WO2019014847A1 - 一种利用透镜分时还原光场的方法 - Google Patents

一种利用透镜分时还原光场的方法 Download PDF

Info

Publication number
WO2019014847A1
WO2019014847A1 PCT/CN2017/093350 CN2017093350W WO2019014847A1 WO 2019014847 A1 WO2019014847 A1 WO 2019014847A1 CN 2017093350 W CN2017093350 W CN 2017093350W WO 2019014847 A1 WO2019014847 A1 WO 2019014847A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
image
screen
projection display
playing
Prior art date
Application number
PCT/CN2017/093350
Other languages
English (en)
French (fr)
Inventor
李乔
Original Assignee
辛特科技有限公司
李乔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 辛特科技有限公司, 李乔 filed Critical 辛特科技有限公司
Priority to PCT/CN2017/093350 priority Critical patent/WO2019014847A1/zh
Priority to CN201780093189.5A priority patent/CN110914748B/zh
Publication of WO2019014847A1 publication Critical patent/WO2019014847A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells

Definitions

  • the present invention relates to the field of light field reduction technology, and in particular, to a method for time-reducing a light field by using a lens.
  • 3D equipment based on the principle of "polarization” cannot solve the dizziness problem caused by people during use.
  • the left and right parallax and the eye focus system can confirm each other, so that the brain knows that these two functions are tacit cooperation.
  • the two sets of the brain's distance sensing system and the observation in the natural environment are different, and this difference makes the brain very uncomfortable. The sense of vertigo is created.
  • the industry has introduced a light field theory solution.
  • a more representative company in the field of 3D broadcasting is a solution based on light field theory made by Magic Leap.
  • this scheme uses optical fiber scanning technology to realize the light field display.
  • the optical fiber has certain difficulties in control due to the control of the rotation, angle and illumination of the optical fiber.
  • the multi-focus display method proposed by Magic Leap uses an eye detection system to detect the eye observation point and then re-render the picture, adjust the picture projected to the eye, and each time an image of the depth information is cast, it is difficult to completely restore the entire light field. It is difficult to perform light field reduction from different perspectives. .
  • a multi-layer projection display screen through a video playback screen is required.
  • An object of the present invention is to provide a method for time-reducing a light field by using a lens, comprising: arranging a lens in front of a video playing screen; the video playing screen comprising a multi-layer projection display screen, and filling between the projection display screens Transparent medium
  • the video playback screen acquires spatial image information having depth information, and calculates a depth position of all the play points of the spatial image acquired in the video play screen; and respectively, playing the play points of different spatial depth information through the plurality of layers of the projection
  • the display plays in a time-sharing manner.
  • the multi-layer projection display screen has only one projection display screen playing a play point of a certain spatial depth information.
  • the time interval between playing and stopping the playback of the image on each layer of the projection display screen is ⁇ 0.4 seconds.
  • the image playing screen and the lens are placed in a lens unit wrapped by an opaque material, and the plurality of lens unit arrays are in the same plane.
  • each lens unit respectively plays a spatial image of different viewing angles, and all the spatial images played constitute a complete visual space.
  • the lens is a single lens or combination of lenses.
  • the lens is a single lens and the video playback screen is disposed within a focal length of the single lens.
  • the lens is a lens combination
  • the lens combination includes a first lens at a front end of the video playing screen, and a second lens farthest from the image playing screen, wherein
  • the image playing screen is disposed between a focal length and a double focal length of the first lens.
  • the first lens is spaced apart from the second lens such that a real image of the first lens is inverted within a focal length of the second lens.
  • the video playing screen is arranged in parallel with the lens.
  • the invention provides a method for reducing the light field by using a lens to divide the light field, and playing the time-sharing of the playing points of different depth information through the multi-layer projection display screen of the image playing screen, and changing the depth position of the enlarged virtual image in the space to realize the restored image.
