WO2019019090A1 - 机器人供源系统、方法及机器人 - Google Patents

机器人供源系统、方法及机器人 Download PDF

Info

Publication number
WO2019019090A1
WO2019019090A1 PCT/CN2017/094663 CN2017094663W WO2019019090A1 WO 2019019090 A1 WO2019019090 A1 WO 2019019090A1 CN 2017094663 W CN2017094663 W CN 2017094663W WO 2019019090 A1 WO2019019090 A1 WO 2019019090A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
output interface
energy
interface
component
Prior art date
Application number
PCT/CN2017/094663
Other languages
English (en)
French (fr)
Inventor
张�浩
蓝幸彬
梁星浩
Original Assignee
深圳蓝胖子机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳蓝胖子机器人有限公司 filed Critical 深圳蓝胖子机器人有限公司
Priority to PCT/CN2017/094663 priority Critical patent/WO2019019090A1/zh
Priority to CN201780006620.8A priority patent/CN108698238A/zh
Publication of WO2019019090A1 publication Critical patent/WO2019019090A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/005Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators using batteries, e.g. as a back-up power source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0009Constructional details, e.g. manipulator supports, bases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • B25J9/1666Avoiding collision or forbidden zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/90Devices for picking-up and depositing articles or materials

Definitions

  • the invention belongs to the field of robot technology, and in particular relates to a robot source system, method and robot.
  • the field of application of industrial robots is mainly in the field of electronic component assembly.
  • robots assembled at the working point can be directly supplied by means of uniform wiring, ensuring continuous source and continuous operation.
  • the working environment is more complex, the scope of the site is wide, and the working point and work content are variability. How to deal with the complex environment and continue to supply the robot under variable conditions is a problem to be solved.
  • a solution proposed by the existing solution is that the robot has a chargeable mechanism, and after replenishing the working energy, the work is performed, and when the energy consumption is unable to maintain normal work, the work is stopped, and the energy supplement is added to the work line. After you have added it, continue working.
  • This kind of robot supply method robot needs to replenish energy from the working line from time to time, wasting time and greatly affecting work efficiency.
  • the embodiment of the invention provides a robot supply system, a method and a robot, and aims to solve the problem that the robot has insufficient energy supply and affects work efficiency.
  • a first aspect of the embodiments of the present invention provides a robot power supply system, including: a transmitting device, a source device, and a robot; the source device includes an output interface, and the output interface is connected to the transmitting device, and is configured to The robot is supplied with a source; the robot includes an energy acquisition component, and the robot is configured to move to an engagement position docked with the output interface according to position information of the output interface, and connect the energy acquisition component to a corresponding The output interface, and the working energy provided by the source device is obtained through the output interface.
  • a second aspect of the embodiments of the present invention provides a method for supplying a robot, comprising: moving a robot to a joint position that interfaces with the output interface according to position information of an output interface of the source device; and connecting an energy acquisition component of the robot And corresponding to the output interface, and obtaining the working energy provided by the source device through the output interface.
  • a third aspect of the embodiments of the present invention provides a robot comprising: a robot arm, a processor, a memory, an energy harvesting component, and an end effector coupled to a free end of the robot arm; wherein the memory stores executable The program code, the processor, by running the executable program code, implements a robot supply method as provided in the second aspect of the embodiments of the present invention.
  • the robot supply system, method or robot provided by the embodiment of the invention enables the robot to move to the joint position docked with the output interface according to the position information of the output interface, and connect the energy acquisition component of the same with the corresponding output interface.
  • the uninterrupted supply of the robot during the working of the robot is realized, thereby effectively saving the charging time and improving the working efficiency of the robot.
  • FIG. 1 is a schematic diagram of an application environment of a robot power supply system, method, and robot according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a robot power supply system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the layout of various interfaces of the output interface 21 in the robot source system according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a robot power supply system according to another embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method for supplying a source of a robot according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of hardware of a robot according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an application environment of a robot power supply system, method, and robot according to an embodiment of the present invention.
  • the robot 10 performs data interaction with the server 80 by wired or wireless means, and proceeds to the cargo bay 30 to perform unloading or loading operations according to an instruction sent by the server 80, for example, the cargo 60 is out of the cargo bay 30. On the place or conveyor 40, it is loaded into the cargo hold 30. Alternatively, the cargo 60 is unloaded from the cargo bay 30 onto the conveyor 40 or transported outside of the cargo bay 30.
  • the robot 10 may be a single robot or may be composed of multiple robots. Robot cluster.
  • the robot includes a processor, a robotic arm, and an end effector disposed at the end of the robot arm and various types of sensors.
  • the robot has the ability to sense through the sensor, thereby improving the intelligent working ability, for example, for identifying the goods, judging whether or not to grab the goods.
  • the robot can be placed on the conveyor, and when the conveyor has the ability to move, the robot can have mobility through the conveyor.
  • the robot may also include a mobile chassis to have autonomous mobility.
  • FIG. 2 is a schematic structural diagram of a robot power supply system according to an embodiment of the present invention, which can be applied to the application environment shown in FIG.
  • the robot supply system includes a transfer device 40, a supply device 20, and a robot 10.
  • the power supply device 20 is configured to provide various energy support for the robot 10 such as a gas source, a power source, a liquid source, and a signal.
  • the source device 20 includes an output interface 21, and the output interface 21 is connectable to the transfer device 40 (this connection relationship is not shown in FIG. 2).
  • the cargo compartment includes the cabin of the land truck, the trailer (Trailor), and may also include a container, which can be carried by land, sea, and air by loading on the vehicle, the ship, and the aircraft.
  • the robot 10 includes an energy harvesting component 11.
  • the robot 10 is configured to move to an engagement position that interfaces with the output interface 21 according to the position information of the output interface 21, and connect the energy acquisition component 11 to the corresponding output interface 21, and acquire the working energy provided by the source device 20 through the output interface 21. .
  • the output interface 21 may specifically include any combination of one or more of the signal interface 211, the air source interface 212, the liquid source interface 213, and the power supply interface 214.
  • the signal interface 211 is used to enable the robot 10 to perform data interaction with other electronic devices.
  • the gas source interface 212 is for providing a gas and supplying a source for a gas driving component or a functional component that the robot has. For example, if the end effector of the robot is a pneumatically driven suction cup, the suction cup can be supplied by connecting the air supply interface. And when the robot has an inflatable feature, the air supply provided through the air supply interface allows the inflatable function to inflate other devices.
  • the liquid source interface 213 is used to provide hydraulic pressure to the hydraulic components of the robot 10 and/or to provide liquid to other devices.
  • the power supply interface 214 is used to provide power as a working energy source for the robot.
  • the energy acquisition component 11 is matched with the output interface 21 and is packaged with the output interface 21.
  • the energy harvesting component 11 also includes one of the signal interface component 111, the air source interface component 112, the liquid source interface component 113, and the power supply interface component 114 or Any combination of multiple.
  • the power supply interface component as an example, a power conversion circuit is provided inside the body of the robot 10, and the power supply provided by the power supply interface is converted into the power required by the robot.
  • the battery inside the body of the robot 10 can also be equipped with a battery, so that after the connection with the power supply interface 214 is disconnected, the working power can still be supplied through the battery.
