WO2019015250A1 - 一种上行控制信道设计方法和装置、存储介质 - Google Patents

一种上行控制信道设计方法和装置、存储介质 Download PDF

Info

Publication number
WO2019015250A1
WO2019015250A1 PCT/CN2017/117592 CN2017117592W WO2019015250A1 WO 2019015250 A1 WO2019015250 A1 WO 2019015250A1 CN 2017117592 W CN2017117592 W CN 2017117592W WO 2019015250 A1 WO2019015250 A1 WO 2019015250A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink control
pucch
control information
users
control channel
Prior art date
Application number
PCT/CN2017/117592
Other languages
English (en)
French (fr)
Inventor
焦慧颖
Original Assignee
中国信息通信研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国信息通信研究院 filed Critical 中国信息通信研究院
Publication of WO2019015250A1 publication Critical patent/WO2019015250A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to an uplink control channel design method and apparatus, and a storage medium.
  • LTE defines a variety of different uplink control channel formats (PUCCH formats), and supports a large range of uplink control channel load sizes.
  • PUCCH format 1/1a/1b supports 1-bit or 2-bit uplink ACK/NACK information
  • PUCCH format 2 /2a/2b supports uplink 20-bit encoded CSI information.
  • the 5G system adopts a flexible frame structure.
  • the time slot can be 7 symbols or 14 symbols, and the transmission of uplink data (including uplink data information and uplink control information) in each time slot is variable, and may be full uplink.
  • the data may also be uplink data + downlink data, and the OFDM (Orthogonal Frequency Division Multiplexing) symbol occupied by the corresponding uplink control channel is variable, and the number of supported uplink control information bits is also variable. . If the 5G (5th generation mobile communication) system is similar to the LTE defined many uplink control channels, many different uplink control channel formats will appear.
  • Embodiments of the present invention provide a method, an apparatus, and a storage medium for designing an uplink control channel.
  • An uplink control channel design method is applied to a fifth generation mobile communication system, and the method includes:
  • the uplink control information of the user is encoded, scrambled, and modulated, and the coded modulated uplink control information is mapped to all OFDM symbols used to carry the uplink control information.
  • An uplink control channel design device is applied to a fifth generation mobile communication system, and the device includes:
  • One or more memories are One or more memories
  • One or more processors among them,
  • the one or more memories storing one or more instruction modules configured to be executed by the one or more processors;
  • the one or more instruction modules include:
  • a multiplexing unit configured to multiplex a plurality of users on each OFDM symbol used to carry uplink control information based on a frequency reuse principle
  • a processing unit configured to encode, scramble, and modulate the uplink control information of the user for each of the multiple users, and map the coded uplink control information to the uplink control information for carrying the uplink control information. All OFDM symbols.
  • a non-volatile storage medium having stored thereon computer readable instructions that cause at least one processor to perform the methods described above.
  • FIG. 1 is a schematic diagram of an uplink control information processing process according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a comb carrier occupied by a PUCCH of a user on a PRB according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a principle of using a frequency hopping on a comb carrier occupied by a PUCCH of a user in a second embodiment of the present invention
  • FIG. 4 is a schematic diagram of a principle of using a slot-based uplink frequency hopping in a PUCCH according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a principle of using a slot-based uplink frequency hopping in a PUCCH according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic diagram of a principle of using a slot-based uplink frequency hopping in a third PUCCH according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of an SFBC transmission mechanism according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for designing an uplink control channel according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing the internal structure of a user terminal according to an embodiment of the present invention.
  • FIG. 10 is a structural block diagram of an apparatus for designing an uplink control channel according to an embodiment of the present invention.
  • the present invention employs the following design principles:
  • the 5G system adopts a flexible frame structure, and the time of the uplink transmission in the uplink time slot is changed.
  • the frequency multiplexing mode is adopted in the embodiment of the present invention. Multiple users are multiplexed on each OFDM symbol carrying uplink control information, that is, PUCCHs of multiple users share the same PRBs.
  • This design principle makes the PUCCH format independent of the number of upstream OFDM symbols.
  • the uplink control information of the user needs to be encoded, scrambled, and modulated, and the coded bit mapping band obtained by the coded modulation is used to carry the uplink. All OFDM symbols of the control information are then transmitted after uplink DFT-s-OFDM modulation processing.
