WO2019015159A1 - 一种拾音方法及装置 - Google Patents

一种拾音方法及装置 Download PDF

Info

Publication number
WO2019015159A1
WO2019015159A1 PCT/CN2017/108070 CN2017108070W WO2019015159A1 WO 2019015159 A1 WO2019015159 A1 WO 2019015159A1 CN 2017108070 W CN2017108070 W CN 2017108070W WO 2019015159 A1 WO2019015159 A1 WO 2019015159A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
pickup
audio
angle
audio collection
Prior art date
Application number
PCT/CN2017/108070
Other languages
English (en)
French (fr)
Inventor
吕廷昌
桑圣杰
Original Assignee
歌尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔科技有限公司 filed Critical 歌尔科技有限公司
Publication of WO2019015159A1 publication Critical patent/WO2019015159A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups

Definitions

  • the present invention relates to the field of audio collection technologies, and in particular, to a method and device for collecting sound.
  • An audio collection array including a plurality of audio collection devices is generally configured on these smart devices, so that audio signals in multiple directions can be picked up.
  • the direction of the sound source needs to be determined, thereby determining an audio collection device corresponding to the direction of the sound source in the audio collection array, and then the audio collection device sets the direction of the sound source to the direction in which the audio signal is picked up, and will always be in the Pick up the audio signal in the set direction. If the audio capture array moves, the audio capture device on the audio capture array will also move, which may cause the audio capture device to pick up the audio signal in a direction that does not match the direction of the audio source, resulting in the pickup of the wrong audio signal.
  • aspects of the present invention provide a method and apparatus for collecting sound for moving in an audio collection array Before and after, the audio signal in the direction of the sound source can be accurately picked up.
  • the invention provides a method for collecting sounds, comprising:
  • the second sound pickup area is the plurality of sound pickup areas One of the pickup areas;
  • Audio signals within the second sounding region are picked up by a plurality of audio capture devices of the audio capture array.
  • the identifying the sound source direction and the first sound pickup region to which the sound source direction belongs before the audio collection array moves comprises:
  • the sound source direction is located according to the time difference of the wake-up signal and/or the amplitude difference of the wake-up signal monitored by each audio collection device on the audio collection array;
  • a sound pickup area covering the sound source direction among the plurality of sound pickup areas is determined as the first sound pickup area.
  • the determining, according to the rotation angle of the first sound collection area and the audio collection array, the second sound pickup area to which the sound source direction belongs after the movement of the audio collection array comprises:
  • the second sound pickup region is determined from the plurality of sound pickup regions according to the sound pickup angle and a sound pickup angle range corresponding to each of the plurality of sound pickup regions.
  • Calculating a pickup angle, the direction of the center of the first sound collecting area and the included angle comprising:
  • the sound source direction before the second sound pickup area to which the audio collection array belongs after moving includes:
  • a rotation angle of the audio collection array is determined based on an angular velocity of the gyroscope and a time of rotation of the audio collection array.
  • the audio collection array includes at least two audio collection devices
  • the method further includes: prior to identifying the direction of the sound source and the first sound pickup region to which the sound source direction belongs before the audio collection array moves.
  • a sound pickup angle range corresponding to each of the plurality of sound pickup regions is determined based on a center of the designated sound pickup region among the plurality of sound pickup regions.
  • the method further includes:
  • the invention also provides a sound collecting device comprising:
  • An identification module configured to identify a sound source direction and a first sound pickup region to which the sound source direction belongs before the audio collection array moves, the first sound pickup region being a plurality of sound pickups of the audio collection array One of the regions;
  • a determining module configured to determine, according to the first sound collection area and a rotation angle of the audio collection array, a second sound pickup area to which the sound source direction belongs after the movement of the audio collection array; the second sound pickup The area is one of the plurality of sound pickup areas;
  • a picking module for picking up audio signals in the second sound collecting area by using a plurality of audio collecting devices of the audio collecting array.
  • the identification module is specifically configured to:
  • the sound source direction is located according to the time difference of the wake-up signal and/or the amplitude difference of the wake-up signal monitored by each audio collection device on the audio collection array; and determining the sound source direction; A sound pickup area of the sound source direction is covered in the plurality of sound pickup areas as the first sound pickup area.
  • the determining module is specifically configured to:
  • the second sound pickup region is determined from the plurality of sound pickup regions according to the sound pickup angle and a sound pickup angle range corresponding to each of the plurality of sound pickup regions.
  • the second sound pickup region to which the sound source direction belongs after the movement of the audio collection array is determined by the first sound pickup region to which the sound source direction belongs before the movement of the audio collection array and the rotation angle of the audio collection array, and then multiple The audio collecting device picks up the audio signal in the second sound collecting area, so that the audio signal in the same sound source direction can be picked up before and after the audio collecting array moves, and the direction in which the audio collecting device picks up the audio signal does not match the direction of the sound source, thereby causing picking up.
  • the problem of the wrong audio signal is beneficial to improve the accuracy of subsequent audio processing results.
  • FIG. 1 is a schematic flow chart of a method for collecting sound according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a method for collecting sound according to another embodiment of the present invention.
  • 3a, 3b, and 3c are schematic diagrams showing the rotation of an audio collection array according to another embodiment of the present invention.
  • FIG. 4 is a block diagram of a sound collecting device according to still another embodiment of the present invention.
  • FIG. 1 is a schematic flow chart of a method for collecting sound according to an embodiment of the present invention. As shown in Figure 1, the method includes the following steps.
  • S101 Identify a sound source direction and a first sound pickup region to which the sound source direction belongs before the audio collection array moves, and the first sound pickup region is one of a plurality of sound pickup regions of the audio collection array.
  • S102 Determine, according to the first sound collection area and the rotation angle of the audio collection array, the second sound collection area to which the sound source direction belongs after the movement of the audio collection array; the second sound collection area is one of the plurality of sound collection areas.
  • S103 Pick up an audio signal in the second sound collecting area by using a plurality of audio collecting devices of the audio collecting array.
  • the audio collection array is an array of omnidirectional audio acquisition devices located at different positions in space arranged in a regular shape, and is a device for spatially sampling spatially propagated audio signals.
  • the audio collection array includes a plurality of audio collection devices, and a plurality of the embodiments refer to at least two. Audio capture devices include, but are not limited to, microphones, microphones, and the like.
  • the audio collection array can be divided into a linear array, a planar array, a bulk array, and the like.
  • the audio collection array includes a linear audio collection array, a planar audio collection array, a body shape audio collection array, and the like.
  • the range of the area that the audio collection device can pick up can be divided into a plurality of pickup regions.
  • one sound collection area may correspond to one audio collection device, or one sound pickup area may correspond to multiple audio collection devices.
  • the sound source direction is first recognized by the audio collection array, and then the sound pickup area to which the sound source direction belongs is determined, and then the audio signal in the sound pickup area to which the sound source direction belongs is picked up by a plurality of audio collection devices. And then pick up the audio signal in the direction of the sound source.
  • the direction of the sound source is the direction in which the audio signal is emitted.
  • the first pickup region to which the sound source direction belongs may refer to a sound pickup region covering the direction of the sound source.
  • the audio capture device will also move, thereby moving the first pickup region.
  • the sound source direction may be located in other sound pickup regions outside the first sound pickup region. If the audio signal in the first pickup region is picked up again, the audio signal in the direction of the sound source will not be picked up.
  • the audio signal in the direction of the sound source can still be picked up, and after the audio collection array is moved, the sound pickup area to which the sound source direction belongs can be re-determined according to the rotation angle of the first sound collection area and the audio collection array. Further, the audio signals in the re-determined pickup region are picked up by using a plurality of audio collection devices, so that the audio signals in the same source direction can be always picked up before and after the movement of the audio collection array.
  • the sound pickup direction belongs to the first sound pickup area before the audio capture array moves, and the sound source direction is in the audio.
  • the pickup area to which the acquisition array moves is referred to as a second pickup area.
  • the above rotation angle includes a rotation direction and a rotation angle.
  • the sound source direction and the first sound pickup region to which the sound source direction belongs before the audio collection array moves may be saved.
  • the sound source direction is different before and after the audio collecting device moves, that is, the first sound collecting area is different from the second sound collecting area.
  • the direction of the sound source may belong to the same sound collecting area before and after the moving of the audio collecting device, that is, the first sound collecting area is the same as the second sound collecting area.
  • the audio collection array can have a variety of movement modes, such as lateral movement, longitudinal movement, rotational movement, or a combination of the above. In general, if the audio capture array is rotated after the audio capture array is moved, it is easier to make the sound source direction no longer belong to the first pickup region.
  • the plurality of pickup regions of the audio collection array also perform the same rotation. Based on this, the audio collection array is rotated at a rotation angle, meaning that the plurality of pickup regions, such as the first pickup region and the second pickup region, are rotated at the same rotation angle. Therefore, when the sound pickup area covering the sound source direction is the first sound pickup area, the respective sound pickup areas are rotated at the rotation angle, and the sound pickup area covering the sound source direction is switched from the first sound pickup area to the second sound pickup area.
  • the audio signals in the second pickup region are then picked up by a plurality of audio capture devices of the audio capture array.
  • the beamforming technology may be used to delay-process and weight-add the audio signals in the second pickup region collected by the plurality of audio collection devices to form a picked-up beam; and simultaneously attenuate the second pickup. Audio signals in other areas outside the area. Finally, the audio signal in the second pickup region is enhanced and noise-reduced by a plurality of audio collection devices, thereby picking up the audio signal in the direction of the sound source.
  • the direction of the sound source is determined after the movement of the audio collection array by the direction of the sound source in the first sound collection area and the rotation angle of the audio collection array before the audio collection array moves.
  • the second sound collecting area, and then the plurality of audio collecting devices are used to pick up the audio signal in the second sound collecting area, so that the audio signal in the same sound source direction can be picked up before and after the moving of the audio collecting array, thereby solving the pickup of the audio collecting device.
  • the direction of the audio signal may not match the direction of the sound source, resulting in the problem of picking up the wrong audio signal, which is beneficial to improve the accuracy of subsequent audio processing results.
