WO2019015417A1 - 接近传感器的控制方法及装置、存储介质及移动终端 - Google Patents

接近传感器的控制方法及装置、存储介质及移动终端 Download PDF

Info

Publication number
WO2019015417A1
WO2019015417A1 PCT/CN2018/091081 CN2018091081W WO2019015417A1 WO 2019015417 A1 WO2019015417 A1 WO 2019015417A1 CN 2018091081 W CN2018091081 W CN 2018091081W WO 2019015417 A1 WO2019015417 A1 WO 2019015417A1
Authority
WO
WIPO (PCT)
Prior art keywords
input signal
mode
receiving end
analog
controlling
Prior art date
Application number
PCT/CN2018/091081
Other languages
English (en)
French (fr)
Inventor
周意保
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP18835043.3A priority Critical patent/EP3644164A4/en
Publication of WO2019015417A1 publication Critical patent/WO2019015417A1/zh
Priority to US16/726,664 priority patent/US11159672B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • H04M1/72454User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions according to context-related or environment-related conditions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3262Power saving in digitizer or tablet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/04Systems determining the presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4876Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3231Monitoring the presence, absence or movement of users
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3265Power saving in display device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0254Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity detecting a user operation or a tactile contact or a motion of the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0267Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by controlling user interface components
    • H04W52/027Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by controlling user interface components by controlling a display operation or backlight unit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/12Details of telephonic subscriber devices including a sensor for measuring a physical value, e.g. temperature or motion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to mobile terminal technologies, for example, to a proximity sensor control method and apparatus, a storage medium, and a mobile terminal.
  • a three-in-one sensor equipped with a proximity sensor, an ambient light sensor, and an infrared (IR) Light Emitting Diode (LED) is widely used in smartphones.
  • the smart phone automatically adjusts the brightness of the liquid crystal display (LCD) backlight by monitoring the intensity of ambient light through an Ambient light sensor (ALS), or controls the lighting and turning off of the button light.
  • a proximity sensor (PS) and an infrared emitting light emitting diode wherein the infrared emitting light emitting diode is used as a transmitting end of the proximity sensor for emitting infrared rays through the infrared emitting LED during a call, and receiving the face through the receiving end of the proximity sensor
  • the intensity value of the reflected infrared light is determined according to the intensity value to determine whether the smart phone is close to the face, and the backlight of the liquid crystal display can be turned off when it is close to save power.
  • the drive signal output can be turned off when it is close to the face to prevent malfunction.
  • the scene in which a user uses a smartphone is complicated and varied.
  • the intensity of the sunlight is very high, the infrared rays in the sunlight are collected by the receiving end of the proximity sensor, so that the intensity of the infrared ray received by the receiving end reaches tens of thousands of lux, and the infrared emitting light emitting diode is emitted.
  • the proportion of infrared is very small. Since the proximity sensor characteristic curve is non-linear, and the linearity tends to be flat with low noise values (such as infrared rays in ambient light). Therefore, in a strong light environment, the proximity value will become smaller.
  • the smartphone Even if the smartphone is close to the face, the screen cannot be controlled to be extinguished.
  • the measured proximity value is high or low due to infrared interference in the fluorescent lamp, so that the mobile terminal cannot accurately control the lighting or extinction of the screen according to the actual distance between the human face or the human ear and the screen. A problem with a splash screen may occur.
  • the embodiment of the present application provides a control method and device for a proximity sensor, a storage medium, and a mobile terminal, which can optimize a control scheme of the proximity sensor to implement a normal bright screen and a screen-out function.
  • the embodiment of the present application provides a control method for a proximity sensor, including:
  • the first intensity value is determined by approaching or moving away from the state based on the first intensity value.
  • the embodiment of the present application further provides a control device for a proximity sensor, the device comprising:
  • a driving signal output module configured to output a driving signal of a preset timing and a duty ratio to a transmitting end and a receiving end of the proximity sensor, and controlling the transmitting end to periodically enter a sleep mode, an off mode, and an open mode, and a control station The receiving end periodically enters a sleep mode and a sampling mode;
  • the input signal storage module is configured to control the analog-to-digital converter in the receiving end to store the first input signal in a sampling interval of the receiving end corresponding to the off mode;
  • the first signal correction module is configured to: in the sampling interval of the receiving end corresponding to the open mode, control the analog-to-digital converter to clear the first input signal from the received second input signal, and output a clearing process
  • the second input signal corresponding to the first intensity value is used to determine whether to approach or away from the state based on the first intensity value.
  • the embodiment of the present application further provides a computer readable storage medium, where the computer program is stored, and when the program is executed by the processor, the control method of the proximity sensor according to the embodiment of the present application is implemented.
  • the embodiment of the present application further provides a mobile terminal, including a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor being configured to implement the computer program as claimed in the present application.
  • a mobile terminal including a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor being configured to implement the computer program as claimed in the present application.
  • the control method and device for the proximity sensor provided by the embodiment of the present application, the storage medium and the mobile terminal control the transmitting end to periodically enter by outputting a driving signal of a preset timing and a duty ratio to a transmitting end and a receiving end of the proximity sensor.
  • a sleep mode, an off mode, and an on mode and controlling the receiving end to periodically enter a sleep mode and a sampling mode; controlling an analog to digital converter in the receiving end to store the first in a sampling interval of the close end corresponding to the off mode Inputting a signal; in the sampling interval of the proximity end corresponding to the open mode, controlling the analog-to-digital converter to clear the first input signal from the received second input signal, and outputting the first intensity corresponding to the second input signal after the clearing process a value to determine whether to approach or stay away from the state based on the first intensity value.
  • the infrared component in the ambient light is deducted from the analog-to-digital converter, and the influence of the infrared light in the ambient light can be eliminated at the analog end to the maximum extent, and the problem that the strong light is not close to the screen is avoided; It can also avoid the splash screen problem in the light box environment, and achieve normal bright screen and screen-out function.
  • FIG. 1 is a schematic structural view of a proximity sensor in the related art
  • FIG. 2 is a schematic view showing the operation of a proximity sensor in the related art
  • FIG. 3 is a schematic diagram of control logic of a transmitting end and a receiving end of a proximity sensor under strong light in the related art
  • Figure 4 is a schematic diagram showing the relationship between the characteristic curve of the proximity sensor and the ideal curve under the influence of slight ambient light
  • Figure 5 is a schematic diagram showing the relationship between the characteristic curve of the proximity sensor and the ideal curve under the influence of strong sunlight;
  • 6a is a flowchart of a method for controlling a proximity sensor according to an embodiment of the present application
  • 6b is a schematic diagram of control logic of a transmitting end and a receiving end of a proximity sensor under strong light according to an embodiment of the present application;
  • FIG. 7a is a flowchart of another method for controlling a proximity sensor according to an embodiment of the present application.
  • FIG. 7b is a schematic diagram of control logic of another transmitting end and receiving end of a proximity sensor under strong light according to an embodiment of the present application.
  • FIG. 8 is a structural block diagram of a control device for a proximity sensor according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a mobile terminal according to an embodiment of the present application.
  • the function of the proximity sensor is to turn off the screen when the user makes a call and closes the phone to the face to achieve power saving and anti-missing effects. For example, when the user answers or makes a call and the face is close to the phone, the control screen goes out. If the user removes the phone away from the face and the proximity sensor is unobstructed, the control screen lights up.
  • FIG. 1 provides a schematic structural diagram of a proximity sensor.
  • the proximity sensor includes a transmitting end 131 and a receiving end 132, the infrared LED lamp passing through the transmitting end 131 emits infrared rays, and the receiving end 132 receives infrared rays.
  • the proximity sensor 130 is disposed in a space formed by the display screen 120 and the housing, and may be disposed near the receiver.
  • the external obstruction 110 approaches, the infrared rays emitted from the emitting end 131 are reflected by the external obstruction 110 and partially enter the receiving end 132.
  • the internal chip processor of the receiving end 132 includes an Analog-to-Digital Converter (ADC), and the intensity value of the infrared rays entering the receiving end 132 is obtained by the analog-to-digital converter.
  • ADC Analog-to-Digital Converter
  • the intensity of the infrared ray collected by the receiving end 132 is the smallest, and when the object is constantly approaching, the intensity of the infrared ray collected by the receiving end 132 is continuously increased until the full scale is reached.
  • the range of the proximity sensor is related to the number of bits of the register inside the receiving chip.
  • the full-scale is 256; for a 10-bit register, the full-scale is 1024, for a 12-bit register, the full-scale is 4096, and so on.
  • the intensity value of the infrared ray collected by the receiving end is compared with a preset threshold value, and the display screen is turned on or off according to the comparison result.
  • the proximity value when the normal object is not blocked is 50.
  • the proximity value when the normal object is not blocked is 50.
  • the infrared rays are all reflected to the receiving end, and the approach value is close to the full scale, which is about 1024. .
  • the screen In the non-glare mode, it is generally prescribed that the screen is off when it is 3 to 5 cm away from the obstruction; the same is true when it is far away, that is, it is set close to the threshold and away from the threshold.
  • the screen In the bright screen state, the screen is started when the approach value is greater than the approach threshold (such as 400); in the black screen state, the close screen is less than the threshold value (such as 300).
  • FIG. 2 a schematic diagram of the operation of the proximity sensor is provided by FIG.
  • the transmitting end 210 that is, the infrared LED lamp and the receiving end 220 are disposed on the printed circuit board 230 (or the flexible circuit board), and are separated from each other, that is, the infrared rays cannot be directly transmitted by the infrared LED to Receive terminal 220.
  • a first driving circuit (not shown) is provided on the printed circuit board 230. According to the set control period, the control circuit outputs a control pulse of the sleep mode as shown in FIG. 3, which controls the infrared LED to be dormant-on (LED ON)-off (LED OFF).
  • the printed circuit board 230 is further provided with a second driving circuit (not shown), and the receiving terminal 220 is controlled by the second driving circuit according to the same control period as the above-mentioned setting period to perform sleep-sampling-sleeping.
  • the mode collects infrared rays and transmits the acquired infrared signals to an analog to digital converter.
  • the infrared rays emitted by the transmitting end 210 are reflected by the obstructing object into the receiving end 220.
  • Receiver 220 samples during the LED ON and LED OFF phases. For example, in the glare mode, the receiving end 220 performs two samplings. The first sampling is to read the infrared intensity value of the receiving end 220 without turning on the LED lamp of the transmitting end 210; the second sampling is to open the transmitting end 210.
  • the LED lamp reads the infrared intensity value of the receiving end 220.
  • the infrared intensity value read by the first sampling is input to the analog-to-digital converter of the receiving end chip to obtain a first intensity value a.
  • the infrared intensity value read by the second sampling is input to the analog-to-digital converter of the receiving end chip to obtain a second intensity value b. Then, the true infrared signal strength value is b-a. Comparing the real infrared signal strength value with a preset threshold value, it can be determined that the mobile terminal is in a close state or a distant state.
  • the mobile terminal calculates the proximity value by reading the infrared intensity value of the receiving end, and determines the moving according to the approximate value. Whether the terminal is close to the face.
  • the LCD backlight can be turned off when it is close to save power.
  • stopping the output of the driving signal to the touch screen can prevent malfunction.
  • multiple proximity sensors can be used for simple gesture recognition applications. However, since the linearity of the proximity sensor chip (close to the sensor characteristic curve, that is, the solid line in FIGS.
  • the approach value becomes smaller as the low noise value becomes larger. That is, as shown in FIG. 4 and FIG. 5, the approach value under the influence of the strong sun light (ie, PS_ON-PS_OFF) is smaller than the close value under the influence of the slight ambient light. Moreover, the stronger the ambient infrared intensity, the higher the low noise, and the closer value will become smaller and smaller. At this time, even if the mobile terminal is close to the face, the approach value is still smaller than the first threshold, resulting in failure to extinguish the screen.