  • FIG. 1 is a schematic diagram of an uplink control information processing process according to an embodiment of the present invention. It is assumed that three PUCCHs are multiplexed into one PRB in FIG. 1, the length of the PUCCH is 14 OFDM symbols, and the frequency domain is 12 subcarriers. Wherein, 0, 3, 6, 9 carrier transmits user 1 data, 1, 4, 7, 10 transmits user 2 data, 2, 5, 8, 11 carrier transmits user 3 data, then for each user Said that the processing of its uplink control information is as follows:
  • Step 1 Encoding the uplink control information of the user to obtain b (M bit );
  • Step 2 scrambling b (M bit )
  • Step 3 right Modulated to obtain d (M bit / 2), mapped by d (M bit / 2) to obtain coded modulation for carrying control information for the uplink carrier on the uplink control information 12 OFDM symbols, additional symbols 2 Used to transmit an uplink pilot;
  • Step 4 Perform uplink DFT-s-OFDM modulation on the information of each OFDM symbol used for carrying the uplink control information by using DFT and IFFT.
  • the PUCCH is transmitted on 14 symbols. If a larger payload size is required, the PUCCHs can be extended to different PRBs in the frequency domain.
  • the uplink control information can be transmitted according to the design principle, thereby reducing the number of PUCCH formats.
  • each user's PUCCH occupies different comb subcarriers on the OFDM symbol.
  • the PUCCH occupies only one comb subcarrier of the OFDM symbol different from other users, and the PUCCH is used for carrying
  • the comb subcarriers occupied by all OFDM symbols of the uplink control information form a comb carrier, that is, different comb subcarriers are used on the PRB to multiplex PUCCHs of different users (one PRB may be dedicated to a single user, or may be complex With 2 users or 4 users, etc., the PUCCHs of different users are allocated to different comb carriers of the same PRBs.
  • FIG. 2 is a schematic diagram of a comb carrier occupied by a PUCCH of a user on a PRB according to an embodiment of the present invention.
  • one slot includes 7 symbols, and the PUCCH occupies 4 symbols, as shown in FIG. 2
  • the uplink control information of one of the users is transmitted on every three carriers, and the formed comb carrier is the comb carrier occupied by the PUCCH of the user.
  • frequency hopping may be adopted on a comb carrier occupied by PUCCHs of different users.
  • FIG. 3 is a schematic diagram of a principle of using a frequency hopping on a comb carrier occupied by a PUCCH of a user in a PRB according to Embodiment 2 of the present invention.
  • one slot has 7 symbols, and the PUCCH occupies 4
  • the symbol as shown in FIG. 3, when PUCCH of multiple users is multiplexed onto the PRB, uplink control information of one of the users is sent on every three carriers, and the comb carrier occupied by the PUCCH of the user adopts a symbol based
  • the frequency hopping therefore, the different symbols on each branch of its comb carrier occupy different frequency domains.
  • the PUCCH adopts a slot-based uplink frequency hopping.
  • the PUCCH adopts slot-based uplink frequency hopping, and performs transmission on both sides of the uplink frequency band, and the intermediate position of the uplink frequency band is used for transmitting uplink data to obtain frequency diversity gain, thereby achieving the purpose of expanding uplink coverage.
  • FIG. 4 is a schematic diagram of a principle of using a slot-based uplink frequency hopping in a PUCCH according to an embodiment of the present invention.
  • the symbol length of the PUCCH is 4, wherein the first 2 symbols and the last 2 symbols are respectively It belongs to the first time slot and the second time slot.
  • the first 2 symbols and the last 2 symbols of the PUCCH are located in different transmission band resources.
  • FIG. 5 is a schematic diagram of a principle of using a slot-based uplink frequency hopping in a PUCCH according to Embodiment 2 of the present invention.
  • the symbol length of the PUCCH is 7, wherein the first 3 symbols and the last 4 symbols are respectively It belongs to the first time slot and the second time slot.
  • the first 3 symbols and the last 4 symbols of the PUCCH are located in different frequency band resources.
  • FIG. 6 is a schematic diagram of the principle of using the uplink frequency hopping in the third PUCCH according to the embodiment of the present invention.
  • the symbol length of the PUCCH is 14, wherein the first 7 symbols and the last 7 symbols belong to the first one.
  • the slot and the second slot by employing slot-based frequency hopping, cause the first 7 symbols and the last 7 symbols of the PUCCH to occupy resources occupying different frequency bands.
  • the NRB is the number of uplink frequency bands PRB.
  • the block indicating the UCI represents one PRB occupied by the uplink control information
  • the block indicating the DM-RS is indicated. Represents one PRB occupied by the uplink pilot DM RS.
  • the transmit diversity of PUCCH adopts the SFBC transmission mechanism.
  • the multi-antenna transmission PUCCH adopts spatial frequency transmission diversity to obtain better PAPR performance.
  • the transmission diversity may adopt a space frequency block code (Space Frequency Block Code, SFBC) transmission mechanism/transmission diversity mode, SFBC transmit diversity mode can obtain lower PAPR, as shown in Figure 7.
  • space frequency block code Space Frequency Block Code, SFBC
  • the present invention provides an uplink control channel design method and an uplink control channel design apparatus, which are described below with reference to FIG. 8, FIG. 9, and FIG.
