞行器在飞行过程中,桨叶朝上的一面;叶面130为飞行器在飞行过程中,桨叶朝下(或者说朝向地面)的一面。
在前缘150靠近桨尖120的部分往第一方向弯折形成有第一抑制部180,该第一抑制部180用于抑制空气在桨叶上的展向流动,其中,第一方向为从前缘150到后缘160的方向。具体的,在图2中,前缘150往左弯折形成了第一抑制部180,该第一抑制部180可以切断桨叶旋转时空气在桨叶上的展向流动,从而减少了桨尖120部分形成的涡流并降低了桨尖120部分涡流的强度,从而削弱了桨叶附近气压变化的程度,也减弱了具有一定厚度的桨叶周期性切割气流的程度,进而降低了螺旋桨的桨叶旋转时产生的旋转噪声。
在本实施例中,第一抑制部180的具体位置可以根据对飞行器整体噪声和气动效率的具体要求进行设计。具体在设计第一抑制部180的位置时,可以从第一抑制部180和桨尖120的位置、以及第一抑制部180距离桨盘中心的距离这两个方面予以考虑:
例如,如图2所示,在一种可选的方案中,桨叶具有一中轴线(图中用位于桨叶中间的虚线表示),并且桨叶的前缘150和后缘160各有一条平行于该中轴线的切线(图中用分别位于桨叶左侧和右侧的实线表示),第一抑制部180和桨尖120可以设置在这两条切线之间。当然,本领域技术人员当然理解,上述第一抑制部180和桨尖120的位置并非对本实施例螺旋桨的具体限定,在实际设计过程中也可以只将第一抑制部180或者桨尖120设置在这两条切线之间。通过将第一抑制部180、桨尖120、或者这二者设置在上述两条切线之间,可以在降低螺旋桨的旋转噪声的同时又不过多影响螺旋桨的气动效率,从而在螺旋桨具有良好飞行性能和较小噪声之间取得平衡。
又例如,在另一种可选的方案中,第一抑制部180与桨叶旋转所形成的桨盘中心的距离与该螺旋桨半径的比值为79.4%-88.8%,以便第一抑制部180可以在降低螺旋桨噪声的同时又不过多影响螺旋桨的气动效率。
当然,应该能够理解,上述两个方案也可以进行组合,以使螺旋桨在降低旋转噪声的同时也能够保持与普通矩形螺旋桨基本一致的气动效率,其中矩形螺旋桨是指桨尖120部分为矩形的螺旋桨。
继续参考图1和图2,可选地,后缘160靠近桨尖120的部分也往第一方向弯折形成有用于抑制空气展向流程的第二抑制部190。具体在图2中为后缘160靠近桨尖120的部分往左弯折形成了第二抑制部190。同理的,在设计第二抑制部190的位置时也可以像第一抑制部180一样考虑第二抑制部190和桨尖120的弯折程度、以及第二抑制部190相对于桨盘中心的距离。例如,在一种可选的实施方式中,第二抑制部190也可以位于上述两条平行于中轴线的切线之间,从而在降低螺旋桨噪声和保持螺旋桨具有与矩形螺旋桨大致相同的气动效率方面取得平衡。
在本实施例中,如图3和图4所示,叶背140和叶面130可选地设置为曲面,且弯曲的趋势为:当桨叶整体处于水平状态时,前缘150所处的位置比后缘160所处的位置低。通过将桨叶的叶背140和叶面130设置为曲面,也即,将桨叶的表面设置为平滑过渡,使得桨叶没有急剧扭转之处,可以使桨叶具有较小的应力,且强度较高不易折断,具有较高的可靠性。
继续参阅图3和图4,桨叶的厚度可选地为从桨根110到桨尖120逐渐减小,从而使桨叶远离桨盘中心的一端为桨叶最薄的部分,以降低空气阻力,提高螺旋桨的飞行性能。
在本实施例中,如图1和图2所示,前缘150可选地设置有曲面状的拱起部,该拱起部与前缘150的其余部分为平滑过渡连接。具体的,图2示出了桨叶的拱起部设置在靠近桨根110的位置且该拱起部朝向右侧。
本实施例的螺旋桨通过在前缘150靠近桨尖120的部分形成往后缘160方向弯折的第一抑制部180,可以切断空气在桨叶上的展向流动,从而减少桨尖涡的形成或者削弱桨尖涡的强度,进而达到降低螺旋桨旋转过程中的旋转噪声,提高包括载人或者不载人飞行器(例如无人机或者飞艇)安全性的作用。
图7为本实施例提供的桨叶的截面位置示意图;图8为图7中A-A向剖视图;图9为图7中B-B向剖视图;图10为图7中C-C向剖视图;图11为图7中D-D向剖视图;图12为图7中E-E向剖视图;图13为图7中F-F向剖视图;图14为图7中G-G向剖视图。
如图7至图13所示,本实施例提供一种适宜于旋翼式无人机的尺寸
改进实例,但本领域技术人员可以根据以下描述,直接或者经过简单改变以后应用于其他载人或者非载人飞行器上。
具体的,在本实施例中对旋翼式无人机的桨叶中的七个截面处的尺寸进行改进,其中,在C-C截面、D-D截面和E-E截面处的尺寸所具有的改进具有最优的效果:
在与桨盘中心相距为79.4%处,即:如图7所示的距离桨盘中心为H3的C-C截面处,如图10所示的桨叶的弦长L3为16.39mm±5mm,攻角α3为12.94°±2.5°。其中,弦长指的是在该截面处,前缘150位于该截面上最左侧的端点与后缘160位于该截面上最右侧的端点在水平方向的距离,攻角为前缘150位于该截面上最左侧的端点与后缘160位于该截面上最右侧的端点之间的连线与水平方向的夹角,或者,攻角也可以理解为是桨叶的弦翼与气体来流方向的夹角。