  • the control scheme of the proximity sensor provided by the embodiment of the present application can well solve the problem that the above-mentioned strong light is close to the non-extinguished screen.
  • FIG. 6 is a flowchart of a method for controlling a proximity sensor according to an embodiment of the present application.
  • the method may be performed by a control device of a proximity sensor, where the device may be implemented by at least one of software and hardware, and generally integrated into Inside the mobile terminal.
  • the method includes steps 610 to 630.
  • a driving signal of a preset timing and a duty ratio is output to a transmitting end and a receiving end of the proximity sensor, and the transmitting end is controlled to periodically enter a sleep mode, an off mode, and an on mode, and control the receiving The terminal periodically enters the sleep mode and the sampling mode.
  • the timing indicates the time sequence in which the LEDs of the transmitting end are in the on, off, and sleep states, and the time sequence in which the receiving ends are in the acquisition and sleep states.
  • the transmitting end driving signal can control the transmitting LED lamp according to the preset timing to successively go through the sleep mode, the off mode, and the on mode in one control cycle.
  • the transmitting end driving signal can also control the transmitting LED lamp according to the preset timing to experience the off mode, the on mode and the sleep mode in one control cycle.
  • the receiving end driving signal can control the receiving end to go through the sleep mode and the sampling mode in one control cycle according to the preset timing.
  • the duty cycle indicates how long the LEDs in the transmitter are in the on, off, and sleep modes, and how long the receivers are in the acquisition and sleep modes.
  • the LEDs and receivers of the transmitter are in sleep mode, and the working time is about 1/10.
  • the time distribution of the LEDs in the off, on, and sleep modes is about 1-1-8 (ie, the LED off time is about 1/10 of the current period, and the LED on time is about 1/10 of the current period).
  • the sleep time accounts for about 8/10 of the current period.
  • the time allocation of the receiving end in the sampling mode and the sleep mode is about 2-8 (that is, the receiving end is in the sampling mode for about 2/10 of the current period, and the sleep time is about 8/10 of the current period).
  • the mobile terminal outputs a driving signal of a preset timing and a duty ratio to the transmitting end LED lamp and the receiving end of the proximity sensor.
  • the transmitter LEDs periodically enter a sleep mode, an off mode, and an on mode under the control of the drive signal.
  • the receiving end periodically enters the sleep mode and the sampling mode under the control of the driving signal.
  • step 620 the analog to digital converter in the receiving end is controlled to store the first input signal in the sampling interval of the receiving end corresponding to the off mode.
  • the first input signal is ambient infrared light obtained by the receiving end at the off LED light of the transmitting end. Controlling the receiving end to acquire ambient infrared rays as a first input signal, and outputting the first input signal to the analog-to-digital converter in the receiving end, in the sampling interval of the receiving end corresponding to the LED light in the off mode .
  • the analog to digital converter can be considered to have a plurality of predetermined working units that are arranged to store the first input signal. It can be understood that the implementation hardware of the working unit may be an electronic component having an energy storage function, such as a capacitor.
  • the receiving end of the proximity sensor can receive infrared rays through the photodiode and convert the optical signal into an electrical signal output, the electrical signal is recorded as the first input signal.
  • the first input signal is input to an analog-to-digital converter, and the analog-to-digital converter is controlled to store the first input signal in a preset working unit, that is, the first input signal is performed by a capacitor as a preset working unit. storage.
  • the number of preset working units occupied by the first input signal is recorded as a reference value. For example, suppose the analog-to-digital converter has 1000 preset working units, and the first input signal obtained by the receiving end is input to the working unit of the analog-to-digital converter in the sampling interval of the receiving end corresponding to the LED light in the off mode. Moreover, the first input signal is automatically stored in the next working unit after occupying the entire working unit. When the off mode of the LED light of the transmitting end is switched to the on mode, the data of the preset working unit occupied by the first input signal is recorded. If the number of work units occupied by the first input signal is 300, the corresponding determined reference value is 300.
  • the data in the preset working unit that has been occupied by the first input signal can be cleared, so that the receiving end can start from the first working unit in the sampling interval of the receiving end corresponding to the LED light on state of the transmitting end.
  • the acquired second input signal is stored in a preset working unit. Therefore, the useless data is prevented from occupying the storage space, resulting in waste of storage resources.
  • the data in the preset working unit that has been occupied by the first input signal may not be cleared temporarily, and the first input signal and the second input signal are uniformly cleared when a control period ends. The data in the preset work unit occupied.
  • step 630 in the sampling interval of the receiving end corresponding to the open mode, the analog-to-digital converter is controlled to clear the first input signal from the received second input signal, and output the clearing process.
  • the first intensity value corresponding to the two input signals is determined to be close to or away from the state based on the first intensity value.
  • the second input signal is the infrared light and the ambient infrared light reflected by the obstructing object emitted by the transmitting end of the receiving end at the transmitting end of the LED light of the transmitting end.
  • the receiving end acquires the infrared light and the ambient infrared light reflected by the obstructing object emitted by the transmitting end as the second input signal, and outputs the second input signal.
  • the analog to digital converter can be controlled to input the second input signal from the first working unit to the preset working unit.
  • the analog-to-digital converter it is also possible to control the analog-to-digital converter to store the second input signal into the preset working unit from the working unit of the set number.
  • the number of preset working units occupied by the second input signal is equal to the reference value, the data in the preset working unit that has been occupied by the second input signal is cleared. Since the process of obtaining the second input signal by the receiving end is continuous, if the transmitting end LED light is still in the on mode, the receiving end continues to acquire the second input signal, and the newly acquired second input signal (ie, the obstruction in FIG. 6b)
  • the infrared infrared component of the new ambient light entrained in the reflected infrared rays
  • the analog-to-digital converter stores the newly acquired second input signal into the set working unit from the first working unit.
  • the analog-to-digital converter converts the analog signal to the digital signal to the second input signal in the working unit, and outputs the newly acquired second input signal corresponding to the output clearing process.
  • the first intensity value is the first intensity value.
  • the first intensity value is compared to the set first threshold, wherein the first threshold is a preset threshold value for the proximity threshold under strong light. If the first intensity value is greater than the set first threshold, it is determined to be in a close state.
  • the first intensity value is compared to the set second threshold, wherein the second threshold is a predetermined threshold for the remote threshold under strong light. If the first intensity is less than the set second threshold, it is determined to be in a distant state.
  • the control method of the proximity sensor controls the transmitter to periodically enter the sleep mode, the off mode, and the on-off by outputting the driving signals of the preset timing and the duty ratio to the transmitting end and the receiving end of the proximity sensor.
  • FIG. 7a is a flowchart of another method for controlling a proximity sensor according to an embodiment of the present application. As shown in FIG. 7a, the method includes steps 710 to 750.
  • a driving signal of a preset timing and a duty ratio is output to a transmitting end and a receiving end of the proximity sensor, and the transmitting end is controlled to periodically enter a sleep mode, a first off mode, an on mode, and a second off mode. And controlling the receiving end to periodically enter a sleep mode and a sampling mode.
  • the transmitting end driving signal can control the transmitting LED lamp according to the preset timing to successively undergo the sleep mode, the first off mode, the on mode, and the second off mode in one control period.
  • the transmitting end driving signal can also control the transmitting LED lamp according to the preset timing to successively undergo the first off mode, the on mode, the second off mode, and the sleep mode in one control cycle.
  • the receiving end driving signal can control the receiving end to go through the sleep mode and the sampling mode in a control cycle according to the preset timing, and in a control period, the receiving end is in the sampling mode time and the transmitting end is in the first off mode, the on mode and The time of the second off mode corresponds.
  • the LEDs and receivers of the transmitter are in sleep mode, and the working time is about 1/10.
  • the time distribution of the transmitter LEDs in the first off, on, and second off and sleep modes is approximately 1-1-1-7.
  • the time allocation of the receiving end in the sampling mode and the sleep mode is about 3-7.
  • the mobile terminal outputs a driving signal of a preset timing and a duty ratio to the transmitting end LED lamp and the receiving end of the proximity sensor.
  • the transmitter LEDs periodically enter a sleep mode, a first off mode, an on mode, and a second off mode under the control of the drive signal.
  • the receiving end periodically enters the sleep mode and the sampling mode under the control of the driving signal.
  • step 720 the analog to digital converter in the receiving end is controlled to store the first input signal in a sampling interval corresponding to the first off mode.
  • the timing of the first off mode is before the on mode, that is, in the sampling interval of the receiving end corresponding to the LED light of the transmitting end, the receiving end acquires the ambient infrared, as the first input signal, And outputting the first input signal to the analog to digital converter.
  • the analog to digital converter stores the first input signal in a predetermined working unit.
  • the data in the preset working unit that has been occupied by the first input signal can be cleared, so that the receiving end can start from the first working unit in the sampling interval of the receiving end corresponding to the LED light on state of the transmitting end.
  • the acquired second input signal is stored in a preset working unit.
  • the preset working unit is a capacitor
  • the method of clearing the data in the occupied working unit may be to ground the capacitor to introduce the electrical signal stored in the capacitor into the ground, thereby achieving the purpose of clearing the data.
  • step 730 in the sampling interval of the receiving end corresponding to the open mode, the analog-to-digital converter is controlled to clear the first input signal from the received second input signal, and output the second after the clearing process.
  • the first intensity value corresponding to the input signal is controlled to clear the first input signal from the received second input signal, and output the second after the clearing process.
  • the receiving end acquires the infrared light and the ambient infrared light reflected by the obstructing object emitted by the transmitting end as the second input signal, and outputs the second input signal.
  • the number of preset working units occupied by the second input signal is equal to the reference value, the data in the preset working unit that has been occupied by the second input signal is cleared. Since the process of obtaining the second input signal by the receiving end is continuous, if the transmitting end LED light is still in the on mode, the corresponding receiving end continues to acquire the second input signal, and the newly acquired second input signal (ie, in FIG. 7b)
  • the energy column containing the infrared component of the new ambient light and the energy reflected by the external obstacle is sent to the analog-to-digital converter, and after the analog-to-digital conversion, the first intensity value is output.
  • the data in the preset working unit that has been occupied by the second input signal can be cleared, so that the receiving end can be from the first working unit in the sampling interval of the receiving end corresponding to the LED in the second off mode.
  • the acquired third input signal is stored in a preset working unit.
  • step 740 in the sampling interval of the receiving end corresponding to the second off mode, the analog-to-digital converter is controlled to clear the first input signal from the received third input signal, and output the clearing process.
  • the second intensity value corresponding to the third input signal is controlled to clear the first input signal from the received third input signal, and output the clearing process.
  • the timing of the second off mode is after the on mode, that is, in the sampling interval of the receiving end corresponding to the LED light of the transmitting end, the receiving end acquires the ambient infrared, as the third input signal, And outputting the third input signal to the analog to digital converter.
  • the analog to digital converter is controlled to store the third input signal into a preset working unit.
  • the analog to digital converter can be controlled to input the third input signal from the first working unit to the preset working unit. It is also possible to control the analog-to-digital converter to store the third input signal into the preset working unit from the working unit of the set number.
  • the analog-to-digital converter When the LED light of the transmitting end is switched from the second off mode to the sleep mode, the analog-to-digital converter performs analog-to-digital conversion on the third input signal in the working unit, and outputs a second intensity value corresponding to the third input signal after the clearing process. .