  • the purpose of the depth information is to reduce the light field by using a lens to divide the light field, and playing the time-sharing of the playing points of different depth information through the multi-layer projection display screen of the image playing screen, and changing the depth position of the enlarged virtual image in the space to realize the restored image.
  • Figure 1 is a schematic view showing the structure of a display wall of the present invention
  • Figure 2 is a schematic view showing the structure of a lens unit of the present invention.
  • FIG. 3 is a schematic structural view of a video playing screen of the present invention.
  • 4a to 4c are schematic diagrams showing the calculation process of the depth position of all the play points of the spatial image in the video playing screen of the present invention.
  • FIG. 5 is a schematic view showing a single lens disposed in front of a video playing screen according to an embodiment of the present invention
  • Fig. 6 is a view showing a lens group arranged in front of a video playing screen in another embodiment of the present invention.
  • the virtual reality is used to display an image in a field of view in a 3D scene, and the optical field of the spatial image with depth information is restored.
  • the afterglow effect is also called visual persistence. It means that when the human eye is observing the scene, the light signal is transmitted to the brain nerve. It takes a short period of time. After the end of the light, the visual image does not disappear immediately.
  • FIG. 1 is a schematic structural view of the display wall of the present invention.
  • a schematic structural view of a lens unit of the present invention, the present invention is The image playback screen reduces the spatial image having the depth information into a magnified virtual image through a lens.
  • a plurality of lens units 110 are arrayed on a plane to form a display wall 100 between the array and the lens unit 110 of the display wall 100. Interlaced with each other, each lens unit 110 incorporates a video playback screen 20 and a lens 10.
  • the image playing screen 20 and the lens 10 are wrapped in the lens unit 110 by the opaque material 111 to prevent image interference in different lens units.
  • Each lens unit plays a spatial image of different viewing angles, and all the spatial images played constitute a complete visual space.
  • FIG. 3 is a schematic structural view of the image playing screen of the present invention.
  • the video playback screen 20 includes a multi-layered projection display 201 and a transparent medium 202 that is filled between the projection displays 20.
  • a method for reducing a light field using a lens of the present invention includes:
  • S1 arranging a lens in front of the video playing screen to form a lens unit, and the plurality of lens unit arrays form a display wall on the same plane.
  • Each lens unit is wrapped by an opaque material to prevent image interference in different lens units.
  • the video playing screen acquires spatial image information with depth information, and the acquired spatial image information includes image information such as color, brightness, plane position, and spatial position of each point.
  • the schematic diagram of the calculation process of the depth position of all the play points of the space image in the video play screen of the present invention as shown in FIG. 3a
  • the spatial image in the video playback screen corresponding to the P point is calculated.
  • the coordinate position of the playback point. Taking P point as an example, the lens is fixed, the lens plane of the lens is z 0, the lens center coordinate is O(xo, yo, 0), and the lens focal length is f.
  • the coordinates of the calculated play point U are U(xu, yu, zu), and that P, U, and O are on the same line.
  • the distance v from the point P to the lens plane, the distance u from the U point to the lens plane, and the focal length f of the lens satisfy the lens imaging formula:
  • the image here is a virtual image, so it is available
  • the position of the playback point U is determined to satisfy: That is, the coordinate position of the play point U is:
  • the image playback screen 20 has acquired spatial images with depth information.
  • each layer of the projection screen in the video playback screen 20 plays a play point of different depth information of the image.
  • the different depth information of the image includes a play point 2011 (2012) of the first plane and a play point 2021 (2022) of the second plane, and each play point has a different depth coordinate, that is, a coordinate position of the play point.
  • the video playback screen 20 takes the first layer projection display screen 201 and the second layer projection display screen 202 as an example.