在与桨盘中心相距为84.1%处,即:如图7所示的距离桨盘中心为H4的D-D截面处,如图11所示的桨叶的弦长L4为15.05mm±5mm,攻角α4为11.55°±2.5°。
在与桨盘中心相距为88.8%处,即:如图7所示的距离桨盘中心为H5的E-E截面处,如图12所示的桨叶的弦长L5为11.42mm±5mm,攻角α5为10.69°±2.5°。
本实施例通过对桨叶中上述三个截面弦长和攻角的设定,能够降低螺旋桨在转动过程中产生的旋转噪声,提高飞行器的安全性,并且不影响飞行器的气动效率。
在上述技术方案的基础上,对桨叶中A-A截面、B-B截面、F-F截面和G-G截面的弦长和攻角分别进行改进,能够进一步降低螺旋桨在旋转时候产生的旋转噪声,从而提高飞行器的安全性能。
在与桨盘中心相距为42.1%处,即:如图7所示的距离桨盘中心为H1的A-A截面处,如图8所示的桨叶的弦长L1为23.98mm±5mm,攻角α1为20.96°±2.5°。
在与桨盘中心相距为60.7%处,即:如图7所示的距离桨盘中心为H2的B-B截面处,如图9所示的桨叶的弦长L2为20.03mm±5mm,攻角α2为16.61°±2.5°。
在与桨盘中心相距为93.5%处,即:如图7所示的距离桨盘中心为H6的F-F截面处,如图13所示的桨叶的弦长L6为8.29mm±5mm,攻角α6为10.04°±2.5°。
在与桨盘中心相距为98.1%处,即:如图7所示的距离桨盘中心为H7的G-G截面处,如图14所示的桨叶的弦长L7为6.18mm±5mm,攻角α7为9.35°±2.5°。
本领域技术人员可以理解的是,上述截面A-A、截面B-B、截面F-F和截面G-G的位置并不局限于上述方案,可略微变动。
对于上述技术方案,本实施例提供一种具体的螺旋桨,该螺旋桨的直径为107mm,其中桨叶的长度可选地为95mm。在与桨盘中心相距为85mm处,桨叶的弦长具体为16.39mm,攻角为12.94°。在与桨盘中心相距为90mm处,桨叶的弦长为15.05mm,攻角为11.55°。在与桨盘中心相距为95mm处,桨叶的弦长为11.42mm,攻角为10.69°。
进一步的,在与桨盘中心相距为45mm处,桨叶的弦长为23.98mm,攻角为20.96°。在与桨盘中心相距为65mm处,桨叶的弦长为20.03mm,攻角为16.61°。在与桨盘中心相距为100mm处,桨叶的弦长为8.29mm,攻角为10.04°。在与桨盘中心相距为105mm处,桨叶的弦长为6.18mm,攻角为9.35°。可以理解,因截面A-A、截面B-B、截面F-F和截面G-G的位置可略微变动,故相应地,在截面A-A、截面B-B、截面F-F和截面G-G处的攻角和弦长值也可相应改变。
在本实施例中,螺旋桨的螺距可以为31mm,即:桨叶旋转一周,理论上升的距离为31mm。
本实施例所提供的上述螺旋桨,通过与现有技术中的螺旋桨进行对比,螺旋桨的总噪声可以从72dB降低到69dB,并且螺旋桨的悬停功耗只会降低4-5%,也即,本实施例的上述螺旋桨在降低噪声的同时还具有良好的气动效率。
进一步的,本实施例提供的螺旋桨可适用于双轴飞行器、四轴飞行器或八轴飞行器等。图15为本发明一实施例提供的螺旋桨的结构示意图。如图15所示,螺旋桨可选地包括桨毂200,在桨毂200上可以连接两个、三个或者三个以上的桨叶。所述桨榖带动桨叶转动形成桨盘。当然,桨毂200和桨
叶可以为一体结构,也可以是将桨叶单独安装在桨毂200上形成的分体式螺旋桨,例如,可以在桨叶的桨根110上形成安装孔170,从而通过安装孔170将桨叶安装到桨毂200上。
具体的,螺旋桨可以是如图15所示的自紧桨,该自紧桨的桨毂200中形成有用于与电机的输出轴连接的连接孔210。在本实施例中,自紧桨是指该螺旋桨的桨毂200上形成有与机身配套的自锁机构,当将桨毂200的连接孔210套在电机的输出轴上并启动飞行器时,机身上和桨毂200上相互配合的自锁机构会将螺旋桨锁紧在机身上,从而避免飞桨或者炸机。举例来说,可以是在桨毂200上开设凹槽,在机身上设置通过凸轮机构控制的棘爪,从而在飞行器启动时,凸轮机构转动带动棘爪沿桨毂200的轴向运动以锁紧桨毂200。或者也可以通过电磁铁控制的盘状结构沿桨毂200的轴向运动,从而将轮毂压紧在盘状结构和机身之间从而实现多桨毂200的锁紧。
螺旋桨也可以是折叠桨,从而能够通过将多个桨叶和机臂折叠到与机身平行或者贴靠在机身上以减少整个飞行器的体积以方便运输和存放。图16是本实施例提供的折叠桨中轮毂的结构示意图。如图16所示,该折叠桨的桨毂200可以包括第一连接部220、第二连接部230和第三连接部240。其中,第一连接部220与桨叶连接,例如,使用紧固件穿过桨叶的桨根110上开设的安装孔170以将该桨叶固定在第一连接部220上。第二连接部230与驱动件连接,例如第二连接部230套设在电机或者发动机的输出轴上,以便通过电机或者发动机驱动轮毂带动桨叶旋转,以形成桨盘,从而产生升力或者推力带动载人或者非载人飞行器运动。第三连接部240设置在第一连接部220和第二连接部230之间用于连接该第一连接部220和第二连接部230。