  • step 750 a near or far state determination is made based on the first intensity value and the second intensity value.
  • the control method of the proximity sensor controls the transmitting end to periodically enter the sleep mode by first outputting the driving signal of the preset timing and the duty ratio to the transmitting end and the receiving end of the proximity sensor. a mode, an on mode, and a second off mode; controlling, in a sampling interval of the receiving end corresponding to the first off mode, the analog to digital converter in the receiving end to store the first input signal; in the sampling interval of the receiving end corresponding to the open mode Controlling, by the analog-to-digital converter, the first input signal is cleared by the received second input signal, and outputting a first intensity value corresponding to the second input signal after the clearing process; the receiving corresponding to the second closed mode Controlling, by the end, the analog-to-digital converter, the first input signal is cleared by the received third input signal, and outputting a second intensity value corresponding to the third input signal after the clearing process; based on the first intensity The value and the second intensity value are judged close to or away from the state.
  • FIG. 8 is a structural block diagram of a control device for a proximity sensor according to an embodiment of the present application.
  • the device is implemented by at least one of software and hardware, and is generally integrated in a mobile terminal.
  • the apparatus may include a driving signal output module 810, an input signal storage module 820, and a first signal correction module 830.
  • the driving signal output module 810 is configured to output a driving signal of a preset timing and a duty ratio to a transmitting end and a receiving end of the proximity sensor, and control the transmitting end to periodically enter a sleep mode, an off mode, and an open mode, and control The receiving end periodically enters a sleep mode and a sampling mode;
  • the input signal storage module 820 is configured to control the analog-to-digital converter in the receiving end to store the first input signal in a sampling interval of the receiving end corresponding to the off mode;
  • the first signal correction module 830 is configured to: in the sampling interval of the receiving end corresponding to the open mode, control the analog-to-digital converter to clear the first input signal from the received second input signal, and output the clear
  • the processed first intensity value corresponding to the second input signal is determined to be close to or away from the state based on the first intensity value.
  • the control device of the proximity sensor provided by the embodiment provides a control device for the proximity sensor.
  • the infrared component in the ambient light is deducted in the analog-to-digital converter, thereby eliminating the outside world.
  • the influence of infrared light in ambient light improves the detection accuracy and avoids the problem of close to no screen under strong light. At the same time, it can avoid the problem of splash screen in the light box environment and realize the normal bright screen and screen-out function.
  • the second signal correction module 840 and the state determination module 850 are further included.
  • the second signal correction module 840 is configured to control, when the off mode includes the first off mode and the second off mode, in the sampling interval of the receiving end corresponding to the second off mode, to control the analog to digital converter to receive Clearing the first input signal in the third input signal, and outputting a second intensity value corresponding to the third input signal after the clearing process;
  • the state determination module 850 is configured to perform a proximity or away state determination based on the first intensity value and the second intensity value.
  • the input signal storage module 820 is further configured to control the analog-to-digital converter in the receiving end to store the first input signal in a sampling interval of the receiving end corresponding to the off mode by:
  • the first signal correction module 830 is further configured to control the analog-to-digital converter to be cleared by the received second input signal in a sampling interval of the receiving end corresponding to the open mode by: The first input signal, and outputting a first intensity value corresponding to the second input signal after the clearing process:
  • the controlling the transmitting end to periodically enter the sleep mode, the off mode, and the open mode including:
  • the input signal storage module is configured to control the analog-to-digital converter in the receiving end to store the first input signal in a sampling interval of the receiving end corresponding to the off mode by:
  • the data in the preset working unit occupied by the second input signal after the clearing process may be cleared after the first intensity value corresponding to the second input signal after the clearing process is output.
  • the first signal correction module is further configured to: after outputting the first intensity value corresponding to the second input signal after the clearing process, clear the preset that has been occupied by the second input signal after the clearing process Data in the work unit; the second signal correction module 840 is configured to control the third input signal received by the analog to digital converter in a sampling interval of the receiving end corresponding to the second off mode by: Clearing the first input signal:
  • the state determination module 850 is further configured to perform a proximity or away state determination based on the first intensity value and the second intensity value by:
  • the approach value is less than the set second threshold, it is determined to be in a distant state.
  • the first threshold is a pre-set screen control for a proximity threshold under strong light
  • the second threshold is a preset screen control for a far threshold under strong light
  • the first input signal is ambient infrared light acquired by the receiving end when the LED light of the transmitting end is in the off mode; and the second input signal is that the LED light of the receiving end is open at the transmitting end.
  • the acquired infrared light and ambient infrared light reflected by the obstruction emitted by the transmitting end are obtained.
  • the embodiment of the present application further provides a storage medium including computer executable instructions, which are set to execute a proximity sensor control method when executed by a computer processor, the method comprising:
  • An intensity value is determined by approaching or moving away from the state based on the first intensity value.
  • Storage media any of a variety of types of memory devices or storage devices.
  • the term "storage medium” is intended to include: a mounting medium such as a CD-ROM, a floppy disk or a tape device; a computer system memory or a random access memory such as DRAM, DDR RAM, SRAM, EDO RAM, Rambus RAM, etc.
  • Non-volatile memory such as flash memory, magnetic media (such as hard disk or optical storage); registers or other similar types of memory elements, and the like.
  • the storage medium may also include other types of memory or a combination thereof.
  • the storage medium may be located in a first computer system in which the program is executed, or may be located in a different second computer system, the second computer system being coupled to the first computer system via a network, such as the Internet.
  • the second computer system can provide program instructions to the first computer for execution.
  • the term "storage medium" can include two or more storage media that can reside in different locations (eg, in different computer systems connected through a network).
  • a storage medium may store program instructions (eg, embodied as a computer program) executable by one or more processors.
  • a storage medium containing computer executable instructions provided by the embodiments of the present application the computer executable instructions are not limited to the control operation of the proximity sensor as described above, and may also perform the proximity sensor provided by any embodiment of the present application. Related operations in the control method.
  • FIG. 9 is a schematic structural diagram of a mobile terminal according to an embodiment of the present disclosure.
  • the mobile terminal may include: a casing (not shown), a touch screen (not shown), a touch button (not shown), a memory 901, and a central processing unit (Central Processing). Unit, CPU) 902 (also referred to as a processor, hereinafter referred to as CPU), a circuit board (not shown), and a power supply circuit (not shown).
  • CPU Central Processing Unit
  • the circuit board is disposed inside a space enclosed by the casing; the CPU 902 and the memory 901 are disposed on the circuit board; and the power circuit is configured to supply power to each circuit or device of the electronic device
  • the memory 901 is configured to store executable program code; the CPU 902 runs a computer program corresponding to the executable program code by reading executable program code stored in the memory 901 to implement the following steps:
  • An intensity value is determined by approaching or moving away from the state based on the first intensity value.
  • the mobile terminal further includes: a peripheral interface 903, a radio frequency (RF) circuit 905, an audio circuit 906, a speaker 911, a power management chip 908, an input/output (I/O) subsystem 909, a touch screen 912, and others.
  • Input/control device 910 and external port 904 are communicated via one or more communication buses or signal lines 907.
  • the illustrated mobile terminal 900 is merely one example of a mobile terminal, and that the mobile terminal 900 may have more or fewer components than those shown in the figures, and two or more components may be combined. Or it can have different component configurations.
  • the various components shown in the figures can be implemented in hardware, software, or a combination of hardware and software, including at least one of one or more signal processing and application specific integrated circuits.
  • the mobile terminal for proximity sensor control provided by this embodiment is described in detail below, and the mobile terminal takes a mobile phone as an example.
  • the memory 901 can be accessed by the CPU 902, the peripheral interface 903, etc., and the memory 901 can include a high speed random access memory, and can also include a non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices. Or other volatile solid-state storage devices.
  • a non-volatile memory such as one or more magnetic disk storage devices, flash memory devices. Or other volatile solid-state storage devices.
  • Peripheral interface 903 which can connect the input and output peripherals of the device to CPU 902 and memory 901.
  • the I/O subsystem 909 can connect input and output peripherals on the device, such as touch screen 912 and other input/control devices 910, to peripheral interface 903.
  • the I/O subsystem 909 can include a display controller 9091 and one or more input controllers 9092 for controlling other input/control devices 910.
  • one or more input controllers 9092 receive electrical signals from other input/control devices 910 or transmit electrical signals to other input/control devices 910, and other input/control devices 910 may include physical buttons (press buttons, rocker buttons, etc.) ), dial, slide switch, joystick, click wheel.
  • the input controller 9092 can be connected to any of the following: a keyboard, an infrared port, a USB interface, and a pointing device such as a mouse.
  • the touch screen 912 is an input interface and an output interface between the user electronic device and the user, and displays the visual output to the user.
  • the visual output may include graphics, text, icons, videos, and the like.
  • Display controller 9091 in I/O subsystem 909 receives an electrical signal from touch screen 912 or an electrical signal to touch screen 912.
  • the touch screen 912 detects the contact on the touch screen, and the display controller 9091 converts the detected contact into an interaction with the user interface object displayed on the touch screen 912, that is, realizes human-computer interaction, and the user interface object displayed on the touch screen 912 may be running.
  • the icon of the game, the icon of the network to the corresponding network, and the like.
  • the device may also include a light mouse, which is a touch sensitive surface that does not display a visual output, or an extension of a touch sensitive surface formed by the touch screen.
  • the RF circuit 905 is mainly configured to establish communication between the mobile phone and the wireless network (ie, the network side), and implement data reception and transmission between the mobile phone and the wireless network. For example, sending and receiving short messages, emails, and the like. Specifically, the RF circuit 905 receives and transmits an RF signal, which is also referred to as an electromagnetic signal, and the RF circuit 905 converts the electrical signal into an electromagnetic signal or converts the electromagnetic signal into an electrical signal, and through the electromagnetic signal and communication network and other devices Communicate.
  • an RF signal which is also referred to as an electromagnetic signal
  • RF circuitry 905 may include known circuitry for performing these functions including, but not limited to, an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a codec CODER-DECoder (CODEC) chipset, Subscriber Identity Module (SIM), etc.
  • CDDEC codec CODER-DECoder
  • the audio circuit 906 is arranged to receive audio data from the peripheral interface 903, convert the audio data into an electrical signal, and transmit the electrical signal to the speaker 911.
  • the speaker 911 is arranged to restore the voice signal received by the mobile phone from the wireless network through the RF circuit 905 to sound and play the sound to the user.
  • the power management chip 908 is configured to provide power and power management for the hardware connected to the CPU 902, the I/O subsystem, and the peripheral interface.
  • the mobile terminal provided by the embodiment of the present application can eliminate the influence of infrared light in the ambient light from the analog end to the maximum extent, improve the detection precision, and avoid the problem that the light is not close to the screen; and at the same time, the light box environment can be avoided.
  • the splash screen occurs, achieving normal bright and off screen functions.
  • control device, the storage medium and the mobile terminal provided by the above-mentioned embodiments can perform the control method of the proximity sensor provided by any embodiment of the present application, and have the corresponding functional modules and beneficial effects of performing the method.
  • control method of the proximity sensor provided by any of the embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electronic Switches (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Optical Communication System (AREA)

