WO2019014824A1 - 定位方法、无人机和机器可读存储介质 - Google Patents

定位方法、无人机和机器可读存储介质 Download PDF

Info

Publication number
WO2019014824A1
WO2019014824A1 PCT/CN2017/093313 CN2017093313W WO2019014824A1 WO 2019014824 A1 WO2019014824 A1 WO 2019014824A1 CN 2017093313 W CN2017093313 W CN 2017093313W WO 2019014824 A1 WO2019014824 A1 WO 2019014824A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
drone
circle
determining
distance
Prior art date
Application number
PCT/CN2017/093313
Other languages
English (en)
French (fr)
Inventor
王晓东
范伟
王乃博
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780004709.0A priority Critical patent/CN108521791B/zh
Priority to PCT/CN2017/093313 priority patent/WO2019014824A1/zh
Publication of WO2019014824A1 publication Critical patent/WO2019014824A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0273Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves using multipath or indirect path propagation signals in position determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/021Calibration, monitoring or correction

Definitions

  • the present invention relates to the field of positioning technology, and more particularly to a positioning method, a drone, and a machine readable storage medium.
  • the positioning of the drone is mainly to receive a GPS (Global Positioning System) signal through the drone, and to locate according to the GPS signal.
  • GPS Global Positioning System
  • the GPS signal may be disturbed, or the location of the drone transmitted to the user based on the GPS signal may be tampered with, resulting in the user not being able to determine the exact location of the drone.
  • the present invention provides a positioning method, a drone, and a machine readable storage medium to solve the above technical problems.
  • a positioning method suitable for use in a drone comprising:
  • the position of the drone is determined based on the positions of the at least three aircraft.
  • a drone comprising:
  • a receiver for receiving a broadcast automatic correlation monitoring signal of at least three aircraft
  • a processor for determining a location of the at least three aircraft based on the broadcast automatic correlation monitoring signal
  • the position of the drone is determined based on the positions of the at least three aircraft.
  • a machine readable storage medium suitable for use in a drone, the machine readable storage medium having a plurality of computer instructions stored thereon, the computer instructions being executed as follows:
  • the position of the drone is determined based on the positions of the at least three aircraft.
  • the embodiment of the present invention is based on the position of the drone determined by the broadcast automatic correlation monitoring signal of the aircraft, instead of determining the position of the drone based on the GPS signal, and thus is based on In the present embodiment, even when the GPS signal is disturbed or tampered with, the position of the drone can be accurately determined.
  • FIG. 1 is a schematic flow chart of a positioning method according to an embodiment of the invention.
  • FIG. 2 is a schematic flow chart of another positioning method shown in accordance with one embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the positional relationship between an aircraft and a drone according to an embodiment of the invention.
  • FIG. 4 is a schematic flow chart of still another positioning method according to an embodiment of the present invention.
  • FIG. 5 is a schematic flow chart of still another positioning method according to an embodiment of the invention.
  • FIG. 6 is a schematic flow chart of still another positioning method according to an embodiment of the invention.
  • FIG. 7 is a schematic flow chart of still another positioning method according to an embodiment of the invention.
  • FIG. 8 is a schematic flow chart of still another positioning method according to an embodiment of the invention.
  • FIG. 9 is a schematic diagram showing another positional relationship between an aircraft and a drone according to an embodiment of the present invention.
  • FIG. 10 is a schematic flow chart of still another positioning method according to an embodiment of the present invention.
  • FIG. 11 is a schematic flow chart of still another positioning method according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing still another positional relationship between an aircraft and a drone according to an embodiment of the present invention.
  • FIG. 13 is a schematic flow chart of still another positioning method according to an embodiment of the present invention.
  • FIG. 14 is a schematic flow chart of still another positioning method according to an embodiment of the present invention.
  • Figure 15 is a schematic block diagram of a drone shown in accordance with one embodiment of the present invention.
  • FIG. 1 is a schematic flow chart of a positioning method according to an embodiment of the invention.
  • the implementation can be applied to a drone, and the UAV can be positioned.
  • the positioning method includes:
  • Step S1 receiving a broadcast automatic correlation monitoring signal of at least three aircraft
  • Step S2 determining a location of the at least three aircraft according to the broadcast automatic correlation monitoring signal
  • Step S3 determining the position of the drone according to the positions of the at least three aircraft.
  • a receiver may be provided for receiving an ADS-B (Automatic Dependent Surveillance-Broadcast).
  • the broadcast automatic correlation monitoring signal of the aircraft includes information such as the position, altitude, speed, heading and the like of the aircraft. Therefore, the position of the aircraft can be determined according to the broadcast automatic correlation monitoring signal of the aircraft, and in this embodiment, The broadcast automatic correlation monitoring signals of at least three aircraft determine the position of the at least three aircraft.
  • the position of the drone can be further determined based on the positions of at least three aircraft.
  • the coordinates of the drone can be determined based on the average of the coordinates of at least three aircraft, and the position of the drone can be determined according to the coordinates of the drone.
  • the position of the drone can be determined according to the broadcast automatic correlation monitoring signal of the aircraft, instead of determining the position of the drone according to the GPS signal, so based on the present embodiment, even if the GPS signal is interfered In the case of tampering, the position of the drone can also be accurately determined.
  • determining the location of the drone according to the location of the at least three aircraft includes:
  • Step S31 Determine, according to the positions of the at least three aircrafts, a distance from the at least three aircrafts and a minimum coordinate as a position of the drone.
  • the distance between the drone and each of the at least three aircraft may be calculated, for example, at least three aircraft, the coordinates of the first aircraft are (x 1 , y 1 ), the second aircraft The coordinates of (x 2 , y 2 ), ..., the coordinates of the nth aircraft are (x n , y n ), where the coordinates of the drone are (x, y), then as shown in Figure 3, Distance between man and machine and the first aircraft Distance between drone and second aircraft ..., the distance between the drone and the nth aircraft Then add the above distances to obtain the distance between the drone and at least three aircraft.
  • n is an integer greater than or equal to 3
  • i is a positive integer less than or equal to n.
  • the minimum value of x and y is taken as the x-axis coordinate of the drone, and the obtained y value is taken as the y-axis coordinate of the drone, wherein the x-axis and the y-axis are both horizontal axes. .
  • the minimum hourly calculated UAV coordinates (x, y) are close to the center of gravity of the graphic formed by the at least three aircraft (at least three aircraft are not on a straight line), and are located at the center of gravity of the graphic.
  • the signal on the side of the signal is more probable than the signal received on the side of the graph outside the center of gravity of the graph. Therefore, determining the position of the drone according to the manner of the present embodiment can improve the accuracy of the determined position of the drone.
  • determining a distance from the at least three aircraft and a minimum coordinate for the location of the drone includes:
  • Step S311 determining distances and minimum coordinates from the at least three aircrafts according to the strength of the broadcast automatic correlation monitoring signal.
  • the broadcast-type automatic correlation monitoring when calculating the distance between the drone and each aircraft, can be performed according to the intensity of the received broadcast-type automatic correlation monitoring signal.
  • the distance between the aircraft and the drone corresponding to the signal is set.
  • the intensity of the broadcast automatic correlation monitoring signal of the nth aircraft is A n
  • the weight may be A n , or A n 2 , or Specifically, you can choose settings as needed.
  • the weight is For example, that is, the distance between the drone and at least three aircraft. Further, it can be obtained according to an algorithm such as the steepest descent method.
  • the minimum x value and y value, and the obtained x value is taken as the x-axis coordinate of the drone, and the obtained y value is taken as the y-axis coordinate of the drone, wherein the x-axis and the y-axis are both horizontal coordinate axes.