  • the direction of the sound source can be identified by listening to the wake-up signal from the sound source. Based on this, identifying the direction of the sound source and the first sound pickup region to which the sound source direction belongs before the movement of the audio collection array includes: monitoring the wake-up signal from the sound source; and when listening to the wake-up signal, monitoring according to each audio collection device on the audio collection array. Locating the sound source direction to the time difference of the wake-up signal and/or the amplitude difference of the sensed wake-up signal; and determining the sound pickup area covering the sound source direction in the plurality of sound pickup areas as the first sound pickup area.
  • the sound source may include, but is not limited to, a user, a speaker, or the like, any person or thing capable of sounding.
  • the wake-up signal may include, but is not limited to, an audio signal of a specified frequency, an audio signal of a specified amplitude, an audio signal of a specified content, and the like.
  • the audio signals around the audio collection array may be periodically monitored according to the audio collection devices on the audio collection array, and the collected audio signals are voice-recognized. If the audio signal is identified as an audio signal of a specified content, such as "on", the direction of the wake-up signal is located.
  • the direction of the wake-up signal can be located by the following three embodiments.
  • the first embodiment Generally speaking, the time when the wake-up signal reaches each audio collecting device, or the time at which each audio collecting device listens to the wake-up signal is different. An audio capture device that is closer to the sound source will first monitor the wake-up signal, and the audio capture device farther from the sound source will listen to the wake-up signal. Based on this, the direction of the wake-up signal can be located according to the time difference that each audio collecting device monitors the wake-up signal.
  • the second embodiment the amplitude of the wake-up signal reaching each audio collecting device, or the amplitude of the wake-up signal monitored by each audio collecting device is different.
  • the amplitude of the wake-up signal monitored by the audio collection device that is closer to the sound source is larger, and the amplitude of the wake-up signal monitored by the audio collection device farther from the sound source is smaller. Based on this, the amplitude of the wake-up signal monitored by each audio collection device can be used. Poor, locate the direction of the wake-up signal.
  • the third embodiment in order to more accurately locate the direction of the sound source, the directions of the wake-up signal can be located in combination with the above two embodiments. That is, the direction of the wake-up signal is located according to the time difference between the wake-up signal monitored by each audio collection device on the audio collection array and the amplitude difference of the monitored wake-up signal.
  • the direction of the located wake-up signal is taken as the direction of the sound source.
  • the located sound source direction may be obtained according to a virtual coordinate system established by the audio collection array.
  • the sound source direction and the plurality of sound pickup regions are compared, and the sound pickup region covering the sound source direction is used as the first sound pickup region.
  • FIG. 2 is a schematic flow chart of a method for collecting sound according to another embodiment of the present invention. As shown in FIG. 2, the method includes the following steps.
  • S201 Identify a sound source direction and a first sound pickup region to which the sound source direction belongs before the audio collection array moves, and the first sound pickup region is one of a plurality of sound pickup regions of the audio collection array.
  • S202 Acquire a direction and an angle of a sound source direction with respect to a center of the first sound collecting area.
  • S203 Decompose the rotation direction and the rotation angle of the audio collection array from the rotation angle of the audio collection array.
  • step S204 It is determined that the rotation direction is the same as or opposite to the direction of the sound source direction with respect to the center of the first sound collection area. If they are the same, the process goes to step S206; if not, the process goes to step S205.
  • step S205 Acquire a sum of the rotation angle and the angle as the pickup angle, and continue to perform step S207.
  • step S206 Acquire an absolute value of the difference between the rotation angle and the included angle as the pickup angle, and continue to perform step S207.
  • S207 Determine a second sound pickup region from the plurality of sound pickup regions according to the sound pickup angle and the range of the sound pickup angle corresponding to each of the plurality of sound pickup regions.
  • S208 Pick up audio signals in the second sound collecting area by using a plurality of audio collecting devices of the audio collecting array.
  • Step S201 is the same as step S101, and details are not described herein again.
  • the exact direction of the sound source direction in the first pickup region is obtained.
  • the direction and angle of the sound source direction with respect to the center of the first sound pickup area may be acquired based on the center of the first sound pickup area (ie, step S202).
  • the direction and the angle of the sound source direction with respect to the center of the first sound collecting area may refer to the direction and the angle with respect to the center of the first sound collecting area after being projected onto the rotating plane of the audio collecting array in the sound source direction. .
  • the audio collection array includes a microphone A, a microphone B, a microphone C, and a microphone D.
  • the microphone B corresponds to the first pickup region
  • the microphone A corresponds to the second pickup region
  • the microphone D corresponds to the third pickup region
  • the microphone C corresponds to the fourth pickup region.
  • the first pickup area to which the sound source direction belongs is the first pickup area.
  • the angle between the direction of the sound source and the center of the first sound collecting area is m degrees.
  • the vector of the rotation angle of the audio collection array is decomposed to obtain the direction of the rotation angle, that is, the direction of rotation, and the angle of the rotation angle, that is, the angle of rotation (ie, step S203).
  • a pickup angle is calculated based on the rotation direction, the rotation angle, the direction of the sound source direction with respect to the center of the first sound pickup area, and the angle.
  • the sound pickup angle refers to an angle of the sound source direction relative to the center of the first sound pickup area after the audio collection array is moved.
  • the manner of acquiring the pickup angle is different depending on whether the direction of rotation and the direction of the sound source are the same or opposite to the direction of the center of the first sound pickup area. Based on this, it is judged that the direction of rotation is the same as or opposite to the direction of the direction of the sound source with respect to the center of the first sound pickup region (ie, step S204).
  • Figure 3b is a schematic diagram of the audio capture array rotated clockwise on the basis of Figure 3a. As shown in FIG. 3b, the direction of rotation is clockwise, and the direction of the sound source is counterclockwise with respect to the direction of the center of the first sound pickup region, and the directions of the two are opposite.
  • Figure 3c is a schematic diagram of the audio capture array rotated counterclockwise on the basis of Figure 3a. As shown in FIG. 3c, the rotation direction is counterclockwise, and the direction of the sound source direction with respect to the center of the first sound pickup area is counterclockwise, and the directions of the two are the same.
  • the rotation angle is k degrees and the angle is m degrees, and the pickup angle is k + m degrees.
  • the absolute value of the difference between the angle of rotation and the angle is obtained as the sound pickup angle (ie, step S206).
  • the rotation angle is k degrees and the included angle is m degrees, and the pickup angle is
  • the second pickup region is determined from the plurality of pickup regions based on the pickup angle and the respective pickup angle ranges corresponding to the plurality of pickup regions (ie, step S207).
  • each pickup area corresponds to a range of pickup angles.
  • Each range of pickup angles can be calculated from a common basis.
  • the range of the pickup angle of each of the pickup regions is sequentially determined in the counterclockwise or clockwise direction with reference to the center of the designated sound pickup region, for example, with the center of the designated region being 0 degrees.
  • the designated sound pickup area may be the first sound pickup area or may not be the first sound pickup area.
  • the designated sound pickup area is the first sound pickup area
  • a plurality of pickup angle ranges are obtained based on the center of the first sound pickup area. Since the pickup angle is the angle of the sound source direction with respect to the center of the first pickup region, that is, the reference of the pickup angle range is the same as the reference of the pickup angle. Based on this, when the pickup angle is within a range of the pickup angle, the pickup region corresponding to the range of the pickup angle can be used as the second pickup region.
  • the pickup angle of the first pickup region ranges from 315 degrees to 360 degrees, and based on the center of the first pickup region, that is, the center of the pickup region. 0 degrees - 45 degrees, the pickup angle range of the second pickup area is 45 degrees - 135 degrees, and the pickup angle range of the third pickup area is 135 degrees - 225 degrees, and the pickup angle range of the fourth pickup area It is 225 degrees - 315 degrees. Assuming that the pickup angle is 75 degrees in Fig. 3b, the angle range of the second pickup region is 45 degrees - 135 degrees including the pickup angle, and it is determined that the second pickup region is the second pickup region for picking up the audio signal.
  • the pickup angle is
  • the degree includes the pickup angle, and it is determined that the fourth pickup region shown in FIG. 3c is the second pickup region for picking up the audio signal. If the pickup angle is a positive value, the second pickup region is determined directly in comparison with the respective pickup angle ranges.
  • the sound pickup area identification in Fig. 3c is the same as in Figs. 3b and 3a.
  • the designated sound pickup area is not the first sound pickup area, for example, the designated sound pickup area is the second sound pickup area corresponding to the microphone A in FIG. 3a, the center of the second sound pickup area corresponding to the microphone A is used as the reference. Determine the range of the pickup angle for each pickup area counterclockwise or clockwise.
  • the initial state of the audio collection array is 90 degrees clockwise on the basis of FIG. 3a, and correspondingly, the pickup areas of the first, second, third, and fourth pickup regions are picked up.
  • the range of the sound angle is updated as follows: the pickup angle range of the first pickup area is 225 degrees - 315 degrees, and the pickup angle range of the second pickup area is 315 degrees - 360 degrees and 0 degrees - 45 degrees, the third pickup The pickup angle of the area ranges from 45 degrees to 135 degrees, and the pickup angle of the fourth pickup area ranges from 135 degrees to 225 degrees.
  • the reference of the pickup angle range is different from the reference of the pickup angle.
  • the range of the pickup angle based on the center of the designated sound pickup area can be converted to the angle range based on the center of the first sound pickup area based on the relative position of the designated sound pickup area and the first sound pickup area.
  • the pickup angle is within a range of the converted pickup angle, the sound pickup region corresponding to the scaled pickup angle range may be used as the second pickup region.
  • the initial state of the audio collection array is 90 degrees clockwise on the basis of FIG. 3a, and the pickup angle based on the center of the first pickup region, that is, the pickup region is assumed to be 30 degrees.
  • the second pickup area is rotated 90 degrees counterclockwise with respect to the first pickup area, and the angle range of the first pickup area, the angle range of the second pickup area, the angular range of the third pickup area, and the fourth number
  • the angle range of the pickup area is increased by 90 degrees, and the angle range of more than 360 degrees is subtracted by 360 degrees, and the range of the pickup angle based on the center of the second pickup area is converted to the center of the pickup area of the first.
  • the angular range of the datum After conversion, the pickup angle range of the first pickup area is 315 degrees - 360 degrees and 0 degrees - 45 degrees, and the pickup angle range of the second pickup area is 45 degrees - 135 degrees, and the pickup area of the third is picked up.
  • the range of the sound angle is 135 degrees - 225 degrees, and the pickup angle of the fourth pickup area ranges from 225 degrees to 315 degrees. Then, when the pickup angle is within a range of the converted pickup angle, the sound pickup region corresponding to the scaled pickup angle range may be used as the second pickup region.