  • the first layer projection display screen 201 plays the first plane playback point 2011 (2012), and second.
  • the layer video playback screen 202 plays the playback point 2021 of the second plane (2022).
  • the multi-layer projection display screen plays the playback points of different spatial depth information in a time-sharing manner.
  • the first-layer projection display 201 plays the first plane playback point 2011 (2012) at the time t1, and the remaining projection display screens stop playing. ;
  • the first layer projection display 201 stops playing the first plane play point 2011 (2012), and the second layer video play screen 202 starts playing the second plane play point 2021 (2022), and the rest The projection display stops playing; the process of time-sharing described above is continuously cycled.
  • the playing plane is not limited to two, and the first plane and the second plane here are only for the purpose of making the spatial image spatial information with depth information more clearly explained.
  • the multi-layer projection display screen of the embodiment has only one projection display screen playing a play point of a certain depth information of the space, and the time interval between the playback and the stop of playing the image on each layer of the projection display screen is ⁇ 0.4 seconds.
  • the human eye Since the human eye has a visual persistence, when the play point 2021 (2022) of the second plane stops playing, the human eye still feels the existence of the play point 2021 (2022) of the second plane, when the persistence of the human eye persists, The play point 2021 (2022) of the second plane starts playing again, so that the human eye 40 always feels that the virtual image of the playback point 2021 (2022) of the second plane exists. Thereby, the light field of the spatial image in the video playing screen 20 is completely restored, and the situation that the human eye is dizzy caused by playing all the playing points of the spatial image at the same time is solved. In the process of restoring the spatial image light field, the depth position of the enlarged virtual image in the space can be changed, and the purpose of clearing the depth information of the image is realized.
  • FIG. 5 is a schematic diagram of a single lens disposed in front of a video playing screen according to an embodiment of the present invention.
  • the lens of this embodiment is a single lens 10a.
  • the single lens is a single convex lens
  • the video playing screen 20a is placed in a single lens 10a.
  • the human eye 40a observes the virtual image of all the play points of the spatial image played by the video playing screen 20a through the single lens 10a, and the virtual image of all the play points of the spatial image completely restores the light field of the spatial image.
  • FIG. 6 is a schematic diagram of a lens assembly disposed in front of a video playing screen according to another embodiment of the present invention.
  • the lens is a lens assembly 10b
  • the lens assembly 10b includes a first lens 10b1 at the front end of the video playing screen, and the distance is The image playback screen is farthest from the second lens 10b2, wherein
  • the first lens 10b1 is spaced apart from the second lens 10b2, and the video playing screen 20b is disposed between the first focal length f1 and the double focal length 2f1 of the first lens 10b1 to enable the spatial image 203 of the depth information in the video playing screen 20b.
  • the inverted real image 203' where the play point is established by the first lens 10b1 falls within the range of the focal length f2 of the second lens 10b2.
  • the human eye 40b observes the enlarged virtual image of the inverted real image 2013' of the playback point of the aerial image 203 through the first lens 10b1 through the second lens 10b2, and the spatial image 203 in the video playback screen 20b is double-amplified, which is more clear.
  • the light field of the spatial image 203 is restored.
  • the video playing screen is arranged in parallel with the lens.
  • the invention provides a method for reducing the light field by using a lens to divide the light field, and playing the time-sharing of the playing points of different depth information through the multi-layer projection display screen of the image playing screen, and changing the depth position of the enlarged virtual image in the space to realize the restored image.
  • the purpose of the depth information is to reduce the light field by using a lens to divide the light field, and playing the time-sharing of the playing points of different depth information through the multi-layer projection display screen of the image playing screen, and changing the depth position of the enlarged virtual image in the space to realize the restored image.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