  • the UAV For aircraft with a larger signal strength (such as signal power), the UAV is generally closer to the aircraft. Therefore, when calculating the distance between the drone and at least three aircraft, it can be set by distance and signal strength.
  • Related weights to guarantee The minimum hourly calculated UAV coordinates, relative to the center of gravity of the graphics formed by at least three of the above-mentioned aircraft, can be offset to aircraft with greater signal strength (the specific offset is related to the signal strength), thereby making the determined unmanned
  • the position of the machine is more in line with the relationship between the distance and the signal strength in the actual situation, thereby further improving the accuracy of the determined position of the drone.
  • FIG. 5 is a schematic flow chart of still another positioning method according to an embodiment of the invention. As shown in FIG. 5, determining the distance and the minimum coordinates from the at least three aircraft according to the strength of the broadcast automatic correlation monitoring signal includes:
  • Step S3111 Determine a distance from the at least three aircrafts and a minimum coordinate according to a square root of the intensity of the broadcast automatic correlation monitoring signal.
  • the distance is related to the signal strength, specifically, the formula according to the attenuation of the signal transmission power loss
  • P T is the transmit power
  • P R is the receive power
  • d is the signal transmission distance
  • is the signal wavelength, which can be obtained. That is, the square root of the received power (corresponding to the strength of the received broadcast-type automatic correlation monitoring signal) is inversely proportional to the distance of the signal transmission (corresponding to the distance between the aircraft and the drone).
  • the strength of the signal causes the distance of the UAV's coordinates to be offset from the above-mentioned center of gravity to the aircraft with greater signal strength, and is also positively correlated with the square root of the power, so according to the square root of the intensity of the broadcast-type automatic correlation monitoring signal, By setting the weight of the distance between the aircraft and the drone corresponding to the broadcast automatic correlation monitoring signal, the position of the drone can be determined more accurately.
  • FIG. 6 is a schematic flow chart of still another positioning method according to an embodiment of the invention.
  • the positions of the at least three aircrafts include coordinates of the at least three aircrafts, according to Determining the position of the at least three aircraft determines the location of the drone includes:
  • Step S32 calculating an average value of coordinates of the at least three aircrafts
  • Step S33 determining the location of the drone based on the average value.
  • the probability that the drone receives the broadcast automatic correlation monitoring signal of the at least three aircraft is greater. For example, if at least three aircraft include three aircraft, for example, the coordinates of the coordinates of the three aircraft constitute an equilateral triangle, then if the drone is not at the center of the equilateral triangle, it is offset to a vertex of the equilateral triangle. Then, it will be more likely to receive signals from other aircraft near the vertex, and the probability of receiving signals from the aircraft at the other two vertices will decrease.
  • the drone receives the broadcast automatic correlation monitoring signal of the aircraft located at the three vertices of the triangular heart, the probability of being located at the center of the equilateral triangle is large, that is, according to the embodiment, it can be higher.
  • the accuracy determines the location of the drone.
  • the coordinates of the aircraft may be latitude and longitude coordinates, or may be coordinates in a predetermined reference frame.
  • the coordinates of the first aircraft are (x 1 , y 1 , z 1 )
  • the coordinates of the second aircraft are (x 2 , y 2 , z 2 )
  • the coordinates of the third aircraft are (x 3 , y 3).
  • the coordinates of the nth aircraft are (x n , y n , z n )
  • the coordinates (x, y, z) of the drone can be From this, the position of the drone can be determined, where n is an integer greater than or equal to 3, and i is a positive integer less than or equal to n.
  • FIG. 7 is a schematic flow chart of still another positioning method according to an embodiment of the invention. As shown in FIG. 7, calculating an average of the coordinates of the at least three aircraft includes:
  • Step S321 calculating the average value according to the horizontal coordinates of the at least three aircrafts.
  • the flying height of the drone is generally not up to the order of the aircraft's altitude, and the user of the drone generally pays more attention to the horizontal coordinates of the drone, it is based on at least three aircraft.
  • the coordinates are used to determine the position of the drone, it can be based only on the horizontal coordinates. Determine the location of the drone to reduce the amount of calculations.
  • the horizontal coordinate of the first aircraft is (x 1 , y 1 )
  • the horizontal coordinate of the second aircraft is (x 2 , y 2 )
  • the horizontal coordinate of the third aircraft is (x 3 , y 3 )
  • the horizontal coordinate of the nth aircraft is (x n , y n )
  • the horizontal coordinate (x, y,) of the drone can be From this, the position of the drone can be determined, where n is an integer greater than or equal to 3, and i is a positive integer less than or equal to n.
  • FIG. 8 is a schematic flow chart of still another positioning method according to an embodiment of the invention.
  • 9 is a schematic diagram showing another positional relationship between an aircraft and a drone according to an embodiment of the present invention. As shown in FIG. 8, determining the location of the drone according to the positions of the at least three aircraft includes:
  • Step S34 determining a first position and a second position that are farthest apart according to the positions of the at least three aircrafts;
  • Step S35 determining a circle passing through the first position and the second position according to a distance between the first position and the second position as a diameter
  • Step S36 determining the position of the drone according to the center of the circle.
  • the diameter L may be determined from the first position of the first aircraft and the second position of the second aircraft that are furthest apart, such as a circle. 9 is shown.
  • the determined circle in most cases, all of the at least three aircraft can be enclosed in the circle (including on the circle), and in this case, if the drone deviates from the center of the circle, then there will be more It is possible to receive signals from other aircraft in the direction in which they are off, for example, the other aircraft is located outside the circle in which the drone deviates from the center of the circle, then the distance of the other aircraft from the aircraft within the circle, the aircraft within the opposite circle and the aircraft within the circle The distance will be higher with a higher probability, that is, the distance L' between the other aircraft and one of the at least three aircraft described above will have a higher probability than the above L, so the circle formed will also change.
  • the drone receives at least three of the above-mentioned flying in the center of the circle.
  • the probability of a broadcast-type automatic correlation monitoring signal for each aircraft in the aircraft is large, that is, the position of the drone can be relatively accurately determined according to the center of the circle.
  • At least three of the three aircraft will be outside the above-mentioned circle.
  • the degree of deviation of the drone from the center of the circle can be adjusted according to the number of the individual aircraft and the position outside the circle.
  • FIG. 10 is a schematic flow chart of still another positioning method according to an embodiment of the present invention. As shown in FIG. 10, determining the location of the drone according to the center of the circle includes:
  • Step S361 in a case where the positions of the at least three aircraft are all located in the circle, determine that the center of the circle is the position of the drone.
  • the drone when the position of all of the at least three aircraft is within the circle (including the case on the side of the circle), that is, surrounded by the circle, if the drone deviates from the center of the circle, Then it will be more likely to receive signals from other aircraft on the side from which they are off, for example, the other aircraft is located outside the circle on the side of the drone that is off the center of the circle, then the distance of the other aircraft from the aircraft within the circle, within the opposite circle. The distance between the aircraft and the aircraft inside the circle will have a higher probability, that is, then the distance L' between the other aircraft and one of the at least three aircraft above will have a higher probability than the above L, so The circle formed will also change. Therefore, in this case, the drone has a high probability of receiving the broadcast-type automatic correlation monitoring signal of each of the at least three aircraft in the center of the circle, so the center of the circle can be used as the position of the drone.