  • the audio signal in the second sound collecting area may be picked up by the audio collecting device located in the second sound collecting area on the audio collecting array (ie, step S208), and then after the audio collecting array is moved, The audio signal in the direction of the sound source can still be obtained.
  • the audio before the second sound pickup region to which the sound source direction belongs after the movement of the audio collection array is determined according to the position of the first sound pickup region and the rotation angle of the audio collection array, the audio may also be included.
  • the acquisition process of the rotation angle of the acquisition array before the second sound pickup region to which the sound source direction belongs after the movement of the audio collection array is determined according to the position of the first sound pickup region and the rotation angle of the audio collection array, the audio may also be included.
  • the acquisition process of the rotation angle of the acquisition array before the second sound pickup region to which the sound source direction belongs after the movement of the audio collection array is determined according to the position of the first sound pickup region and the rotation angle of the audio collection array.
  • a gyroscope can be mounted on the audio capture array.
  • a gyroscope can be installed at the center of the audio collection array. Further, during the movement of the audio collection array, the angular velocity of the gyroscope on the audio collection array is acquired. The angular velocity of the gyroscope is the angular velocity at which the audio acquisition array rotates.
  • the rotation angle of the audio collection array is determined.
  • the angular velocity of the gyroscope that is, the angular velocity of the rotation of the audio collection array
  • an angle sensor can also be mounted on the audio collection array. Further, the first angle of the angle sensor before the movement of the audio collection array is acquired; the second angle of the angle sensor after the movement of the audio collection array is acquired. Then, the rotation angle of the audio collection array is determined according to the difference between the second angle and the vector of the first angle.
  • the audio collection array includes at least two audio collection devices. At least two audio capture devices may correspond to at least two pickup regions. The pickup angle range is different for different pickup areas.
  • the range of the pickup angles corresponding to the respective pickup regions may be determined before the direction of the sound source and the first sound pickup region to which the sound source direction belongs before the movement of the audio collection array.
  • the maximum pickup range of the audio collection array is divided into a plurality of pickup regions according to the shape of the audio collection array, the positional arrangement of the at least two audio collection devices, and the number of at least two audio collection devices.
  • the shape of the audio collection array is related to the maximum pickup range of the audio collection array. If the audio collection array is ring-shaped, as shown in Figure 3a, the maximum pickup range is 360 degrees. If audio The array is semi-circular, and the maximum pickup range is 180 degrees. If the audio capture array is linear, the maximum pickup range is a sector range of less than 180 degrees.
  • the positional arrangement and number of audio collection devices are related to the division of the pickup area.
  • the microphone A, the microphone B, the microphone C, and the microphone D disposed on the audio collection device are evenly arranged around the ring-shaped audio collection array, and the 360-degree range is divided into four 90-degree pickup ranges. .
  • the microphone is located at the center of the corresponding pickup range.
  • the range of the pickup angle corresponding to each of the plurality of pickup regions is determined based on the center of the designated pickup region among the plurality of pickup regions.
  • the designated sound collection area may be any one of a plurality of sound pickup areas.
  • the designated sound collection area may be fixed to one of the plurality of sound collection areas, or the sound pickup area belongs to the sound pickup area according to the change of the sound source direction. Specify the pickup area.
  • the range of the pickup angle corresponding to each of the pickup areas remains unchanged. If the pickup region is specified as the first pickup region to which the sound source direction belongs, when the first pickup region to which the source direction belongs changes, the range of the pickup angle corresponding to each of the pickup regions changes accordingly.
  • the direction of the sound source may change during the process of picking up audio signals in the second sounding region using a plurality of audio capture devices on the audio capture array. Based on this, the wake-up signal from the sound source can be periodically monitored, that is, the wake-up signals around the audio collection array are periodically monitored according to the audio collection devices on the audio collection array.
  • the operation of identifying the direction of the sound source is re-executed. Further determining the direction of the sound source in the first sound pickup area to which the audio collection array belongs is to pick up the audio signal in the first sound pickup area by using the plurality of audio collection devices.
  • the direction of the sound source may be determined according to the rotation angle of the first sound collection region and the audio collection array.
  • the second pickup region to which the array belongs is moved; and then the audio signals in the second pickup region are picked up by the plurality of audio collection devices.
  • the sound pickup area to which the new sound source direction belongs is referred to as the first sound pickup area. Based on this, the angle of the pickup angle range of the plurality of pickup regions and the angle and direction of the sound source direction with respect to the center of the new first pickup region can be reacquired based on the center of the new first pickup region, and further Perform subsequent calculations.
  • FIG. 4 is a block diagram of a sound collecting device according to still another embodiment of the present invention.
  • the sound pickup device 400 includes an identification module 401, a determination module 402, and a pickup module 403.
  • the identification module 401 is configured to identify a sound source direction and a first sound collection area to which the sound source direction belongs before the audio collection array moves, and the first sound collection area is one of a plurality of sound collection areas of the audio collection array.
  • the determining module 402 is configured to determine, according to the first sound collecting area identified by the identifying module 401 and the rotation angle of the audio collecting array, the second sound collecting area to which the sound source direction belongs after the movement of the audio collecting array; the second sound collecting area is multiple One of the pickup areas.
  • the picking module 403 is configured to pick up audio signals in the second sound collecting area by using a plurality of audio collecting devices of the audio collecting array.
  • the second sound pickup region to which the sound source direction belongs after the movement of the audio collection array is determined by using the first sound pickup region and the rotation angle of the audio collection array that the sound source direction belongs to before the movement of the audio collection array, and then the plurality of sound pickup regions belong to the second sound pickup region.
  • the audio collecting device picks up the audio signal in the second sound collecting area, so that the audio signal in the same sound source direction can be picked up before and after the audio collecting array moves, and the direction in which the audio collecting device picks up the audio signal does not match the direction of the sound source, thereby causing picking up.
  • the problem of the wrong audio signal is beneficial to improve the accuracy of subsequent audio processing results.
  • the identification module 401 is specifically configured to: monitor a wake-up signal from the sound source when the sound source direction and the sound source direction belong to the first sound pickup region before the sound collection array moves; when the wake-up signal is monitored, according to the audio Collecting the time difference of the wake-up signal and/or the amplitude difference of the monitored wake-up signal by each audio collecting device on the acquisition array, and locating the sound source direction; and determining the sound collecting area covering the sound source direction in the plurality of sound collecting regions as the first sound pickup region.
  • the determining module 402 determines, according to the first sound collection area identified by the identification module 401 and the rotation angle of the audio collection array, when the sound source direction belongs to the second sound collection area after the audio collection array moves, specifically for: obtaining a direction and an angle of the sound source direction with respect to the center of the first sound collecting region; from the rotation angle of the audio collecting array, the rotation direction and the rotation angle of the audio collecting array are decomposed; according to the rotating direction, the rotating angle, and the sound source direction A pickup angle is calculated by the direction of the center of the pickup region and the included angle; and the second pickup region is determined from the plurality of pickup regions according to the pickup angle and the respective pickup angle ranges of the plurality of pickup regions.
  • the determining module 402 is configured to calculate a pickup angle according to the rotation direction, the rotation angle, the direction of the sound source direction relative to the center of the first sound collection area, and the angle, and specifically, if the rotation direction is opposite to the sound source direction.
  • the direction of the center of the first sound pickup area is reversed, and the sum of the rotation angle and the angle is obtained as the sound pickup angle; if the rotation direction is the same as the direction of the sound source direction with respect to the center of the first sound pickup area, the rotation angle and the clip are acquired.
  • the absolute value of the difference between the angles as the pickup angle.
  • the sound collecting device 400 further includes a rotation angle determining module, configured to acquire an angular velocity of the gyroscope on the audio collecting array during the movement of the audio collecting array; and an angular velocity of the gyroscope and a rotation time of the audio collecting array according to the gyroscope Determine the rotation angle of the audio capture array.
  • a rotation angle determining module configured to acquire an angular velocity of the gyroscope on the audio collecting array during the movement of the audio collecting array; and an angular velocity of the gyroscope and a rotation time of the audio collecting array according to the gyroscope Determine the rotation angle of the audio capture array.
  • the audio collection array comprises at least two audio collection devices.
  • the sound collecting device 400 further includes a sound pickup angle range determining module for maximizing the sound collection array according to the shape of the audio collection array, the position arrangement of the at least two audio collection devices, and the number of the at least two audio collection devices.
  • the range is divided into a plurality of sound pickup regions; and a sound pickup angle range corresponding to each of the plurality of sound pickup regions is determined based on a center of the designated sound pickup regions among the plurality of sound pickup regions.
  • the identification module 401 is further configured to re-execute the direction of the sound source in the process of picking up the audio signal in the second sound collecting area by using the plurality of audio collecting devices of the audio collecting array, if the wake-up signal from the sound source is monitored. And the operation of identifying the first pickup region to which the direction of the sound source belongs before the movement of the audio collection array.
  • the picking module 403 is further configured to pick up an audio signal in the first sound collecting area by using the plurality of audio collecting devices.
  • embodiments of the present invention may be provided as a method, system, or Computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • the memory may include non-persistent memory, random access memory (RAM), and/or non-volatile memory in a computer readable medium, such as read only memory (ROM) or flash memory.
  • RAM random access memory
  • ROM read only memory
  • Memory is an example of a computer readable medium.
  • Computer readable media including both permanent and non-permanent, removable and non-removable media may be Any method or technique to implement information storage.
  • the information can be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory. (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape storage or other magnetic storage devices or any other non-transportable media can be used to store information that can be accessed by a computing device.
  • computer readable media does not include temporary storage of computer readable media, such as modulated data signals and carrier waves.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