  • the inside of the body of the robot 10 may further include a charging circuit.
  • the power supply interface component 114 of the robot 10 When the power supply interface component 114 of the robot 10 is connected to the power supply interface 214, the power supply of the power supply interface 214 is electrically connected to the power supply interface component 114.
  • the battery is charged.
  • the energy harvesting component 11 may also include a charging component independent of the power supply interface component, the charging component including a charging circuit electrically connected to the battery. For example, in a feasible implementation manner, when the robot 10 is in operation, it is determined whether charging is required according to the remaining capacity of the battery, and if charging is required, the power supply interface component 114 in the energy acquiring component 11 is connected to the power supply interface 214 of the source device.
  • the charging circuit 214 In order to obtain the working power from the source device 20 through the power supply interface 214. When the charging reaches a certain amount of power, the charging is stopped, and the connection of the power supply interface unit 114 and the power supply interface 214 is disconnected. It can be understood that when the energy acquiring component 11 of the robot 10 is connected to the power supply interface 214, the charging circuit charges the battery, and the power conversion circuit supplies the working power to the robot, and can work at the same time or switch jobs.
  • the robot 10 may position the position information of the output interface 21 through a sensor, including a visual sensing device (eg, an RGBD device, a 3D camera device), or may pass to the server 80.
  • the position information of the output interface 21 is acquired, or the storage device of the robot 10 stores the position information of the output interface 21 for reading. It then moves to the engaged position that interfaces with the output interface 21.
  • the robot may move to the engagement position that is docked with the output interface 21 based on the preset position information or the position information transmitted by the server 80. It can be understood that the engagement position is that the robot 10 can perform a position at which the energy acquisition component 11 is connected to the corresponding output interface 21.
  • the joint position can include a plurality of specific position coordinates.
  • the joint position can be flexibly set according to the requirements of the work scene, the shape of the robot, and the specific design form of the interface.
  • the robot power supply system further includes: a winding mechanism 22, wherein the energy acquiring component 11 and the output interface 21 are in a connected state, and the movable range of the robot relative to the transmitting device 40 is provided.
  • the robot 10 can have a flexible movable range within the range of extension and winding provided by the winding mechanism 22.
  • the winding mechanism 22 is adapted to move to perform the winding output interface 21 so that the robot can obtain a larger moving range.
  • a plurality of differently used interface portions in the output interface 21 may be disposed at the front end of the winding mechanism 22, and a plurality of differently used interface portions are respectively configured with corresponding pinion gears and slide rails, and the output interface 21
  • the entire interface part is further configured with a corresponding large gear, a motor and a long slide rail.
  • the source device 20 further includes a pipeline 23 for delivering energy and an energy device 24 for providing energy.
  • One end of the line 23 is connected to the energy device 24, and the other end is connected to the output interface 21.
  • energy device 24 includes a power device and/or a signaling device
  • the pipeline includes a cable for transmitting power and/or signals.
  • the energy device 24 includes a gas source device and/or a liquid source device
  • the pipeline includes a conduit for transporting a gas source and/or a liquid source, the conduit being made of a flexible material.
  • the energy equipment 24 of the source device 20 can be centrally disposed in an area away from the cargo compartment. On the one hand, it is convenient to centrally manage energy equipment. On the other hand, the complexity of the robot operation area can be reduced, and at the same time, the site planning and transformation can be facilitated. .
  • the output interface 21 can be disposed at the output end of the winding mechanism 22, and the pipeline 23 connecting the output interface 21 and the energy device 24 can be wound up inside the winding mechanism 22, so that the pipeline 23 can be received.
  • the contraction of the winding mechanism realizes the extension and winding of the pipeline 23, and thus the output interface 21 Stretching can be achieved and efficient management of the pipeline 23 is guaranteed.
  • the line 23 is prevented from adapting to the extended length provided by the remote operation, the winding of the line 23 during close-range operation, and the obstacles causing the robot to walk.
  • the output interface 21 and the energy acquisition component 11 of the robot are respectively connected to one of the input end and the output end of the winding mechanism 22, and the storage and output interface 21 is included in the winding structure 22.
  • the energy acquisition component 11 docks the pipeline 23 so that the pipeline 23 can extend and retract the pipeline 23 as the winding mechanism contracts, thereby providing the robot connected to the winding mechanism 22 with a more flexible range of motion while ensuring the pipeline 23 Effective management.
  • the body of the winding mechanism 22 may be disposed on the cargo floor or ceiling according to actual needs, or the body of the winding mechanism 22 may be fixedly mounted on the robot 10.
  • the energy acquisition component of the source device when the robot needs to obtain the energy, the energy acquisition component of the source device is connected with the corresponding output interface by the position information of the output interface of the source device, so that the working energy can be obtained in time, thereby ensuring the robot needs. Effective supply of energy to improve the efficiency of robots.
  • FIG. 4 is a schematic structural diagram of a robot power supply system according to another embodiment of the present invention. Different from the robot source system shown in Figures 2 and 3, in this embodiment:
  • the robot power supply system further includes: a connecting mechanism 50 having opposite ends and the other end.
  • One end of the link mechanism 50 is coupled to one end of the conveyor 40 adjacent the cargo bay, and the other end is extendable toward the interior of the cargo bay for transporting cargo conveyed by the conveyor 40 to an area proximate to the robot 10.
  • the output interface 21 can be disposed on the connecting mechanism 50, and the connection with the transmitting device 40 is realized by the connecting mechanism 50.
  • the output interface 21 can also be connected to the transfer device 40 by being placed at one end of the conveyor 40 near the cargo hold.
  • the link mechanism 50 can perform expansion and contraction as well as rotation in the horizontal and vertical directions.
  • the body of the coupling mechanism 50 may be a conveyor 40 that is retractable or rotatable in a horizontal or vertical direction.
  • one end of the connecting mechanism 50 may be provided with the aforementioned winding mechanism 22.
  • the connecting mechanism 50 is used to determine the distance between the robot 10 and the target, the preset distance to the cargo, and the target. The combination of any one or more of the positions obtains the extension target of the connection mechanism 50, thereby improving the convenience of loading or unloading the robot 10 and reducing the mechanical movement of the robot.
  • the motion that the connection mechanism 50 can perform may include, but is not limited to, the following.
  • the extension of the attachment mechanism 50 does not affect the position at which the robotic end effector that the robotic arm moves according to the execution path and is unobstructed performs the holding (loading task) or placement (unloading task).
  • the execution path of the robot 10 is obtained according to the current position of the robot 10 (if the combined posture, that is, the current posture) and the target position (if the combined posture, that is, the target pose).
  • the target position or the target pose includes the loading task
  • the position or posture of the goods is obtained from the connecting mechanism 50.
  • the current position and the target position, or the current pose and the target pose it may also be a preset distance from the current position of the robot 10 and/or a position of the preset orientation.
  • the position at which the robot 10 is to perform the holding of the goods or the placement of the goods requires the robot 10 to move the chassis movement to reach the executable range, whereby the connection mechanism 50 maintains a preset distance from the robot 10 and
  • the position of the preset orientation is the extension target, that is, the extended arrival position of the connection mechanism 50.
  • the position of the goods to be held or placed by the robot 10 is required to move the chassis of the robot 10 to reach an executable range, for example, if the chassis does not move, the mechanical arm does not reach the operating position where the goods are held and the goods are placed. , or the end effector of the current position of the robot arm to reach the unloading or palletizing position or placement posture, can not find a collision-free path, so the range must be moved.
