WO2019013609A1 - Novel insertion material for rechargeable batteries: titanium (iii) and lithium phosphite liti(hpo3)2. - Google Patents

Novel insertion material for rechargeable batteries: titanium (iii) and lithium phosphite liti(hpo3)2. Download PDF

Info

Publication number
WO2019013609A1
WO2019013609A1 PCT/MA2018/050004 MA2018050004W WO2019013609A1 WO 2019013609 A1 WO2019013609 A1 WO 2019013609A1 MA 2018050004 W MA2018050004 W MA 2018050004W WO 2019013609 A1 WO2019013609 A1 WO 2019013609A1
Authority
WO
WIPO (PCT)
Prior art keywords
liti
lithium
titanium
phosphite
capacity
Prior art date
Application number
PCT/MA2018/050004
Other languages
French (fr)
Inventor
Cherkaoui El Moursli FOUZIA
Lallaoui ABDELFETTAH
Edfouf ZINEB
Saadoune ISMAEL
Abd-Lefdil MOHAMMED
Original Assignee
Universite Mohammed V Rabat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Mohammed V Rabat filed Critical Universite Mohammed V Rabat
Publication of WO2019013609A1 publication Critical patent/WO2019013609A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/163Phosphorous acid; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof

Definitions

  • the present invention relates to the synthesis of a novel material titanium (III) phosphite and lithium LiTi (HPO 3 ) 2 phosphite. This compound crystallizes in a quadratic system, space group I2d.
  • the technical field to which the invention relates is that of the synthesis of inorganic phosphites and their use as a negative electrode material for lithium-ion battery.
  • the application of phosphites in the field of electrochemical storage has been the subject of recent research. Only organic phosphites have been used as flame retardant additives in electrolytes, for better safety of lithium-ion batteries. Some inorganic phosphites of iron and lithium have been tested as cathodes for the same batteries.
  • the first inorganic phosphite which has been applied as anode for lithium-ion battery is the compound Ti 2 (HPO 3 ) 3 .
  • the latter was synthesized and electro-chemically tested for the first time by our team [F. Cherkaoui El Mursli et al, (2015) No. 38379 OMPIC, WO2017039427 (A1) - 2017-03-09].
  • the phosphite form group (HP0 3 ) 2 " offers three P-O bonds and a PH bond and a charge of 0.66 per oxygen atom, while the phosphates (P0 4 ) 3" are in the form of tetrahedra (4 PO bonds) whose charge per atom of oxygen is 0.75 [F. Hamchaoui, V. Alonzo, D. Venegas-Yazigi, H. Rebbah, E. Le Fur, Journal of Solid State Chemistry 198 (2013) 295-302].
  • the influence of the inductive effect of the central atom of the polyanion constitutes an essential tool for the modification of the redox potential of the electrode. t, to have an anode with a low working potential.
  • One of the first inorganic phosphite materials studied in lithium-ion batteries is the compound. This material was tested as a cathode and showed low electrochemical activity with a specific capacity of 12 mAh / g [UC Chung et al., Chem. Mater., 2011, 23, 4317-4330].
  • Another iron (III) phosphite, LiFe (HPO 3 ) 2 is electrochemically active with respect to Li + ions [HY Asl, A. Choudhury, Inorg. Chem., 2015, 54, 6566-6572], but only has a specific capacity of 70 mAh / g.
  • the iron chlorophosphite Li 3 Fe 2 (HPO 3 ) 3 CI has also been tested as cathode for lithium-ion battery [HY Asl et al., Mater. Chem. A., 2015, 3, 7488-9497] and also delivered a capacity of 70 mAh / g and a relatively high operating potential of 3.0 V, due to the introduction of chlorine into the structure.
  • the electrochemical performances of these compounds remain nevertheless weak and still require improvements.
  • titanium phosphite Ti 2 (HP0 3 ) 3 discovered and patented by our team [F. Cherkaoui El Mursli et al, (2015) No.
  • the discharge capacity supplied to the first Ti 2 (HPO 3 ) 3 cycle is 795 mAh / g.
  • the insertion occurs at two different stages and involves the redox potential Ti 3+ / Ti 2+ at 0.26 / 0.44 V.
  • this material shows a loss. of capacity after the first cycle.
  • Organic phosphites have also been added to the conventional electrolytes of lithium-ion batteries as flame retardants for improved safety of use.
  • the patent (electrolyte for high-capacity lithium ion battery, preparation method and lithium ion battery; FAN WEIZHEN; YU LE; XIE TIAN; ZHOU SHUNWU; ZHANG LIPING CN106299324 (A) - 2017-01-04) relates to an electrolyte for lithium battery -ion with high capacity.