本发明提供一种拾音方法及装置,其中,方法的部分包括以下步骤:识别音源方向以及音源方向在音频采集阵列移动之前所属的第一拾音区域,第一拾音区域是音频采集阵列的多个拾音区域中的一个;根据第一拾音区域以及音频采集阵列的旋转角,确定音源方向在音频采集阵列移动之后所属的第二拾音区域;第二拾音区域是多个拾音区域中的一个;利用音频采集阵列的多个音频采集设备拾取第二拾音区域内的音频信号。本发明提供的拾音方法可以在音频采集阵列移动的前后,一直准确拾取音源方向上的音频信号。

Description

一种拾音方法及装置
交叉引用
本发明引用于2017年7月21日递交的名称为“一种拾音方法及装置”的第201710602587.7号中国专利申请,其通过引用被全部并入本发明。
技术领域
本发明涉及音频采集技术领域,尤其涉及一种拾音方法及装置。
背景技术
随着智能技术的发展,出现了很多可进行语音交互的智能设备,例如可受语音控制的机器人、智能交互音箱等。在这些智能设备上一般配置包括多个音频采集设备的音频采集阵列,进而可以拾取多个方向的音频信号。
现有技术中,首先,需要确定音源方向,进而确定音频采集阵列中与音源方向对应的音频采集设备,之后该音频采集设备会将音源方向设置为其拾取音频信号的方向,并会一直在所设置的方向上拾取音频信号。若音频采集阵列出现移动后,音频采集阵列上的音频采集设备也会移动,可能会使音频采集设备拾取音频信号的方向会与音源方向不符,导致拾取到错误的音频信号。
发明内容
本发明的多个方面提供一种拾音方法及装置,用以在音频采集阵列移动 的前后,能够一直准确拾取音源方向上的音频信号。
本发明提供一种拾音方法,包括:
识别音源方向以及所述音源方向在音频采集阵列移动之前所属的第一拾音区域,所述第一拾音区域是所述音频采集阵列的多个拾音区域中的一个;
根据所述第一拾音区域以及所述音频采集阵列的旋转角,确定所述音源方向在所述音频采集阵列移动之后所属的第二拾音区域;所述第二拾音区域是所述多个拾音区域中的一个;
利用所述音频采集阵列的多个音频采集设备拾取所述第二拾音区域内的音频信号。
可选地,所述识别音源方向以及所述音源方向在音频采集阵列移动之前所属的第一拾音区域,包括:
监听来自于音源的唤醒信号;
当监听到所述唤醒信号时,根据所述音频采集阵列上各音频采集设备监听到所述唤醒信号的时间差和/或监听到的所述唤醒信号的幅度差,定位所述音源方向;以及
确定所述多个拾音区域中覆盖所述音源方向的拾音区域,作为所述第一拾音区域。
可选地,所述根据所述第一拾音区域以及所述音频采集阵列的旋转角,确定所述音源方向在所述音频采集阵列移动之后所属的第二拾音区域,包括:
获取所述音源方向相对于所述第一拾音区域的中心的方向和夹角;
从所述音频采集阵列的旋转角中,分解出所述音频采集阵列的旋转方向和旋转角度;
根据所述旋转方向、所述旋转角度、所述音源方向相对于所述第一拾音区域的中心的方向以及所述夹角,计算一拾音角度;
根据所述拾音角度以及所述多个拾音区域各自对应的拾音角度范围,从所述多个拾音区域中确定所述第二拾音区域。
可选地,所述根据所述旋转方向、所述旋转角度、所述音源方向相对于 所述第一拾音区域的中心的方向以及所述夹角,计算一拾音角度,包括:
若所述旋转方向与所述音源方向相对于所述第一拾音区域的中心的方向相反,获取所述旋转角度与所述夹角之和,作为所述拾音角度;
若所述旋转方向与所述音源方向相对于所述第一拾音区域的中心的方向相同,获取所述旋转角度与所述夹角之差的绝对值,作为所述拾音角度。
可选地,在所述根据所述第一拾音区域的位置以及所述音频采集阵列的旋转角,确定所述音源方向在所述音频采集阵列移动之后所属的第二拾音区域之前,所述方法还包括:
在所述音频采集阵列移动的过程中,采集所述音频采集阵列上的陀螺仪的角速度;
根据所述陀螺仪的角速度和所述音频采集阵列旋转的时间确定所述音频采集阵列的旋转角。
可选地,所述音频采集阵列包括至少两个音频采集设备;
在识别音源方向以及所述音源方向在音频采集阵列移动之前所属的第一拾音区域之前,所述方法还包括:
根据所述音频采集阵列的形状、所述至少两个音频采集设备的位置排列以及所述至少两个音频采集设备的个数,将所述音频采集阵列的最大拾音范围划分为所述多个拾音区域;以及
以所述多个拾音区域中指定拾音区域的中心为基准,确定所述多个拾音区域中每个拾音区域对应的拾音角度范围。
可选地,在利用所述音频采集阵列的多个音频采集设备拾取所述第二拾音区域内的音频信号的过程中,所述方法还包括:
若监听到来自声源的唤醒信号,重新执行识别所述音源方向的操作以及后续操作。
本发明还提供一种拾音装置,包括:
识别模块,用于识别音源方向以及所述音源方向在音频采集阵列移动之前所属的第一拾音区域,所述第一拾音区域是所述音频采集阵列的多个拾音 区域中的一个;
确定模块,用于根据所述第一拾音区域以及所述音频采集阵列的旋转角,确定所述音源方向在所述音频采集阵列移动之后所属的第二拾音区域;所述第二拾音区域是所述多个拾音区域中的一个;
拾取模块,用于利用所述音频采集阵列的多个音频采集设备拾取所述第二拾音区域内的音频信号。
可选地,所述识别模块具体用于:
监听来自于音源的唤醒信号;
当监听到所述唤醒信号时,根据所述音频采集阵列上各音频采集设备监听到所述唤醒信号的时间差和/或监听到的所述唤醒信号的幅度差,定位所述音源方向;以及确定所述多个拾音区域中覆盖所述音源方向的拾音区域,作为所述第一拾音区域。
可选地,所述确定模块具体用于:
获取所述音源方向相对于所述第一拾音区域的中心的方向和夹角;
从所述音频采集阵列的旋转角中,分解出所述音频采集阵列的旋转方向和旋转角度;
根据所述旋转方向、所述旋转角度、所述音源方向相对于所述第一拾音区域的中心的方向以及所述夹角,计算一拾音角度;
根据所述拾音角度以及所述多个拾音区域各自对应的拾音角度范围,从所述多个拾音区域中确定所述第二拾音区域。
在本发明中,通过音源方向在音频采集阵列移动之前所属的第一拾音区域以及音频采集阵列的旋转角,确定音源方向在音频采集阵列移动之后所属的第二拾音区域,进而利用多个音频采集设备拾取第二拾音区域内的音频信号,使得在音频采集阵列移动前后,可以一直拾取同一音源方向上的音频信号,解决了音频采集设备拾取音频信号的方向会与音源方向不符导致拾取到错误的音频信号的问题,有利于提高后续音频处理结果的准确性。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明一实施例提供的一种拾音方法的流程示意图;
图2为本发明又一实施例提供的一种拾音方法的流程示意图;
图3a、图3b、图3c分别为本发明又一实施例提供的音频采集阵列旋转示意图;
图4为本发明又一实施例提供的一种拾音装置的模块结构图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下结合附图,详细说明本发明各实施例提供的技术方案。
图1为本发明一实施例提供的一种拾音方法的流程示意图。如图1所示,该方法包括以下步骤。
S101:识别音源方向以及音源方向在音频采集阵列移动之前所属的第一拾音区域,第一拾音区域是音频采集阵列的多个拾音区域中的一个。
S102:根据第一拾音区域以及音频采集阵列的旋转角,确定音源方向在音频采集阵列移动之后所属的第二拾音区域;第二拾音区域是多个拾音区域中的一个。
S103:利用音频采集阵列的多个音频采集设备拾取第二拾音区域内的音频信号。
音频采集阵列是一组位于空间不同位置的全向音频采集设备按一定的形状规则布置形成的阵列,是对空间传播音频信号进行空间采样的一种装置。其中,音频采集阵列包括多个音频采集设备,本实施例中的多个是指至少两个。音频采集设备包括但不限于麦克风、话筒等设备。
根据音频采集阵列的拓扑结构,则可分为线性阵列、平面阵列、体阵列等。基于此,音频采集阵列包括线形音频采集阵列、面形音频采集阵列、体形音频采集阵列等。
根据位于音频采集设备的多个音频采集设备,可将音频采集设备能够拾音的区域范围划分为多个拾音区域。可选地,一个拾音区域可以对应一个音频采集设备,或者,一个拾音区域也可以对应多个音频采集设备。
当通过音频采集阵列拾取音频信号时,可先通过音频采集阵列识别出音源方向,继而确定音源方向所属的拾音区域,然后通过多个音频采集设备拾取音源方向所属的拾音区域内的音频信号,进而拾取到音源方向的音频信号。
其中,音源方向为音频信号发出的方向。音源方向所属的第一拾音区域可以指覆盖音源方向的拾音区域。
若音频采集阵列移动后,音频采集设备也会跟着移动,进而使第一拾音区域移动。这样,在音源方向不变的情况下,音源方向可能位于第一拾音区域之外的其它拾音区域。若再拾取第一拾音区域内的音频信号将不会拾取到音源方向上的音频信号。
为了使音频采集阵列移动后,依然能够拾取到音源方向的音频信号,可以在音频采集阵列移动后,根据第一拾音区域以及音频采集阵列的旋转角,重新确定音源方向所属的拾音区域,进而利用多个音频采集设备拾取重新确定的拾音区域内的音频信号,这样可以保证在音频采集阵列移动前后,可以一直拾取同一音源方向上的音频信号。为便于区分和描述,将音源方向在音频采集阵列移动之前所属的拾音区域称为第一拾音区域,将音源方向在音频 采集阵列移动之后所属的拾音区域称为第二拾音区域。上述旋转角包括旋转方向和旋转角度。
可选地,在识别出音源方向以及音源方向在音频采集阵列移动之前所属的第一拾音区域之后,可以保存音源方向以及音源方向在音频采集阵列移动之前所属的第一拾音区域。