Abstract

公开了一种接近传感器的控制方法及装置、存储介质及移动终端。该方法包括:输出预设时序和占空比的驱动信号至接近传感器的发射端和接收端,控制发射端周期性地进入休眠模式、关闭模式和开启模式,以及,控制接收端周期性地进入休眠模式和采样模式;在关闭模式对应的接收端的采样区间内,控制接收端中的模数转换器存储第一输入信号;在开启模式对应的接收端的采样区间内,控制模数转换器由接收的第二输入信号中清除第一输入信号,并输出清除处理后的第二输入信号对应的第一强度值。

Description

接近传感器的控制方法及装置、存储介质及移动终端 技术领域
本公开涉及移动终端技术,例如涉及一种接近传感器的控制方法及装置、存储介质及移动终端。
背景技术
随着智能手机不断向轻薄化方向发展,手机元器件的体积也越来越小。为了满足这一要求,搭载了接近传感器、环境光亮度传感器和红外(Infrared Radiation,IR)发射发光二极管(Light Emitting Diode,LED)于一体的三合一传感器被广泛应用于智能手机。
目前,智能手机通过环境光亮度传感器(Ambient light sensor,ALS)监测环境光的强弱而自动调节液晶显示屏(LCD)背光的亮度,或者控制按键灯的点亮和关闭。接近传感器(Proximity sensor,PS)和红外发射发光二极管,其中,红外发射发光二极管作为接近传感器的发射端,用于在通话时通过红外发射LED发射红外线,并通过接近传感器的接收端接收经人脸反射的红外线的强度值,根据该强度值来判断智能手机是否贴近脸部,贴近时可以关闭液晶显示屏背光,起到省电的作用。同时,对于电容触摸屏,还可以在贴近脸部时,关闭驱动信号输出,以防止误动作。
然而,用户使用智能手机的场景是复杂多变的。例如,在太阳光强度非常大时,太阳光中的红外线会被接近传感器的接收端采集到,从而使接收端接收到的红外线的强度值达到几万勒克斯,而其中由红外发射发光二极管发射出来的红外线的占比非常小。由于接近传感器特性曲线是非线性的,且线性度随着低噪值(如环境光中的红外线)变大而趋于平缓。因此,在强光环境中,接近值反而会变小,此时,即使智能手机靠近脸部,仍无法控制屏幕熄灭。又如,在灯箱环境下,因日光灯中红外线干扰导致测得的接近值忽高忽低,从而使得移动终端无法根据人脸或人耳与屏幕的实际距离,准确控制屏幕的点亮或熄灭,可能发生闪屏的问题。
发明内容
本申请实施例提供一种接近传感器的控制方法及装置、存储介质及移动终端,可以优化接近传感器的控制方案,实现正常的亮屏和熄屏的功能。
本申请实施例提供了一种接近传感器的控制方法,包括:
输出预设时序和占空比的驱动信号至接近传感器的发射端和接收端,控制所述发射端周期性地进入休眠模式、关闭模式和开启模式,以及,控制所述接收端周期性地进入休眠模式和采样模式;
在所述关闭模式对应的所述接收端的采样区间内,控制所述接收端中的模数转换器存储第一输入信号;
在所述开启模式对应的所述接收端的采样区间内,控制所述模数转换器由接收的第二输入信号中清除所述第一输入信号,并输出清除处理后的第二输入信号对应的第一强度值,以基于所述第一强度值进行接近或远离状态判断。
本申请实施例还提供了一种接近传感器的控制装置,该装置包括:
驱动信号输出模块,设置为输出预设时序和占空比的驱动信号至接近传感器的发射端和接收端,控制所述发射端周期性地进入休眠模式、关闭模式和开启模式,以及,控制所述接收端周期性地进入休眠模式和采样模式;
输入信号存储模块,设置为在所述关闭模式对应的所述接收端的采样区间内,控制所述接收端中的模数转换器存储第一输入信号;
第一信号修正模块,设置为在所述开启模式对应的所述接收端的采样区间内,控制所述模数转换器由接收的第二输入信号中清除所述第一输入信号,并输出清除处理后的第二输入信号对应的第一强度值,以基于所述第一强度值进行接近或远离状态判断。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请实施例所述的接近传感器的控制方法。
本申请实施例还提供了一种移动终端,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器设置为在执行所述计算机程序时实现如本申请实施例所述的接近传感器的控制方法。
本申请实施例提供的接近传感器的控制方法及装置、存储介质及移动终端,通过输出预设时序和占空比的驱动信号至接近传感器的发射端和接收端,控制该发射端周期性地进入休眠模式、关闭模式和开启模式,以及,控制该接收端周期性地进入休眠模式和采样模式;在该关闭模式对应的接近端的采样区间内,控制该接收端中的模数转换器存储第一输入信号;在该开启模式对应的接近端的采样区间内,控制该模数转换器由接收的第二输入信号中清除第一输入信号,并输出清除处理后的第二输入信号对应的第一强度值,以基于所述第一强度值进行接近或远离状态判断。通过采用上述技术方案,实现在模数转换器中扣除环境光中的红外线成分,可以最大限度的在模拟端消除外界环境光中红外光的影响,避免强光下靠近不熄屏的问题;同时,还可以避免灯箱环境下的闪屏问题,实现正常的亮屏和熄屏功能。
附图概述
图1为相关技术中的一种接近传感器的结构示意图;
图2为相关技术中的一种接近传感器的工作示意图;
图3为相关技术中的一种强光下接近传感器发射端与接收端的控制逻辑示意图;
图4是一种轻微环境光影响下接近传感器特性曲线与理想曲线的关系示意图;
图5是一种太阳强光影响下接近传感器特性曲线与理想曲线的关系示意图;
图6a是本申请实施例提供的一种接近传感器的控制方法的流程图;
图6b是本申请实施例提供的一种强光下接近传感器发射端与接收端的控制逻辑示意图;
图7a是本申请实施例提供的另一种接近传感器的控制方法的流程图;
图7b是本申请实施例提供的另一种强光下接近传感器发射端与接收端的控制逻辑示意图;
图8是本申请实施例提供的一种接近传感器的控制装置的结构框图;
图9是本申请实施例提供的一种移动终端的结构示意图。
具体实施方式
在更加详细地讨论示例性实施例之前应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将各步骤描述成顺序的处理,但是其中的许多步骤可以被并行地、并发地或者同时实施。此外,各步骤的顺序可以被重新安排。当其操作完成时所述处理可以被终止,但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、规程、子例程、子程序等。
一般而言,接近传感器的功能是在用户打电话且将手机靠近脸部时熄屏以达到省电及防误触的效果。例如,在用户接听或拨打电话且脸部贴近手机时,控制屏幕熄灭。若用户将手机拿开以远离脸部,此时接近传感器无遮挡,则控制屏幕点亮。
为了更好的理解接近传感器的工作原理,图1提供了一种接近传感器的结构示意图。如图1所示,接近传感器包括发射端131和接收端132,通过发射端131的红外LED灯发射红外线,并通过接收端132接收红外线。接近传感器130设置于显示屏120与壳体构成的空间内,且可以设置于受话器附近。当外界遮挡物110靠近时,发射端131发出的红外线经外界遮挡物110反射后部分射入接收端132。接收端132内部芯片处理器包括模数转换器(Analog-to-Digital Converter,ADC),通过该模数转换器处理得到进入接收端132的红外线的强度值。在没有任何物体遮挡时,接收端132采集到的红外线的强度值最小,而在物体不断靠近的时候,接收端132采集到的红外线的强度值不断变大,直至满量程为止。其中,接近传感器的量程与接收端芯片内部的寄存器的位数相关。例如,对于8位寄存器,满量程是256;对于10位寄存器,满量程是1024,对于12位寄存器,满量程是4096等等。然后,将接收端采集的红外线的强度值与预设阈值进行比较,根据比较结果控制显示屏点亮或熄灭。例如,以具有10位寄存器的接近传感器为例,正常无物体遮挡时的接近值为50,当脸部全部贴近接近传感器时,红外线全部被反射到接收端,接近值接近满量程,约为1024。
在非强光模式下,一般会规定离遮挡物3~5cm的时候,开始熄屏;远离的时候也一样,也就是会设置接近阀值和远离阀值。亮屏状态下,接近值大于接近阀值(如400)时开始熄屏;在黑屏状态下,接近值小于远离阀值(如300)时开始亮屏。
为了更形象的表示接近传感器的工作过程,由图2提供一种接近传感器的工作示意图。如图2所示,发射端210即红外LED灯和接收端220均设置于印制电路板230(或柔性电路板)上,且两者之间互相隔离,即红外线不能直接由红外LED发射至接收端220。印制电路板230上设有第一驱动电路(未画出)。按照设定的控制周期通过该驱动电路输出如图3所示 的控制红外LED处于休眠——开启(LED ON)——关闭(LED OFF)——休眠模式的控制脉冲。同时,印制电路板230上还设有第二驱动电路(未画出),按照与上述设定周期相同的控制周期通过该第二驱动电路控制接收端220按照休眠——采样——休眠的模式采集红外线,并将所采集的红外信号发射至模数转换器。
在一实施例中,如图2及3所示,由发射端210发出的红外线被遮挡物反射进入接收端220。接收端220在LED ON和LED OFF阶段进行采样。例如,在强光模式下,接收端220进行两次采样,第一次采样是不打开发射端210的LED灯便读取接收端220的红外强度值;第二次采样是打开发射端210的LED灯读取接收端220的红外强度值。将第一次采样读取的红外强度值输入接收端芯片的模数转换器得到第一强度值a。将第二次采样读取的红外强度值输入接收端芯片的模数转换器得到第二强度值b。那么,真实的红外信号强度值为b-a。将该真实的红外信号强度值与预设阈值进行对比,可以判断移动终端处于接近状态或远离状态。
在一实施例中,在使用受话器通话时,红外发射LED灯发射的红外线经脸部反射进入接收端,移动终端通过读取该接收端的红外强度值采用上述方式计算接近值,根据接近值判断移动终端是否贴近脸部。在贴近时可以关闭液晶显示屏背光,起到省电的作用。同时,对于电容触摸屏来讲,停止向触摸屏输出驱动信号,可以防止误动作。此外,还可以采用多个接近传感器做简单的手势识别等应用。然而,由于接近传感器芯片的线性度(接近传感器特性曲线,即图4和图5中的实线)受技术限制而无法达到理想状态(理想曲线,即图4和图5中的虚线),从而使得用户在强光下使用智能手机时,接近值随低噪值的变大而变小。即图4和图5所示,在太阳强光影响下的接近值(即PS_ON-PS_OFF)小于轻微环境光影响下的接近值。并且,环境红外线强度越强,低噪声越大,接近值反而会越来越小。此时,即使移动终端贴近脸部,接近值仍然小于第一阈值,导致不能熄屏。本申请实施例提供的接近传感器的控制方案可以很好的解决上述的强光下靠近不熄屏的问题。
图6a为本申请实施例提供的一种接近传感器的控制方法的流程图,该方法可以由接近传感器的控制装置来执行,其中,该装置可由软件和硬件中至少一项实现,一般可集成于移动终端内。如图6a所示,该方法包括步骤610至步骤630。
在步骤610中,输出预设时序和占空比的驱动信号至接近传感器的发射端和接收端,控制所述发射端周期性地进入休眠模式、关闭模式和开启模式,以及,控制所述接收端周期性地进入休眠模式和采样模式。
其中,时序表示控制发射端LED灯处于开启、关闭及休眠状态的时间顺序,以及,控制接收端处于采集及休眠状态的时间顺序。例如,如图6b所示,发射端驱动信号可以按照预设时序控制发射LED灯在一个控制周期内先后经历休眠模式、关闭模式和开启模式。又如,发射端驱动信号还可以按照预设时序控制发射LED灯在一个控制周期内先后经历关闭模式、开启模式及休眠模式。接收端驱动信号可以按照预设时序控制接收端在一个控制周期内先后经历休眠模式及采样模式。