  • This patent is a study to improve the performance of the battery at high temperature by using phosphite as a moisture stabilizer in the electrolyte.
  • the electrolyte is prepared from a nonaqueous solvent, lithium hexafluorophosphate, anode film forming additive, an air swelling inhibiting additive, a film stabilizer, and cathode surface and a moisture stabilizer.
  • the moisture stabilizer contains one or two triphenyl phosphites and two triphenyl phosphates which represent 0.1% - 1% of the total mass of the electrolyte.
  • the patent (Electrolyte Comprising Silyl Phosphite Material and Lithium Secondary Battery Having the Same; Yim Tae Eun; Kim Young Jun; Song Jun Ho; Woo Sang Gil; Cho Woo Suk Yim; Tae Eun Kim; Young Jun; Ho, Woo, Sang Gil, Cho, Woo Suk, KR20160049077 (A) - 2016-05-09) treats the use of a silyl phosphite-based electrolyte in a rechargeable lithium battery that suppressed a sharp decrease the cycling behavior of the battery with high cathode potentials.
  • This patent still remains limited to the use of an organic phosphite as an additive in the electrolyte, to allow proper operation of the high-potential battery.
  • the present invention relates to the synthesis of a new phosphite material of chemical formula LiTi (HP0 3 ) 2 , as anode for lithium-ion battery.
  • This compound is the result of the desire to improve the electrochemical performance of Ti 2 (HP0 3 ) 3 material synthesized in our laboratory and previously patented [F. Cherkaoui El Mursli et al, (2015) No. 38379 OMPIC, WO2017039427 (A1) - 2017-03-09].
  • LiTi (HP0 3 ) 2 is the first phosphite material based on titanium and lithium.
  • the crystalline structure of LiTi (HP0 3 ) 2 is a three-dimensional network constructed from TiO 6 octahedra, and HP0 3 tetrahedra which share the vertices and form tunnels along the three crystallographic axes. Two types of tunnels are observed along crystallographic axes a and b occupied by lithium. Another type of tunnel, of larger diameter is observed along the axis c. Titanium adopts an octahedral geometry while phosphorus is located in a tetrahedral environment.
  • LiTi (HP0 3 ) 2 was studied by X-ray powder diffraction. Thermogravimetric analysis (TGA) was performed under an air atmosphere with a heating rate of 10 ° C / min. LiTi compound (HP0 3 ) 2 is stable up to 350 ° C. The presence of titanium and phosphorus elements was confirmed by EDX analysis.
  • LiTi (HP0 3 ) 2 delivers a first cycle discharge capacity of 670 mAh / g and a load capacity of 262 mAh / g under the C / 20 regime.
  • the tests show that the material has a good reversibility of the lithium ion insertion / extraction process after the first cycle.
  • This material tested under different regimes cycling C / 20, C / 10 and C / 5 shows that the capacity obtained tends to similar values from the 20 th cycle.
  • the material shows a good resistance to cycling and a resistance to variation of the regimes.
  • the present invention constitutes an application of a new phase LiTi (HP0 3 ) 2 , belonging to the family of metal phosphites, as negative electrode for lithium-ion battery.
  • LiTi (HP0 3 ) 2 is the first synthesized phosphite material based on titanium and lithium.
  • the compound LiTi (HP0 3 ) 2 contains tunnels along the three crystallographic axes for accommodating lithium ions.
  • the reduced number of (HPO 3 ) 2 and titanium groups in the compound LiTi (HPO 3 ) 2 relative to the compound Ti 2 (HPO 3 ) 3 contributes to a lower molecular weight and promotes the theoretical capacity for insertion of the lithium ions.
  • LiTi (HP0 3 ) 2 was synthesized hydrothermally.
  • the starting precursors, phosphorous acid, hydrated lithium hydroxide and a titanium precursor were mixed in stoichiometric proportions.
  • the reaction mixture is then carried in a teflon jacket of a stainless steel autoclave.
  • the autoclave is heated at 180 ° C. for 3 days.
  • the LiTi (HPO 3 ) 2 powder is subsequently washed several times with distilled water and then dried at room temperature for 24 hours.
  • LiTi (HP0 3 ) 2 compound in powder form was studied by X-ray diffraction using a Bruker D5000 diffractometer that works with Cu K radiation.
  • the data collection domain spans the interval 10 ° ⁇ 2 ⁇ ⁇ 70 °, with a step of 0.04 sec "1.
  • the refinement was performed by the program FullProf and gives rise to the mesh parameters shown in Table 1.
  • the crystalline structure of LiTi (HP0 3 ) 2 is a three-dimensional network constructed from TiO 6 octahedra and HP0 3 tetrahedra which share vertices and form tunnels. The Li atoms are located in distorted LiO 4 octahedra.