更多情况下,音源方向在音频采集设备移动前后所属的拾音区域不同,即第一拾音区域与第二拾音区域不相同。但是,在音频采集设备的移动幅度较小的情况下,音源方向在音频采集设备移动前后可能属于同一拾音区域,即第一拾音区域与第二拾音区域相同。
音频采集阵列可以有多种移动方式,例如横向移动、纵向移动、旋转移动或者上述移动的组合等。一般来说,若音频采集阵列移动后,令音频采集阵列自身旋转,则更容易使音源方向不再属于第一拾音区域。
以音频采集阵列自身旋转的情况为例,当音频采集阵列旋转时,音频采集阵列的多个拾音区域也会进行同样的旋转。基于此,音频采集阵列以一旋转角旋转,意味着第一拾音区域、第二拾音区域等多个拾音区域均以同一旋转角旋转。因此,在覆盖音源方向的拾音区域为第一拾音区域时,经各个拾音区域以旋转角旋转,覆盖音源方向的拾音区域由第一拾音区域切换为第二拾音区域。
然后,利用音频采集阵列的多个音频采集设备拾取第二拾音区域内的音频信号。
可选地,可以采用波束成形技术,将多个音频采集设备采集的第二拾音区域内的音频信号进行时延处理并加权相加,以形成一个拾音波束;同时衰减除第二拾音区域外的其他区域内的音频信号。最终,通过多个音频采集设备对第二拾音区域内的音频信号进行加强和降噪,从而拾取到音源方向上的音频信号。
本实施例中,通过音源方向在音频采集阵列移动之前所属的第一拾音区域以及音频采集阵列的旋转角,确定音源方向在音频采集阵列移动之后所属 的第二拾音区域,进而利用多个音频采集设备拾取第二拾音区域内的音频信号,使得在音频采集阵列移动前后,可以一直拾取同一音源方向上的音频信号,解决了音频采集设备拾取音频信号的方向会与音源方向不符导致拾取到错误的音频信号的问题,有利于提高后续音频处理结果的准确性。
在上述实施例或下述实施例中,可以通过监听来自于音源的唤醒信号来识别音源方向。基于此,识别音源方向以及音源方向在音频采集阵列移动之前所属的第一拾音区域,包括:监听来自于音源的唤醒信号;当监听到唤醒信号时,根据音频采集阵列上各音频采集设备监听到唤醒信号的时间差和/或监听到的唤醒信号的幅度差,定位音源方向;以及确定多个拾音区域中覆盖音源方向的拾音区域,作为第一拾音区域。
其中,音源可以包括但不限于用户、扬声器等任何能够发声的人或物。
可选地,唤醒信号可以包括但不限于指定频率的音频信号、指定幅度的音频信号和指定内容的音频信号等。
当唤醒信号为指定内容的音频信号时,可以根据音频采集阵列上各音频采集设备周期性监听音频采集阵列周围的音频信号,并将采集到的音频信号进行语音识别。若识别到音频信号为指定内容的音频信号,如“开启”时,则定位唤醒信号的方向。
可选地,可以通过以下三种实施方式定位唤醒信号的方向。
第一种实施方式:一般来说,唤醒信号到达各音频采集设备的时间,或者各音频采集设备监听到唤醒信号的时间是不同的。距离声源较近的音频采集设备会先监听到唤醒信号,距离声源较远的音频采集设备会后监听到唤醒信号。基于此,可以根据各音频采集设备监听到唤醒信号的时间差,定位唤醒信号的方向。
第二种实施方式:唤醒信号到达各音频采集设备时的幅度,或者各音频采集设备监听到的唤醒信号幅度是不同的。距离声源较近的音频采集设备监听到的唤醒信号的幅度较大,距离声源较远的音频采集设备监听到的唤醒信号的幅度较小。基于此,可以根据各音频采集设备监听到的唤醒信号的幅度 差,定位唤醒信号的方向。
第三种实施方式:为了更准确地定位音源方向,可以结合上述两种实施方式,定位唤醒信号的方向。也就是,根据音频采集阵列上各音频采集设备监听到唤醒信号的时间差和监听到的唤醒信号的幅度差,定位唤醒信号的方向。
然后,将定位出的唤醒信号的方向作为音源方向。可选地,定位出的音源方向可以是根据音频采集阵列建立的虚拟坐标系所得。
然后,比较音源方向和多个拾音区域,将覆盖音源方向的拾音区域,作为第一拾音区域。
图2为本发明又一实施例提供的一种拾音方法的流程示意图。如图2所示,该方法包括以下步骤。
S201:识别音源方向以及音源方向在音频采集阵列移动之前所属的第一拾音区域,第一拾音区域是音频采集阵列的多个拾音区域中的一个。
S202:获取音源方向相对于第一拾音区域的中心的方向和夹角。
S203:从音频采集阵列的旋转角中,分解出音频采集阵列的旋转方向和旋转角度。
S204:判断旋转方向与音源方向相对于第一拾音区域的中心的方向相同或相反,若相同,跳转到步骤S206;若相反,跳转到步骤S205。
S205:获取旋转角度与夹角之和,作为拾音角度,并继续执行步骤S207。
S206:获取旋转角度与夹角之差的绝对值,作为拾音角度,并继续执行步骤S207。
S207:根据拾音角度以及多个拾音区域各自对应的拾音角度范围,从多个拾音区域中确定第二拾音区域。
S208:利用音频采集阵列的多个音频采集设备拾取第二拾音区域内的音频信号。
步骤S201与步骤S101相同,此处不再赘述。
在识别到音源方向以及音源方向在音频采集阵列移动之前所属的第一拾 音区域之后,可以根据音源方向在第一拾音区域的确切方向和音频采集阵列的旋转角,确定在音频采集阵列移动之后,音源方向所属的第二拾音区域。
首先,获取音源方向在第一拾音区域的确切方向。可选地,可以以第一拾音区域的中心为基准,获取音源方向的相对于第一拾音区域的中心的方向和夹角(即步骤S202)。可选地,音源方向相对于第一拾音区域的中心的方向和夹角可以指在音源方向投影到音频采集阵列的旋转平面上后,相对于第一拾音区域的中心的方向和夹角。
如图3a所示,音频采集阵列包括麦克风A、麦克风B、麦克风C和麦克风D。其中,麦克风B对应一号拾音区域,麦克风A对应二号拾音区域,麦克风D对应三号拾音区域,麦克风C对应四号拾音区域。在音频采集阵列旋转之前,音源方向所属的第一拾音区域就是一号拾音区域。
图3a中,音源方向与第一拾音区域的中心的夹角为m度。
然后,分解音频采集阵列的旋转角这一矢量,以得到旋转角的方向,即旋转方向,和旋转角的角度,即旋转角度(即步骤S203)。
接着,根据旋转方向、旋转角度、音源方向相对于第一拾音区域的中心的方向以及夹角,计算一拾音角度。其中,拾音角度指音频采集阵列移动后,音源方向相对于第一拾音区域的中心的角度。
可选地,根据旋转方向与音源方向相对于第一拾音区域的中心的方向相同或相反,获取拾音角度的方式不同。基于此,判断旋转方向与音源方向相对于第一拾音区域的中心的方向相同或相反(即步骤S204)。
图3b为在图3a的基础上,音频采集阵列顺时针旋转后的示意图。如图3b所示,旋转方向为顺时针方向,音源方向相对于第一拾音区域的中心的方向为逆时针方向,则二者的方向相反。
图3c为在图3a的基础上,音频采集阵列逆时针旋转后的示意图。如图3c所示,旋转方向为逆时针方向,音源方向相对于第一拾音区域的中心的方向为逆时针方向,则二者的方向相同。
若旋转方向与音源方向相对于第一拾音区域的中心的方向相反,获取旋 转角度与夹角之和,作为拾音角度(即步骤S205)。如图3b所示,旋转角度为k度,夹角为m度,则拾音角度为k+m度。
若旋转方向与音源方向相对于第一拾音区域的中心的方向相同,获取所述旋转角度与所述夹角之差的绝对值,作为拾音角度(即步骤S206)。如图3c所示,旋转角度为k度,夹角为m度,则拾音角度为|m-k|度。
然后,根据拾音角度以及多个拾音区域各自对应的拾音角度范围,从多个拾音区域中确定第二拾音区域(即步骤S207)。
其中,每个拾音区域对应一个拾音角度范围。每个拾音角度范围可以根据一个共同的基准计算所得。可选地,以指定拾音区域的中心为基准,例如,以指定区域的中心为0度,沿逆时针或顺时针方向依次确定每个拾音区域的拾音角度范围。
可选地,指定拾音区域可以是第一拾音区域也可以不是第一拾音区域。当指定拾音区域是第一拾音区域时,以第一拾音区域的中心为基准获得多个拾音角度范围。由于拾音角度是音源方向相对于第一拾音区域的中心的角度,也就是拾音角度范围的基准与拾音角度的基准相同。基于此,当拾音角度在一拾音角度范围内时,可以将该拾音角度范围对应的拾音区域作为第二拾音区域。
如图3a、3b、3c所示,以第一拾音区域,即一号拾音区域的中心为基准,沿逆时针方向,一号拾音区域的拾音角度范围为315度-360度以及0度-45度,二号拾音区域的拾音角度范围为45度-135度,三号拾音区域的拾音角度范围为135度-225度,四号拾音区域的拾音角度范围为225度-315度。假设图3b中,拾音角度为75度,则二号拾音区域的角度范围45度-135度包括拾音角度,则确定二号拾音区域为拾取音频信号的第二拾音区域。假设图3c中,拾音角度为|-100|度,考虑到m-k为负值,则将-100度加上360度以得到正值260度,四号拾音区域的角度范围225度-315度包括拾音角度,则确定图3c示出的第四拾音区域为拾取音频信号的第二拾音区域。如果拾音角度为正值,则直接与各个拾音角度范围相比,以确定第二拾音区域。
值得说明的是,为了便于对比,图3c中的拾音区域标识与图3b和图3a均相同。当指定拾音区域不是第一拾音区域时,例如,指定拾音区域为图3a中麦克风A对应的二号拾音区域,则以麦克风A对应的二号拾音区域的中心为基准,沿逆时针或顺时针的方向,确定每个拾音区域的拾音角度范围。
以逆时针方向为例,如图3a所示,音频采集阵列初始状态为在图3a基础上顺时针旋转90度,则对应的,一号、二号、三号和四号拾音区域的拾音角度范围更新为:一号拾音区域的拾音角度范围为225度-315度,二号拾音区域的拾音角度范围为315度-360度以及0度-45度,三号拾音区域的拾音角度范围为45度-135度,四号拾音区域的拾音角度范围为135度-225度。