可选地,第三连接部240可以为两个、三个或者三个以上,间隔设置在第一连接部220和第二连接部230之间。上述多个第三连接部240可以均匀布置在第一连接部220和第二连接部230之间。例如,可以在第一连接部220和第二连接部230之间设置三个均匀间隔的第三连接部240。
本实施例的折叠桨,通过第三连接部240将第一连接部220和第二连接部230连接在一起,可以减轻螺旋桨的重量,提高螺旋桨的飞行性能。尤其是当桨毂200和桨叶为一体结构的螺旋桨时,其飞行性能可以大幅度的提高。而间隔设置在第一连接部220和第二连接部230之间的第三连接部240不仅
可以提高螺旋桨的结构强度,而且可以进一步提高螺旋桨在飞行过程中的稳定性,从而提高螺旋桨的飞行性能。另外,在具体制造桨毂200时,可以将第三连接部240和第一连接部220以及第二连接部230的连接位置处平滑过渡,从而减少连接位置的应力,提高桨毂200的可靠性。
本领域技术人员应该理解,上述螺旋桨可以为正桨或反桨。其中,正桨是指从俯视飞行器的角度看,顺时针旋转而产生升力的螺旋桨;反桨是指从俯视飞行器的角度看,逆时针旋转而产生升力的螺旋桨。正桨的结构与反桨的结构为镜面对称。
本实施例还提供一种动力组件,包括驱动件和如上述内容所提供的螺旋桨,该螺旋桨通过轮毂与驱动件的输出轴连接。其中,驱动件具体可以为电机,电机的KV值为1300转/(分钟·伏特)、1500转/(分钟·伏特)或者这二者之间的任意值,比如,1400转/(分钟·伏特)。
本实施例的动力组件,通过在桨叶的前缘150靠近桨尖120的部分形成往后缘160方向弯折的第一抑制部180,可以切断空气在桨叶上的展向流动,从而减少桨尖涡的形成或者削弱桨尖涡的强度,进而达到降低螺旋桨旋转过程中的旋转噪声,提高包括载人或者不载人飞行器(例如无人机或者飞艇)安全性的作用。
图17为本实施例提供的飞行器的结构示意图。如图17所示,本实施例还提供一种飞行器,包括机架10、机臂20、以及至少一个上述动力组件30,机臂20的一端与机架10连接,机臂20的另一端用于安装动力组件30。如上所述的飞行器可以是载人飞行器,例如飞艇,也可以是旋翼式无人飞行器,例如四旋翼无人机。该飞行器采用上述动力组件30,通过在桨叶的前缘150靠近桨尖120的部分形成往后缘160方向弯折的第一抑制部180,可以切断空气在桨叶上的展向流动,从而减少桨尖涡的形成或者削弱桨尖涡的强度,进而达到降低螺旋桨旋转过程中的旋转噪声,提高包括载人或者不载人飞行器(例如无人机或者飞艇)安全性的作用。
可选地,机臂20可以固定在机架10上或者与机架10可转动连接。当机臂20可转动地连接在机架10上时,可以减小飞行器占用的体积,方便其存储与运输。
最后,尽管已经在这些实施例的上下文中描述了与本技术的某些实施
例相关联的优点,但是其他实施例也可以包括这样的优点,并且并非所有实施例都详细描述了本发明的所有优点,由实施例中的技术特征所客观带来的优点均应视为本发明区别于现有技术的优点,均属于本发明的保护范围。
Claims (75)
- 一种螺旋桨,其特征在于,包括桨叶;所述桨叶包括桨根以及背离所述桨根的桨尖;所述桨叶具有叶面、叶背、连接叶面和叶背一侧边的前缘、以及连接叶面和叶背另一侧边的后缘;且,所述前缘靠近桨尖的部分往第一方向弯折形成有用于抑制空气展向流动的第一抑制部,其中所述第一方向为所述前缘到后缘的方向。
- 根据权利要求1所述的螺旋桨,其特征在于,所述桨叶具有中轴线,所述前缘和后缘分别具有平行于所述中轴线的切线,所述桨尖和第一抑制部中的至少一个位于两条所述切线之间。
- 根据权利要求1所述的螺旋桨,其特征在于,所述桨叶旋转形成桨盘,所述第一抑制部与所述桨盘中心的距离与所述螺旋桨半径的比值为79.4%-88.8%。
- 根据权利要求1所述的螺旋桨,其特征在于,所述后缘靠近桨尖的部分也往所述第一方向弯折形成有用于抑制空气展向流动的第二抑制部。
- 根据权利要求4所述的螺旋桨,其特征在于,所述桨叶具有中轴线,所述前缘和后缘分别具有平行于所述中轴线的切线,所述第二抑制部位于两条所述切线之间。
- 根据权利要求1所述的螺旋桨,其特征在于,所述叶背和叶面为曲面。
- 根据权利要求1所述的螺旋桨,其特征在于,所述前缘具有曲面状的拱起部。
- 根据权利要求1所述的螺旋桨,其特征在于,所述螺旋桨包括多个桨叶,所述螺旋桨还包括桨榖,所述多个桨叶沿所述桨榖的周向均匀设置。
- 根据权利要求8所述的螺旋桨,其特征在于,所述螺旋桨为自紧桨,所述自紧桨的桨毂中形成有用于与电机的输出轴连接的连接孔。
- 根据权利要求8所述的螺旋桨,其特征在于,所述螺旋桨为折叠桨,所述折叠桨的桨毂包括连接所述桨叶的第一连接部、用于连接驱动件的第二连接部以及在所述第一连接部和第二连接部之间间隔设置的第三连接部。