  • FIG. 8 is a flowchart of a method for designing an uplink control channel according to an embodiment of the present invention. As shown in FIG. 8, the method includes the following steps:
  • Step 801 Multiple users are multiplexed on each OFDM symbol used to carry uplink control information according to a frequency reuse principle.
  • Step 802 Encode, scramble, and modulate the uplink control information of the user for each of the multiple users, and map the coded uplink control information to all OFDMs used to carry the uplink control information. On the symbol.
  • the uplink control channel PUCCH of each of the multiple users occupies a comb subcarrier different from other users on each OFDM symbol used for carrying uplink control information, and the PUCCH of the user is used for carrying uplink control.
  • the comb subcarriers occupied by all OFDM symbols of the information constitute a comb carrier.
  • the comb carrier occupied by the PUCCH of each of the plurality of users adopts symbol-based frequency domain hopping.
  • the PUCCH of each of the plurality of users employs a slot-based uplink frequency hopping.
  • the transmit diversity adopts a space-frequency block code SFBC transmission mechanism.
  • the user terminal can be used to perform the uplink control channel design method shown in FIG. 8 above. Therefore, the user terminal can be used as an uplink control channel design apparatus.
  • Figure 9 is a block diagram showing the internal structure of a user terminal (or an uplink control channel designing apparatus) in an embodiment.
  • the user terminal includes a processor connected through a system bus, a non-volatile storage medium, an internal memory, and a network interface.
  • the non-volatile storage medium of the user terminal stores an instruction module in the operating system and the uplink control channel design device (ie, an instruction module that executes an uplink control channel design method).
  • the instruction module in the uplink control channel design apparatus is used to implement an uplink control channel design method applicable to the user terminal.
  • the processor of the user terminal is used to provide computing and control capabilities to support the operation of the entire user terminal.
  • the internal memory of the user terminal provides an environment for the operation of an instruction module of an uplink control channel design device in a non-volatile storage medium, and the internal memory can store computer readable instructions that are executed by the processor
  • the processor can be implemented to implement an uplink control channel design method.
  • the network interface of the user terminal is configured to communicate with an external base station via a wireless network connection, such as sending uplink control information to the base station.
  • FIG. 10 is a structural block diagram of an uplink control channel design apparatus 1000 according to an embodiment of the present invention. As shown in FIG. 10, the apparatus 1000 includes:
  • One or more memories eg, the non-volatile storage medium in FIG. 9;
  • One or more processors among them,
  • the one or more memories storing one or more instruction modules configured to be executed by the one or more processors;
  • the one or more instruction modules include:
  • the multiplexing unit 1001 is configured to multiplex a plurality of users on each OFDM symbol used for carrying uplink control information according to a frequency reuse principle;
  • the processing unit 1002 is configured to encode, scramble, and modulate the uplink control information of the user for each of the multiple users, and map the coded uplink control information to the uplink control information. On all OFDM symbols.
  • the uplink control channel PUCCH of each of the multiple users occupies a comb subcarrier different from other users on each OFDM symbol used for carrying uplink control information, and the PUCCH of the user is used for carrying uplink control.
  • Comb subcarriers occupied by all OFDM symbols of information constitute a comb carrier
  • the comb carrier occupied by the PUCCH of each of the plurality of users adopts symbol-based frequency domain hopping.
  • the PUCCH of each of the plurality of users employs a slot-based uplink frequency hopping.
  • the transmit diversity adopts a space-frequency block code SFBC transmission mechanism.
  • the uplink control channel design scheme used in the flexible frame structure provided by the present invention can be used for the case where the uplink control channel load is large, and the uplink control channel design manner can support different uplink control channel sizes. There is no need to define many uplink control channel formats for different uplink control channel sizes and different load sizes.
  • the design criterion of the uplink control channel format is to multiplex multiple users on each symbol for carrying uplink control information, instead of performing multi-user multiplexing by spreading across symbols.
  • the uplink control channel adopts slot-based uplink frequency hopping, and at the same time, the multi-antenna transmission uplink control channel uses spatial frequency transmission diversity to obtain better PAPR performance.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or the like.
  • Embodiments of the present invention also provide a non-volatile storage medium having stored thereon computer readable instructions, which may cause at least one processor to perform the above method.