当指定拾音区域不是第一拾音区域,即一号拾音区域时,拾音角度范围的基准与拾音角度的基准不同。此时,可以根据指定拾音区域与第一拾音区域的相对位置,将以指定拾音区域的中心为基准的拾音角度范围换算到以第一拾音区域的中心为基准的角度范围。然后,当拾音角度在换算后的一拾音角度范围内时,可以将该换算后的拾音角度范围对应的拾音区域作为第二拾音区域。
在一示例中,图3a所示,音频采集阵列初始状态为在图3a基础上顺时针旋转90度,以第一拾音区域,即一号拾音区域的中心为基准的拾音角度假设为30度。指定拾音区域为二号拾音区域。二号拾音区域相对于一号拾音区域逆时针旋转了90度,则将一号拾音区域的角度范围、二号拾音区域的角度范围、三号拾音区域的角度范围以及四号拾音区域的角度范围均增加90度,超过360度的角度范围减去360度,进而将以二号拾音区域的中心为基准的拾音角度范围换算到以一号拾音区域的中心为基准的角度范围。换算后,一号拾音区域的拾音角度范围为315度-360度以及0度-45度,二号拾音区域的拾音角度范围为45度-135度,三号拾音区域的拾音角度范围为135度-225度,四号拾音区域的拾音角度范围为225度-315度。然后,当拾音角度在换算后的一拾音角度范围内时,可以将该换算后的拾音角度范围对应的拾音区域作为第二拾音区域。
在确定第二拾音区域后,可以利用音频采集阵列上位于第二拾音区域内的音频采集设备拾取第二拾音区域内的音频信号(即步骤S208),进而在音频采集阵列移动后,依然能够获取到音源方向上的音频信号。
在上述实施例或下述实施例中,在根据第一拾音区域的位置以及音频采集阵列的旋转角,确定音源方向在音频采集阵列移动之后所属的第二拾音区域之前,还可以包括音频采集阵列的旋转角的获取过程。
可选地,可以在音频采集阵列上安装陀螺仪。可选地,可以在音频采集阵列的中心位置安装陀螺仪。进而,在音频采集阵列移动的过程中,采集音频采集阵列上的陀螺仪的角速度。陀螺仪的角速度就是音频采集阵列旋转的角速度。
然后,根据陀螺仪的角速度和音频采集阵列旋转的时间,确定音频采集阵列的旋转角。可选地,可以将陀螺仪的角速度,也就是音频采集阵列旋转的角速度对应乘以音频采集阵列旋转的时间,得到音频采集阵列的旋转角。
在一可选实施方式中,也可以在音频采集阵列上安装角度传感器。进而,采集角度传感器在音频采集阵列移动之前的第一角度;采集角度传感器在音频采集阵列移动之后的第二角度。然后,根据第二角度与第一角度的矢量之差,确定音频采集阵列的旋转角。
在上述实施例或下述实施例中,音频采集阵列包括至少两个音频采集设备。至少两个音频采集设备可以对应至少两个拾音区域。不同拾音区域的拾音角度范围不同。
可选地,在识别音源方向以及音源方向在音频采集阵列移动之前所属的第一拾音区域之前,可以确定各个拾音区域对应的拾音角度范围。
首先,根据音频采集阵列的形状、至少两个音频采集设备的位置排列以及至少两个音频采集设备的个数,将音频采集阵列的最大拾音范围划分为多个拾音区域。
其中,音频采集阵列的形状与音频采集阵列的最大拾音范围有关。若音频采集阵列为环形,如图3a所示,最大拾音范围为360度的范围。若音频采 集阵列为半环形,则最大拾音范围为180度的范围。若音频采集阵列为线形,则最大拾音范围为小于180度的扇形范围。
音频采集设备的位置排列以及个数与拾音区域的划分有关。如图3a所示,设置于音频采集设备上的麦克风A、麦克风B、麦克风C和麦克风D均匀排列在环形音频采集阵列的周围,则将360度的范围划分为4个90度的拾音范围。其中,麦克风位于对应拾音范围的中心位置。
然后,以多个拾音区域中指定拾音区域的中心为基准,确定多个拾音区域中每个拾音区域对应的拾音角度范围。
其中,指定拾音区域可以为多个拾音区域中的任一区域。
可选地,在音频采集阵列拾取音频信号的过程中,指定拾音区域可以固定为多个拾音区域中的一区域,也可以随着音源方向的变化,将音源方向所属的拾音区域作为指定拾音区域。
若指定拾音区域固定为多个拾音区域中的一区域时,每个拾音区域对应的拾音角度范围保持不变。若指定拾音区域为音源方向所属的第一拾音区域时,当音源方向所属的第一拾音区域改变时,每个拾音区域对应的拾音角度范围也会相应改变。
当然,也可以以指定拾音区域的一边界为基准,确定多个拾音区域中每个拾音区域对应的拾音角度范围。
在一可选实施方式中,在利用音频采集阵列上的多个音频采集设备拾取第二拾音区域内的音频信号的过程中,音源方向可能发生变化。基于此,可以周期性监听来自声源的唤醒信号,即根据音频采集阵列上各音频采集设备周期性监听音频采集阵列周围的唤醒信号。
若监听到来自声源的唤醒信号,重新执行识别音源方向的操作。进而确定音源方向在音频采集阵列所属的第一拾音区域,以利用多个音频采集设备拾取第一拾音区域内的音频信号。
在拾取第一拾音区域内的音频信号的过程中,若音频采集阵列发生移动,可以根据第一拾音区域以及音频采集阵列的旋转角,确定音源方向在音频采 集阵列移动之后所属的第二拾音区域;进而利用多个音频采集设备拾取第二拾音区域内的音频信号。
值得说明的是,在音源方向发生变化之后,新的音源方向所属的拾音区域被称为第一拾音区域。基于此,可以以新的第一拾音区域的中心为基准,重新获取多个拾音区域的拾音角度范围和音源方向相对于新的第一拾音区域的中心的夹角和方向,进而执行后续的计算。
图4为本发明又一实施例提供的一种拾音装置的模块结构图。如图4所示,拾音装置400包括识别模块401、确定模块402和拾取模块403。
识别模块401,用于识别音源方向以及音源方向在音频采集阵列移动之前所属的第一拾音区域,第一拾音区域是音频采集阵列的多个拾音区域中的一个。
确定模块402,用于根据识别模块401识别的第一拾音区域以及音频采集阵列的旋转角,确定音源方向在音频采集阵列移动之后所属的第二拾音区域;第二拾音区域是多个拾音区域中的一个。
拾取模块403,用于利用音频采集阵列的多个音频采集设备拾取第二拾音区域内的音频信号。
本实施例中,通过音源方向在音频采集阵列移动之前所属的第一拾音区域以及音频采集阵列的旋转角,确定音源方向在音频采集阵列移动之后所属的第二拾音区域,进而利用多个音频采集设备拾取第二拾音区域内的音频信号,使得在音频采集阵列移动前后,可以一直拾取同一音源方向上的音频信号,解决了音频采集设备拾取音频信号的方向会与音源方向不符导致拾取到错误的音频信号的问题,有利于提高后续音频处理结果的准确性。
可选地,识别模块401在识别音源方向以及音源方向在音频采集阵列移动之前所属的第一拾音区域时,具体用于:监听来自于音源的唤醒信号;当监听到唤醒信号时,根据音频采集阵列上各音频采集设备监听到唤醒信号的时间差和/或监听到的唤醒信号的幅度差,定位音源方向;以及确定多个拾音区域中覆盖音源方向的拾音区域,作为第一拾音区域。
可选地,确定模块402在根据识别模块401识别的第一拾音区域以及音频采集阵列的旋转角,确定音源方向在音频采集阵列移动之后所属的第二拾音区域时,具体用于:获取音源方向相对于第一拾音区域的中心的方向和夹角;从音频采集阵列的旋转角中,分解出音频采集阵列的旋转方向和旋转角度;根据旋转方向、旋转角度、音源方向相对于第一拾音区域的中心的方向以及夹角,计算一拾音角度;根据拾音角度以及多个拾音区域各自对应的拾音角度范围,从多个拾音区域中确定第二拾音区域。
可选地,确定模块402在根据旋转方向、旋转角度、音源方向相对于第一拾音区域的中心的方向以及夹角,计算一拾音角度时,具体用于:若旋转方向与音源方向相对于第一拾音区域的中心的方向相反,获取旋转角度与夹角之和,作为拾音角度;若旋转方向与音源方向相对于第一拾音区域的中心的方向相同,获取旋转角度与夹角之差的绝对值,作为拾音角度。
可选地,拾音装置400还包括旋转角确定模块,用于在音频采集阵列移动的过程中,采集音频采集阵列上的陀螺仪的角速度;以及根据陀螺仪的角速度和音频采集阵列旋转的时间确定音频采集阵列的旋转角。
可选地,音频采集阵列包括至少两个音频采集设备。
拾音装置400还包括拾音角度范围确定模块,用于根据音频采集阵列的形状、至少两个音频采集设备的位置排列以及至少两个音频采集设备的个数,将音频采集阵列的最大拾音范围划分为多个拾音区域;以及以多个拾音区域中指定拾音区域的中心为基准,确定多个拾音区域中每个拾音区域对应的拾音角度范围。
可选地,识别模块401还用于在利用音频采集阵列的多个音频采集设备拾取第二拾音区域内的音频信号的过程中,若监听到来自声源的唤醒信号,重新执行识别音源方向的操作以及执行识别音源方向在音频采集阵列移动之前所属的第一拾音区域的操作。进而拾取模块403,用于利用多个音频采集设备拾取第一拾音区域内的音频信号。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或 计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由 任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本发明的实施例可提供为方法、系统或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上所述仅为本发明的实施例而已,并不用于限制本发明。对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (10)