- 根据权利要求10所述的螺旋桨,其特征在于,所述桨根形成有用于与所述第一连接部固定的安装孔。
- 根据权利要求1所述的螺旋桨,其特征在于,所述桨叶的厚度从所述桨根至所述桨尖逐渐减小。
- 根据权利要求1-12任一项所述的螺旋桨,其特征在于,所述桨叶旋转形成桨盘,在与所述桨盘中心相距为79.4%处,所述桨叶的弦长为16.39mm±5mm,攻角为12.94°±2.5°;在与所述桨盘中心相距为84.1%处,所述桨叶的弦长为15.05mm±5mm,攻角为11.55°±2.5°;在与所述桨盘中心相距为88.8%处,所述桨叶的弦长为11.42mm±5mm,攻角为10.69°±2.5°。
- 根据权利要求13所述的螺旋桨,其特征在于,所述螺旋桨的半径为107mm,在与所述桨盘中心相距为85mm处,所述桨叶的弦长为16.39mm,攻角为12.94°;在与所述桨盘中心相距为90mm处,所述桨叶的弦长为15.05mm,攻角为11.55°;在与所述桨盘中心相距为95mm处,所述桨叶的弦长为11.42mm,攻角为10.69°。
- 根据权利要求13所述的螺旋桨,其特征在于,在与所述桨盘中心相距为42.1%处,所述桨叶的弦长为23.98mm±5mm,攻角为20.96°±2.5°。
- 根据权利要求15所述的螺旋桨,其特征在于,所述螺旋桨的半径为107mm,在与所述桨盘中心相距为45mm处,所述桨叶的弦长为23.98mm,攻角为20.96°。
- 根据权利要求13所述的螺旋桨,其特征在于,在与桨盘中心相距为60.7%处,所述桨叶的弦长为20.03mm±5mm,攻角为16.61°±2.5°。
- 根据权利要求17所述的螺旋桨,其特征在于,所述螺旋桨的半径为107mm,在与桨盘中心相距为65mm处,所述桨叶的弦长为20.03mm,攻角为16.61°。
- 根据权利要求13所述的螺旋桨,其特征在于,在与所述桨盘中心相距为93.5%处,所述桨叶的弦长为8.29mm±5mm,攻角为10.04°±2.5°。
- 根据权利要求19所述的螺旋桨,其特征在于,所述螺旋桨的半径为107mm,在与所述桨盘中心相距为100mm处,所述桨叶的弦长为8.29mm,攻角为10.04°。
- 根据权利要求13所述的螺旋桨,其特征在于,在与所述桨盘中心相距为98.1%处,所述桨叶的弦长为6.18mm±5mm,攻角为9.35°±2.5°。
- 根据权利要求21所述的螺旋桨,其特征在于,所述螺旋桨的半径为107mm,在与所述桨盘中心相距为105mm处,所述桨叶的弦长为6.18mm,攻角为9.35°。
- 根据权利要求13所述的螺旋桨,其特征在于,所述螺旋桨的螺距为31mm。
- 根据权利要求14、16、18、20或22所述的螺旋桨,其特征在于,所述桨叶的长度为98mm。
- 一种动力组件,其特征在于,包括:驱动件、以及螺旋桨;所述螺旋桨包括:桨叶和桨毂;所述桨毂与所述驱动件的输出轴连接;所述桨叶包括桨根以及背离所述桨根的桨尖;所述桨叶具有叶面、叶背、连接叶面和叶背一侧边的前缘、以及连接叶面和叶背另一侧边的后缘;且,所述前缘靠近桨尖的部分往第一方向弯折形成有用于抑制空气展向流动的第一抑制部,其中所述第一方向为所述前缘到后缘的方向。
- 根据权利要求25所述的动力组件,其特征在于,所述桨叶具有中轴线,所述前缘和后缘分别具有平行于所述中轴线的切线,所述桨尖和第一抑制部中的至少一个位于两条所述切线之间。
- 根据权利要求25所述的动力组件,其特征在于,所述桨叶旋转形成桨盘,所述第一抑制部与所述桨盘中心的距离与所述螺旋桨半径的比值为79.4%-88.8%。
- 根据权利要求25所述的动力组件,其特征在于,所述后缘靠近桨尖的部分也往所述第一方向弯折形成有用于抑制空气展向流动的第二抑制部。
- 根据权利要求28所述的动力组件,其特征在于,所述桨叶具有中轴线,所述前缘和后缘分别具有平行于所述中轴线的切线,所述第二抑制部位 于两条所述切线之间。
- 根据权利要求25所述的动力组件,其特征在于,所述叶背和叶面为曲面。
- 根据权利要求25所述的动力组件,其特征在于,所述前缘具有曲面状的拱起部。
- 根据权利要求25所述的动力组件,其特征在于,所述螺旋桨包括多个桨叶,所述多个桨叶沿所述桨榖的周向均匀设置。
- 根据权利要求32所述的动力组件,其特征在于,所述螺旋桨为自紧桨,所述自紧桨的桨毂中形成有用于与电机的输出轴连接的连接孔。
- 根据权利要求32所述的动力组件,其特征在于,所述螺旋桨为折叠桨,所述折叠桨的桨毂包括连接所述桨叶的第一连接部、用于连接驱动件的第二连接部以及在所述第一连接部和第二连接部之间间隔设置的第三连接部。
- 根据权利要求34所述的动力组件,其特征在于,所述桨根形成有用于与所述第一连接部固定的安装孔。
- 根据权利要求25所述的动力组件,其特征在于,所述桨叶的厚度从所述桨根至所述桨尖逐渐减小。