  • the robot 10 can effectively reduce the movement of the object with relatively long distance after grasping the object, improve the convenience and efficiency of the robot 10 to pick up or unload the goods, reduce the mechanical movement of the robot, and more flexibly cooperate with the robot arm.
  • the goods are loaded and unloaded, the goods are held and the goods are placed. Work.
  • connection mechanism 50 further includes a wire portion 51 for extending the pipeline to connect the pipeline to the robot 10.
  • the output interface 21 is connected to the energy device 24 via a line 23.
  • the wire portion 51 may be an energy guide chain for accommodating and guiding the pipeline, and may follow the expansion and contraction of the connection mechanism 50 and/or horizontal and vertical movements, for example, when the robot 10 is moving left and right, the power supply may be The wire and/or the air source line generate a tensile force, and the energy chain will rewind or unwind the pipeline, providing effective management of the pipeline for better cooperation with the connection mechanism 50 to connect the robot 10, and the energy guide chain is disposed at the connection mechanism 50. Between the fixed part and the active part. In some applications, the energy guide can be routed from the ceiling of the warehouse.
  • the robot power supply system further includes: a wireless access point 70 disposed on the transmitting device 40. Specifically, when the robot 10 is close to the transmitting device 40, scanning the nearby wireless network to access the access point. Since the transmitting device 40 is closest to the robot 10, the robot 10 automatically switches to the wireless access point 70 with the strongest signal. The wireless access point 70 accesses the network and acquires task data of the server through the network.
  • the energy acquisition component of the robot is connected with the corresponding interface, so that the working energy can be obtained in time, thereby It can extend the working time of the robot and improve the working efficiency of the robot.
  • FIG. 5 is a schematic flowchart diagram of a method for supplying a source of a robot according to an embodiment of the present invention, which can be applied to the robot source system described in the foregoing embodiments shown in FIG. 2 to FIG. Source, solve the problem that the robot must supply energy to the working line, and the method mainly includes the following steps:
  • the robot moves to an engagement position that is docked with the output interface according to the position information of the output interface of the source device.
  • the interface of the source device on the transport device is located, and the image can be acquired by the camera, and the image is analyzed.
  • the output interface is disposed at an end of the conveyor adjacent the cargo bay, and the robot includes an energy harvesting component.
  • the source device is disposed at one end of the conveyor near the cargo compartment, and is located at a fixed end of the conveyor, and the fixed means a portion that does not follow the crawler. It is convenient for the robot to obtain working energy from the source device during operation, and the conveying device is placed perpendicular to the cargo space.
  • the output interface of the source system includes any combination of any one or more of a signal interface, a gas source interface, a liquid source interface, and a power supply interface.
  • a signal interface for example, only the air source interface may be provided, or the air source interface and the power supply interface may be provided, preferably, the air source interface, the power supply interface, and the signal interface are all set.
  • the robot is always connected to the conveyor through the source device on the conveyor during operation to continuously provide working energy to the robot.
  • the energy harvesting component may be an inflatable component with an inflation tube
  • the robot connects the inflation tube to the air supply interface of the source device, and the gas supplied through the air source interface inflates the airbag
  • the inflatable component is usually Set on the actuator at the end of the arm.
  • the energy harvesting component may also be a power supply interface component with a power cord, and the power cord of the power supply interface component when the robot enters the cargo compartment or detects that the remaining battery power of the built-in battery is less than the preset power.
  • the power supply provided by the power supply interface is converted into a power supply required by the robot, wherein the power supply interface is provided with overcharge protection and a voltage stabilization device to prevent damage to the robot caused by changes in current and voltage, and the robot itself
  • There is a battery During operation, it is determined whether charging is required according to the remaining capacity of the battery. If charging is required, charging is performed through the power interface of the transmitting device. During charging, the robot can pause or continue working. When the charge reaches a certain amount of power, stop charging and unplug the power cord.
  • the output interface of the source system is provided with a winding mechanism.
  • the winding mechanism is used for winding the output interface, so that the robot Get a larger range of movement.
  • the transmitting device is provided with a wireless access point (AP, Access Point), and when the robot approaches the cargo bay, detects the nearby wireless network access point and automatically switches to the wireless access point with the strongest signal.
  • AP wireless access point
  • the robot connects from the AP when leaving the cargo bay to save power.
  • the energy acquisition component of the robot is connected with the corresponding interface, so that the working energy can be obtained in time, thereby extending the robot. Work time to improve the efficiency of the robot.
  • FIG. 6 is a schematic diagram of a hardware structure of a robot according to an embodiment of the present invention, which can implement the method for supplying a robot provided by the foregoing embodiment shown in FIG. 5.
  • the robot described in this embodiment mainly includes an end effector 53, a robot arm 54, and an energy harvesting member 55.
  • the robot arm 54 can be a series robot with 6 degrees of freedom, and its free end is connected to the end effector 53.
  • the end effector 53 includes a suction cup, a robot, a gripping tool, etc. for gripping the cargo on the conveyor apparatus.
  • the energy harvesting component 55 is configured to acquire the working energy source provided by the source device through an output interface in the source system. Matching the output interface, the energy harvesting component 55 can include any combination of one or more of a signal interface component, a gas source interface component, a liquid source interface component, and a power supply interface component.
  • the robot further includes at least one processor 541 and a memory 542.
  • the processor 541 is, for example, a central processing unit.
  • the processor 541 and the memory 542 may be disposed on the robot arm 54 or may be disposed in a special placement mechanism connected to the robot arm 54.
  • the processor 541, the memory 542, the sensor group, the end effector 53, the robot arm 54, and the energy harvesting component 55 are electrically connected, including Communication, for example via a bus connection.
  • the memory 542 may be a high-speed random access memory (RAM) memory or a non-volatile memory such as a disk memory.
  • the memory 542 is configured to store a set of executable program code, and the processor 541 is coupled to the memory 542.
  • the processor 541 is configured to call the executable program code stored in the memory 542 to perform the following operations:
  • the robot supply method described in the embodiment shown in Fig. 5 is executed by the processor 541 executing the executable program code stored in the memory 542. For example, it is executed to control the robot to move to an engagement position that is docked with the output interface according to the position information of the output interface of the source device.
  • the energy acquisition component 55 of the robot is connected to the corresponding output interface, and the working energy provided by the source device is obtained through the output interface.
  • the robot may further include a sensor group, including but not limited to: a Force and Torque sensor, a vision sensor (such as a camera), an infrared sensor, a proximity sensor, a vacuum sensor, and the like.
  • a sensor group including but not limited to: a Force and Torque sensor, a vision sensor (such as a camera), an infrared sensor, a proximity sensor, a vacuum sensor, and the like.
  • the robot may further include a winding mechanism for accommodating a pipeline that interfaces with the energy harvesting component 55.
  • the winding mechanism is connected to the output interface and the energy acquisition unit 55.
  • the robot may also include a moving mechanism.
  • the aforementioned mobile chassis is included.
  • the opposite end of the free end of the robot arm 54 is connected to the moving mechanism.
  • the bottom of the moving mechanism can be provided with a plurality of wheels for mobility.
  • the moving mechanism can also include a drive assembly to drive the wheel to rotate, enabling the robot to have the ability to actively move.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)