  1. 一种拾音方法,其中,包括:
    识别音源方向以及所述音源方向在音频采集阵列移动之前所属的第一拾音区域,所述第一拾音区域是所述音频采集阵列的多个拾音区域中的一个;
    根据所述第一拾音区域以及所述音频采集阵列的旋转角,确定所述音源方向在所述音频采集阵列移动之后所属的第二拾音区域;所述第二拾音区域是所述多个拾音区域中的一个;
    利用所述音频采集阵列的多个音频采集设备拾取所述第二拾音区域内的音频信号。
  2. 根据权利要求1所述的方法,其中,所述识别音源方向以及所述音源方向在音频采集阵列移动之前所属的第一拾音区域,包括:
    监听来自于音源的唤醒信号;
    当监听到所述唤醒信号时,根据所述音频采集阵列上各音频采集设备监听到所述唤醒信号的时间差和/或监听到的所述唤醒信号的幅度差,定位所述音源方向;以及
    确定所述多个拾音区域中覆盖所述音源方向的拾音区域,作为所述第一拾音区域。
  3. 根据权利要求1所述的方法,其中,所述根据所述第一拾音区域以及所述音频采集阵列的旋转角,确定所述音源方向在所述音频采集阵列移动之后所属的第二拾音区域,包括:
    获取所述音源方向相对于所述第一拾音区域的中心的方向和夹角;
    从所述音频采集阵列的旋转角中,分解出所述音频采集阵列的旋转方向和旋转角度;
    根据所述旋转方向、所述旋转角度、所述音源方向相对于所述第一拾音区域的中心的方向以及所述夹角,计算一拾音角度;
    根据所述拾音角度以及所述多个拾音区域各自对应的拾音角度范围,从所述多个拾音区域中确定所述第二拾音区域。
  4. 根据权利要求3所述的方法,其中,所述根据所述旋转方向、所述旋转角度、所述音源方向相对于所述第一拾音区域的中心的方向以及所述夹角,计算一拾音角度,包括:
    若所述旋转方向与所述音源方向相对于所述第一拾音区域的中心的方向相反,获取所述旋转角度与所述夹角之和,作为所述拾音角度;
    若所述旋转方向与所述音源方向相对于所述第一拾音区域的中心的方向相同,获取所述旋转角度与所述夹角之差的绝对值,作为所述拾音角度。
  5. 根据权利要求1所述的方法,其中,在所述根据所述第一拾音区域的位置以及所述音频采集阵列的旋转角,确定所述音源方向在所述音频采集阵列移动之后所属的第二拾音区域之前,所述方法还包括:
    在所述音频采集阵列移动的过程中,采集所述音频采集阵列上的陀螺仪的角速度;
    根据所述陀螺仪的角速度和所述音频采集阵列旋转的时间确定所述音频采集阵列的旋转角。
  6. 根据权利要求1所述的方法,其中,所述音频采集阵列包括至少两个音频采集设备;
    在识别音源方向以及所述音源方向在音频采集阵列移动之前所属的第一拾音区域之前,所述方法还包括:
    根据所述音频采集阵列的形状、所述至少两个音频采集设备的位置排列以及所述至少两个音频采集设备的个数,将所述音频采集阵列的最大拾音范围划分为所述多个拾音区域;以及
    以所述多个拾音区域中指定拾音区域的中心为基准,确定所述多个拾音区域中每个拾音区域对应的拾音角度范围。
  7. 根据权利要求1-6任一项所述的方法,其中,在利用所述音频采集阵列的多个音频采集设备拾取所述第二拾音区域内的音频信号的过程中, 所述方法还包括:
    若监听到来自声源的唤醒信号,重新执行识别所述音源方向的操作以及后续操作。
  8. 一种拾音装置,其中,包括:
    识别模块,用于识别音源方向以及所述音源方向在音频采集阵列移动之前所属的第一拾音区域,所述第一拾音区域是所述音频采集阵列的多个拾音区域中的一个;
    确定模块,用于根据所述第一拾音区域以及所述音频采集阵列的旋转角,确定所述音源方向在所述音频采集阵列移动之后所属的第二拾音区域;所述第二拾音区域是所述多个拾音区域中的一个;
    拾取模块,用于利用所述音频采集阵列的多个音频采集设备拾取所述第二拾音区域内的音频信号。
  9. 根据权利要求8所述的装置,其中,所述识别模块具体用于:
    监听来自于音源的唤醒信号;
    当监听到所述唤醒信号时,根据所述音频采集阵列上各音频采集设备监听到所述唤醒信号的时间差和/或监听到的所述唤醒信号的幅度差,定位所述音源方向;以及
    确定所述多个拾音区域中覆盖所述音源方向的拾音区域,作为所述第一拾音区域。
  10. 根据权利要求8所述的装置,其中,所述确定模块具体用于:
    获取所述音源方向相对于所述第一拾音区域的中心的方向和夹角;
    从所述音频采集阵列的旋转角中,分解出所述音频采集阵列的旋转方向和旋转角度;
    根据所述旋转方向、所述旋转角度、所述音源方向相对于所述第一拾音区域的中心的方向以及所述夹角,计算一拾音角度;
    根据所述拾音角度以及所述多个拾音区域各自对应的拾音角度范围,从所述多个拾音区域中确定所述第二拾音区域。
PCT/CN2017/108070 2017-07-21 2017-10-27 一种拾音方法及装置 WO2019015159A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710602587.7 2017-07-21
CN201710602587.7A CN107277699A (zh) 2017-07-21 2017-07-21 一种拾音方法及装置