- 根据权利要求25-36任一项所述的动力组件,其特征在于,所述桨叶旋转形成桨盘,在与所述桨盘中心相距为79.4%处,所述桨叶的弦长为16.39mm±5mm,攻角为12.94°±2.5°;在与所述桨盘中心相距为84.1%处,所述桨叶的弦长为15.05mm±5mm,攻角为11.55°±2.5°;在与所述桨盘中心相距为88.8%处,所述桨叶的弦长为11.42mm±5mm,攻角为10.69°±2.5°。
- 根据权利要求37所述的动力组件,其特征在于,所述螺旋桨的半径为107mm,在与所述桨盘中心相距为85mm处,所述桨叶的弦长为16.39mm,攻角为12.94°;在与所述桨盘中心相距为90mm处,所述桨叶的弦长为15.05mm,攻角为 11.55°;在与所述桨盘中心相距为95mm处,所述桨叶的弦长为11.42mm,攻角为10.69°。
- 根据权利要求37所述的动力组件,其特征在于,在与所述桨盘中心相距为42.1%处,所述桨叶的弦长为23.98mm±5mm,攻角为20.96°±2.5°。
- 根据权利要求39所述的动力组件,其特征在于,所述螺旋桨的半径为107mm,在与所述桨盘中心相距为45mm处,所述桨叶的弦长为23.98mm,攻角为20.96°。
- 根据权利要求37所述的动力组件,其特征在于,在与桨盘中心相距为60.7%处,所述桨叶的弦长为20.03mm±5mm,攻角为16.61°±2.5°。
- 根据权利要求41所述的动力组件,其特征在于,所述螺旋桨的半径为107mm,在与桨盘中心相距为65mm处,所述桨叶的弦长为20.03mm,攻角为16.61°。
- 根据权利要求37所述的动力组件,其特征在于,在与所述桨盘中心相距为93.5%处,所述桨叶的弦长为8.29mm±5mm,攻角为10.04°±2.5°。
- 根据权利要求43所述的动力组件,其特征在于,所述螺旋桨的半径为107mm,在与所述桨盘中心相距为100mm处,所述桨叶的弦长为8.29mm,攻角为10.04°。
- 根据权利要求37所述的动力组件,其特征在于,在与所述桨盘中心相距为98.1%处,所述桨叶的弦长为6.18mm±5mm,攻角为9.35°±2.5°。
- 根据权利要求45所述的动力组件,其特征在于,所述螺旋桨的半径为107mm,在与所述桨盘中心相距为105mm处,所述桨叶的弦长为6.18mm,攻角为9.35°。
- 根据权利要求37所述的动力组件,其特征在于,所述螺旋桨的螺距为31mm。
- 根据权利要求38、40、42、44或46所述的螺旋桨,其特征在于,所述桨叶的长度为98mm。
- 根据权利要求25所述的动力组件,其特征在于,所述驱动件为电机,所述电机的KV值为1300-1500转/(分钟·伏特)。
- 一种飞行器,其特征在于,包括:机架、机臂、以及动力组件;所述机臂的一端与所述机架连接,所述机臂的另一端用于安装所述动力组件;所述动力组件包括:驱动件、以及螺旋桨;所述螺旋桨包括桨叶和桨毂;所述桨毂与所述驱动件的输出轴连接;所述桨叶包括桨根以及背离所述桨根的桨尖;所述桨叶具有叶面、叶背、连接叶面和叶背一侧边的前缘、以及连接叶面和叶背另一侧边的后缘;且,所述前缘靠近桨尖的部分往第一方向弯折形成有用于抑制空气展向流动的第一抑制部,其中所述第一方向为所述前缘到后缘的方向。
- 根据权利要求50所述的飞行器,其特征在于,所述桨叶具有中轴线,所述前缘和后缘分别具有平行于所述中轴线的切线,所述桨尖和第一抑制部中的至少一个位于两条所述切线之间。
- 根据权利要求50所述的飞行器,其特征在于,所述桨叶旋转形成桨盘,所述第一抑制部与所述桨盘中心的距离与所述螺旋桨半径的比值为79.4%-88.8%。
- 根据权利要求50所述的飞行器,其特征在于,所述后缘靠近桨尖的部分也往所述第一方向弯折形成有用于抑制空气展向流动的第二抑制部。
- 根据权利要求53所述的飞行器,其特征在于,所述桨叶具有中轴线,所述前缘和后缘分别具有平行于所述中轴线的切线,所述第二抑制部位于两条所述切线之间。
- 根据权利要求50所述的飞行器,其特征在于,所述叶背和叶面为曲面。
- 根据权利要求50所述的飞行器,其特征在于,所述前缘具有曲面状的拱起部。
- 根据权利要求50所述的飞行器,其特征在于,所述螺旋桨包括多个桨叶,所述多个桨叶沿所述桨榖的周向均匀设置。
- 根据权利要求57所述的飞行器,其特征在于,所述螺旋桨为自紧桨,所述自紧桨的桨毂中形成有用于与电机的输出轴连接的连接孔。
- 根据权利要求57所述的飞行器,其特征在于,所述螺旋桨为折叠桨, 所述折叠桨的桨毂包括连接所述桨叶的第一连接部、用于连接驱动件的第二连接部以及在所述第一连接部和第二连接部之间间隔设置的第三连接部。
- 根据权利要求59所述的飞行器,其特征在于,所述桨根形成有用于与所述第一连接部固定的安装孔。
- 根据权利要求50所述的飞行器,其特征在于,所述桨叶的厚度从所述桨根至所述桨尖逐渐减小。