  • FIG. 11 is a schematic flow chart of still another positioning method according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing still another positional relationship between an aircraft and a drone according to an embodiment of the present invention. As shown in FIG. 11 , the determining the location of the drone according to the center of the circle includes:
  • Step S362 determining that the positions of the at least three aircraft are located at other positions outside the circle;
  • Step S363 determining an offset direction and an offset distance of the position of the drone with respect to the center of the circle according to the number and position of the other positions;
  • Step S364 determining the unmanned according to the center of the circle, the offset direction, and the offset distance The location of the machine.
  • an individual of at least three aircraft will be located outside of said circle, in which case it may be determined that the individual aircraft is located in a circle
  • the outer position ie, other positions
  • the offset direction may be a direction of a centroid of the graphic formed from the center of the circle to the plurality of other positions
  • the offset distance may be the number of the aircraft located outside the circle of the at least three aircraft and the at least three The ratio of the number of aircraft to the radius of the circle.
  • the positions of the two aircraft are outside the above circle, then the midpoint of the two positions can be calculated (if an aircraft is located outside the circle, then the centroid of the formed figure is its position).
  • the center of the circle is offset in the direction of the midpoint, and the offset distance is 1/7 of the radius, that is, L/14.
  • the probability of receiving the broadcast-type automatic correlation monitoring signal of the aircraft located outside the circle is small, and accordingly, the drone is shifted toward the aircraft located outside the circle.
  • the probability of receiving its broadcast-type automatic correlation monitoring signal is greater, but correspondingly, the probability of receiving the broadcast-type automatic correlation monitoring signal of the aircraft in the circle and on the circle is reduced, so that the drone can be located
  • the aircraft outside the circle is offset by a certain distance, ensuring that the drone receives the broadcast-type automatic correlation monitoring signals of the aircraft located outside the circle and the aircraft located inside and outside the circle with a low probability, and according to the aircraft located outside the circle
  • the position and quantity of the drone adjust the offset direction and offset distance of the drone with respect to the center of the circle, which can effectively ensure the realization of this situation. Therefore, according to the position and the number of the aircraft located outside the circle, the offset direction and the offset distance of the drone with respect to the center of the circle are adjusted, which is more advantageous for ensuring accurate determination
  • FIG. 13 is a schematic flow chart of still another positioning method according to an embodiment of the present invention. As shown in FIG. 13, the method further includes:
  • Step S4 receiving a GPS signal
  • Step S5 verifying the GPS signal according to the location of the drone.
  • the position of the drone determined according to the present embodiment is not determined based on the GPS signal, the position of the drone can be accurately determined even in the case where the GPS signal is disturbed or tampered with. .
  • the received GPS signal for positioning itself can be verified. For example, if the two are different, the GPS signal can be determined to be inaccurate or interfered.
  • FIG. 14 is a schematic flow chart of still another positioning method according to an embodiment of the present invention. As shown in FIG. 14, verifying the GPS signal according to the location of the drone includes:
  • Step S51 acquiring GPS coordinates according to the GPS signal
  • Step S52 calculating a difference between the GPS coordinates and the position of the drone
  • Step S53 verifying the difference according to a preset threshold.
  • the GPS coordinates can be used to locate the drone, but in the event that the GPS signal is disturbed or inaccurate, the GPS coordinates will not accurately represent the location of the drone, but are determined according to this embodiment. Since the position of the drone is not obtained based on the GPS signal, the position of the drone can be well reflected in the case where the GPS signal is disturbed or inaccurate.
  • the difference between the GPS coordinates and the position of the drone in the embodiment can be calculated, for example, the GPS coordinates are (x G , y G ), and in this embodiment, the position of the drone is (x, y), then the Difference Further, the relationship between the difference c and the preset threshold may be determined. For example, if the preset threshold is 0, if the c is not equal to 0, the GPS signal may be determined to be inaccurate, for example, the preset threshold is 100 meters, then if c is greater than 100 meters, you can be sure that the GPS signal is not accurate.
  • the prompt information may also be generated to prompt the user of the drone.
  • the present invention proposes an embodiment of the drone.
  • FIG. 15 is a schematic block diagram of a drone shown in accordance with one embodiment of the present invention. As shown in FIG. 15, the drone includes:
  • a receiver for receiving a broadcast automatic correlation monitoring signal of at least three aircraft
  • a processor for determining a location of the at least three aircraft based on the broadcast automatic correlation monitoring signal
  • the position of the drone is determined based on the positions of the at least three aircraft.
  • the processor is configured to determine a distance from the at least three aircraft and a minimum coordinate to the position of the drone based on the locations of the at least three aircraft.
  • the processor is configured to determine a distance from the at least three aircraft and a minimum coordinate based on an intensity of the broadcast automatic correlation monitoring signal.
  • the processor is configured to determine a distance from the at least three aircraft and a minimum coordinate based on a square root of the strength of the broadcast automatic correlation monitoring signal.
  • the processor is configured to calculate an average of coordinates of the at least three aircraft if the positions of the at least three aircraft include coordinates of the at least three aircraft; The value determines the location of the drone.
  • the processor is configured to calculate the average based on horizontal coordinates of the at least three aircraft.
  • the processor is configured to determine a first position and a second position that are furthest apart according to positions of the at least three aircraft; and a distance according to the first position and the second position as a diameter, Determining a circle passing through the first position and the second position; determining a position of the drone based on a center of the circle.
  • the processor is operative to determine the center of the drone as the position of the at least three aircraft is within the circle.
  • the processor is configured to determine other locations of the at least three aircraft that are outside the circle; determining the drone based on the number and location of the other locations An offset direction and an offset distance of the position with respect to the center of the circle; determining a position of the drone according to the center of the circle, the offset direction, and the offset distance.
  • the receiver is further configured to receive a GPS signal
  • the processor is further configured to verify the GPS signal according to the location of the drone.
  • the processor is configured to acquire GPS coordinates according to the GPS signal
  • the difference is verified according to a preset threshold.
  • the present invention also provides a machine readable storage medium suitable for use in a drone, the machine readable storage medium having a plurality of computer instructions stored thereon, the computer instructions being executed as follows:
  • the position of the drone is determined based on the positions of the at least three aircraft.
  • the system, apparatus, module or unit set forth in the above embodiments may be implemented by a computer chip or an entity, or by a product having a certain function.
  • a typical implementation device is a computer, and the specific form of the computer may be a personal computer, a laptop computer, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email transceiver, and a game control.
  • embodiments of the invention may be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, embodiments of the invention may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • these computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the instruction means implements the functions specified in one or more blocks of the flowchart or in a flow or block diagram of the flowchart.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can be embodied in the form of a computer program product embodied on one or more computer-usable storage media (which may include, but not limited to, disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media which may include, but not limited to, disk storage, CD-ROM, optical storage, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