Abstract

一种机器人供源系统,其中机器人供源系统包括:传送装置(40)、供源装置(20)和机器人(10)。其中,供源装置(20)包括输出接口(21),输出接口(21)与传送装置(40)连接,用于为机器人(10)供源。机器人(10)包括能源获取部件(11),机器人(10)用于根据输出接口(21)的位置信息,移动至与输出接口(21)对接的接合位置,以及连接能源获取部件(11)至对应的输出接口(21),并通过输出接口(21)获取供源装置(20)提供的工作能源。还提供了一种机器人供源方法和机器人,上述机器人供源系统、方法及机器人实现了在机器人工作期间对机器人的不间断供源,可以有效节约时间,提升机器人的工作效率。

Description

机器人供源系统、方法及机器人 技术领域
本发明属于机器人技术领域,尤其涉及一种机器人供源系统、方法及机器人。
背景技术
科技的快速发展,给人们的生活带来翻天覆地的变化,同时也提升了企业的工作效率。
近年来电子商务的蓬勃发展,让国内仓储物流同样得到了前所未有的提速。基于该急速膨胀的需求,智能机器人在货物的装载、卸载、搬运领域的概念应运而生。由于机器人能够在相对恶劣的工作环境下工作,且可以持续作业,大大的提高了物流仓储的执行效率。
目前而言,工业机器人得以应用的领域主要在电子元件装配领域,该领域由于产线的固定特性,装配在工作点的机器人可以采用统一走线直接供源的方式,保证不断源从而可以持续作业。但对于物流仓储领域而言,工作环境较为复杂,场地范围宽广,且工作点、工作内容具有可变性,如何应对该复杂环境且可变条件下能持续为机器人供源是有待解决的问题。对此,现有提出的一种解决方案是机器人具有可充电机制,先补给好工作能源后,再进行工作,在能源消耗到无法维持正常工作时,停止工作,到工作线下进行能源的补充,补充好后再继续工作。这种机器人供源的方法机器人需要不时去工作线下补充能源,浪费时间,极大影响工作效率。
发明内容
本发明实施例提供一种机器人供源系统、方法及机器人,旨在解决机器人因能源补给不足,影响工作效率的问题。
本发明实施例第一方面提供了一种机器人供源系统,包括:传送装置、供源装置和机器人;所述供源装置包括输出接口,所述输出接口与所述传送装置连接,用于为所述机器人供源;所述机器人包括能源获取部件,所述机器人用于根据所述输出接口的位置信息,移动至与所述输出接口对接的接合位置,以及连接所述能源获取部件至对应的所述输出接口,并通过所述输出接口获取所述供源装置提供的工作能源。
本发明实施例第二方面提供了一种机器人供源方法,包括:机器人根据供源装置的输出接口的位置信息,移动至与所述输出接口对接的接合位置;连接所述机器人的能源获取部件至对应的所述输出接口,并通过所述输出接口获取所述供源装置提供的工作能源。
本发明实施例第三方面提供了一种机器人,包括:机械手臂、处理器、存储器、能源获取部件以及连接于所述机械手臂的自由端的末端执行器;其中,所述存储器中存储有可执行程序代码,所述处理器通过运行所述可执行程序代码,实现如上述本发明实施例第二方面提供的一种机器人供源方法。
本发明实施例提供的机器人供源系统、方法或机器人,使得机器人可根据该输出接口的位置信息,移动至与该输出接口对接的接合位置,并将自身的能源获取部件与对应的输出接口连接,以便获取该供源装置提供的工作能源,实现了在机器人工作期间对机器人的不间断供源,从而可以有效节约充电时间,提升机器人的工作效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例。对于本领域技术人员来讲,在不付出创造性劳动前提下,还可以根据这些附图获得其他附图。
图1为本发明实施例提供的机器人供源系统、方法及机器人的应用环境示意图。
图2为本发明一实施例提供的机器人供源系统的结构示意图。
图3为本发明实施例提供的机器人供源系统中输出接口21的各种接口的布局示意图。
图4为本发明又一实施例提供的机器人供源系统结构示意图。
图5为本发明一实施例提供的机器人供源方法的流程示意图。
图6为本发明一实施例提供的机器人的硬件结构示意图。
具体实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,图1为本发明实施例提供的机器人供源系统、方法及机器人的一种应用环境示意图。如图1所示,机器人10通过有线或无线的方式,与服务器80进行数据交互,根据服务器80发送的指令,前往货舱30执行卸货或装货操作,例如:将货物60从货舱30之外的地方或传送装置40上,装载至货舱30。或者,将货物60从货舱30卸载至传送装置40上或搬运到货舱30之外的地方。其中,机器人10可以是单独的一个机器人,也可以是由多个机器人组成 的机器人集群。该机器人包括处理器、机械手臂以及设置在机械手臂末端的末端执行器以及各类传感器。机器人通过传感器具有感知能力,从而提升智能工作能力,例如,用于识别货物,是否抓取货物的判断等。该机器人可以设置在传送装置上,当传送装置具有移动能力,机器人可以通过传送装置具有移动能力。其他实施方式中,机器人还可以包括移动底盘,从而具有自主移动能力。
请参阅图2,图2为本发明一实施例提供的机器人供源系统的结构示意图,可应用于图1所示的应用环境中。如图2所示,机器人供源系统包括:传送装置40、供源装置20和机器人10。
供源装置20,用于为机器人10提供气源、电源、液源、信号等各种能源支持。于本实施例中,供源装置20包括输出接口21,输出接口21可与传送装置40连接(该连接关系在图2中未示出)。其中,货舱包括陆运货车的车舱,拖车(Trailor),还可包括集装箱(Container),进而可以通过装载在车辆、船只、飞机,实现陆运、海运、空运。
机器人10包括能源获取部件11。机器人10用于根据输出接口21的位置信息,移动至与输出接口21对接的接合位置,以及连接能源获取部件11至对应的输出接口21,并通过输出接口21获取供源装置20提供的工作能源。
进一步的,如图3所示,输出接口21具体可包括信号接口211、气源接口212、液源接口213和供电接口214中的一个或多个的任意组合。其中,信号接口211用于使得机器人10可与其他电子设备进行数据交互。气源接口212用于提供气体,为机器人具有的气体驱动部件或功能部件供源。例如,机器人的末端执行器为气压驱动的吸盘,则可以通过连接气源接口为吸盘供源。以及当机器人具有充气功能部件时,通过气源接口提供的气源使得充气功能部件实现对其他装置充气。液源接口213用于为机器人10的液压部件提供液压和/或为其他装置提供液体。供电接口214用于提供电源作为机器人的工作能源。