- 根据权利要求50-61任一项所述的飞行器,其特征在于,所述桨叶旋转形成桨盘,在与所述桨盘中心相距为79.4%处,所述桨叶的弦长为16.39mm±5mm,攻角为12.94°±2.5°;在与所述桨盘中心相距为84.1%处,所述桨叶的弦长为15.05mm±5mm,攻角为11.55°±2.5°;在与所述桨盘中心相距为88.8%处,所述桨叶的弦长为11.42mm±5mm,攻角为10.69°±2.5°。
- 根据权利要求62所述的飞行器,其特征在于,所述螺旋桨的半径为107mm,在与所述桨盘中心相距为85mm处,所述桨叶的弦长为16.39mm,攻角为12.94°;在与所述桨盘中心相距为90mm处,所述桨叶的弦长为15.05mm,攻角为11.55°;在与所述桨盘中心相距为95mm处,所述桨叶的弦长为11.42mm,攻角为10.69°。
- 根据权利要求62所述的飞行器,其特征在于,在与所述桨盘中心相距为42.1%处,所述桨叶的弦长为23.98mm±5mm,攻角为20.96°±2.5°。
- 根据权利要求64所述的飞行器,其特征在于,所述螺旋桨的半径为107mm,在与所述桨盘中心相距为45mm处,所述桨叶的弦长为23.98mm,攻角为20.96°。
- 根据权利要求62所述的飞行器,其特征在于,在与桨盘中心相距为60.7%处,所述桨叶的弦长为20.03mm±5mm,攻角为16.61°±2.5°。
- 根据权利要求66所述的飞行器,其特征在于,所述螺旋桨的半径为 107mm,在与桨盘中心相距为65mm处,所述桨叶的弦长为20.03mm,攻角为16.61°。
- 根据权利要求62所述的飞行器,其特征在于,在与所述桨盘中心相距为93.5%处,所述桨叶的弦长为8.29mm±5mm,攻角为10.04°±2.5°。
- 根据权利要求68所述的飞行器,其特征在于,所述螺旋桨的半径为107mm,在与所述桨盘中心相距为100mm处,所述桨叶的弦长为8.29mm,攻角为10.04°。
- 根据权利要求62所述的飞行器,其特征在于,在与所述桨盘中心相距为98.1%处,所述桨叶的弦长为6.18mm±5mm,攻角为9.35°±2.5°。
- 根据权利要求70所述的飞行器,其特征在于,所述螺旋桨的半径为107mm,在与所述桨盘中心相距为105mm处,所述桨叶的弦长为6.18mm,攻角为9.35°。
- 根据权利要求62所述的飞行器,其特征在于,所述螺旋桨的螺距为31mm。
- 根据权利要求63、65、67、69或71所述的飞行器,其特征在于,所述桨叶的长度为98mm。
- 根据权利要求50所述的飞行器,其特征在于,所述驱动件为电机,所述电机的KV值为1300-1500转/(分钟·伏特)。
- 根据权利要求50所述的飞行器,其特征在于,所述机臂与所述机架可转动连接。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/094933 WO2019019161A1 (zh) | 2017-07-28 | 2017-07-28 | 螺旋桨、动力组件及飞行器 |
CN201780016673.8A CN109071005A (zh) | 2017-07-28 | 2017-07-28 | 螺旋桨、动力组件及飞行器 |
US16/743,815 US11364999B2 (en) | 2017-07-28 | 2020-01-15 | Rotor, power assembly and air vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/094933 WO2019019161A1 (zh) | 2017-07-28 | 2017-07-28 | 螺旋桨、动力组件及飞行器 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/743,815 Continuation US11364999B2 (en) | 2017-07-28 | 2020-01-15 | Rotor, power assembly and air vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019019161A1 true WO2019019161A1 (zh) | 2019-01-31 |
Family
ID=64812341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/094933 WO2019019161A1 (zh) | 2017-07-28 | 2017-07-28 | 螺旋桨、动力组件及飞行器 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11364999B2 (zh) |
CN (1) | CN109071005A (zh) |