无人机定位方法、无人机和机器可读存储介质,定位方法适用于无人机,定位方法包括:接收至少三架飞机的广播式自动相关监视信号(步骤S1);根据广播式自动相关监视信号确定至少三架飞机的位置(步骤S2);以及根据至少三架飞机的位置确定无人机的位置(步骤S3);可以根据飞机的广播式自动相关监视信号确定的无人机的位置,而不是根据GPS信号来确定无人机的位置,即使在GPS信号受到干扰或被篡改的情况下,也能够准确地确定无人机的位置。

Description

定位方法、无人机和机器可读存储介质 技术领域
本发明涉及定位技术领域,尤其涉及定位方法、无人机和机器可读存储介质。
背景技术
目前针对无人机的定位,主要是通过无人机接收GPS(Global Positioning System,全球定位系统)信号,并根据GPS信号进行定位的。
但是在某些情况下,GPS信号可能会受到干扰,或者无人机根据GPS信号向用户传输的定位位置会被篡改,导致用户无法确定无人机的准确位置。
发明内容
本发明提供定位方法、无人机和机器可读存储介质,以解决上述技术问题。
根据本发明的第一方面,提供一种定位方法,适用于无人机,所述方法包括:
接收至少三架飞机的广播式自动相关监视信号;
根据所述广播式自动相关监视信号确定所述至少三架飞机的位置;以及
根据所述至少三架飞机的位置确定所述无人机的位置。
根据本发明的第二方面,提供一种无人机,包括:
接收器,用于接收至少三架飞机的广播式自动相关监视信号;
处理器,用于根据所述广播式自动相关监视信号确定所述至少三架飞机的位置;以及
根据所述至少三架飞机的位置确定所述无人机的位置。
根据本发明的第三方面,提供一种机器可读存储介质,适用于无人机,所述机器可读存储介质上存储有若干计算机指令,所述计算机指令被执行时进行如下处理:
接收至少三架飞机的广播式自动相关监视信号;
根据所述广播式自动相关监视信号确定所述至少三架飞机的位置;以及
根据所述至少三架飞机的位置确定所述无人机的位置。
由以上本发明实施例提供的技术方案可见,本发明的实施例是根据飞机的广播式自动相关监视信号确定的无人机的位置,而不是根据GPS信号来确定无人机的位置,因此基于本实施例,即使在GPS信号受到干扰或被篡改的情况下,也能够准确地确定无人机的位置。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明一个实施例示出的一种定位方法的示意流程图。
图2是根据本发明一个实施例示出的另一种定位方法的示意流程图。
图3是根据本发明一个实施例示出的一种飞机与无人机位置关系的示意图。
图4是根据本发明一个实施例示出的又一种定位方法的示意流程图。
图5是根据本发明一个实施例示出的又一种定位方法的示意流程图。
图6是根据本发明一个实施例示出的又一种定位方法的示意流程图。
图7是根据本发明一个实施例示出的又一种定位方法的示意流程图。
图8是根据本发明一个实施例示出的又一种定位方法的示意流程图。
图9是根据本发明一个实施例示出的另一种飞机与无人机位置关系的示意图。
图10是根据本发明一个实施例示出的又一种定位方法的示意流程图。
图11是根据本发明一个实施例示出的又一种定位方法的示意流程图。
图12是根据本发明一个实施例示出的又一种飞机与无人机位置关系的示意图。
图13是根据本发明一个实施例示出的又一种定位方法的示意流程图。
图14是根据本发明一个实施例示出的又一种定位方法的示意流程图。
图15是根据本发明一个实施例示出的一种无人机的示意框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。另外,在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
图1是根据本发明一个实施例示出的一种定位方法的示意流程图。本实施可以适用于无人机,并且可以对无人机进行定位,如图1所示,该定位方法包括:
步骤S1,接收至少三架飞机的广播式自动相关监视信号;
步骤S2,根据所述广播式自动相关监视信号确定所述至少三架飞机的位置;以及
步骤S3,根据所述至少三架飞机的位置确定所述无人机的位置。
在本实施例所适用的无人机中,可以设置有接收器,用于接收飞机的广播式自动相关监视信号(ADS-B,Automatic Dependent Surveillance-Broadcast)。而在飞机的广播式自动相关监视信号中包含有飞机的位置、高度、速度、航向等信息,因此根据飞机的广播式自动相关监视信号可以确定飞机的位置,进而在本实施例中,可以根据至少三架飞机的广播式自动相关监视信号确定该至少三架飞机的位置。
进一步地,在确定了至少三架飞机的位置后,可以进一步根据至少三架飞机的位置确定无人机的位置。例如可以根据至少三架飞机中的坐标的平均值来确定无人机的坐标,进而根据无人机的坐标确定无人机的位置。
可见,基于本实施例,可以根据飞机的广播式自动相关监视信号来确定无人机的位置,而不是根据GPS信号来确定无人机的位置,因此基于本实施例,即使在GPS信号受到干扰或被篡改的情况下,也能够准确地确定无人机的位置。
图2是根据本发明一个实施例示出的另一种定位方法的示意流程图。图3是根据本发明一个实施例示出的一种飞机与无人机位置关系的示意图。如图2所示,所述根据所述至少三架飞机的位置确定所述无人机的位置包括:
步骤S31,根据所述至少三架飞机的位置,确定与所述至少三架飞机距离和最小的坐标为所述无人机的位置。
在一个实施例中,可以计算无人机与至少三架飞机中每架飞机的距离,例如至少至少三架飞机中,第一架飞机的坐标为(x1,y1)、第二架飞机的坐标为(x2,y2)、…、第n架飞机的坐标为(xn,yn),其中,无人机的坐标为(x,y),那么如图3所示,无人机与第一架飞机的距离
Figure PCTCN2017093313-appb-000001
无人机与第二架飞机的距离
Figure PCTCN2017093313-appb-000002
…,无人机与第n架飞机的距离
Figure PCTCN2017093313-appb-000003
进而将上述距离相加,即可得到无人机与至少 三架飞机距离和
Figure PCTCN2017093313-appb-000004
n为大于或等于3的整数,i为小于或等于n的正整数。
其中,可以根据最速下降法等算法求得
Figure PCTCN2017093313-appb-000005
最小时的x值和y值,进而将得的x值作为无人机的x轴坐标,将得到的y值作为无人机的y轴坐标,其中,x轴和y轴均为水平坐标轴。
Figure PCTCN2017093313-appb-000006
最小时计算得到的无人机坐标(x,y),接近由上述至少三架飞机(至少三架飞机不位于一条直线上)构成的图形的重心,而位于图形的重心上接收到位于该图形的边上的信号,相对于在图形的重心以外接收到位于该图形的边上的信号,概率较大。因此,根据本实施例的方式确定无人机的位置,可以提高确定的无人机的位置的准确性。
图4是根据本发明一个实施例示出的又一种定位方法的示意流程图。如图4所示,确定与所述至少三架飞机距离和最小的坐标为所述无人机的位置包括:
步骤S311,根据所述广播式自动相关监视信号的强度,确定与所述至少三架飞机距离和最小的坐标。
在一个实施例中,在图2所示实施例的基础上,在计算无人机与每架飞机的距离时,可以根据接收到的广播式自动相关监视信号的强度,对广播式自动相关监视信号对应的飞机与无人机的距离设置权值,例如第n架飞机的广播式自动相关监视信号的强度为An,那么权值可以为An,或者An 2,也可以为
Figure PCTCN2017093313-appb-000007
具体可以根据需要选择设置。以权值是
Figure PCTCN2017093313-appb-000008