可以理解的,能源获取部件11与输出接口21相匹配,与输出接口21所包 括的一个或多个具体的接口相对应,如图3所示,能源获取部件11也包括:信号接口部件111、气源接口部件112、液源接口部件113和供电接口部件114中的一个或多个的任意组合。以供电接口部件为例,机器人10机身内部设有电源转化电路,将供电接口提供的电源转换为机器人所需的电源。机器人10机身内部还可以安装有蓄电池,从而断开与供电接口214的连接后,依旧可以通过蓄电池提供工作电源。该实施方式下,机器人10机身内部还可以包括充电电路,当机器人10的供电接口部件114与供电接口214连接时,供电接口214的电源通过与供电接口部件114电性连接的充电电路,为所述蓄电池充电。具体的,能源获取部件11也可以包括独立于供电接口部件的充电部件,该充电部件包括充电电路,与蓄电池电性连接。例如,一种可行实施方式下,机器人10在工作时,根据蓄电池的剩余电量确定是否需要充电,如果需要充电,则将能源获取部件11中的供电接口部件114连接至供源装置的供电接口214,以便通过供电接口214,从供源装置20获取工作电源。当充电达到一定的电量,则停止充电,断开供电接口部件114与供电接口214的连接。可以理解的是,机器人10的能源获取部件11与供电接口214连接时,充电电路为蓄电池充电,与电源转化电路为机器人提供工作电源,可以同时工作,也可以切换工作。
在实际应用中,当进行执行装、卸货任务时,机器人10可通过感测器,包括视觉感知装置(如,RGBD装置、3D摄像装置)定位输出接口21的位置信息,也可以通过向服务器80获取输出接口21的位置信息,或机器人10的存储装置存储有输出接口21的位置信息,供读取。然后移动至与输出接口21对接的接合位置。或者,机器人可根据预设的位置信息或服务器80发送的位置信息,移动至与输出接口21对接的接合位置。可以理解的是,接合位置为机器人10能够执行能源获取部件11连接至对应的输出接口21的位置。具体的可以为机器人10所在工作环境的具体位置坐标,也可以为与输出接口21的相对位置,例如与输出接口21的一个距离值或距离范围,从而机器人10根据输出接口的 位置,以及该距离值或距离范围,行进到符合该相对位置的接合位置。该方式下,接合位置可以包括多个具体位置坐标。接合位置可以根据工作场景、机器人形态、接口的具体设计形态等需求而灵活设定。
进一步地,如图3所示,该机器人供源系统还包括:收卷机构22,用于能源获取部件11与输出接口21处于连接状态下,提供机器人相对于传送装置40的可移动的范围,从而使得机器人10可在收卷机构22提供的延伸与收卷范围内具有灵活的可移动范围。例如:机器人10与输出接口21连接后,当机器人10需要移动位置时,收卷机构22用于适应移动进行收卷输出接口21,以便机器人获得更大的移动范围。在实际应用中,输出接口21中的多个不同用途的接口部分可设置在收卷机构22的前端,且多个不同用途的接口部分各自配置有对应的小齿轮以及滑轨,输出接口21的整个接口部分又配置有对应的大齿轮、电机及长滑轨,当机器人需要移动位置时,收卷机构22根据机器人移动的方位以及距离,启动电机带动齿轮让对应的接口部分在滑轨上移动,以便配合机器人10作出相应的动作,以使机器人10获得更大的移动空间。
可以理解的是,如图3所示,供源装置20还包括用于输送能源的管线23和提供能源的能源设备24。管线23的一端连接于能源设备24,另一端连接于输出接口21。例如,能源设备24包括电源设备和/或信号设备,则管线包括用于传输电源和/或信号的线缆。能源设备24包括气源设备和/或液源设备,则管线包括用于传输气源和/或液源的管道,该管道可以为具有柔性的材质制成。该方式下,供源装置20的能源设备24可以集中设置在远离货舱的区域,一方面便于集中管理能源设备,另一方面,可以减少机器人运作区域的复杂性,同时,还便于场地规划及改造。
一种实施方式下,输出接口21可以设置于收卷机构22的输出端,收纳输出接口21与能源设备24连接的管线23可以收卷于收卷机构22的内部,从而管线23可以随着收卷机构的收缩实现管线23的延伸与收卷,进而输出接口21 可以实现伸缩,且保证了管线23的有效管理。避免了管线23适应远距离操作提供的延伸长度,在近距离操作时管线23的缠绕,以及造成机器人行走的障碍。
另一种实施方式下,如图3所示,输出接口21、机器人的能源获取部件11分别连接于收卷机构22的输入端、输出端之一,收卷结构22内收纳与输出接口21、能源获取部件11对接的管线23,从而管线23可以随着收卷机构的收缩实现管线23的延伸与收卷,进而提供与收卷机构22连接的机器人具有更灵活的活动范围,同时保证管线23的有效管理。根据实际需要,可以将收卷机构22的本体设置在货舱地板或天花板上,或者也可以将收卷机构22的本体固定安装在机器人10上。
本发明实施例中,当机器人需要获取能源时,通过供源装置的输出接口的位置信息,将自身的能源获取部件与对应的输出接口相连接,即可及时获取工作能源,从而保证机器人所需能源的有效供给,提高机器人的工作效率。
请参阅图4,图4为本发明又一实施例提供的机器人供源系统的结构示意图。与图2和3所示机器人供源系统不同的是,在本实施例中:
进一步的,机器人供源系统还包括:连接机构50,其具有相对的一端及另一端。连接机构50的一端连接于传送装置40靠近货舱的一端,另一端可朝向货舱内部延伸,用于将传送装置40输送的货物传送至接近机器人10的区域。
进一步的,输出接口21可以设置在连接机构50上,通过连接机构50实现与传送装置40的连接。
可选的,输出接口21或者也可以通过设置在传送装置40靠近货舱的一端,实现与传送装置40的连接。
连接机构50可以做伸缩以及水平、垂直方向上的转动。在实际应用中,连接机构50的主体可以是可伸缩或者水平、垂直方向的转动的传送装置40。当具有伸缩能力时,连接机构50的一端还可以设置有前述的收卷机构22。连接机构50用于根据机器人10的当前位置、预设的与货物保持的距离值以及目标 位置中的任意一个或多个的组合,得到连接机构50的延伸目标,从而提升机器人10装货或卸货的便捷性,减少机器人的机械运动。具体的,连接机构50可执行的运动可以但不限于包括以下几种。
1、延伸到机器人10当前位置。
2、延伸到机器人10的目标位置附近,延伸到达的位置不会影响到机械臂执行装、卸货操作。
3、延伸到根据机器人10的执行路径以及周围障碍物信息,综合得到的延伸目标。例如,连接机构50的延伸不影响机械臂根据执行路径运动且无障碍的适宜机器人末端执行器执行获持(装货任务)或放置(卸货任务)的位置。其中机器人10的执行路径根据机器人10的当前位置(如果结合姿态,即当前位姿)和目标位置(如果结合姿态,即目标位姿)得到。其中,目标位置或目标位姿包括装货任务时,从连接机构50获持货物的位置或位姿。还包括卸货任务时,将卸载的货物放置在连接机构50的位置或位姿。
依据当前位置及目标位置,或者当前位姿和目标位姿,也可以是与机器人10当前位置的一个预设距离和/或预设方位的位置。考虑多因素的情况下,例如机器人10要执行的获持货物或者放置货物的位置是需要机器人10移动底盘移动才能到达可执行的范围,据此连接机构50保持与机器人10的一个预设距离和/或预设方位的位置即为延伸目标,也即连接机构50的延伸到达位置。其中,机器人10要执行的获持货物或者放置货物的位置是需要机器人10底盘移动的才能到达可执行的范围,例如:如果底盘不移动,机械臂伸不到获持货物、放置货物的操作位置,或者当前位置机械臂的末端执行器要到达卸货或码货的获持位姿或放置位姿,找不到一个无碰撞路径,所以必须移动的范围。
通过连接机构50,可以有效降低机器人10抓取物体后,相对长距离携物运动,提升机器人10取货或卸货的便捷性及效率,减少机器人的机械运动,且更加灵活地配合机器人机械臂执行码货、卸货任务时获持货物、放置货物的操 作。