  • the structure of LiTi (HP0 3 ) 2 is also iso-structural to the vanadium phase, LiV (HPO 3 ) 2 [Huang, H.-L et al., J. Chin. Chem. Soc. 2013, 60, 691-694].
  • the interatomic distances of the P-O bond in LiTi (HP0 3 ) 2 vary between 1.445 (1) ⁇ and 1.551 (7) ⁇ and are in agreement with other P-O distances listed in the literature for metal phosphites. [Zhen Zhu, Asian Soc. Sci., 6 (2010) 201-208] and [XJ Wang et al. CrystEngComm., 15 (2013) 2519-2526].
  • the interatomic distance of the P-H bond is of the order of 1.26 (2) ⁇ , close to that obtained for the compound, and which is 1.27 (4) ⁇ (UC Chung et al., Chem. Mater., 2011, 23, 4317-4330]
  • the lithium atom occupying the special position 8d is surrounded by four oxygen atoms, of two distinct crystallographic natures, placed in a non-planar geometry.
  • the atoms of titanium and phosphorus simultaneously make six TiO-P bonds (each titanium is bound to six oxygen, each of which is bound to a phosphorus) and three P-O-Ti bonds (each phosphorus is bound to three oxygen, each of which is bound to a titanium) respectively.
  • the structure is alternately composed of Ti0 6 octahedra and HP0 3 tetrahedra which share the vertices.
  • the pooling of the vertices by these polyhedra forms rings along the axis c. These rings are also connected to each other via the HP0 3 units and create tunnels along the three crystallographic axes.
  • the image ( Figure 6) shows particles of irregular sizes.
  • the EDX analysis (FIG. 7) reveals the presence of titanium and phosphorus elements.
  • TGA thermogravimetric analysis
  • FIG. 8 An initial mass loss of 0.87% is observed from room temperature to 350 ° C. This corresponds to the start of the water adsorbed on the surface of the material. Beyond this temperature, a gain in mass is observed thus confirming the oxidation of phosphites to phosphates in the presence of oxygen [F. Hamchaoui et al., Solid State Chem., 2013, 198, 295-302]
  • the electrodes were prepared from 75% LiTi (HPO 3 ) 2 active material, 15% carbon black as conductive agent and 10% PVDF binder (polyvinylidene fluoride). The mixture is homogenized by manual grinding in an agate mortar. An adequate amount of the solvent MP (N-methyl-2-pyrrolidine) is added to the mixture.
  • Figure 9 shows the galvanostatic charge-discharge curve of LiTi (HP0 3 ) 2 , for 6 cycles measured between 0.5 and 2.5 V under a C / 20 regime.
  • a plateau at ⁇ 0.66 V is observed at the first lithiation and then disappears during delithiation as well as for the following cycles due to the formation of the SEL
  • the values of the insertion potential are obtained from the curve derived from the cycling galvanostatic (dQ / dV) with respect to the potential (V) for the second cycle (graph presented in the upper right corner of FIG. 9).
  • dQ / dV cycling galvanostatic
  • the delithiation has a broad peak with a maximum at ⁇ 1.03 V, which can be attributed to the oxidation of Ti 2+ to Ti 3+ .
  • the cell delivers a lithiation capacity of the first cycle of 670 mAh / g corresponding to 5 Li + ions per form unit LiTi (HP0 3 ) 2 ( Figure 11).
  • the electrode During the first delithiation, the electrode generates a capacity of 262 mAh / gr
  • FIG. 12 shows the evolution of the reversible capacitance as a function of the number of cycles under different regimes C / 20, C / 10 and C / 5 in the range of the potential 0.5 - 2.5 V.
  • the curves show a good reversibility of the insertion / extraction process of lithium ions after the first cycle with a 100% Coulomb efficiency.
  • Tests show that the capacity obtained at various cycling regimes tends to similar values as of 20 th cycle.
  • the stability of phosphite LiTi (HP0 3 ) 2 during electrochemical cycling has also been tested under the C / 2 regime for 100 cycles (FIG. 13) and shows that this material is capable of generating the same capacitance value as the slower ones. with a Coulomb efficiency of 100%.
  • this material is interesting because it shows a power property that results in the production of a constant capacity whatever the imposed regime.
  • the good cycling performance and the excellent power property make our new phase a potential candidate as anode rechargeable batteries.
  • the compound LiTi (HP0 3 ) 2 is the first phosphite material which has the advantage of combining these two major properties.