占空比表示控制发射端LED灯处于开启、关闭及休眠模式的时间长短,以及,控制接收 端处于采集及休眠模式的时间长短。在一个控制周期内,绝大部分时间发射端LED灯及接收端均处于休眠模式,工作时间的占比大约是1/10。例如,发射端LED灯处于关闭、开启及休眠模式的时间分配约为1-1-8(即LED灯关闭时间约占当前周期的1/10,LED灯开启时间约占当前周期的1/10,休眠时间约占当前周期的8/10)。相应的,接收端处于采样模式及休眠模式的时间分配约为2-8(即接收端处于采样模式的时间约占当前周期的2/10,休眠时间约占当前周期的8/10)。
移动终端输出预设时序和占空比的驱动信号至接近传感器的发射端LED灯和接收端。发射端LED灯在该驱动信号的控制下周期性地进入休眠模式、关闭模式和开启模式。接收端在该驱动信号的控制下周期性地进入休眠模式和采样模式。
在步骤620中,在所述关闭模式对应的所述接收端的采样区间内,控制所述接收端中的模数转换器存储第一输入信号。
其中,第一输入信号为接收端在发射端LED灯关闭阶段获取的环境红外线。在该发射端LED灯处于关闭模式对应的该接收端的采样区间内,控制该接收端获取环境红外线,作为第一输入信号,并输出该第一输入信号至所述接收端中的模数转换器。可以认为模数转换器具有多个预设的工作单元,该工作单元设置为存储第一输入信号。可以理解的是,该工作单元的实现硬件可以是具有能量存储功能的电子元件,例如可以是电容。由于接近传感器的接收端可以通过光电二极管接收红外线,并将光信号转换为电信号输出,该电信号记为第一输入信号。该第一输入信号被输入至模数转换器,控制该模数转换器将所述第一输入信号存储在预设的工作单元,即通过作为预设的工作单元的电容对第一输入信号进行存储。
在由发射端LED灯的关闭模式向开启模式切换时,记录该第一输入信号占用的预设的工作单元的数量作为基准值。例如,假设模数转换器具有1000个预设的工作单元,在发射端LED灯处于关闭模式对应的接收端的采样区间内,将接收端获取的第一输入信号输入模数转换器的工作单元。并且,该第一输入信号在占满整个工作单元后会自动存入下一个工作单元。在由发射端LED灯的关闭模式向开启模式切换时,记录被第一输入信号占用的预设的工作单元的数据。假如被第一输入信号占用的工作单元的数量是300个,则相应的确定基准值是300。随后,可以清除已被所述第一输入信号占用的预设的工作单元内的数据,以在发射端LED灯开启状态对应的接收端的采样区间内,接收端可以从首个工作单元起将所获取的第二输入信号存入预设的工作单元。从而,避免无用的数据占用存储空间,导致存储资源浪费。在一实施例中,也可以暂不清除已被所述第一输入信号占用的预设的工作单元内的数据,以待一个控制周期结束时,统一清除被第一输入信号及第二输入信号占用的预设的工作单元内的数据。
可以理解的是,本实施例列举的确定基准值的方式仅为一个具体示例,并不用作限定基准值的确定方式。
在步骤630中,在所述开启模式对应的所述接收端的采样区间内,控制所述模数转换器由接收的第二输入信号中清除所述第一输入信号,并输出清除处理后的第二输入信号对应的第一强度值,以基于所述第一强度值进行接近或远离状态判断。
其中,第二输入信号为接收端在发射端LED灯开启阶段获取的发射端发射的经遮挡物反射的红外线及环境红外线。在该发射端LED灯处于开启模式对应的该接收端的采样区间内,控制该接收端获取发射端发射的经遮挡物反射的红外线及环境红外线,作为第二输入信号,并输出该第二输入信号至所述模数转换器。可以控制该模数转换器由首个工作单元起,向预设的工作单元内存入该第二输入信号。还可以是控制该模数转换器由设定编号的工作单元起,向预设的工作单元内存入该第二输入信号。在该第二输入信号占用的预设的工作单元的数量与基准值相等时,清除已被第二输入信号占用的预设的工作单元内的数据。由于接收端获取第二输入信号的过程是持续的,若发射端LED灯仍然处于开启模式,则接收端继续获取第二输入信号,将新获取的第二输入信号(即图6b中的遮挡物反射的红外线中夹杂的新环境光中红外成分)发送至模数转换器。该模数转换器由首个工作单元起将新获取的第二输入信号存入设定的工作单元内。在发射端LED灯由开启模式到其它模式切换时,模数转换器对工作单元内的第二输入信号进行模拟信号向数字信号的转换处理,输出清除处理后的新获取的第二输入信号对应的第一强度值。
在亮屏时,将第一强度值与设定的第一阈值进行比较,其中,第一阈值为预先设定的屏幕控制针对强光下的接近门限值。若该第一强度值大于设定的第一阈值,则判定处于接近状态。
在熄屏时,将第一强度值与设定的第二阈值进行比较,其中,第二阈值为预先设定的屏幕控制针对强光下的远离门限值。若该第一强度小于设定的第二阈值,则判断处于远离状态。
本实施例提供的一种接近传感器的控制方法,通过输出预设时序和占空比的驱动信号至接近传感器的发射端和接收端,控制该发射端周期性地进入休眠模式、关闭模式和开启模式,以及,控制该接收端周期性地进入休眠模式和采样模式;在该关闭模式对应的接近端的采样区间内,控制该接收端中的模数转换器存储第一输入信号;在该开启模式对应的接近端的采样区间内,控制该模数转换器由接收的第二输入信号中清除第一输入信号,输出清除处理后的第二输入信号对应的第一强度值,以基于所述第一强度值进行接近或远离状态判断。通过在模数转换器中扣除环境光中的红外线成分,可以消除外界环境光中红外光的影响,避免强光下靠近不熄屏的问题;同时,还可以避免灯箱环境下的闪屏问题,实现正常的亮屏和熄屏功能。
图7a是本申请实施例提供的另一种接近传感器的控制方法的流程图。如图7a所示,该方法包括步骤710至步骤750。
在步骤710中,输出预设时序和占空比的驱动信号至接近传感器的发射端和接收端,控制所述发射端周期性地进入休眠模式、第一关闭模式、开启模式和第二关闭模式,控制所述接收端周期性地进入休眠模式和采样模式。
如图7b所示,发射端驱动信号可以按照预设时序控制发射LED灯在一个控制周期内先后经历休眠模式、第一关闭模式、开启模式和第二关闭模式。又如,发射端驱动信号还可以按照预设时序控制发射LED灯在一个控制周期内先后经历第一关闭模式、开启模式、第二关 闭模式及休眠模式。接收端驱动信号可以按照预设时序控制接收端在一个控制周期内先后经历休眠模式及采样模式,并且一个控制周期内,接收端处于采样模式的时间与发射端处于第一关闭模式、开启模式和第二关闭模式的时间相对应。
在一个控制周期内,绝大部分时间发射端LED灯及接收端均处于休眠模式,工作时间的占比大约是1/10。例如,发射端LED灯处于第一关闭、开启及第二关闭及休眠模式的时间分配约为1-1-1-7。相应的,接收端处于采样模式及休眠模式的时间分配约为3-7。
移动终端输出预设时序和占空比的驱动信号至接近传感器的发射端LED灯和接收端。发射端LED灯在该驱动信号的控制下周期性地进入休眠模式、第一关闭模式、开启模式和第二关闭模式。接收端在该驱动信号的控制下周期性地进入休眠模式和采样模式。
在步骤720中,在所述第一关闭模式对应的采样区间内,控制所述接收端中的模数转换器存储第一输入信号。
其中,在一个控制周期内,第一关闭模式的时序位于开启模式之前,即在发射端LED灯处于第一关闭模式对应的接收端的采样区间内,接收端获取环境红外线,作为第一输入信号,并输出该第一输入信号至模数转换器。模数转换器将该第一输入信号存储在预设的工作单元。在由发射端LED灯的第一关闭模式向开启模式切换时,记录该第一输入信号占用的预设的工作单元的数量作为基准值。
随后,可以清除已被所述第一输入信号占用的预设的工作单元内的数据,以在发射端LED灯开启状态对应的接收端的采样区间内,接收端可以从首个工作单元起将所获取的第二输入信号存入预设的工作单元。示例性的,在预设的工作单元为电容时,清除已被占用的工作单元内的数据的方式可以是将电容接地,以将电容内存储的电信号导入大地,从而实现清除数据的目的。
在步骤730中,在所述开启模式对应的所述接收端的采样区间内,控制所述模数转换器由接收的第二输入信号中清除所述第一输入信号,输出清除处理后的第二输入信号对应的第一强度值。
在该发射端LED灯处于开启模式对应的该接收端的采样区间内,控制该接收端获取发射端发射的经遮挡物反射的红外线及环境红外线,作为第二输入信号,并输出该第二输入信号至所述模数转换器。在该第二输入信号占用的预设的工作单元的数量与基准值相等时,清除已被第二输入信号占用的预设的工作单元内的数据。由于接收端获取第二输入信号的过程是持续的,若发射端LED灯仍然处于开启模式,则对应的接收端继续获取第二输入信号,将新获取的第二输入信号(即图7b中的包含新环境光中红外成分及经外界障碍物反射能量的能量柱)发送至模数转换器,经模数转换后,输出第一强度值。
随后,可以清除已被所述第二输入信号占用的预设的工作单元内的数据,以在发射端LED灯位于第二关闭模式对应的接收端的采样区间内,接收端可以从首个工作单元起将所获取的第三输入信号存入预设的工作单元。
在步骤740中,在所述第二关闭模式对应的所述接收端的采样区间内,控制所述模数转 换器由接收的第三输入信号中清除所述第一输入信号,输出清除处理后的第三输入信号对应的第二强度值。
其中,在一个控制周期内,第二关闭模式的时序位于开启模式之后,即在发射端LED灯处于第二关闭模式对应的接收端的采样区间内,接收端获取环境红外线,作为第三输入信号,并输出该第三输入信号至模数转换器。控制该模数转换器向预设的工作单元内存入该第三输入信号。可以控制该模数转换器由首个工作单元起,向预设的工作单元内存入该第三输入信号。还可以控制该模数转换器由设定编号的工作单元起,向预设的工作单元内存入该第三输入信号。
在该第三输入信号占用的预设的工作单元的数量与该第一输入信号占用的设定工作单元的数量相等时,清除已被该第三输入信号占用的所述预设的工作单元内的数据。由于接收端获取第三输入信号的过程是持续的,若发射端LED灯仍然处于第二关闭模式,则接收端继续获取第三输入信号,将新获取的第三输入信号(即图7b中的新环境光中红外成分对应的能量柱)发送至模数转换器。在发射端LED灯由第二关闭模式向休眠模式切换时,模数转换器对工作单元内的第三的输入信号进行模数转换,输出清除处理后的第三输入信号对应的第二强度值。
在步骤750中,基于所述第一强度值和第二强度值进行接近或远离状态判断。
计算该第一强度值与第二强度值差值的绝对值,得到接近值;若该接近值大于设定的第一阈值,则判定处于接近状态;若该接近值小于设定的第二阈值,则判定处于远离状态。这样设置的好处在于:避免由于技术限制从第二输入信号中扣除第一输入信号不能完全扣除环境红外线成分对应的能量,导致第一强度值还是会因包含少量的环境红外线成分对应的能量而影响检测精度。另外,接近传感器的跳变约为接近值的1%,通过第一强度值和第二强度值做差的方式,可以减小接近值,使接近传感器的跳变更加稳定,进而,提高检测精度。
本实施例提供的一种接近传感器的控制方法,通过输出预设时序和占空比的驱动信号至接近传感器的发射端和接收端,控制所述发射端周期性地进入休眠模式、第一关闭模式、开启模式和第二关闭模式;在第一关闭模式对应的接收端的采样区间内,控制所述接收端中的模数转换器存储第一输入信号;在开启模式对应的接收端的采样区间内,控制所述模数转换器由接收的第二输入信号中清除所述第一输入信号,输出清除处理后的第二输入信号对应的第一强度值;在第二关闭模式对应的所述接收端的采样区间内,控制所述模数转换器由接收的第三输入信号中清除所述第一输入信号,输出清除处理后的第三输入信号对应的第二强度值;基于所述第一强度值和第二强度值进行接近或远离状态判断。通过在模数转换器中扣除环境光中的红外线成分,可以消除外界环境光中红外光的影响,提高检测精度,避免强光下靠近不熄屏的问题;同时,还可以避免灯箱环境下的闪屏问题,实现正常的亮屏和熄屏功能。
图8是本申请实施例提供的一种接近传感器的控制装置的结构框图。该装置由软件和硬件中至少一项实现,一般集成在移动终端中。如图8所示,该装置可以包括:驱动信号输出模块810、输入信号存储模块820和第一信号修正模块830。
驱动信号输出模块810,设置为输出预设时序和占空比的驱动信号至接近传感器的发射端和接收端,控制所述发射端周期性地进入休眠模式、关闭模式和开启模式,以及,控制所述接收端周期性地进入休眠模式和采样模式;