Publications (1)

Publication Number Publication Date
WO2019015159A1 true WO2019015159A1 (zh) 2019-01-24

Family

ID=60079491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108070 WO2019015159A1 (zh) 2017-07-21 2017-10-27 一种拾音方法及装置

Country Status (2)

Country Link
CN (1) CN107277699A (zh)
WO (1) WO2019015159A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107277699A (zh) * 2017-07-21 2017-10-20 歌尔科技有限公司 一种拾音方法及装置
CN108172236B (zh) * 2018-01-12 2021-08-20 歌尔科技有限公司 一种拾音降噪方法以及智能电子设备
CN109841214B (zh) * 2018-12-25 2021-06-01 百度在线网络技术(北京)有限公司 语音唤醒处理方法、装置和存储介质
CN109712626B (zh) * 2019-03-04 2021-04-30 腾讯科技(深圳)有限公司 一种语音数据处理方法及装置
CN110310633B (zh) * 2019-05-23 2022-05-20 阿波罗智联(北京)科技有限公司 多音区语音识别方法、终端设备和存储介质
CN110364176A (zh) * 2019-08-21 2019-10-22 百度在线网络技术(北京)有限公司 语音信号处理方法及装置
CN113141285B (zh) * 2020-01-19 2022-04-29 海信集团有限公司 一种沉浸式语音交互方法及系统
CN114446300B (zh) * 2022-02-17 2023-03-24 北京百度网讯科技有限公司 多音区识别方法、装置、设备以及存储介质
CN114885273A (zh) * 2022-03-15 2022-08-09 科大讯飞股份有限公司 音区调整方法及相关装置、设备、系统和介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800919A (zh) * 2009-01-16 2010-08-11 三洋电机株式会社 音响信号处理装置及再现装置
CN102137318A (zh) * 2010-01-22 2011-07-27 华为终端有限公司 拾音控制方法和装置
CN102160398A (zh) * 2008-07-31 2011-08-17 诺基亚公司 电子设备定向音频视频采集
CN104010251A (zh) * 2013-02-27 2014-08-27 晨星半导体股份有限公司 收音系统与相关方法
CN106028216A (zh) * 2015-03-31 2016-10-12 华硕电脑股份有限公司 音频采集增强方法以及使用所述方法的音频采集系统
CN206212215U (zh) * 2016-10-24 2017-05-31 中山市悦辰电子实业有限公司 一种远程语音自动识别定位转向收音装置
CN107277699A (zh) * 2017-07-21 2017-10-20 歌尔科技有限公司 一种拾音方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056598A (ja) * 2008-08-26 2010-03-11 Yamaha Corp 放収音装置
US9412375B2 (en) * 2012-11-14 2016-08-09 Qualcomm Incorporated Methods and apparatuses for representing a sound field in a physical space
CN104035065A (zh) * 2014-06-23 2014-09-10 河北工业大学 基于主动旋转的声源定向装置及其应用方法
CN106125771A (zh) * 2016-08-16 2016-11-16 江西联创宏声电子有限公司 声频定向扬声器及其转向方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102160398A (zh) * 2008-07-31 2011-08-17 诺基亚公司 电子设备定向音频视频采集
CN101800919A (zh) * 2009-01-16 2010-08-11 三洋电机株式会社 音响信号处理装置及再现装置
CN102137318A (zh) * 2010-01-22 2011-07-27 华为终端有限公司 拾音控制方法和装置
CN104010251A (zh) * 2013-02-27 2014-08-27 晨星半导体股份有限公司 收音系统与相关方法
CN106028216A (zh) * 2015-03-31 2016-10-12 华硕电脑股份有限公司 音频采集增强方法以及使用所述方法的音频采集系统
CN206212215U (zh) * 2016-10-24 2017-05-31 中山市悦辰电子实业有限公司 一种远程语音自动识别定位转向收音装置
CN107277699A (zh) * 2017-07-21 2017-10-20 歌尔科技有限公司 一种拾音方法及装置

Also Published As

Publication number Publication date
CN107277699A (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
WO2019015159A1 (zh) 一种拾音方法及装置
US9621984B1 (en) Methods to process direction data of an audio input device using azimuth values
CN109506568B (zh) 一种基于图像识别和语音识别的声源定位方法及装置
JP6620140B2 (ja) 2次元センサーアレイを用いて3次元波動場の3次元波動場表現を構築するための方法、コンピューター可読記憶媒体及び装置
WO2020001163A1 (zh) 语音识别方法和装置、计算机设备和电子设备
US8676728B1 (en) Sound localization with artificial neural network
Sasaki et al. Multiple sound source mapping for a mobile robot by self-motion triangulation
US9360546B2 (en) Systems, methods, and apparatus for indicating direction of arrival
WO2017031972A1 (zh) 指向性录音方法、装置及录音设备
Yook et al. Fast sound source localization using two-level search space clustering
US20160249132A1 (en) Sound source localization using sensor fusion
JP4812302B2 (ja) 音源方向推定システム、音源方向推定方法及び音源方向推定プログラム
CN107422305A (zh) 一种麦克风阵列声源定位方法和装置
CN109669158B (zh) 一种声源定位方法、系统、计算机设备及存储介质
WO2018209893A1 (zh) 麦克风阵列指向的调整方法和装置
CN109387205B (zh) 获取姿态角变化幅度方法、设备及存储介质
Diaz-Guerra et al. Direction of arrival estimation of sound sources using icosahedral CNNs
CN106093848B (zh) 声音定向方法及装置
CN113053368A (zh) 语音增强方法、电子设备和存储介质
US9319787B1 (en) Estimation of time delay of arrival for microphone arrays
CN114355289A (zh) 声源定位方法、装置、存储介质及计算机设备
CN112492207A (zh) 一种基于声源定位控制摄像头转动的方法和装置
CN111077497A (zh) 一种用于声源定位的装置及方法
JP4676893B2 (ja) 信号到来方向推定装置、信号到来方向推定方法、信号到来方向推定プログラム及び記録媒体
Astapov et al. Simplified acoustic localization by linear arrays for wireless sensor networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918219

Country of ref document: EP

Kind code of ref document: A1