为例,也即无人机与至少三架飞机距离和
Figure PCTCN2017093313-appb-000009
进而可以根据最速下降法等算法求得
Figure PCTCN2017093313-appb-000010
最小时x值和y值,并将得的x值作为无人机的x轴坐标,将得 到的y值作为无人机的y轴坐标,其中,x轴和y轴均为水平坐标轴。
针对信号强度(例如信号功率)越大的飞机,一般情况下无人机距离该飞机也就越近,因此在计算无人机与至少三架飞机距离和时,可以通过为距离设置与信号强度相关的权值,以保证在
Figure PCTCN2017093313-appb-000011
最小时计算得到的无人机坐标,相对于上述至少三架飞机构成的图形的重心,能够向信号强度更大的飞机偏移(具体偏移量与信号强度相关),进而使得确定的无人机的位置,更加符合实际情况中距离与信号强度的关系,从而进一步提高确定的无人机的位置的准确性。
图5是根据本发明一个实施例示出的又一种定位方法的示意流程图。如图5所示,所述根据所述广播式自动相关监视信号的强度,确定与所述至少三架飞机距离和最小的坐标包括:
步骤S3111,根据所述广播式自动相关监视信号的强度的平方根,确定与所述至少三架飞机距离和最小的坐标。
在一个实施例中,由于距离与信号强度是相关的,具体地,根据信号传输功率损耗衰减的公式
Figure PCTCN2017093313-appb-000012
其中,PT为发射功率,PR为接收功率,d为信号传输距离,λ为信号波长,可以得到
Figure PCTCN2017093313-appb-000013
也即接收功率(相当于接收到的广播式自动相关监视信号的强度)的平方根与信号传输的距离(相当于飞机与无人机的距离)成反比。相应地,信号的强度引起无人机的坐标相对于上述重心向信号强度更大的飞机偏移的距离,也就与功率的平方根正相关,因此根据广播式自动相关监视信号的强度的平方根,对广播式自动相关监视信号对应的飞机与无人机的距离设置权值,可以更加准确地确定无人机的位置。
图6是根据本发明一个实施例示出的又一种定位方法的示意流程图。如图6所示,所述至少三架飞机的位置包括所述至少三架飞机的坐标,根据所 述至少三架飞机的位置确定所述无人机的位置包括:
步骤S32,计算所述至少三架飞机的坐标的平均值;
步骤S33,根据所述平均值确定所述无人机的位置。
在一个实施例中,在无人机的坐标为至少三架飞机的坐标的平均值时,无人机接收到该至少三架飞机的广播式自动相关监视信号概率较大。以至少三架飞机包含三架飞机为例,例如三架飞机的坐标的连线构成等边三角形,那么如果无人机并非位于等边三角形的中心,而向等边三角形的某个顶点偏移,那么将会更有可能接收到靠近该顶点的其他飞机的信号,而接收到位于其他两个顶点的飞机的信号的概率则会降低。因此无人机在接收到位于三角心三个顶点的飞机的广播式自动相关监视信号的情况下,位于该等边三角形的中心的概率较大,也即根据本实施例,可以以较高的准确率确定无人机的位置。
其中,飞机的坐标可以是经纬度坐标,也可以是在预先设定的参考系中的坐标。例如第1架飞机的坐标为(x1,y1,z1)、第2架飞机的坐标为(x2,y2,z2)、第3架飞机的坐标为(x3,y3,z3)、…、第n架飞机的坐标为(xn,yn,zn),那么无人机的坐标(x,y,z)可以为
Figure PCTCN2017093313-appb-000014
据此即可确定无人机的位置,其中,n为大于或等于3的整数,i为小于或等于n的正整数。
图7是根据本发明一个实施例示出的又一种定位方法的示意流程图。如图7所示,计算所述至少三架飞机的坐标的平均值包括:
步骤S321,根据所述至少三架飞机的水平坐标计算所述平均值。
在一个实施例中,由于无人机一般情况下的飞行高度无法达到飞机的飞机高度的数量级,并且无人机的使用者一般更关注无人机的水平坐标,因此在根据至少三架飞机的坐标来确定无人机的位置时,可以仅根据水平坐标来 确定无人机的位置,以减少计算量。
例如第1架飞机的水平坐标为(x1,y1)、第2架飞机的水平坐标为(x2,y2)、第3架飞机的水平坐标为(x3,y3)、…、第n架飞机的水平坐标为(xn,yn),那么无人机的水平坐标(x,y,)可以为
Figure PCTCN2017093313-appb-000015
据此即可确定无人机的位置,其中,n为大于或等于3的整数,i为小于或等于n的正整数。
图8是根据本发明一个实施例示出的又一种定位方法的示意流程图。图9是根据本发明一个实施例示出的另一种飞机与无人机位置关系的示意图。如图8所示,根据所述至少三架飞机的位置确定所述无人机的位置包括:
步骤S34,根据所述至少三架飞机的位置确定相距最远的第一位置和第二位置;
步骤S35,根据所述第一位置和所述第二位置的距离作为直径,确定通过所述第一位置和所述第二位置的圆;
步骤S36,根据所述圆的圆心确定所述无人机的位置。
在一个实施例中,在至少三架飞机中,可以根据相距最远的第一飞机的第一位置和第二飞机的第二位置来作为直径L,确定通过这两个位置的圆,例如图9所示。
据此确定的圆,在大多数情况下可以将至少三架飞机中的所有飞机围在圆内(包括位于圆上),而在这种情况下,如果无人机偏离圆心,那么将更有可能接收到位于其所偏离方向的其他飞机的信号,例如该其他飞机位于无人机偏离圆心方向的圆外,那么该其他飞机距离圆内的飞机的距离,相对圆内的飞机与圆内飞机的距离将有较高的概率更大,也即该其他飞机与上述至少三架飞机中的某架飞机的距离L’,将有较高的概率大于上述L,因此所形成圆也将改变。所以在这种情况下,无人机在圆的圆心接收到上述至少三架飞 机中每架飞机的广播式自动相关监视信号的概率较大,也即根据该圆心可以相对准确地确定无人机的位置。
而在少数情况下,至少三架飞机中的个别飞机将位于上述圆外,在这种情况下,则可以根据该个别飞机的数量和在圆外的位置,调整无人机偏离圆心的程度。
图10是根据本发明一个实施例示出的又一种定位方法的示意流程图。如图10所述,所述根据所述圆的圆心确定所述无人机的位置包括:
步骤S361,在所述至少三架飞机的位置均位于所述圆内的情况下,确定所述圆心为所述无人机的位置。
在一个实施例中,当至少三架飞机中的所有飞机的位置均位于圆内(也包括位于圆的边上的情况),也即被圆所包围的情况下,如果无人机偏离圆心,那么将更有可能接收到位于其所偏离一侧的其他飞机的信号,例如该其他飞机位于无人机偏离圆心一侧的圆外,那么该其他飞机距离圆内的飞机的距离,相对圆内的飞机与圆内飞机的距离将有较高的概率更大,也即那么该其他飞机与上述至少三架飞机中的某架飞机的距离L’,将有较高的概率大于上述L,因此所形成圆也将改变。所以在这种情况下,无人机在圆的圆心接收到上述至少三架飞机中每架飞机的广播式自动相关监视信号的概率较大,因此可以将该圆心作为无人机的位置。
图11是根据本发明一个实施例示出的又一种定位方法的示意流程图。图12是根据本发明一个实施例示出的又一种飞机与无人机位置关系的示意图。如图11所述,所述根据所述圆的圆心确定所述无人机的位置包括:
步骤S362,确定所述至少三架飞机的位置中位于所述圆外的其他位置;
步骤S363,根据所述其他位置的数量和位置,确定所述无人机的位置相对于所述圆心的偏移方向和偏移距离;
步骤S364,根据所述圆心、所述偏移方向和所述偏移距离确定所述无人 机的位置。
在一个实施例中,与图10所示的实施例相对应地,在少数情况下,至少三架飞机中的个别飞机将位于上述圆外,在这种情况下,可以确定该个别飞机位于圆外的位置(也即其他位置),并进一步根据位于圆外的飞机的数量和位置,确定无人机相对于圆心的偏移方向和偏移距离。
可选地,偏移方向可以为从圆心到多个其他位置所构成的图形的形心的方向,偏移距离可以为所述至少三架飞机中位于圆外的飞机的数量与所述至少三架飞机的数量的比值,与所述圆的半径之积。