本发明提供一种利用透镜分时还原光场的方法,所述方法包括:在影像播放屏前方布置透镜;所述影像播放屏包括多层投影显示屏,以及填充于所述投影显示屏之间的透明介质;所述影像播放屏获取包含有纵深信息的空间影像信息,计算所述影像播放屏中所述空间影像的所有播放点的纵深位置;将不同空间纵深信息的播放点分别通过多层所述投影显示屏分时循环播放。本发明提供的一种利用透镜分时还原光场的方法,通过影像播放屏的多层投影显示屏对不同纵深信息的播放点分时播放,改变放大虚像在空间的纵深位置,实现还原影像的纵深信息的目的。

Description

一种利用透镜分时还原光场的方法 技术领域
本发明涉及光场还原技术领域,特别涉及一种利用透镜分时还原光场的方法。
背景技术
至今为止几乎任何3D影像技术都是基于这个偏光原理开发的。1839年,英国科学家温斯特发现了一个奇妙的现象,人的两眼间距约为5cm(欧洲人平均值),看任何物体时,两只眼睛的角度不重合,即存在两个视角。这种细微的视角差异经由视网膜传递到大脑里,就能区别出物体的前后远近,产生强烈的立体感。这便是—偏光原理,至今为止几乎任何3D影像技术都是基于这个原理开发的。
但是基于“偏光原理”的3D设备无法解决人们在使用过程中导致的眩晕问题。在自然环境中,左右视差和眼睛对焦系统可以相互印证,以使得大脑知道这两个功能正在默契的配合。当用户在观看基于“偏光原理”的3D影像的时候由于缺乏眼睛对焦系统的参与,大脑的两套距离感受系统和自然环境中的观察存在差异,这种差异就会让大脑非常不适应,这时候眩晕感就产生了。
为了解决3D视频中的眩晕问题,业界在引入了光场理论解决方案。3D播放领域比较有代表性的公司是Magic Leap公司做的基于光场理论的解决方案。但是该方案采用光纤扫描技术来实现光场显示,光纤由于涉及到光纤的旋转、角度以及发光的控制,其在控制方面存在一定难度。另外,Magic Leap提出的多焦点显示方法利用一个眼睛检测系统检测眼睛观察点然后再重新渲染图片,调节投向眼睛的图片,每次投一个纵深信息的图像,难以实现完整的还原整个光场,同时难以从不同视角进行光场还原。。
因此,为了解决上述问题,需要通过影像播放屏的多层投影显示屏 对不同纵深信息的播放点分时播放,改变放大虚像在空间的纵深位置,实现还原影像的纵深信息的目的的一种利用透镜分时还原光场的方法。
发明内容
本发明的目的在于提供一种利用透镜分时还原光场的方法包括:在影像播放屏前方布置透镜;所述影像播放屏包括多层投影显示屏,以及填充于所述投影显示屏之间的透明介质;
所述影像播放屏获取具有纵深信息的空间影像信息,计算所述影像播放屏中获取的所述空间影像的所有播放点的纵深位置;将不同空间纵深信息的播放点分别通过多层所述投影显示屏分时循环播放。
优选地,多层所述投影显示屏同一时刻,只有一个投影显示屏播放某一空间纵深信息的播放点。
优选地,每一层投影显示屏播放与停止播放影像的时间间隔<0.4秒。
优选地,所述影像播放屏和透镜置于通过不透光材料包裹的透镜单元中,多个所述透镜单元阵列于同一平面。
优选地,每个透镜单元分别播放不同视角的空间影像,播放的所有空间影像构成一个完整的视觉空间。
优选地,所述透镜为单个透镜或透镜组合。
优选地,所述透镜为单个透镜,影像播放屏布置在所述单个透镜的一倍焦距内。
优选地,所述透镜为透镜组合,所述透镜组合包括影像播放屏前端的第一透镜,及距离所述影像播放屏距离最远的第二透镜,其中
所述影像播放屏布置在所述第一透镜的一倍焦距与二倍焦距之间。
优选地,所述第一透镜与所述第二透镜的间隔布置,使第一透镜倒立的实像位于所述第二透镜的一倍焦距内。
优选地,所述影像播放屏与所述透镜平行布置。
本发明提供的一种利用透镜分时还原光场的方法,通过影像播放屏的多层投影显示屏对不同纵深信息的播放点分时播放,改变放大虚像在空间的纵深位置,实现还原影像的纵深信息的目的。
应当理解,前述大体的描述和后续详尽的描述均为示例性说明和解释,并不应当用作对本发明所要求保护内容的限制。
附图说明