输入信号存储模块820,设置为在所述关闭模式对应的所述接收端的采样区间内,控制所述接收端中的模数转换器存储第一输入信号;
第一信号修正模块830,设置为在所述开启模式对应的所述接收端的采样区间内,控制所述模数转换器由接收的第二输入信号中清除所述第一输入信号,并输出清除处理后的第二输入信号对应的第一强度值,以基于所述第一强度值进行接近或远离状态判断。
本实施例提供的一种接近传感器的控制装置提供一种接近传感器的控制装置,通过改变接近传感器接收端及发射端的控制方式,在模数转换器内扣除环境光中的红外线成分,可以消除外界环境光中红外光的影响,提高检测精度,避免强光下靠近不熄屏的问题;同时,还可以避免灯箱环境下的闪屏问题,实现正常的亮屏和熄屏功能。
在一实施例中,还包括:第二信号修正模块840和状态判定模块850。
第二信号修正模块840,设置为若关闭模式包括第一关闭模式和第二关闭模式,则在所述第二关闭模式对应的所述接收端的采样区间内,控制所述模数转换器由接收的第三输入信号中清除所述第一输入信号,输出清除处理后的第三输入信号对应的第二强度值;
状态判定模块850,设置为基于所述第一强度值和第二强度值进行接近或远离状态判断。
在一实施例中,输入信号存储模块820还设置为通过以下操作,在所述关闭模式对应的所述接收端的采样区间内,控制所述接收端中的模数转换器存储第一输入信号:
在所述关闭模式对应的所述接收端的采样区间内,控制所述接收端获取环境红外线,作为第一输入信号,并输出所述第一输入信号至所述接收端中的模数转换器;
控制所述模数转换器将所述第一输入信号存储在预设的工作单元;
在所述关闭模式向所述开启模式切换时,记录所述第一输入信号占用的所述预设的工作单元的数量作为基准值,并清除已被所述第一输入信号占用的预设的工作单元内的数据。
在一实施例中,第一信号修正模块830还设置为通过以下操作,在所述开启模式对应的所述接收端的采样区间内,控制所述模数转换器由接收的第二输入信号中清除所述第一输入信号,并输出清除处理后的第二输入信号对应的第一强度值:
在所述开启模式对应的所述接收端的采样区间内,控制所述接收端获取发射端发射的经遮挡物反射的红外线及环境红外线,作为第二输入信号,并输出所述第二输入信号至所述模数转换器;
控制所述模数转换器向所述预设的工作单元内存入所述第二输入信号;
在所述第二输入信号占用的所述预设的工作单元的数量与所述基准值相等时,清除已被所述第二输入信号占用的预设的工作单元内的数据。
其中,在所述关闭模式包括第一关闭模式和第二关闭模式时,上述控制所述发射端周期性地进入休眠模式、关闭模式和开启模式,包括:
控制所述发射端周期性地进入休眠模式、第一关闭模式、开启模式和第二关闭模式;
以及,所述输入信号存储模块设置为通过以下操作在所述关闭模式对应的所述接收端的采样区间内,控制所述接收端中的模数转换器存储第一输入信号:
在所述第一关闭模式对应的采样区间内,控制所述接收端中的模数转换器存储第一输入信号。
其中,还可以在输出清除处理后的第二输入信号对应的第一强度值之后,清除已被所述清除处理后的第二输入信号占用的预设的工作单元内的数据。
在一实施例中,第一信号修正模块还设置为,在输出清除处理后的第二输入信号对应的第一强度值之后,清除已被所述清除处理后的第二输入信号占用的预设的工作单元内的数据;第二信号修正模块840设置为通过以下操作,在所述第二关闭模式对应的所述接收端的采样区间内,控制所述模数转换器由接收的第三输入信号中清除所述第一输入信号:
在所述第二关闭模式对应的所述接收端的采样区间内,控制所述接收端获取环境红外线,作为第三输入信号,并输出所述第三输入信号至所述模数转换器;
控制所述模数转换器向预设的工作单元内存入所述第三输入信号;
在所述第三输入信号占用的所述预设的工作单元的数量与所述第一输入信号占用的设定工作单元的数量相等时,清除已被所述第三输入信号占用的所述预设的工作单元内的数据。
在一实施例中,状态判定模块850还设置为通过以下操作,基于所述第一强度值和第二强度值进行接近或远离状态判断:
计算所述第一强度值与第二强度值差值的绝对值,得到接近值;
若所述接近值大于设定的第一阈值,则判定处于接近状态;
若所述接近值小于设定的第二阈值,则判定处于远离状态。
在一实施例中,所述第一阈值为预先设定的屏幕控制针对强光下的接近门限值;所述第二阈值为预先设定的屏幕控制针对强光下的远离门限值。
在一实施例中,第一输入信号为所述接收端在所述发射端的LED灯处于关闭模式时,获取的环境红外线;第二输入信号为所述接收端在所述发射端的LED灯处于开启模式时,获取的所述发射端发射的经遮挡物反射的红外线及环境红外线。本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时设置为执行一种接近传感器的控制方法,该方法包括:
输出预设时序和占空比的驱动信号至接近传感器的发射端和接收端,控制所述发射端周期性地进入休眠模式、关闭模式和开启模式,以及,控制所述接收端周期性地进入休眠模式和采样模式;
在所述关闭模式对应的所述接收端的采样区间内,控制所述接收端中的模数转换器存储第一输入信号;
在所述开启模式对应的所述接收端的采样区间内,控制所述模数转换器由接收的第二输入信号中清除所述第一输入信号,输出清除处理后的第二输入信号对应的第一强度值,以基 于所述第一强度值进行接近或远离状态判断。
存储介质——任何的各种类型的存储器设备或存储设备。术语“存储介质”旨在包括:安装介质,例如CD-ROM、软盘或磁带装置;计算机系统存储器或随机存取存储器,诸如DRAM、DDR RAM、SRAM、EDO RAM,兰巴斯(Rambus)RAM等;非易失性存储器,诸如闪存、磁介质(例如硬盘或光存储);寄存器或其它相似类型的存储器元件等。存储介质可以还包括其它类型的存储器或其组合。另外,存储介质可以位于程序在其中被执行的第一计算机系统中,或者可以位于不同的第二计算机系统中,第二计算机系统通过网络(诸如因特网)连接到第一计算机系统。第二计算机系统可以提供程序指令给第一计算机用于执行。术语“存储介质”可以包括可以驻留在不同位置中(例如在通过网络连接的不同计算机系统中)的两个或更多存储介质。存储介质可以存储可由一个或多个处理器执行的程序指令(例如具体实现为计算机程序)。
当然,本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的接近传感器的控制操作,还可以执行本申请任意实施例所提供的接近传感器的控制方法中的相关操作。
本申请实施例提供了一种移动终端,该移动终端中可集成本申请实施例提供的接近传感器的控制装置。图9为本申请实施例提供的一种移动终端的结构示意图。如图9所示,该移动终端可以包括:壳体(图中未示出)、触摸屏(图中未示出)、触摸按键(图中未示出)、存储器901、中央处理器(Central Processing Unit,CPU)902(又称处理器,以下简称CPU)、电路板(图中未示出)和电源电路(图中未示出)。所述电路板安置在所述壳体围成的空间内部;所述CPU902和所述存储器901设置在所述电路板上;所述电源电路,设置为为所述电子设备的各个电路或器件供电;所述存储器901,设置为存储可执行程序代码;所述CPU902通过读取所述存储器901中存储的可执行程序代码来运行与所述可执行程序代码对应的计算机程序,以实现以下步骤:
输出预设时序和占空比的驱动信号至接近传感器的发射端和接收端,控制所述发射端周期性地进入休眠模式、关闭模式和开启模式,以及,控制所述接收端周期性地进入休眠模式和采样模式;
在所述关闭模式对应的所述接收端的采样区间内,控制所述接收端中的模数转换器存储第一输入信号;
在所述开启模式对应的所述接收端的采样区间内,控制所述模数转换器由接收的第二输入信号中清除所述第一输入信号,输出清除处理后的第二输入信号对应的第一强度值,以基于所述第一强度值进行接近或远离状态判断。
所述移动终端还包括:外设接口903、射频(Radio Frequency,RF)电路905、音频电路906、扬声器911、电源管理芯片908、输入/输出(I/O)子系统909、触摸屏912、其他输入/控制设备910以及外部端口904,这些部件通过一个或多个通信总线或信号线907来通信。
应该理解的是,图示移动终端900仅仅是移动终端的一个范例,并且移动终端900可以 具有比图中所示出的更多的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置。图中所示出的各种部件可以在包括一个或多个信号处理和专用集成电路中至少一项在内的硬件、软件、或硬件和软件的组合中实现。
下面就本实施例提供的用于接近传感器控制的移动终端进行详细的描述,该移动终端以手机为例。
存储器901,所述存储器901可以被CPU902、外设接口903等访问,所述存储器901可以包括高速随机存取存储器,还可以包括非易失性存储器,例如一个或多个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
外设接口903,所述外设接口903可以将设备的输入和输出外设连接到CPU902和存储器901。
I/O子系统909,所述I/O子系统909可以将设备上的输入输出外设,例如触摸屏912和其他输入/控制设备910,连接到外设接口903。I/O子系统909可以包括显示控制器9091和用于控制其他输入/控制设备910的一个或多个输入控制器9092。其中,一个或多个输入控制器9092从其他输入/控制设备910接收电信号或者向其他输入/控制设备910发送电信号,其他输入/控制设备910可以包括物理按钮(按压按钮、摇臂按钮等)、拨号盘、滑动开关、操纵杆、点击滚轮。值得说明的是,输入控制器9092可以与以下任一个连接:键盘、红外端口、USB接口以及诸如鼠标的指示设备。
触摸屏912,所述触摸屏912是用户电子设备与用户之间的输入接口和输出接口,将可视输出显示给用户,可视输出可以包括图形、文本、图标、视频等。
I/O子系统909中的显示控制器9091从触摸屏912接收电信号或者向触摸屏912发送电信号。触摸屏912检测触摸屏上的接触,显示控制器9091将检测到的接触转换为与显示在触摸屏912上的用户界面对象的交互,即实现人机交互,显示在触摸屏912上的用户界面对象可以是运行游戏的图标、联网到相应网络的图标等。值得说明的是,设备还可以包括光鼠,光鼠是不显示可视输出的触摸敏感表面,或者是由触摸屏形成的触摸敏感表面的延伸。
RF电路905,主要设置为建立手机与无线网络(即网络侧)的通信,实现手机与无线网络的数据接收和发送。例如收发短信息、电子邮件等。具体地,RF电路905接收并发送RF信号,RF信号也称为电磁信号,RF电路905将电信号转换为电磁信号或将电磁信号转换为电信号,并且通过该电磁信号与通信网络以及其他设备进行通信。RF电路905可以包括用于执行这些功能的已知电路,其包括但不限于天线系统、RF收发机、一个或多个放大器、调谐器、一个或多个振荡器、数字信号处理器、编译码器(COder-DECoder,CODEC)芯片组、用户标识模块(Subscriber Identity Module,SIM)等等。
音频电路906,设置为从外设接口903接收音频数据,将该音频数据转换为电信号,并且将该电信号发送给扬声器911。
扬声器911,设置为将手机通过RF电路905从无线网络接收的语音信号,还原为声音并向用户播放该声音。
电源管理芯片908,设置为为CPU902、I/O子系统及外设接口所连接的硬件进行供电及电源管理。
本申请实施例提供的移动终端,可以最大限度的从模拟端消除外界环境光中红外光的影响,提高检测精度,避免强光下靠近不熄屏的问题;同时,还可以避免灯箱环境下的闪屏的情况发生,实现正常的亮屏和熄屏功能。
上述实施例中提供的接近传感器的控制装置、存储介质及移动终端可执行本申请任意实施例所提供的接近传感器的控制方法,具备执行该方法相应的功能模块和有益效果。未在上述实施例中详尽描述的技术细节,可参见本申请任意实施例所提供的接近传感器的控制方法。