例如图12所示,两架飞机的位置位于上述圆外,那么可以计算这两个位置的中点(若一架飞机位于圆外,那么其所构成图形的形心即其所在的位置),以及这两架飞机在无人机接收到的广播式自动相关监视信号的飞机中所占的比例,例如在图12中为2/14=1/7,那么无人机的位置则可以在该圆的圆心向该中点的方向偏移,偏移距离为半径的1/7,也即L/14。
由于存在位于圆外的飞机,若无人机位于圆心,那么接收到位于圆外的飞机的广播式自动相关监视信号的概率较小,相应地,无人机越向位于圆外的飞机偏移,接收到其广播式自动相关监视信号的概率就越大,但是相应地,接收到圆内及圆上的飞机的广播式自动相关监视信号的概率会减小,因此可以将无人机向位于圆外的飞机偏移一定距离,保证无人机接收到位于圆外的飞机和位于圆内以及圆上的飞机的广播式自动相关监视信号均具有不低的概率,而根据位于圆外的飞机的位置和数量调整无人机相对于圆心的偏移方向和偏移距离,则可以有力的保证这种情况实现。因此,根据位于圆外的飞机的位置和数量调整无人机相对于圆心的偏移方向和偏移距离,更有利于保证准确地确定无人机的位置。
图13是根据本发明一个实施例示出的又一种定位方法的示意流程图。如图13所示,所述方法还包括:
步骤S4,接收GPS信号;
步骤S5,根据所述无人机的位置验证所述GPS信号。
在一个实施例中,由于根据本实施例确定的无人机的位置,并非根据GPS信号来确定,因此即使在GPS信号受到干扰或被篡改的情况下,也能够准确地确定无人机的位置。
进而可以根据本实施例确定的无人机的位置,对接收的用于对其自身进行定位的GPS信号进行验证,例如在两者不同的情况下,则可以确定GPS信号不准确或受到干扰。
图14是根据本发明一个实施例示出的又一种定位方法的示意流程图。如图14所示,根据所述无人机的位置验证所述GPS信号包括:
步骤S51,根据所述GPS信号获取GPS坐标;
步骤S52,计算所述GPS坐标与所述无人机的位置的差值;以及
步骤S53,根据预设阈值验证所述差值。
在一个实施例中,GPS坐标可以用于对无人机进行定位,但是在GPS信号受到干扰或不准确的情况下,GPS坐标将无法准确地体现无人机的位置,而根据本实施例确定的无人机的位置由于并非根据GPS信号得到,因此在GPS信号受到干扰或不准确的情况下,也能良好地体现无人机的位置。
因此,可以计算GPS坐标与本实施例中无人机的位置的差值,例如GPS坐标为(xG,yG),本实施例中无人机的位置为(x,y),那么该差值
Figure PCTCN2017093313-appb-000016
进一步地,可以确定该差值c与预设阈值的关系,例如预设阈值为0,那么若c不等于0,则可以确定GPS信号不准确,例如预设阈值为100米,那么若c大于100米,则可以确定GPS信号不准确。
进一步地,在确定GPS信号不准确的情况下,还可以生成提示信息,以对无人机的使用者进行提示。
与上述定位方法的实施例相对应地,本发明提出了无人机的实施例。
图15是根据本发明一个实施例示出的一种无人机的示意框图。如图15所示,所述无人机包括:
接收器,用于接收至少三架飞机的广播式自动相关监视信号;
处理器,用于根据所述广播式自动相关监视信号确定所述至少三架飞机的位置;以及
根据所述至少三架飞机的位置确定所述无人机的位置。
在一个实施例中,所述处理器用于根据所述至少三架飞机的位置,确定与所述至少三架飞机距离和最小的坐标为所述无人机的位置。
在一个实施例中,所述处理器用于根据所述广播式自动相关监视信号的强度,确定与所述至少三架飞机距离和最小的坐标。
在一个实施例中,所述处理器用于根据所述广播式自动相关监视信号的强度的平方根,确定与所述至少三架飞机距离和最小的坐标。
在一个实施例中,所述处理器用于在所述至少三架飞机的位置包括所述至少三架飞机的坐标的情况下,计算所述至少三架飞机的坐标的平均值;根据所述平均值确定所述无人机的位置。
在一个实施例中,所述处理器用于根据所述至少三架飞机的水平坐标计算所述平均值。
在一个实施例中,所述处理器用于根据所述至少三架飞机的位置确定相距最远的第一位置和第二位置;根据所述第一位置和所述第二位置的距离作为直径,确定通过所述第一位置和所述第二位置的圆;根据所述圆的圆心确定所述无人机的位置。
在一个实施例中,所述处理器用于在所述至少三架飞机的位置均位于所述圆内的情况下,确定所述圆心为所述无人机的位置。
在一个实施例中,所述处理器用于确定所述至少三架飞机的位置中位于所述圆外的其他位置;根据所述其他位置的数量和位置,确定所述无人机的 位置相对于所述圆心的偏移方向和偏移距离;根据所述圆心、所述偏移方向和所述偏移距离确定所述无人机的位置。
在一个实施例中,所述接收器还用于接收GPS信号;
所述处理器还用于根据所述无人机的位置验证所述GPS信号。
在一个实施例中,所述处理器用于根据所述GPS信号获取GPS坐标;
计算所述GPS坐标与所述无人机的位置的差值;以及
根据预设阈值验证所述差值。
本发明还提出了一种机器可读存储介质,适用于无人机,所述机器可读存储介质上存储有若干计算机指令,所述计算机指令被执行时进行如下处理:
接收至少三架飞机的广播式自动相关监视信号;
根据所述广播式自动相关监视信号确定所述至少三架飞机的位置;以及
根据所述至少三架飞机的位置确定所述无人机的位置。
上述实施例阐明的系统、装置、模块或单元,可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机,计算机的具体形式可以是个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件收发设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任意几种设备的组合。
本领域内的技术人员应明白,本发明实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可以由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入 式处理机或其它可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其它可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
而且,这些计算机程序指令也可以存储在能引导计算机或其它可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或者多个流程和/或方框图一个方框或者多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其它可编程数据处理设备,使得在计算机或者其它可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其它可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本领域技术人员应明白,本发明的实施例可提供为方法、系统或计算机程序产品。因此,本发明可以采用完全硬件实施例、完全软件实施例、或者结合软件和硬件方面的实施例的形式。而且,本发明可以采用在一个或者多个其中包含有计算机可用程序代码的计算机可用存储介质(可以包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上所述仅为本发明实施例而已,并不用于限制本发明。对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进,均应包含在本发明的权利要求范围之内。