WO (1) | WO2019019161A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4329115A (en) * | 1981-02-02 | 1982-05-11 | Grumman Aerospace Corporation | Directionally stabilized wind turbine |
CN1077928A (zh) * | 1992-04-23 | 1993-11-03 | 北京航空航天大学 | 桨刀式螺旋桨 |
CN1714022A (zh) * | 2003-01-23 | 2005-12-28 | 贝尔直升机泰克斯特龙公司 | 具有前缘槽的螺旋桨旋翼叶片 |
WO2007147177A2 (en) * | 2006-06-12 | 2007-12-21 | Martin Steyn | A blade |
CN101387262A (zh) * | 2007-07-20 | 2009-03-18 | 西门子公司 | 风力涡轮转子叶片和风力涡轮转子 |
CN102745328A (zh) * | 2012-07-13 | 2012-10-24 | 北京理工大学 | 具有桨尖涡流抑制效应的涵道 |
CN105474216A (zh) * | 2013-07-29 | 2016-04-06 | 斯奈克玛 | 用于对非流线型的螺旋桨叶片进行建模的方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2312712A (en) * | 1996-04-30 | 1997-11-05 | Gkn Westland Helicopters Ltd | Propeller/rotor blade |
EP1801422B1 (de) * | 2005-12-22 | 2013-06-12 | Ziehl-Abegg AG | Ventilator und Ventilatorflügel |
WO2013066475A2 (en) * | 2011-08-19 | 2013-05-10 | Aerovironment, Inc. | System for protecting a rotatable shaft of a motor from excessive bending moments |
CN204916181U (zh) * | 2015-08-13 | 2015-12-30 | 杭州米为科技有限公司 | 桨叶、螺旋桨及无人机 |
US10017249B1 (en) * | 2015-08-21 | 2018-07-10 | Aevena, Inc. | Ducted rotor unmanned aerial vehicles |
US20170129597A1 (en) * | 2015-11-10 | 2017-05-11 | Sikorsky Aircraft Corporation | Reduced power individual blade control system on a rotorcraft |
KR102451679B1 (ko) * | 2016-03-30 | 2022-10-07 | 삼성전자주식회사 | 무인 비행체 |
CN205872440U (zh) * | 2016-06-08 | 2017-01-11 | 天津市瑞傲特科技发展有限公司 | 一种无人机用螺旋桨 |
CN206297727U (zh) * | 2016-12-01 | 2017-07-04 | 重庆零度智控智能科技有限公司 | 螺旋桨、动力组件及飞行器 |
CN207045700U (zh) * | 2017-07-28 | 2018-02-27 | 深圳市大疆创新科技有限公司 | 用于无人机的螺旋桨、动力组件及无人机 |
-
2017
- 2017-07-28 CN CN201780016673.8A patent/CN109071005A/zh active Pending
- 2017-07-28 WO PCT/CN2017/094933 patent/WO2019019161A1/zh active Application Filing
-
2020
- 2020-01-15 US US16/743,815 patent/US11364999B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4329115A (en) * | 1981-02-02 | 1982-05-11 | Grumman Aerospace Corporation | Directionally stabilized wind turbine |
CN1077928A (zh) * | 1992-04-23 | 1993-11-03 | 北京航空航天大学 | 桨刀式螺旋桨 |