参考随附的附图,本发明更多的目的、功能和优点将通过本发明实施方式的如下描述得以阐明,其中:
图1示意性示出了本发明显示墙的结构示意图;
图2示出了本发明透镜单元的结构示意图;
图3示出了本发明影像播放屏的结构示意图;
图4a~图4c示出了本发明影像播放屏中空间影像的所有播放点的纵深位置计算过程示意图;
图5示出了本发明一个实施例影像播放屏前布置单个透镜的示意图;
图6示出了本发明另一个实施例中影像播放屏前布置透镜组的示意图。
具体实施方式
通过参考示范性实施例,本发明的目的和功能以及用于实现这些目的和功能的方法将得以阐明。然而,本发明并不受限于以下所公开的示范性实施例;可以通过不同形式来对其加以实现。说明书的实质仅仅是帮助相关领域技术人员综合理解本发明的具体细节。
在下文中,将参考附图描述本发明的实施例。在附图中,相同的附图标记代表相同或类似的部件,或者相同或类似的步骤,除非另有说明。
下面结合具体的实施例对本发明所提供的一种利用透镜还原光场的方法进行详细说明,虚拟现实是以3D场景将影像展现在用于视野内,将具有纵深信息的空间影像的光场还原成3D效果。余晖效应又叫视觉暂留,是指在人眼在观察景物时,光信号传入大脑神经,需经过一段短暂的时间,光的作用结束后,视觉形象并不立即消失的现象。
为了使本发明一种利用透镜分时还原光场的方法得以清晰的说明,需要对本发明所采用的还原光场的透镜进行说明,如图1所示本发明显示墙的结构示意图,图2所示本发明透镜单元的结构示意图,本发明通 过影像播放屏将具有纵深信息的空间影像通过透镜还原成放大的虚像,根据本发明,在一平面上阵列多个透镜单元110构成一个显示墙100,阵列与显示墙100的透镜单元110之间相互间隔,每个透镜单元110内置影像播放屏20和透镜10。通过不透光材料111将影像播放屏20和透镜10包裹透镜单元110内,用以防止不同透镜单元中的图像出现干扰。每个透镜单元分别播放不同视角的空间影像,播放的所有空间影像构成一个完整的视觉空间。
下面对本发明一种利用透镜分时还原光场的方法进行详细说明,根据本发明,在影像播放屏20前方布置透镜10构成透镜单元,如图3所示了本发明影像播放屏的结构示意图,影像播放屏20包括多层投影显示屏201,以及填充于投影显示屏20之间的透明介质202。本发明一种利用透镜还原光场的方法包括:
S1、在影像播放屏前方布置透镜构成透镜单元,多个透镜单元阵列与同一平面形成一面显示墙。每个透镜单元通过不透光材料包裹,以防止不同透镜单元中的图像出现干扰。
S2、影像播放屏获取具有纵深信息的空间影像信息,在获取的空间影像信息中包含每个点的颜色、亮度、平面位置、空间位置等影像信息。计算影像播放屏20中获取的空间影像的所有播放点的纵深位置,如图4a~图4c所示本发明影像播放屏中空间影像的所有播放点的纵深位置计算过程示意图,如图3a所示,当在用户的视野场景中的一个空间位置P(x,y,z)需要还原一个投影播放显示屏中空间影像的播放点的坐标位置时,则计算P点对应的影像播放屏中空间影像的播放点的坐标位置。以P点为例,将透镜固定,透镜的透镜平面z=0,透镜中心坐标为O(xo,yo,0),透镜焦距为f。
假设计算播放点U的坐标为U(xu,yu,zu),满足P、U、O在同一条直线上,
Figure PCTCN2017093350-appb-000001
且P点到透镜平面的距离v、U点到透镜平面的距离u,以及透镜的焦距f满足透镜成像公式:
Figure PCTCN2017093350-appb-000002
此处的像是一个虚像,因此可得
Figure PCTCN2017093350-appb-000003
从而求得播放点U的位置 坐标满足:
Figure PCTCN2017093350-appb-000004
即播放点U的坐标位置为:
Figure PCTCN2017093350-appb-000005
通过上述计算,人眼通过透镜看位于透镜一倍焦距内播放投影屏上的某一个播放点的时候,只能看到播放点U的虚像P点。