Claims (23)

  1. 一种定位方法,其特征在于,适用于无人机,所述方法包括:
    接收至少三架飞机的广播式自动相关监视信号;
    根据所述广播式自动相关监视信号确定所述至少三架飞机的位置;以及
    根据所述至少三架飞机的位置确定所述无人机的位置。
  2. 根据权利要求1所述的定位方法,其特征在于,根据所述至少三架飞机的位置确定所述无人机的位置包括:
    根据所述至少三架飞机的位置,确定与所述至少三架飞机距离和最小的坐标为所述无人机的位置。
  3. 根据权利要求2所述的定位方法,其特征在于,确定与所述至少三架飞机距离和最小的坐标为所述无人机的位置包括:
    根据所述广播式自动相关监视信号的强度,确定与所述至少三架飞机距离和最小的坐标。
  4. 根据权利要求3所述的定位方法,其特征在于,所述根据所述广播式自动相关监视信号的强度,确定与所述至少三架飞机距离和最小的坐标包括:
    根据所述广播式自动相关监视信号的强度的平方根,确定与所述至少三架飞机距离和最小的坐标。
  5. 根据权利要求1所述的定位方法,其特征在于,所述至少三架飞机的位置包括所述至少三架飞机的坐标,根据所述至少三架飞机的位置确定所述无人机的位置包括:
    计算所述至少三架飞机的坐标的平均值;
    根据所述平均值确定所述无人机的位置。
  6. 根据权利要求5所述的定位方法,其特征在于,计算所述至少三架飞机的坐标的平均值包括:
    根据所述至少三架飞机的水平坐标计算所述平均值。
  7. 根据权利要求1所述的定位方法,其特征在于,根据所述至少三架飞机的位置确定所述无人机的位置包括:
    根据所述至少三架飞机的位置确定相距最远的第一位置和第二位置;
    根据所述第一位置和所述第二位置的距离作为直径,确定通过所述第一位置和所述第二位置的圆;
    根据所述圆的圆心确定所述无人机的位置。
  8. 根据权利要求7所述的定位方法,其特征在于,所述根据所述圆的圆心确定所述无人机的位置包括:
    在所述至少三架飞机的位置均位于所述圆内的情况下,确定所述圆心为所述无人机的位置。
  9. 根据权利要求7所述的定位方法,其特征在于,所述根据所述圆的圆心确定所述无人机的位置包括:
    确定所述至少三架飞机的位置中位于所述圆外的其他位置;
    根据所述其他位置的数量和位置,确定所述无人机的位置相对于所述圆心的偏移方向和偏移距离;
    根据所述圆心、所述偏移方向和所述偏移距离确定所述无人机的位置。
  10. 根据权利要求1至9中任一项所述的定位方法,其特征在于,还包括:
    接收GPS信号;
    根据所述无人机的位置验证所述GPS信号。
  11. 根据权利要求10所述的定位方法,其特征在于,根据所述无人机的位置验证所述GPS信号包括:
    根据所述GPS信号获取GPS坐标;
    计算所述GPS坐标与所述无人机的位置的差值;以及
    根据预设阈值验证所述差值。
  12. 一种无人机,其特征在于,包括:
    接收器,用于接收至少三架飞机的广播式自动相关监视信号;
    处理器,用于根据所述广播式自动相关监视信号确定所述至少三架飞机的位置;以及
    根据所述至少三架飞机的位置确定所述无人机的位置。
  13. 根据权利要求12所述的无人机,其特征在于,所述处理器用于根据所述至少三架飞机的位置,确定与所述至少三架飞机距离和最小的坐标为所述无人机的位置。
  14. 根据权利要求13所述的无人机,其特征在于,所述处理器用于根据所述广播式自动相关监视信号的强度,确定与所述至少三架飞机距离和最小的坐标。
  15. 根据权利要14所述的无人机,其特征在于,所述处理器用于根据所述广播式自动相关监视信号的强度的平方根,确定与所述至少三架飞机距离和最小的坐标。
  16. 根据权利要求12所述的无人机,其特征在于,所述处理器用于在所述至少三架飞机的位置包括所述至少三架飞机的坐标的情况下,计算所述至少三架飞机的坐标的平均值;根据所述平均值确定所述无人机的位置。
  17. 根据权利要求16所述的无人机,其特征在于,所述处理器用于根据所述至少三架飞机的水平坐标计算所述平均值。
  18. 根据权利要求12所述的无人机,其特征在于,所述处理器用于根据所述至少三架飞机的位置确定相距最远的第一位置和第二位置;根据所述第一位置和所述第二位置的距离作为直径,确定通过所述第一位置和所述第二位置的圆;根据所述圆的圆心确定所述无人机的位置。
  19. 根据权利要求18所述的无人机,其特征在于,所述处理器用于在所述至少三架飞机的位置均位于所述圆内的情况下,确定所述圆心为所述无人机的位置。
  20. 根据权利要求18所述的无人机,其特征在于,所述处理器用于确定所述至少三架飞机的位置中位于所述圆外的其他位置;根据所述其他位置的数量和位置,确定所述无人机的位置相对于所述圆心的偏移方向和偏移距离;根据所述圆心、所述偏移方向和所述偏移距离确定所述无人机的位置。
  21. 根据权利要求12至20中任一项所述的无人机,其特征在于,所述 接收器还用于接收GPS信号;
    所述处理器还用于根据所述无人机的位置验证所述GPS信号。
  22. 根据权利要求21所述的无人机,其特征在于,所述处理器用于根据所述GPS信号获取GPS坐标;
    计算所述GPS坐标与所述无人机的位置的差值;以及
    根据预设阈值验证所述差值。
  23. 一种机器可读存储介质,其特征在于,适用于无人机,所述机器可读存储介质上存储有若干计算机指令,所述计算机指令被执行时进行如下处理:
    接收至少三架飞机的广播式自动相关监视信号;
    根据所述广播式自动相关监视信号确定所述至少三架飞机的位置;以及
    根据所述至少三架飞机的位置确定所述无人机的位置。
PCT/CN2017/093313 2017-07-18 2017-07-18 定位方法、无人机和机器可读存储介质 WO2019014824A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780004709.0A CN108521791B (zh) 2017-07-18 2017-07-18 定位方法、无人机和机器可读存储介质
PCT/CN2017/093313 WO2019014824A1 (zh) 2017-07-18 2017-07-18 定位方法、无人机和机器可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/093313 WO2019014824A1 (zh) 2017-07-18 2017-07-18 定位方法、无人机和机器可读存储介质

Publications (1)

Publication Number Publication Date
WO2019014824A1 true WO2019014824A1 (zh) 2019-01-24

Family

ID=63433077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093313 WO2019014824A1 (zh) 2017-07-18 2017-07-18 定位方法、无人机和机器可读存储介质

Country Status (2)