CN1714022A (zh) * | 2003-01-23 | 2005-12-28 | 贝尔直升机泰克斯特龙公司 | 具有前缘槽的螺旋桨旋翼叶片 |
WO2007147177A2 (en) * | 2006-06-12 | 2007-12-21 | Martin Steyn | A blade |
CN101387262A (zh) * | 2007-07-20 | 2009-03-18 | 西门子公司 | 风力涡轮转子叶片和风力涡轮转子 |
CN102745328A (zh) * | 2012-07-13 | 2012-10-24 | 北京理工大学 | 具有桨尖涡流抑制效应的涵道 |
CN105474216A (zh) * | 2013-07-29 | 2016-04-06 | 斯奈克玛 | 用于对非流线型的螺旋桨叶片进行建模的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109071005A (zh) | 2018-12-21 |
US20200148343A1 (en) | 2020-05-14 |
US11364999B2 (en) | 2022-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10266252B2 (en) | Wing extension winglets for tiltrotor aircraft | |
WO2017124781A1 (zh) | 螺旋桨、动力套装及无人飞行器 | |
JP5078883B2 (ja) | 高速回転翼航空機のロータブレード | |
US7281900B2 (en) | Cascade rotor blade for low noise | |
WO2017148133A1 (zh) | 螺旋桨、动力组件及飞行器 | |
EP3077283B1 (en) | Boundary layer ingesting blade | |
CN207045700U (zh) | 用于无人机的螺旋桨、动力组件及无人机 | |
WO2017148135A1 (zh) | 螺旋桨、动力组件及飞行器 | |
US11225316B2 (en) | Method of improving a blade so as to increase its negative stall angle of attack | |
CN206297727U (zh) | 螺旋桨、动力组件及飞行器 | |
US9359072B2 (en) | Rotor blade for a rotor of an aircraft designed to minimize noise emitted by the rotor | |
WO2017148128A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2019119379A1 (zh) | 螺旋桨、动力组件及无人飞行器 | |
CN109789922B (zh) | 螺旋桨、动力组件及飞行器 | |
CN109071004A (zh) | 螺旋桨、动力套装及无人飞行器 | |
WO2018023861A1 (zh) | 螺旋桨、动力套装及无人飞行器 | |
WO2018000593A1 (zh) | 螺旋桨、动力套装及无人飞行器 | |
US11148794B2 (en) | Method of determining an initial leading edge circle of airfoils of a blade and of improving the blade in order to increase its negative stall angle of attack | |
JP2011527253A (ja) | 翼のスパン幅方向において互いに離隔されて配置された少なくとも2つのプロペラ駆動部を有する航空機 | |
WO2019227268A1 (zh) | 螺旋桨组件、动力组件及飞行器 | |
CN206394870U (zh) | 螺旋桨、动力组件及飞行器 | |
WO2018184291A1 (zh) | 桨叶、螺旋桨、动力套装及无人飞行器 | |
CN218704016U (zh) | 一种可倾转的涵道式空气螺旋桨 | |
WO2019019161A1 (zh) | 螺旋桨、动力组件及飞行器 | |
WO2019000560A1 (zh) | 螺旋桨、动力组件及飞行器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17919079 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17919079 Country of ref document: EP Kind code of ref document: A1 |