Abstract

本发明提供了一种上行控制信道设计方法和装置、存储介质,该方法应用于第五代移动通信系统,包括:基于频率复用原则,在用于承载上行控制信息的每个OFDM符号上复用多个用户;针对所述多个用户中的每个用户,对该用户的上行控制信息进行编码、加扰和调制,将经过编码调制的上行控制信息映射到用于承载该上行控制信息的所有OFDM符号上。本发明能够支持可变的上行控制信道长度。

Description

一种上行控制信道设计方法和装置、存储介质
本申请要求于2017年07月18日提交中国专利局、申请号为201710584337.5、发明名称为“一种上行控制信道设计方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术领域,特别涉及一种上行控制信道设计方法和装置、存储介质。
背景
LTE定义了多种不同的上行控制信道格式(PUCCH format),支持大范围的上行控制信道的负载大小,例如PUCCH format 1/1a/1b支持1比特或者2比特上行ACK/NACK信息,PUCCH format 2/2a/2b支持上行20比特的编码后CSI信息。
5G系统采用灵活的帧结构,时隙可以是7符号或者14个符号,并且每个时隙中的上行数据(包括上行数据信息和上行控制信息)的发送是可变的,有可能是全上行数据,也有可能是上行数据+下行数据,相应的上行控制信道占用的OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号是可变的,所支持的上行控制信息比特数也是可变的。如果5G(第5代移动通信)系统类似于LTE定义很多的上行控制信道,就会出现很多不同的上行控制信道格式。
技术内容
本发明实施例提供一种上行控制信道设计方法和装置、存储介质。
一种上行控制信道设计方法,应用于第五代移动通信系统,该方法 包括:
基于频率复用原则,在用于承载上行控制信息的每个OFDM符号上复用多个用户;
针对所述多个用户中的每个用户,对该用户的上行控制信息进行编码、加扰和调制,将经过编码调制的上行控制信息映射到用于承载该上行控制信息的所有OFDM符号上。
一种上行控制信道设计装置,应用于第五代移动通信系统,该装置包括:
一个或一个以上存储器;
一个或一个以上处理器;其中,
所述一个或一个以上存储器存储有一个或者一个以上指令模块,经配置由所述一个或者一个以上处理器执行;其中,
所述一个或者一个以上指令模块包括:
复用单元,用于基于频率复用原则,在用于承载上行控制信息的每个OFDM符号上复用多个用户;
处理单元,用于针对所述多个用户中的每个用户,对该用户的上行控制信息进行编码、加扰和调制,将经过编码调制的上行控制信息映射到用于承载该上行控制信息的所有OFDM符号上。
一种非易失性存储介质,其上存储有计算机可读指令,可以使至少一个处理器执行上述的方法。
附图简要说明
图1是本发明实施例上行控制信息处理过程示意图;
图2是本发明实施例一用户的PUCCH在PRB上占用的梳状载波示意图;
图3是本发明实施例二用户的PUCCH在PRB上占用的梳状载波上采用频率跳变的原理示意图;
图4是本发明实施例一PUCCH采用基于时隙的上行频率跳变的原理示意图;
图5是本发明实施例二PUCCH采用基于时隙的上行频率跳变的原理示意图;
图6是本发明实施例三PUCCH采用基于时隙的上行频率跳变的原理示意图;
图7是本发明实施例SFBC传输机制示意图;
图8是本发明实施例上行控制信道设计方法流程图;
图9是本发明实施例用户终端的内部结构示意图;
图10是本发明实施例上行控制信道设计装置的结构框图。
实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明采用以下设计原则:
一、在用于承载上行控制信息的每个OFDM符号上复用多个用户。
LTE中有几种PUCCH格式是在符号间进行块扩频来复用多个用户,采用这个机制意味着块扩频的扩频长度会根据PUCCH占用的OFDM符号长度变化。
由于5G系统采用灵活的帧结构,上行时隙中上行传输的时间是变化的,为了设计出尽可能少的PUCCH格式来支持不同长度的PUCCH,本 发明实施例中采用频率复用方式,在用于承载上行控制信息的每个OFDM符号上复用多个用户,也就是说,多个用户的PUCCH共用相同的PRBs。