Country Link
CN (1) CN108521791B (zh)
WO (1) WO2019014824A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113795769A (zh) * 2020-03-27 2021-12-14 深圳市速腾聚创科技有限公司 车辆定位方法、装置和车辆
US11442140B1 (en) 2020-06-16 2022-09-13 Honeywell International Inc. Determining a location of a vehicle using received surveillance signals
CN115755988A (zh) * 2023-01-10 2023-03-07 广东工业大学 一种无人机集群的纯方位无源定位方法、系统及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020062395A1 (zh) * 2018-09-29 2020-04-02 深圳市大疆创新科技有限公司 一种信息处理方法、飞行器、系统及存储介质
CN110771183B (zh) * 2018-09-29 2021-05-18 深圳市大疆创新科技有限公司 一种信息处理方法、飞行器、系统及存储介质
CN110471027A (zh) * 2019-07-23 2019-11-19 湖南交工智能技术有限公司 无人机盲区环境下检测的导航方法
CN115021800B (zh) * 2022-07-19 2023-03-31 国家无线电监测中心福建监测站 使用无人机查找Ka频段卫星终端的方法、装置和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608567A (zh) * 2012-01-19 2012-07-25 中国人民解放军第三军医大学野战外科研究所 基于无人机移动信标的战场士兵定位方法
EP1617601B1 (en) * 2004-04-20 2013-04-03 Ambient Holding B.V. Distributed precision based localization algorithm for ad-hoc wireless networks
CN104808227A (zh) * 2014-01-28 2015-07-29 纳米新能源(唐山)有限责任公司 用于士兵定位的无线定位装置和无线定位系统
CN105353341A (zh) * 2015-10-16 2016-02-24 温州大学 一种基于无人自主飞行器的无线传感器网络定位方法
CN105468022A (zh) * 2016-01-13 2016-04-06 谭圆圆 领航用无人飞行器、无人飞行领航系统和领航方法
CN105841694A (zh) * 2016-06-14 2016-08-10 杨珊珊 无人飞行器的信标导航装置、信标及其导航方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101634699B (zh) * 2008-12-31 2011-08-10 中国科学院计算技术研究所 一种在传感器网络中的定位方法及定位装置
WO2011113176A1 (en) * 2010-03-17 2011-09-22 Honeywell International Inc. Systems and methods for short baseline, low cost determination of airborne aircraft location
CN102749637A (zh) * 2012-07-02 2012-10-24 西安大唐电信有限公司 一种车载gps精确定位的实现方法
CN103293511A (zh) * 2012-11-06 2013-09-11 白中泽 无人机点对点定位的方法与系统
KR101240629B1 (ko) * 2012-11-30 2013-03-11 한국항공우주연구원 Ads-b 시스템이 탑재된 항공기를 이용한 미지신호 검출 및 발생원 위치 추정방법
CN103476109B (zh) * 2013-08-16 2016-12-28 武汉飞沃网络有限公司 一种室内ap定位方法
US9470796B2 (en) * 2014-04-23 2016-10-18 Opentv, Inc. Techniques for securing live positioning signals
CN104955148B (zh) * 2014-12-09 2019-03-19 文春明 一种利用电磁波对称传播特性的无线传感网络定位方法
CN105611623B (zh) * 2015-09-18 2019-08-02 宇龙计算机通信科技(深圳)有限公司 移动终端的定位方法及定位装置
CN105468821B (zh) * 2015-11-15 2018-11-02 北京工业大学 利用最小包围圆的tsv自动定位方法
CN106341887B (zh) * 2016-11-08 2019-06-28 北京创想智控科技有限公司 一种室内机器人定位方法及装置
CN106772230A (zh) * 2016-11-10 2017-05-31 上海创功通讯技术有限公司 无人机精确定位的方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1617601B1 (en) * 2004-04-20 2013-04-03 Ambient Holding B.V. Distributed precision based localization algorithm for ad-hoc wireless networks
CN102608567A (zh) * 2012-01-19 2012-07-25 中国人民解放军第三军医大学野战外科研究所 基于无人机移动信标的战场士兵定位方法
CN104808227A (zh) * 2014-01-28 2015-07-29 纳米新能源(唐山)有限责任公司 用于士兵定位的无线定位装置和无线定位系统
CN105353341A (zh) * 2015-10-16 2016-02-24 温州大学 一种基于无人自主飞行器的无线传感器网络定位方法
CN105468022A (zh) * 2016-01-13 2016-04-06 谭圆圆 领航用无人飞行器、无人飞行领航系统和领航方法
CN105841694A (zh) * 2016-06-14 2016-08-10 杨珊珊 无人飞行器的信标导航装置、信标及其导航方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113795769A (zh) * 2020-03-27 2021-12-14 深圳市速腾聚创科技有限公司 车辆定位方法、装置和车辆
CN113795769B (zh) * 2020-03-27 2023-08-04 深圳市速腾聚创科技有限公司 车辆定位方法、装置和车辆
US11442140B1 (en) 2020-06-16 2022-09-13 Honeywell International Inc. Determining a location of a vehicle using received surveillance signals
CN115755988A (zh) * 2023-01-10 2023-03-07 广东工业大学 一种无人机集群的纯方位无源定位方法、系统及存储介质

Also Published As

Publication number Publication date
CN108521791A (zh) 2018-09-11
CN108521791B (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2019014824A1 (zh) 定位方法、无人机和机器可读存储介质
US8583400B2 (en) Indoor localization of mobile devices
US11361444B2 (en) Information processing device, aerial photography path generating method, aerial photography path generating system, program, and recording medium
US8548738B1 (en) Constructing paths based on a particle model
US8386422B1 (en) Using constructed paths to supplement map data
CN110501712B (zh) 无人驾驶中用于确定位置姿态数据的方法、装置和设备
US11055875B2 (en) Computer-vision-based autonomous or supervised- autonomous landing of aircraft
WO2018045538A1 (zh) 无人机及其避障方法和避障系统
US10949669B2 (en) Augmented reality geolocation using image matching
US11244164B2 (en) Augmentation of unmanned-vehicle line-of-sight
US10324160B2 (en) Geolocation of beyond LOS HF emitters
US20230032219A1 (en) Display control method, display control apparatus, program, and recording medium
CN110989619B (zh) 用于定位对象的方法、装置、设备和存储介质
US11945583B2 (en) Method for generating search information of unmanned aerial vehicle and unmanned aerial vehicle
US10607102B2 (en) Video processing technique for 3D target location identification
CN110366711A (zh) 信息处理装置、飞行控制指示方法及记录介质
CN111385868A (zh) 一种车辆定位方法、系统、装置和存储介质
EP3605459A1 (en) Three-dimensional data generation device, three-dimensional data generation method, three-dimensional data generation program, and computer-readable recording medium having three-dimensional data generation program recorded thereon
US11585656B2 (en) Sensor control device
EP3923236A1 (en) Image-processing device, image-processing method, and image-processing computer program
CN110796707B (zh) 标定参数计算方法、装置以及存储介质
JP2019197957A (ja) 電力推定装置、それを備えた無線通信システム、コンピュータに実行させるためのプログラムおよびデータ構造
US20230282117A1 (en) Anomaly determination in geospatial data
US11332259B1 (en) Systems and methods for providing location information for a user-selected feature on an active vertical situation display (VSD)
EP4001848A1 (en) Systems and methods for providing location information for a user-selected feature on an active vertical situation display (vsd)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918055

Country of ref document: EP

Kind code of ref document: A1