进一步的,连接机构50还包括走线部51,用于延伸管线,以使管线连接至机器人10。其中,输出接口21通过管线23与能源设备24连接。具体的,走线部51可以为用于容纳并引导管线的能量导链,可随着连接机构50的伸缩和/或水平、垂直方向的运动,例如机器人10在做左右移动时,会对电源线和/或气源线产生拉伸力,能量导链会回卷或展开管线,提供管线的有效管理,以便更好的配合连接机构50连接机器人10,且该能量导链设置在连接机构50的固定部分与活动部分之间。一些应用场景下,该能量导链可以从货仓的天花板走线。
进一步的,该机器人供源系统还包括:设置于传送装置40上的无线访问接入点70。具体的:机器人10在靠近传送装置40时,扫描附近无线网络访问接入点,由于传送装置40与机器人10距离最近,机器人10会自动切换连接至信号最强的无线访问接入点70,通过无线访问接入点70接入网络,并通过网络获取服务器的任务数据。
本发明实施例中,通过在传送装置靠近货舱的一端设置有供源装置的接口,当机器人需要获取能源时,将自身的能源获取部件与对应的接口相连接,即可及时获取工作能源,从而可延长机器人的工作时间,提高机器人的工作效率。
参阅图5,图5为本发明一实施例提供的机器人供源方法的流程示意图,可应用于前述图2至图4所示实施例中描述的机器人供源系统,用于实现机器人的持续供源,解决机器人供源时必须到工作线下补充能源的问题,该方法主要包括以下步骤:
S101、机器人根据供源装置的输出接口的位置信息,移动至与输出接口对接的接合位置。
具体的,机器人进入货舱后,根据供源装置的输出接口的位置信息,定位传送装置上的供源装置的接口,具体可以通过摄像头获取图像,分析图像以定 位供源装置的接口。其中输出接口设置在传送装置靠近货舱的一端,且机器人包括能源获取部件。
供源装置设置在传送装置的靠近货舱的一端,位于传送装置固定的一端即可,固定是指不随着履带传动的部位。便于机器人在工作时从该供源装置中获取工作能源,传送装置垂直于货舱放置。
S102、连接能源获取部件至对应的输出接口,通过输出接口获取供源装置提供的工作能源。
供源系统的输出接口包括:信号接口、气源接口、液源接口和供电接口中的任意一个或多个的任意组合。例如,可以只设置气源接口,或者设置气源接口和供电接口,优选地,气源接口、供电接口以及信号接口都设置。该机器人在工作时,始终通过该传送装置上的该供源装置与该传送装置连接在一起,以便持续为机器人提供工作能源。
在一实际应用例中,能源获取部件可以为带有充气管的充气部件,机器人将充气管与供源装置的气源接口相连接,通过该气源接口提供的气体为气囊充气,充气部件通常设置在机械臂末端的执行器上。在为气囊充气时,将充气部件的一端与气源接口相连接,其另一端插入气囊口,以便为气囊充气,当达到充气量后,停止充气,封闭气囊口并断开充气管与气源接口的连接。
在一实际应用例中,能源获取部件还可以是带有电源线的供电接口部件,机器人在进入货舱时,或者检测到内设电池的剩余电量小于预设电量时,将供电接口部件的电源线与供电接口相连接,将该供电接口提供的电源转换为机器人所需的电源,其中供电接口设置有过充保护以及稳压装置,防止电流、电压的变化给机器人带来的损害,且机器人自身有蓄电池,在工作时根据蓄电池的剩余电量确定是否需要充电,如果需要充电,则通过传送装置的电源接口进行充电,充电期间,机器人可以暂停工作,也可以继续工作。当充电的达到一定的电量,则停止充电,拔下电源线。
进一步地,供源系统的输出接口设有收卷机构,当机器人通过能源获取部件获取供源系统提供的工作能源后,当机器人需要移动位置时,收卷机构用于收卷输出接口,以便机器人获得更大的移动范围。
进一步地,传送装置上设置有无线访问接入点(AP,Access Point),机器人在接近货舱时,检测附近无线网络访问接入点,并自动切换连接至信号最强的无线访问接入点,通过该网络从服务器获取任务数据,以及与其他终端、其他机器人等电子设备进行数据交互。可选的,机器人在离开货舱时,断开与该AP的连接,以节省耗电。
本发明实施例中,通过根据供源装置的输出接口的位置信息,当机器人需要获取能源时,将自身的能源获取部件与对应的接口相连接,即可及时获取工作能源,从而可延长机器人的工作时间,提高机器人的工作效率。
请参阅图6,图6为本发明一实施例提供的机器人的硬件结构示意图,可实现前述图5所示实施例提供的机器人供源方法。
本实施例中所描述的机器人,主要包括:末端执行器53、机械手臂54以及能源获取部件55。
其中,机械手臂54可以为具有6个自由度的串联机械臂,其自由端连接末端执行器53。末端执行器53包括吸盘、机械手、夹持工具等,用于抓取传送带装置上的货物。
能源获取部件55用于通过供源系统中的输出接口,获取获取供源装置提供的工作能源。与输出接口相匹配地,能源获取部件55可包括:信号接口部件、气源接口部件、液源接口部件和供电接口部件中的一个或多个的任意组合。
此外,机器人还包括至少一个处理器541以及存储器542。处理器541例如中央处理器。处理器541以及存储器542可以设置于机械手臂54,也可以设置于连接于机械手臂54的专门放置机构。上述处理器541、存储器542、传感器组、末端执行器53、机械手臂54、能源获取部件55电连接,包括可以实现 通信,例如通过总线连接。
其中,存储器542可以是高速随机存取记忆体(RAM,Random Access Memory)存储器,也可为非不稳定的存储器(non-volatile memory),例如磁盘存储器。存储器542用于存储一组可执行程序代码,处理器541与存储器542耦合,上述处理器541用于调用存储器542中存储的可执行程序代码,执行如下操作:
通过处理器541执行存储器542中存储的可执行程序代码,执行如前述图5所示实施例中描述的机器人供源方法。例如执行:根据供源装置的输出接口的位置信息,控制机器人移动至与该输出接口对接的接合位置。连接该机器人的能源获取部件55至对应的该输出接口,并通过该输出接口获取该供源装置提供的工作能源。
可选的,该机器人还可以包括传感器组,包括但不限于:力反馈传感器(Force and Torque sensor)、视觉传感器(如摄像头)、红外传感器、接近传感器、真空传感器等。
可选的,该机器人还可以包括收卷机构,用于收纳与能源获取部件55对接的管线。收卷机构与输出接口和能源获取部件55连接。
可选的,机器人还可以包括移动机构。包括前述的移动底盘。机械手臂54自由端相对的一端连接移动机构。移动机构的底部可设置有多个轮子,实现可移动性。移动机构还可以包括驱动组件,以驱动轮子转动,使得机器人具备主动移动的能力。
需要说明的是,对于前述的各方法实施例,为了简便描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其它顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定都是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。
以上为对本发明所提供的机器人供源系统、方法及机器人的描述,对于本领域的技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。