本设计原则使得PUCCH格式与上行OFDM符号数无关。在该设计原则下,对于所述多个用户中的每个用户,需要对该用户的上行控制信息进行编码、加扰、调制,将经编码调制后得到的编码比特映射带用于携带该上行控制信息的所有OFDM符号上,然后再进行上行DFT-s-OFDM调制处理后发送。
参见图1,图1是本发明实施例上行控制信息处理过程示意图,假设在图1中有三个用户的PUCCH复用到一个PRB上,PUCCH的长度是14个OFDM符号,频域是12个子载波,其中,0,3,6,9载波发送用户1的数据,1,4,7,10发送用户2的数据,2,5,8,11载波发送用户3的数据,则对每个用户来说,对其上行控制信息的处理过程如下:
步骤1、对该用户的上行控制信息进行编码得到b(M bit);
步骤2、对b(M bit)加扰得到
Figure PCTCN2017117592-appb-000001
步骤3、对
Figure PCTCN2017117592-appb-000002
调制得到d(M bit/2),将经编码调制得到的d(M bit/2)映射到用于承载该上行控制信息的用于承载上行控制信息的12个OFDM符号上,另外2个符号用于发送上行导频;
步骤4、使用DFT和IFFT对上述用于承载上行控制信息的每个OFDM符号的信息进行上行DFT-s-OFDM调制后发送。
在图1所示例子中,PUCCH在14个符号上发送,如果需要更大的载荷(payload size),可以将PUCCHs扩展到频域上不同的多个PRB上。
在本设计原则下,不需要考虑PUCCH占用的符号数,也即无论PUCCH占用多少个符号,均可遵循该设计原则进行上行控制信息发送,因而可以达到减少PUCCH格式数量的目的。
二、对于在同一OFDM符号上复用的多个用户,每个用户的PUCCH在该OFDM符号上占用不同梳状子载波。
本发明实施例中,对于复用在同一OFDM符号上的多个用户中的每个用户来说,其PUCCH只占用该OFDM符号的一个不同于其它用户的梳状子载波,其PUCCH在用于承载上行控制信息的所有OFDM符号占用的梳状子载波构成一个梳状载波,也即:在PRB上使用不同的梳状子载波来复用不同用户的PUCCH(一个PRB可以专门用于单个用户、也可以复用2个用户或者4个用户等),不同用户的PUCCH分配到相同PRBs的不同梳状载波上。
参见图2,图2是本发明实施例一用户的PUCCH在PRB上占用的梳状载波示意图,图2所示PRB中,一个时隙包括7个符号,PUCCH占用4个符号,如图2所示,多个用户的PUCCH复用到该PRB上时,其中一个用户的上行控制信息在每隔三个载波上发送,形成的梳状载波即该用户的PUCCH占用的梳状载波。
在本发明实施例中,为随机化干扰,可以在不同用户的PUCCH占用的梳状载波上采用频率跳变。
参见图3,图3是本发明实施例二用户的PUCCH在PRB上占用的梳状载波上采用频率跳变的原理示意图,图3所示PRB中,一个时隙7个符号,PUCCH占用4个符号,如图3所示,多个用户的PUCCH复用到该PRB上时,其中一个用户的上行控制信息在每隔三个载波上发送,该用户的PUCCH占用的梳状载波采用了基于符号的频率跳变,因此,其梳状载波中的每一分支上的不同符号占用不同频域。
三、PUCCH采用基于时隙的上行频率跳变。
本发明实施例中,PUCCH采用基于时隙的上行频率跳变,在上行频带的两边进行传输,上行频带的中间位置用于发送上行数据,以获得频 率分集增益,从而实现扩大上行覆盖的目的。
参见图4,图4是本发明实施例一PUCCH采用基于时隙的上行频率跳变的原理示意图,如图4所示,PUCCH的符号长度为4,其中前2个符号和后2个符号分别属于第1个时隙和第2个时隙,通过采用基于时隙的频率跳变,使得PUCCH的前2个符号和后2个符号位于不同发频带资源。
参见图5,图5是本发明实施例二PUCCH采用基于时隙的上行频率跳变的原理示意图,如图5所示,PUCCH的符号长度为7,其中前3个符号和后4个符号分别属于第1个时隙和第2个时隙,通过采用基于时隙的频率跳变,使得PUCCH的前3个符号和后4个符号位于不同频带资源。
参见图6,图6是本发明实施例三PUCCH采用上行频率跳变的原理示意图,如图6所示,PUCCH的符号长度为14,其中前7个符号和后7个符号分别属于第1个时隙和第2个时隙,通过采用基于时隙的频率跳变,使得PUCCH的前7个符号和后7个符号位于占用不同频带资源。
在上述图4、图5、及图6中,NRB是上行频带PRB的数量,在代表OFDM符号的块中,标示了UCI的块代表上行控制信息占用的一个PRB,标示了DM-RS的块代表上行导频DM RS占用的一个PRB。