Claims (20)

  1. 一种接近传感器的控制方法,包括:
    输出预设时序和占空比的驱动信号至接近传感器的发射端和接收端,控制所述发射端周期性地进入休眠模式、关闭模式和开启模式,以及,控制所述接收端周期性地进入休眠模式和采样模式;
    在所述关闭模式对应的所述接收端的采样区间内,控制所述接收端中的模数转换器存储第一输入信号;
    在所述开启模式对应的所述接收端的采样区间内,控制所述模数转换器由接收的第二输入信号中清除所述第一输入信号,并输出清除处理后的第二输入信号对应的第一强度值,以基于所述第一强度值进行接近或远离状态判断。
  2. 根据权利要求1所述的方法,其中,在所述关闭模式对应的所述接收端的采样区间内,控制所述接收端中的模数转换器存储第一输入信号,包括:
    在所述关闭模式对应的所述接收端的采样区间内,控制所述接收端获取环境红外线,作为第一输入信号,并输出所述第一输入信号至所述接收端中的模数转换器;
    控制所述模数转换器将所述第一输入信号存储在预设的工作单元;
    在所述关闭模式向所述开启模式切换时,记录所述第一输入信号占用的所述预设的工作单元的数量作为基准值,并清除已被所述第一输入信号占用的预设的工作单元内的数据。
  3. 根据权利要求2所述的方法,其中,在所述开启模式对应的所述接收端的采样区间内,控制所述模数转换器由接收的第二输入信号中清除所述第一输入信号,包括:
    在所述开启模式对应的所述接收端的采样区间内,控制所述接收端获取发射端发射的经遮挡物反射的红外线及环境红外线,作为第二输入信号,并输出所述第二输入信号至所述模数转换器;
    控制所述模数转换器向所述预设的工作单元内存入所述第二输入信号;
    在所述第二输入信号占用的所述预设的工作单元的数量与所述基准值相等时,清除已被所述第二输入信号占用的预设的工作单元内的数据。
  4. 根据权利要求1至3中任一所述的方法,其中,所述关闭模式包括第一关闭模式和第二关闭模式;
    控制所述发射端周期性地进入休眠模式、关闭模式和开启模式,包括:
    控制所述发射端周期性地进入休眠模式、第一关闭模式、开启模式和第二关闭模式;
    以及,在所述关闭模式对应的所述接收端的采样区间内,控制所述接收端中的模数转换器存储第一输入信号,包括:
    在所述第一关闭模式对应的采样区间内,控制所述接收端中的模数转换器存储第一输入信号。
  5. 根据权利要求4所述的方法,其中,在输出清除处理后的第二输入信号对应的第一强度值之后,还包括:
    在所述第二关闭模式对应的所述接收端的采样区间内,控制所述模数转换器由接收的第 三输入信号中清除所述第一输入信号,输出清除处理后的第三输入信号对应的第二强度值;
    基于所述第一强度值和第二强度值进行接近或远离状态判断。
  6. 根据权利要求5所述的方法,其中,在输出清除处理后的第二输入信号对应的第一强度值之后,还包括:
    清除已被所述清除处理后的第二输入信号占用的预设的工作单元内的数据;
    以及,在所述第二关闭模式对应的所述接收端的采样区间内,控制所述模数转换器由接收的第三输入信号中清除所述第一输入信号,包括:
    在所述第二关闭模式对应的所述接收端的采样区间内,控制所述接收端获取环境红外线,作为第三输入信号,并输出所述第三输入信号至所述模数转换器;
    控制所述模数转换器向预设的工作单元内存入所述第三输入信号;
    在所述第三输入信号占用的所述预设的工作单元的数量与所述第一输入信号占用的设定工作单元的数量相等时,清除已被所述第三输入信号占用的所述预设的工作单元内的数据。
  7. 根据权利要求5或6所述的方法,其中,基于所述第一强度值和第二强度值进行接近或远离状态判断,包括:
    计算所述第一强度值与所述第二强度值差值的绝对值,得到接近值;
    若所述接近值大于设定的第一阈值,则判定处于接近状态;
    若所述接近值小于设定的第二阈值,则判定处于远离状态。
  8. 根据权利要求7所述的方法,其中,所述第一阈值为预先设定的屏幕控制针对强光下的接近门限值;所述第二阈值为预先设定的屏幕控制针对强光下的远离门限值。
  9. 根据权利要求1-8中任一项所述的方法,其中,所述第一输入信号为所述接收端在所述发射端的LED灯处于关闭模式时,获取的环境红外线;所述第二输入信号为所述接收端在所述发射端的LED灯处于开启模式时,获取的所述发射端发射的经遮挡物反射的红外线及环境红外线。
  10. 一种接近传感器的控制装置,包括:
    驱动信号输出模块,设置为输出预设时序和占空比的驱动信号至接近传感器的发射端和接收端,控制所述发射端周期性地进入休眠模式、关闭模式和开启模式,以及,控制所述接收端周期性地进入休眠模式和采样模式;
    输入信号存储模块,设置为在所述关闭模式对应的所述接收端的采样区间内,控制所述接收端中的模数转换器存储第一输入信号;
    第一信号修正模块,设置为在所述开启模式对应的所述接收端的采样区间内,控制所述模数转换器由接收的第二输入信号中清除所述第一输入信号,并输出清除处理后的第二输入信号对应的第一强度值,以基于所述第一强度值进行接近或远离状态判断。
  11. 根据权利要求10所述的控制装置,其中,还包括:
    第二信号修正模块,设置为若关闭模式包括第一关闭模式和第二关闭模式,则在所述第二关闭模式对应的所述接收端的采样区间内,控制所述模数转换器由接收的第三输入信号中 清除所述第一输入信号,输出清除处理后的第三输入信号对应的第二强度值;
    状态判定模块,设置为基于所述第一强度值和第二强度值进行接近或远离状态判断。
  12. 根据权利要求10所述的控制装置,其中,所述输入信号存储模块还设置为通过以下操作,在所述关闭模式对应的所述接收端的采样区间内,控制所述接收端中的模数转换器存储第一输入信号:
    在所述关闭模式对应的所述接收端的采样区间内,控制所述接收端获取环境红外线,作为第一输入信号,并输出所述第一输入信号至所述接收端中的模数转换器;
    控制所述模数转换器将所述第一输入信号存储在预设的工作单元;
    在所述关闭模式向所述开启模式切换时,记录所述第一输入信号占用的所述预设的工作单元的数量作为基准值,并清除已被所述第一输入信号占用的预设的工作单元内的数据。
  13. 根据权利要求12所述的控制装置,其中,第一信号修正模块设置为通过以下操作,在所述开启模式对应的所述接收端的采样区间内,控制所述模数转换器由接收的第二输入信号中清除所述第一输入信号,并输出清除处理后的第二输入信号对应的第一强度值:
    在所述开启模式对应的所述接收端的采样区间内,控制所述接收端获取发射端发射的经遮挡物反射的红外线及环境红外线,作为第二输入信号,并输出所述第二输入信号至所述模数转换器;
    控制所述模数转换器向所述预设的工作单元内存入所述第二输入信号;
    在所述第二输入信号占用的所述预设的工作单元的数量与所述基准值相等时,清除已被所述第二输入信号占用的预设的工作单元内的数据。
  14. 根据权利要求10、12或13所述的控制装置,其中,所述关闭模式包括第一关闭模式和第二关闭模式,所述驱动信号输出模块设置为通过以下操作来控制所述发射端周期性地进入休眠模式、关闭模式和开启模式:
    控制所述发射端周期性地进入休眠模式、第一关闭模式、开启模式和第二关闭模式;
    以及,所述输入信号存储模块设置为通过以下操作在所述关闭模式对应的所述接收端的采样区间内,控制所述接收端中的模数转换器存储第一输入信号:
    在所述第一关闭模式对应的采样区间内,控制所述接收端中的模数转换器存储第一输入信号。
  15. 根据权利要求11所述的控制装置,其中,第一信号修正模块还设置为,在输出清除处理后的第二输入信号对应的第一强度值之后,清除已被所述清除处理后的第二输入信号占用的预设的工作单元内的数据;
    所述第二信号修正模块设置为通过以下操作,在所述第二关闭模式对应的所述接收端的采样区间内,控制所述模数转换器由接收的第三输入信号中清除所述第一输入信号:
    在所述第二关闭模式对应的所述接收端的采样区间内,控制所述接收端获取环境红外线,作为第三输入信号,并输出所述第三输入信号至所述模数转换器;
    控制所述模数转换器向预设的工作单元内存入所述第三输入信号;
    在所述第三输入信号占用的所述预设的工作单元的数量与所述第一输入信号占用的设定工作单元的数量相等时,清除已被所述第三输入信号占用的所述预设的工作单元内的数据。
  16. 根据权利要求11所述的控制装置,其中,状态判定模块还设置为通过以下操作,基于所述第一强度值和第二强度值进行接近或远离状态判断:
    计算所述第一强度值与所述第二强度值差值的绝对值,得到接近值;
    若所述接近值大于设定的第一阈值,则判定处于接近状态;
    若所述接近值小于设定的第二阈值,则判定处于远离状态。
  17. 根据权利要求16所述的控制装置,其中,所述第一阈值为预先设定的屏幕控制针对强光下的接近门限值;所述第二阈值为预先设定的屏幕控制针对强光下的远离门限值。
  18. 根据权利要求10-17中任一项所述的控制装置,其中,第一输入信号为所述接收端在所述发射端的LED灯处于关闭模式时,获取的环境红外线;第二输入信号为所述接收端在所述发射端的LED灯处于开启模式时,获取的所述发射端发射的经遮挡物反射的红外线及环境红外线。
  19. 一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如权利要求1至9中任一所述的接近传感器的控制方法。
  20. 一种移动终端,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器设置为在执行所述计算机程序时实现如权利要求1至9中任一所述的接近传感器的控制方法。
PCT/CN2018/091081 2017-07-18 2018-06-13 接近传感器的控制方法及装置、存储介质及移动终端 WO2019015417A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18835043.3A EP3644164A4 (en) 2017-07-18 2018-06-13 PROXIMITY SENSOR CONTROL METHOD AND DEVICE, STORAGE MEDIUM AND MOBILE DEVICE
US16/726,664 US11159672B2 (en) 2017-07-18 2019-12-24 Method for controlling proximity sensor, device, and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710585063.1A CN107422876B (zh) 2017-07-18 2017-07-18 一种接近传感器的控制方法、装置、存储介质及移动终端
CN201710585063.1 2017-07-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/726,664 Continuation US11159672B2 (en) 2017-07-18 2019-12-24 Method for controlling proximity sensor, device, and mobile terminal