S3、将不同空间纵深信息的播放点分别通过多层投影显示屏分时循环播放,如图4b、图4c所示,位于人眼40前端的具有透镜10,在透镜后一倍焦距内具有影像播放屏20,以及人眼可以观测到的影像播放屏20中空间影像所成立的虚像30。
影像播放屏20中具有获取的具有纵深信息的空间影像,本实施例中,影像播放屏20中的每一层投影显示屏播放影像的不同纵深信息的播放点。影像的不同纵深信息包括第一平面的播放点2011(2012),以及第二平面的播放点2021(2022),每个播放点具有不同的纵深坐标,即播放点的坐标位置。如图4c所示,影像播放屏20以第一层投影显示屏201和第二层投影显示屏202为例,第一层投影显示屏201播放第一平面的播放点2011(2012),第二层影像播放屏202播放第二平面的播放点2021(2022)。
多层投影显示屏分时循环播放不同空间纵深信息的播放点,本实施例,第一层投影显示屏201在t1时刻,播放第一平面的播放点2011(2012),其余投影显示屏停止播放;
在t1时刻的下一时刻t2,第一层投影显示屏201停止播放第一平面的播放点2011(2012),第二层影像播放屏202开始播放第二平面的播放点2021(2022),其余投影显示屏停止播放;不断循环上述分时播放的过程。
应当理解,播放平面并不限于两个,这里的第一平面和第二平面只是为了使具有纵深信息的空间影像空间信息得以更加清晰的阐释。
根据本发明,本实施例多层投影显示屏同一时刻,只有一个投影显示屏播放某一空间纵深信息的播放点,每一层投影显示屏播放与停止播放影像的时间间隔<0.4秒。
由于人眼存在视觉暂留,当第一平面的播放点2011(2012)停止播放时,人眼依然感觉到第一平面的播放点2011(2012)的存在,当人眼视觉暂留结束时,第一平面的播放点2011(2012)再次开始播放,使人眼40始终感觉到第一平面的播放点2011a(2011b)成立的虚像存在。
由于人眼存在视觉暂留,当第二平面的播放点2021(2022)停止播放时,人眼依然感觉到第二平面的播放点2021(2022)的存在,当人眼视觉暂留结束时,第二平面的播放点2021(2022)再次开始播放,使人眼40始终感觉到第二平面的播放点2021(2022)成立的虚像存在。由此完整还原影像播放屏20中的空间影像的光场,解决了因同时播放空间影像所有播放点造成的人眼眩晕的情形。并且在还原空间影像光场的过程中能够改变放大虚像在空间的纵深位置,实现清晰还原影像的纵深信息的目的。
如图5所示本发明一个实施例影像播放屏前布置单个透镜的示意图,本实施例的透镜为单个透镜10a,这里说的单个透镜为一个单独的凸透镜,影像播放屏20a置于单个透镜10a的一倍焦距f内,人眼40a通过单个透镜10a观测到影像播放屏20a播放的空间影像所有播放点的虚像,空间影像所有播放点的虚像完整的还原空间影像的光场。
如图6所示本发明另一个实施例中影像播放屏前布置透镜组的示意图,本实施例中透镜为透镜组合10b,透镜组合10b包括影像播放屏前端的第一透镜10b1,及距离所述影像播放屏距离最远的第二透镜10b2,其中
第一透镜10b1与第二透镜10b2的间隔布置,在第一透镜10b1的一倍焦距f1与二倍焦距2f1之间布置影像播放屏20b,使影像播放屏20b内具有纵深信息的空间影像203的播放点经第一透镜10b1成立的倒立的实像203’落在在第二透镜10b2的一倍焦距f2范围内。人眼40b通过第二透镜10b2观测到空间影像203的播放点经第一透镜10b1成立的倒立的实像2013’的放大的虚像,影像播放屏20b中的空间影像203经过二级放大,更加清晰的还原了空间影像203的光场。优选地,本实施例中影像播放屏与透镜平行布置。
本发明提供的一种利用透镜分时还原光场的方法,通过影像播放屏的多层投影显示屏对不同纵深信息的播放点分时播放,改变放大虚像在空间的纵深位置,实现还原影像的纵深信息的目的。
结合这里披露的本发明的说明和实践,本发明的其他实施例对于本领域技术人员都是易于想到和理解的。说明和实施例仅被认为是示例性的,本发明的真正范围和主旨均由权利要求所限定。