Claims (15)

  1. 一种机器人供源系统,其特征在于,包括:传送装置、供源装置和机器人;
    所述供源装置包括输出接口,所述输出接口与所述传送装置连接,用于为所述机器人供源;
    所述机器人包括能源获取部件,所述机器人用于根据所述输出接口的位置信息,移动至与所述输出接口对接的接合位置,以及连接所述能源获取部件至对应的所述输出接口,并通过所述输出接口获取所述供源装置提供的工作能源。
  2. 根据权利要求1所述的系统,其特征在于,所述输出接口包括:信号接口、气源接口、液源接口和供电接口中的任意一个或多个的任意组合。
  3. 根据权利要求1所述的系统,其特征在于,所述系统还包括连接机构,具有相对的一端及另一端,所述一端连接于所述传送装置靠近货舱的一端,所述另一端朝向货舱内部延伸,用于将所述传送装置输送的货物传送至接近所述机器人的区域。
  4. 根据权利要求3所述的系统,其特征在于,
    所述输出接口设置于所述连接机构上,通过所述连接机构实现与所述传送装置的连接;或者
    所述输出接口通过设置在所述传送装置靠近所述货舱的一端,实现与所述传送装置的连接。
  5. 根据权利要求4所述的系统,其特征在于,所述连接机构,用于根据所述机器人的当前位置、预设的与货物保持的距离值以及目标位置中的任意一个或多个的组合,得到所述连接机构的延伸目标。
  6. 根据权利要求5所述的系统,其特征在于,所述供源装置还包括管线和能源设备,所述输出接口通过所述管线与所述能源设备连接;
    所述连接机构还包括走线部,用于延伸所述管线,以使所述管线连接至所 述机器人。
  7. 根据权利要求1至6中的任一项所述的系统,其特征在于,所述系统还包括收卷机构,用于收纳所述输出接口以及与所述能源设备或与所述能源获取部件对接的管线;
    所述收卷机构与所述输出接口和所述机器人的能源获取部件连接;或者
    所述收卷机构与所述输出接口和所述能源设备连接。
  8. 根据权利要求7所述的系统,其特征在于,所述收卷机构安装在所述机器人上。
  9. 根据权利要求1所述的系统,其特征在于,所述系统还包括:
    设置于所述传送装置上的无线访问接入点,所述机器人通过所述无线访问接入点接入网络。
  10. 一种机器人供源方法,其特征在于,所述方法包括:
    机器人根据供源装置的输出接口的位置信息,移动至与所述输出接口对接的接合位置;
    连接所述机器人的能源获取部件至对应的所述输出接口,并通过所述输出接口获取所述供源装置提供的工作能源。
  11. 根据权利要求10所述的供源方法,其特征在于,所述连接所述机器人的能源获取部件至对应的所述输出接口,并通过所述输出接口获取所述供源装置提供的工作能源,包括:
    将所述能源获取部件中的供电接口部件与所述供电接口相连接,将所述供电接口提供的电源转换为所述机器人所需的电源。
  12. 根据权利要求10所述的供源方法,其特征在于,所述传送装置上设置有无线访问接入点,则,所述方法还包括:
    所述机器人检测所述无线访问接入点的信号,自动切换至信号强的无线访问接入点。
  13. 一种机器人,其特征在于,包括:机械手臂、处理器、存储器、能源获取部件以及连接于所述机械手臂的自由端的末端执行器;
    其中,所述存储器中存储有可执行程序代码,所述处理器通过运行所述可执行程序代码,实现如权利要求10至12中的任一项所述的机器人供源方法。
  14. 根据权利要求13所述的机器人,其特征在于,所述能源获取部件包括:信号接口部件、气源接口部件、液源接口部件和供电接口部件中的一个或多个的任意组合。
  15. 根据权利要求13所述的机器人,其特征在于,所述机器人还包括收卷机构,用于收纳与所述能源获取部件对接的管线;
    所述收卷机构与所述输出接口和所述能源获取部件连接。
PCT/CN2017/094663 2017-07-27 2017-07-27 机器人供源系统、方法及机器人 WO2019019090A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/094663 WO2019019090A1 (zh) 2017-07-27 2017-07-27 机器人供源系统、方法及机器人
CN201780006620.8A CN108698238A (zh) 2017-07-27 2017-07-27 机器人供源系统、方法及机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/094663 WO2019019090A1 (zh) 2017-07-27 2017-07-27 机器人供源系统、方法及机器人