Publications (1)

Publication Number Publication Date
WO2019015417A1 true WO2019015417A1 (zh) 2019-01-24

Family

ID=60430815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091081 WO2019015417A1 (zh) 2017-07-18 2018-06-13 接近传感器的控制方法及装置、存储介质及移动终端

Country Status (4)

Country Link
US (1) US11159672B2 (zh)
EP (1) EP3644164A4 (zh)
CN (1) CN107422876B (zh)
WO (1) WO2019015417A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107257414B (zh) * 2017-07-18 2019-07-23 Oppo广东移动通信有限公司 一种屏幕状态控制方法、装置、存储介质及移动终端
CN107422876B (zh) * 2017-07-18 2019-06-28 Oppo广东移动通信有限公司 一种接近传感器的控制方法、装置、存储介质及移动终端
CN108322608B (zh) 2018-01-30 2019-11-19 维沃移动通信有限公司 一种屏幕亮灭控制方法、移动终端
CN108509088B (zh) * 2018-03-09 2020-10-16 Oppo广东移动通信有限公司 电子装置及其制造方法
CN108614651B (zh) * 2018-04-19 2020-06-16 维沃移动通信有限公司 一种移动终端和红外检测方法
CN109043998A (zh) * 2018-07-11 2018-12-21 广州视源电子科技股份有限公司 一种亮屏控制系统、方法、存储介质及智能镜
CN111243553B (zh) * 2018-11-29 2021-06-08 北京小米移动软件有限公司 终端屏幕的控制方法、装置和存储介质
US11882637B2 (en) * 2021-01-28 2024-01-23 Sensortek Technology Corp. Operation method of proximity sensor
JP2023017540A (ja) * 2021-07-26 2023-02-07 セイコーグループ株式会社 センサデータ収集装置、センサデータ収集システム、及びセンサデータ収集方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102411425A (zh) * 2011-07-22 2012-04-11 华为终端有限公司 控制触摸屏功能的方法和装置
US20120129579A1 (en) * 2010-11-19 2012-05-24 Apple Inc. Proximity sensor arrangement in a mobile device
CN103178847A (zh) * 2011-12-21 2013-06-26 瑞昱半导体股份有限公司 连续近似寄存式模拟数字转换器及其方法
CN106357922A (zh) * 2016-10-12 2017-01-25 广东欧珀移动通信有限公司 终端设备的状态监测方法、装置及终端设备
CN107422876A (zh) * 2017-07-18 2017-12-01 广东欧珀移动通信有限公司 一种接近传感器的控制方法、装置、存储介质及移动终端

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7907061B2 (en) * 2007-11-14 2011-03-15 Intersil Americas Inc. Proximity sensors and methods for sensing proximity
KR101506488B1 (ko) * 2008-04-04 2015-03-27 엘지전자 주식회사 근접센서를 이용하는 휴대 단말기 및 그 제어방법
US8097853B2 (en) * 2009-11-17 2012-01-17 Dialog Semiconductor Gmbh Infrared photocurrent front-end ADC for rain-sensing system with ambient light compensation
BR112012025985A2 (pt) * 2010-04-13 2016-08-02 Koninkl Philips Electronics Nv método, sistema médico e aparelho
US8872688B2 (en) 2010-07-13 2014-10-28 University Of Washington Through Its Center For Commercialization Methods and systems for compressed sensing analog to digital conversion
CN102265252B (zh) * 2011-06-24 2013-04-24 华为终端有限公司 一种调整红外接近传感器的感知阈值的方法和装置
WO2011150891A2 (zh) * 2011-06-24 2011-12-08 华为终端有限公司 一种终端确定物体接近的方法及装置
DE102012015255A1 (de) * 2012-08-01 2014-02-06 Volkswagen Aktiengesellschaft Anzeige- und Bedieneinrichtung und Verfahren zur Ansteuerung einer Anzeige- und Bedieneinrichtung
GB2517152A (en) * 2013-08-12 2015-02-18 Gde Technology Ltd Position sensor
CN106303021A (zh) 2016-08-12 2017-01-04 广东欧珀移动通信有限公司 屏幕工作状态控制方法及装置
CN106506794A (zh) * 2016-09-05 2017-03-15 广东欧珀移动通信有限公司 终端设备的状态监测方法、装置及终端设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120129579A1 (en) * 2010-11-19 2012-05-24 Apple Inc. Proximity sensor arrangement in a mobile device
CN102411425A (zh) * 2011-07-22 2012-04-11 华为终端有限公司 控制触摸屏功能的方法和装置
CN103178847A (zh) * 2011-12-21 2013-06-26 瑞昱半导体股份有限公司 连续近似寄存式模拟数字转换器及其方法
CN106357922A (zh) * 2016-10-12 2017-01-25 广东欧珀移动通信有限公司 终端设备的状态监测方法、装置及终端设备
CN107422876A (zh) * 2017-07-18 2017-12-01 广东欧珀移动通信有限公司 一种接近传感器的控制方法、装置、存储介质及移动终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3644164A4 *

Also Published As

Publication number Publication date
EP3644164A4 (en) 2020-07-01
US20200137215A1 (en) 2020-04-30
CN107422876B (zh) 2019-06-28
US11159672B2 (en) 2021-10-26
CN107422876A (zh) 2017-12-01
EP3644164A1 (en) 2020-04-29

Similar Documents

Publication Publication Date Title
WO2019015417A1 (zh) 接近传感器的控制方法及装置、存储介质及移动终端
CN107257415B (zh) 一种接近传感器的控制方法、装置、存储介质及移动终端
EP3435199B1 (en) Method, mobile terminal and non-transitory computer-readable storage medium for adjusting scanning frequency of touch screen
CN107943345B (zh) 接近传感器的校准方法、装置、存储介质和电子设备
CN106303023B (zh) 屏幕状态调节方法及装置
CN108510963B (zh) 屏幕亮度的调整方法、装置、存储介质及智能终端
CN107942306B (zh) 接近传感器的校准方法、装置、存储介质和电子设备
US8693877B2 (en) Integrated infrared receiver and emitter for multiple functionalities
US20140368423A1 (en) Method and system for low power gesture recognition for waking up mobile devices
CN107527048B (zh) 指纹识别方法、装置、存储介质及移动终端
CN107911554B (zh) 电子装置及电子装置的控制方法
CN106850983B (zh) 一种熄屏控制方法、装置、终端和存储介质
CN109240551B (zh) 使用手势控制电子装置的方法及相关产品
US20140354567A1 (en) Apparatus and method for operating proximity sensing function in electronic device having touch screen
CN106791120B (zh) 移动终端熄屏的控制方法和装置
WO2019024644A1 (zh) 接近检测方法、装置、存储介质及电子设备
WO2018120240A1 (zh) 一种调整电磁波辐射参数的装置、方法以及存储介质
EP3654624B1 (en) Screen state control method and device, storage medium, and mobile terminal
CN103823626A (zh) 显示内容调节方法、装置和电子设备
EP2999129A1 (en) Method for gestures operating smart wearable device and smart wearable device
CN109343066B (zh) 接近传感器的控制方法、装置、存储介质及移动终端
CN106161728B (zh) 一种传感装置、电子设备及检测方法
CN103631502A (zh) 显示内容调节方法、装置和电子设备
WO2019201130A1 (zh) 一种移动终端和红外检测方法
CN107404575B (zh) 一种优化屏幕控制的方法、装置、存储介质及移动终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018835043

Country of ref document: EP

Effective date: 20200122