四、PUCCH的发送分集采用SFBC传输机制。
本发明实施例中,对多天线发送PUCCH采用空间频率发送分集来获得较好的PAPR性能,具体地,当PUCCH采用多天线传输时,其发送分集可以采用空频块码(Space Frequency Block Code,SFBC)传输机制/发送分集方式,SFBC的发送分集方式能够获得较低的PAPR,具体如图7所示。
以上对本发明的设计原则进行了详细说明,基于上述原则,本发明提供了一种上行控制信道设计方法和一种上行控制信道设计装置,以下 结合图8、图9、图10进行说明:
参见图8,图8是本发明实施例上行控制信道设计方法流程图,如图8所示,该方法包括以下步骤:
步骤801、基于频率复用原则,在用于承载上行控制信息的每个OFDM符号上复用多个用户;
步骤802、针对所述多个用户中的每个用户,对该用户的上行控制信息进行编码、加扰和调制,将经过编码调制的上行控制信息映射到用于承载该上行控制信息的所有OFDM符号上。
图8所示方法中,
所述多个用户中的每个用户的上行控制信道PUCCH在用于承载上行控制信息的每个OFDM符号上占用一个不同于其它用户的梳状子载波,且该用户的PUCCH在用于承载上行控制信息的所有OFDM符号占用的梳状子载波构成一个梳状载波。
图8所示方法中,
所述多个用户中的每个用户的PUCCH占用的梳状载波采用基于符号的频域跳变。
图8所示方法中,
所述多个用户中的每个用户的PUCCH采用基于时隙的上行频率跳变。
图8所示方法中,
所述多个用户中的每个用户的PUCCH采用多天线传输时,其发送分集采用空频块码SFBC传输机制。
本发明中,用户终端可以用来执行上述图8所示的上行控制信道设计方法,因此,用户终端可以作为一种上行控制信道设计装置。
图9为一个实施例中用户终端(或者上行控制信道设计装置)的内 部结构示意图。如图9所示,该用户终端包括通过系统总线连接的处理器、非易失性存储介质、内存储器和网络接口。其中,该用户终端的非易失性存储介质存储有操作系统和上行控制信道设计装置中的指令模块(即执行上行控制信道设计方法的指令模块)。该上行控制信道设计装置中的指令模块用于实现适用于用户终端的一种上行控制信道设计方法。该用户终端的处理器用于提供计算和控制能力,支撑整个用户终端的运行。该用户终端的内存储器为非易失性存储介质中的上行控制信道设计装置的指令模块的运行提供环境,该内存储器中可存储有计算机可读指令,该计算机可读指令被处理器执行时,可使得处理器执行一种上行控制信道设计方法。该用户终端的网络接口用于据以与外部的基站通过无线网络连接通信,比如向基站发送上行控制信息等。本领域技术人员可以理解,图9中示出的结构,仅仅是与本发明方案相关的部分结构的框图,并不构成对本发明方案所应用于其上的用户终端的限定,具体的用户终端可以包括比图9中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
参见图10,图10是本发明实施例上行控制信道设计装置1000的结构框图,如图10所示,该装置1000包括:
一个或一个以上存储器(例如,图9中的非易失性存储介质);
一个或一个以上处理器;其中,
所述一个或一个以上存储器存储有一个或者一个以上指令模块,经配置由所述一个或者一个以上处理器执行;其中,
参照图10,所述一个或者一个以上指令模块包括:
复用单元1001,用于基于频率复用原则,在用于承载上行控制信息的每个OFDM符号上复用多个用户;
处理单元1002,用于针对所述多个用户中的每个用户,对该用户的上行控制信息进行编码、加扰和调制,将经过编码调制的上行控制信息 映射到用于承载该上行控制信息的所有OFDM符号上。
图10所示装置中,
所述多个用户中的每个用户的上行控制信道PUCCH在用于承载上行控制信息的每个OFDM符号上占用一个不同于其它用户的梳状子载波,且该用户的PUCCH在用于承载上行控制信息的所有OFDM符号占用的梳状子载波构成一个梳状载波
图10所示装置中,
所述多个用户中的每个用户的PUCCH占用的梳状载波采用基于符号的频域跳变。
图10所示装置中,
所述多个用户中的每个用户的PUCCH采用基于时隙的上行频率跳变。
图10所示装置中,
所述多个用户中的每个用户的PUCCH采用多天线传输时,其发送分集采用空频块码SFBC传输机制。