Publications (1)

Publication Number Publication Date
WO2019019090A1 true WO2019019090A1 (zh) 2019-01-31

Family

ID=63844077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094663 WO2019019090A1 (zh) 2017-07-27 2017-07-27 机器人供源系统、方法及机器人

Country Status (2)

Country Link
CN (1) CN108698238A (zh)
WO (1) WO2019019090A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240261981A1 (en) * 2023-01-14 2024-08-08 Sarcos Corp. Robotic Article Managing End Effector with Capture Device Having Discrete Compliant Rods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105109697A (zh) * 2015-09-18 2015-12-02 上海长语信息科技有限公司 外部电源供电遥控飞行器
CN105549596A (zh) * 2016-02-04 2016-05-04 长沙长泰机器人有限公司 库房智能储取系统及物料转移方法
CN105652886A (zh) * 2016-03-18 2016-06-08 吴李海 一种持续续航的互联网无人机
CN105739579A (zh) * 2016-03-16 2016-07-06 河南工业大学 一种基于移动机器人技术的粮库粮情智能检测监控系统
CN205397170U (zh) * 2016-02-02 2016-07-27 吕涛 仓储智能搬运机器人及搬运系统
WO2016195596A1 (en) * 2015-05-29 2016-12-08 Ctrlworks Pte Ltd Method and apparatus for coupling an automated load transporter to a moveable load

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202006001973U1 (de) * 2006-02-08 2007-06-14 Wampfler Aktiengesellschaft Endklemme für eine Schleppleitung
JP5182434B2 (ja) * 2009-11-26 2013-04-17 トヨタ自動車株式会社 充電装置
CN205791639U (zh) * 2016-05-31 2016-12-07 广州达意隆包装机械股份有限公司 一种载有用电设备的移动装置
CN205772108U (zh) * 2016-05-31 2016-12-07 广州达意隆包装机械股份有限公司 一种机器人自动装车系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195596A1 (en) * 2015-05-29 2016-12-08 Ctrlworks Pte Ltd Method and apparatus for coupling an automated load transporter to a moveable load
CN105109697A (zh) * 2015-09-18 2015-12-02 上海长语信息科技有限公司 外部电源供电遥控飞行器
CN205397170U (zh) * 2016-02-02 2016-07-27 吕涛 仓储智能搬运机器人及搬运系统
CN105549596A (zh) * 2016-02-04 2016-05-04 长沙长泰机器人有限公司 库房智能储取系统及物料转移方法
CN105739579A (zh) * 2016-03-16 2016-07-06 河南工业大学 一种基于移动机器人技术的粮库粮情智能检测监控系统
CN105652886A (zh) * 2016-03-18 2016-06-08 吴李海 一种持续续航的互联网无人机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240261981A1 (en) * 2023-01-14 2024-08-08 Sarcos Corp. Robotic Article Managing End Effector with Capture Device Having Discrete Compliant Rods

Also Published As

Publication number Publication date
CN108698238A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
KR102107555B1 (ko) 차량용 센서 궤적 플래닝
US20200376656A1 (en) Mobile Robot Morphology
US9870002B1 (en) Velocity control of position-controlled motor controllers
CA2895282C (en) Automated truck unloader for unloading/unpacking product from trailers and containers
US11460845B2 (en) Logistics facility management system
JP2023090980A (ja) ロボットハンド、ロボット、ロボットシステム及び搬送方法
TWI706842B (zh) 自主移動搬運機器人及其夾具和作業機構
WO2019019090A1 (zh) 机器人供源系统、方法及机器人
US11976743B2 (en) Wireless valve manifold
CN117509220A (zh) 一种集装箱装卸车机器人及其装卸方法
US20230398922A1 (en) Self-propelled robot and article delivery system provided with the self-propelled robot
CN215155659U (zh) 无人机货物转运系统和建筑物
JP2024009701A (ja) 荷役システム
US20230391451A1 (en) Unmanned delivery system and unmanned delivery method
US20210362617A1 (en) Charging method and charging system
CN214455124U (zh) 货物转运机构、货物配送系统及楼宇
US20240061428A1 (en) Systems and methods of guarding a mobile robot
CN207511304U (zh) 基于agv的坐标机器人可移动自动上料复合机器人
CN208199726U (zh) 货物转移机器人及系统
US10745071B2 (en) Non-backdrivable passive balancing systems for single-axle dynamically-balanced robotic devices
CN115535236A (zh) 无人机货物转运系统和建筑物
CN116619400A (zh) Agv复合型协作机器人系统
CN116620055A (zh) 一种移动无线新能源汽车充电技术方法
CN116472143A (zh) 无人配送系统以及无人配送方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918865

Country of ref document: EP

Kind code of ref document: A1