Claims (10)

  1. 一种利用透镜分时还原光场的方法,其特征在于,所述方法包括:在影像播放屏前方布置透镜;所述影像播放屏包括多层投影显示屏,以及填充于所述投影显示屏之间的透明介质;
    所述影像播放屏获取包含有纵深信息的空间影像信息,计算所述影像播放屏中获取的所述空间影像的所有播放点的纵深位置;将不同空间纵深信息的播放点分别通过多层所述投影显示屏分时循环播放。
  2. 根据权利要求1所述的方法,其特征在于,多层所述投影显示屏同一时刻,只有一个投影显示屏播放某一空间纵深信息的播放点。
  3. 根据权利要求1所述的方法,其特征在于,每一层投影显示屏播放与停止播放影像的时间间隔<0.4秒。
  4. 根据权利要求1所述的方法,其特征在于,所述影像播放屏和透镜置于通过不透光材料包裹的透镜单元中,多个所述透镜单元阵列于同一平面。
  5. 根据权利要求4所述的方法,其特征在于,每个透镜单元分别播放不同视角的空间影像,播放的所有空间影像构成一个完整的视觉空间。
  6. 根据权利要求1或4或5所述的方法,其特征在于,所述透镜为单个透镜或透镜组合。
  7. 根据权利要求6所述的方法,其特征在于,所述透镜为单个透镜,影像播放屏布置在所述单个透镜的一倍焦距内。
  8. 根据权利要求6所述的方法,其特征在于,所述透镜为透镜组合,所述透镜组合包括影像播放屏前端的第一透镜,及距离所述影像播放屏距离最远的第二透镜,其中
    所述影像播放屏布置在所述第一透镜的一倍焦距与二倍焦距之间。
  9. 根据权利要求8所述的方法,其特征在于,所述第一透镜与所述第二透镜的间隔布置,使第一透镜倒立的实像位于所述第二透镜的一倍焦距内。
  10. 根据权利要求1所述的方法,其特征在于,所述影像播放屏与 所述透镜平行布置。
PCT/CN2017/093350 2017-07-18 2017-07-18 一种利用透镜分时还原光场的方法 WO2019014847A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/093350 WO2019014847A1 (zh) 2017-07-18 2017-07-18 一种利用透镜分时还原光场的方法
CN201780093189.5A CN110914748B (zh) 2017-07-18 2017-07-18 一种利用透镜分时还原光场的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/093350 WO2019014847A1 (zh) 2017-07-18 2017-07-18 一种利用透镜分时还原光场的方法

Publications (1)

Publication Number Publication Date
WO2019014847A1 true WO2019014847A1 (zh) 2019-01-24

Family

ID=65014918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093350 WO2019014847A1 (zh) 2017-07-18 2017-07-18 一种利用透镜分时还原光场的方法

Country Status (2)