从上面的内容可以看出,本发明给出的用于灵活帧结构中的上行控制信道设计方案,可用于上行控制信道负载较大的情况,该上行控制信道设计方式可以支持不同上行控制信道大小,不需要为不同上行控制信道大小及不同负载大小,定义很多的上行控制信道格式。该上行控制信道格式的设计准则是用于承载上行控制信息的每一个符号上复用多个用户,而不是通过跨符号进行扩频来实现多用户复用。为获得上行覆盖增益,上行控制信道采用基于时隙的上行频率跳变,同时,对多天线发送上行控制信道采用空间频率发送分集来获得较好的PAPR性能。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,该程序可存储于一非易失性计算机可读取存储介质中,该程序在执行时,可包括如 上述各方法的实施例的流程。其中,该存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)等。
本发明实施例还提供一种非易失性存储介质,其上存储有计算机可读指令,可以使至少一个处理器执行上述的方法。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种上行控制信道设计方法,应用于第五代移动通信系统,其特征在于,该方法包括:
    基于频率复用原则,在用于承载上行控制信息的每个OFDM符号上复用多个用户;
    针对所述多个用户中的每个用户,对该用户的上行控制信息进行编码、加扰和调制,将经过编码调制的上行控制信息映射到用于承载该上行控制信息的所有OFDM符号上。
  2. 根据权利要求1所述的方法,其特征在于,
    所述多个用户中的每个用户的上行控制信道PUCCH在用于承载上行控制信息的每个OFDM符号上占用一个不同于其它用户的梳状子载波,且该用户的PUCCH在用于承载上行控制信息的所有OFDM符号占用的梳状子载波构成一个梳状载波。
  3. 根据权利要求2所述的方法,其特征在于,
    所述多个用户中的每个用户的PUCCH占用的梳状载波采用基于符号的频域跳变。
  4. 根据权利要求2所述的方法,其特征在于,
    所述多个用户中的每个用户的PUCCH采用基于时隙的上行频率跳变。
  5. 根据权利要求2所述的方法,其特征在于,
    所述多个用户中的每个用户的PUCCH采用多天线传输时,其发送分集采用空频块码SFBC传输机制。
  6. 一种上行控制信道设计装置,应用于第五代移动通信系统,其特征在于,该装置包括:
    一个或一个以上存储器;
    一个或一个以上处理器;其中,
    所述一个或一个以上存储器存储有一个或者一个以上指令模块,经配置由所述一个或者一个以上处理器执行;其中,
    所述一个或者一个以上指令模块包括:
    复用单元,用于基于频率复用原则,在用于承载上行控制信息的每个OFDM符号上复用多个用户;
    处理单元,用于针对所述多个用户中的每个用户,对该用户的上行控制信息进行编码、加扰和调制,将经过编码调制的上行控制信息映射到用于承载该上行控制信息的所有OFDM符号上。
  7. 根据权利要求6所述的装置,其特征在于,
    所述多个用户中的每个用户的上行控制信道PUCCH在用于承载上行控制信息的每个OFDM符号上占用一个不同于其它用户的梳状子载波,且该用户的PUCCH在用于承载上行控制信息的所有OFDM符号占用的梳状子载波构成一个梳状载波。
  8. 根据权利要求7所述的装置,其特征在于,
    所述多个用户中的每个用户的PUCCH占用的梳状载波采用基于符号的频域跳变。
  9. 根据权利要求7所述的装置,其特征在于,
    所述多个用户中的每个用户的PUCCH采用基于时隙的上行频率跳变。
  10. 根据权利要求7所述的装置,其特征在于,
    所述多个用户中的每个用户的PUCCH采用多天线传输时,其发送分集采用空频块码SFBC传输机制。
  11. 一种非易失性存储介质,其上存储有计算机可读指令,可以使至少一个处理器执行如权利要求1-5任一项所述的方法。
PCT/CN2017/117592 2017-07-18 2017-12-21 一种上行控制信道设计方法和装置、存储介质 WO2019015250A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710584337.5 2017-07-18
CN201710584337.5A CN109274469B (zh) 2017-07-18 2017-07-18 一种上行控制信道设计方法和装置

Publications (1)

Publication Number Publication Date
WO2019015250A1 true WO2019015250A1 (zh) 2019-01-24

Family

ID=65014982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117592 WO2019015250A1 (zh) 2017-07-18 2017-12-21 一种上行控制信道设计方法和装置、存储介质

Country Status (2)

Country Link
CN (1) CN109274469B (zh)
WO (1) WO2019015250A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009000101A1 (en) * 2007-06-22 2008-12-31 Alcatel Shanghai Bell Co., Ltd. A method and system of mbms data retransmisson
CN102177760A (zh) * 2008-08-11 2011-09-07 株式会社Ntt都科摩 移动通信系统、发送装置、接收装置以及方法
CN104067682A (zh) * 2012-01-27 2014-09-24 夏普株式会社 用户设备、基站装置、通信方法、集成电路以及通信系统
CN104348601A (zh) * 2013-08-08 2015-02-11 北京久华信信息技术有限公司 一种无线通信系统上行控制信息的传输方法
US9801175B2 (en) * 2015-11-06 2017-10-24 Motorola Mobility Llc Method and apparatus for low latency transmissions

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103609084B (zh) * 2011-06-15 2017-04-12 三星电子株式会社 通信系统中物理下行链路控制信令的延伸
JP5990793B2 (ja) * 2012-06-07 2016-09-14 シャープ株式会社 端末装置、基地局装置、通信方法および集積回路
US9743432B2 (en) * 2013-09-23 2017-08-22 Qualcomm Incorporated LTE-U uplink waveform and variable multi-subframe scheduling
WO2016119446A1 (zh) * 2015-01-27 2016-08-04 中兴通讯股份有限公司 一种实现上行控制信息的传输方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009000101A1 (en) * 2007-06-22 2008-12-31 Alcatel Shanghai Bell Co., Ltd. A method and system of mbms data retransmisson
CN102177760A (zh) * 2008-08-11 2011-09-07 株式会社Ntt都科摩 移动通信系统、发送装置、接收装置以及方法
CN104067682A (zh) * 2012-01-27 2014-09-24 夏普株式会社 用户设备、基站装置、通信方法、集成电路以及通信系统
CN104348601A (zh) * 2013-08-08 2015-02-11 北京久华信信息技术有限公司 一种无线通信系统上行控制信息的传输方法
US9801175B2 (en) * 2015-11-06 2017-10-24 Motorola Mobility Llc Method and apparatus for low latency transmissions

Also Published As

Publication number Publication date
CN109274469B (zh) 2021-01-15
CN109274469A (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
JP7460640B2 (ja) マルチソース送信のための周波数領域リソース割り当て
US20220312401A1 (en) Methods and apparatus for sending and receiving second stage sci, storage medium, sending ue, and receiving ue
EP3567784B1 (en) Method and device for transmitting a reference signal
CN102783110B (zh) 在无线通信系统中发射上行链路控制信息的方法和装置
US10756870B2 (en) Apparatus and method for communication
US11197287B2 (en) Methods and devices for sending and receiving physical uplink control channel
RU2684580C1 (ru) Способ передачи и способ приема информации управления восходящей линией и соответствующее устройство
US11363618B2 (en) Method and device for narrow band communication in UE and base station
CN107925536A (zh) 用于无线系统中数据传送的资源分配
CN113196857B (zh) 在无线通信系统中操作终端和基站的方法以及支持其的装置
WO2017115609A1 (ja) 装置及び方法
JP2013524583A (ja) 上り制御チャネル資源の確定方法と設備
CN110024344A (zh) 蜂窝通信系统中的上行链路传输方法和装置
JP2009540729A (ja) ダウンリンク転送に対するアップリンク確認応答をエンコーディングする方法及びその装置
KR20070119958A (ko) 무선통신 시스템 상향링크에서의 제어정보 전송방법,제어정보 전송장치 및 dft-s-ofdm 방식 무선통신시스템의 사용자 기기
JP7142069B2 (ja) データ伝送のための制御リソースの使用
WO2016127409A1 (zh) 传输上行控制信息的方法、用户设备和接入网设备
CN110832802B (zh) 用于上行链路通信的波形的选择
WO2018081973A1 (zh) 传输信号的方法、终端设备和网络设备
KR20200055113A (ko) 연속적인 자원 할당의 표시
JPWO2008084624A1 (ja) 基地局装置、移動局、無線通信システム及び通信制御方法
WO2017047210A1 (ja) 装置及び方法
US20240073873A1 (en) Multi-Slot Transmission of Transport Block
CN110430612B (zh) 一种ue、基站中的支持发射功率调整的方法和装置
US11411672B2 (en) Method and apparatus for data transmission in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917980

Country of ref document: EP

Kind code of ref document: A1