Country Link
CN (1) CN110914748B (zh)
WO (1) WO2019014847A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102457756A (zh) * 2011-12-29 2012-05-16 广西大学 一种可裸眼观看视频的3d视频监控系统的结构和方法
CN102961870A (zh) * 2012-12-18 2013-03-13 广州市渡明信息技术有限公司 一种游戏机及显示屏显示方法
CN103364961A (zh) * 2013-08-02 2013-10-23 浙江大学 基于多投影阵列和多层液晶复合调制的三维显示装置和方法
US20150286061A1 (en) * 2014-04-08 2015-10-08 Samsung Display Co., Ltd. Image display apparatus for displaying a 3d image
CN106842597A (zh) * 2017-02-28 2017-06-13 浙江大学 基于多层液晶的可连续聚焦的大景深近眼光场三维显示装置和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101600010B1 (ko) * 2009-09-22 2016-03-04 삼성전자주식회사 모듈레이터, 모듈레이터를 이용한 광 필드 데이터 획득 장치, 모듈레이터를 이용한 광 필드 데이터 처리 장치 및 방법
CN102629009B (zh) * 2011-10-25 2016-02-03 京东方科技集团股份有限公司 裸眼三维图像显示方法及装置
US10281731B2 (en) * 2014-05-16 2019-05-07 The Hong Kong University Of Science & Technology 2D/3D switchable liquid crystal lens unit
CN106125394B (zh) * 2016-09-07 2022-08-09 京东方科技集团股份有限公司 一种虚拟曲面显示面板、显示装置及显示方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102457756A (zh) * 2011-12-29 2012-05-16 广西大学 一种可裸眼观看视频的3d视频监控系统的结构和方法
CN102961870A (zh) * 2012-12-18 2013-03-13 广州市渡明信息技术有限公司 一种游戏机及显示屏显示方法
CN103364961A (zh) * 2013-08-02 2013-10-23 浙江大学 基于多投影阵列和多层液晶复合调制的三维显示装置和方法
US20150286061A1 (en) * 2014-04-08 2015-10-08 Samsung Display Co., Ltd. Image display apparatus for displaying a 3d image
CN106842597A (zh) * 2017-02-28 2017-06-13 浙江大学 基于多层液晶的可连续聚焦的大景深近眼光场三维显示装置和方法

Also Published As

Publication number Publication date
CN110914748B (zh) 2022-09-16
CN110914748A (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
US11659158B1 (en) Frustum change in projection stereo rendering
JPH07159723A (ja) 立体画像表示装置
US6788274B2 (en) Apparatus and method for displaying stereoscopic images
US8115803B2 (en) Apparatus and method for projecting spatial image
US20080259156A1 (en) Stereoscopic Display Device with Liquid Crystal Shutter Light Filter for Naked Eye Viewing and a Display Method Thereof
JPH0638246A (ja) 視覚表示装置
CN107948631A (zh) 一种基于集群和渲染的裸眼3d系统
US10567744B1 (en) Camera-based display method and system for simulators
JP3425402B2 (ja) 立体画像を表示する装置および方法
JPH11155154A (ja) 立体映像処理装置
JPH06148763A (ja) 多人数観測用レンチキュラ立体表示方式
WO2019014847A1 (zh) 一种利用透镜分时还原光场的方法
JPH02291787A (ja) 広視野表示装置
JP2003348622A (ja) 立体映像表示方法及び記憶媒体
JP2004258594A (ja) 広角度から鑑賞できる立体画像表示装置
KR101093929B1 (ko) 깊이 지도를 이용하여 3차원 영상을 표시하는 방법 및 시스템
JP2003295115A (ja) 眼鏡なし立体映像表示装置
CN207603821U (zh) 一种基于集群和渲染的裸眼3d系统
CN111183634B (zh) 一种利用透镜还原光场的方法
US20230379596A1 (en) Light field endoscope with look around capability
JP3088326B2 (ja) 立体映像表示装置
US11921295B1 (en) Eyewear with lenses for reduced discrepancy between accommodation and convergence
Watt et al. 3D media and the human visual system
JP2019216344A (ja) 全天周立体映像表示装置及びそのプログラム、全天周立体映像撮影装置、並びに、全天周立体映像システム
US20060152580A1 (en) Auto-stereoscopic volumetric imaging system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918383

Country of ref document: EP

Kind code of ref document: A1