Abstract

The present invention relates to the synthesis of a novel material — titanium (+III) and lithium phosphite [LiTi(HPO3)2] — which did not exist beforehand in the literature. This compound is of great interest thanks to its three-dimensional structure. It crystallises in a quadratic system of space group I2d. Its structure is built from TiO6 octahedrons, and HPO3 tetrahedrons which share peaks and form tunnels along the three crystallographic axes a, b and c. Used as negative electrode material for rechargeable batteries, said structure affords it good cycling resistance, resistance to the variation of cycling rates and interesting power behaviour.

Description

Titre: Nouveau matériau d'insertion pour batteries rechargeables, le phosphite de titane (III) et de lithium LiTi(HP03)2. Title: New Insertion Material for Rechargeable Batteries, Titanium (III) Phosphite and Lithium LiTi (HP0 3 ) 2 .
Description Description
La présente invention concerne la synthèse d'un nouveau matériau, le phosphite de titane (III) et de lithium LiTi(HP03)2. Ce composé cristallise dans un système quadratique, groupe d'espace I2d. Le domaine technique auquel se rapporte l'invention est celui de la synthèse des phosphites inorganiques et leur utilisation comme matériau d'électrode négative pour batterie lithium-ion. L'application des phosphites dans le domaine du stockage électrochimique a fait l'objet de recherches récentes. Seuls des phosphites organiques ont été utilisés comme additifs retardateurs de flammes dans les électrolytes, pour une meilleure sécurité des batteries lithium-ion. Quelques phosphites inorganiques de fer et de lithium ont été testés comme cathodes pour les mêmes batteries. Le premier phosphite inorganique qui a vu son application comme anode pour batterie lithium-ion est le composé Ti2(HP03)3. Ce dernier a été synthétisé et testé électro-chimiquement pour la première fois par notre équipe [F. Cherkaoui El Moursli et coll, (2015) N°38379 OMPIC, WO2017039427 (Al)— 2017-03-09]. The present invention relates to the synthesis of a novel material titanium (III) phosphite and lithium LiTi (HPO 3 ) 2 phosphite. This compound crystallizes in a quadratic system, space group I2d. The technical field to which the invention relates is that of the synthesis of inorganic phosphites and their use as a negative electrode material for lithium-ion battery. The application of phosphites in the field of electrochemical storage has been the subject of recent research. Only organic phosphites have been used as flame retardant additives in electrolytes, for better safety of lithium-ion batteries. Some inorganic phosphites of iron and lithium have been tested as cathodes for the same batteries. The first inorganic phosphite which has been applied as anode for lithium-ion battery is the compound Ti 2 (HPO 3 ) 3 . The latter was synthesized and electro-chemically tested for the first time by our team [F. Cherkaoui El Mursli et al, (2015) No. 38379 OMPIC, WO2017039427 (A1) - 2017-03-09].
Ces dernières années, les composés poly-anioniques, tels que les phosphates [H. Chen et coll, Chem. Mater., 2013, 25, 2777] et [H. Chen et coll, J. Am. Chem. Soc, 2012, 134, 19619], les sulfates [G. Rousse et J. M. Tarascon, Chem. Mater., 2014, 26, 394.], les silicates [M. Saiful et coll, J. Mater. Chem., 2011, 21, 9811], les borates [A. Yamada et coll, Adv. Mater., 2010, 22, 3583] et les vanadates [G. A. Becht et coll, Chem. Mater., 2010, 22, 1149-1154] ont pris une place centrale comme matériaux d'électrodes pour batteries lithium-ion. Dans ces composés, le changement de l'électronégativité de l'atome central du polyanion permet de faire varier le caractère iono-covalent de la liaison métal-ligand dans l'enchaînement X— O— M (X = B, S, P, Si, et M = métal de transition) par effet inductif de l'atome X et par conséquent modifier le potentiel redox du métal de transition. Cette attitude de modifier le potentiel redox fait que la chimie des poly-anions est unique lorsqu'on la compare aux oxydes purs [A. K. Padhi et coll J. Electrochem. Soc, 1998, 145, 1518-1520]. Les différents types de connectivité entre le polyanion et les métaux de transition confèrent à ces matériaux la possibilité de former des réseaux cristallins divers ; ce qui mène à la découverte de nouvelles structures avec un atout pour l'accommodation et l'échange des ions lithiums. Dans le même ordre d'idée, les chimistes de l'état solide ont vite réalisé la faisabilité de remplacer l'unité formulaire (P04)3" dans les phosphates par le groupement phosphite (HP03)2~. Cette alternative permet de concevoir de nouvelles phases avec des structures originales que l'on ne trouve pas habituellement dans la littérature [J. Orive et coll, J. Solid State Chem., 2009, 182, 2191-2201]. Le groupement formulaire phosphite (HP03)2" offre trois liaisons P-0 et une liaison P-H et une charge de 0,66 par atome d'oxygène, tandis que les phosphates (P04)3" sont sous forme de tétraèdres (4 liaisons P-O) dont la charge par atome d'oxygène est 0,75 [F. Hamchaoui, V. Alonzo, D. Venegas-Yazigi, H. Rebbah, E. Le Fur, Journal of Solid State Chemistry 198 (2013) 295-302]. Plus important encore, l'influence de l'effet inductif de l'atome central du poly-anion constitue un outil essentiel à la modification du potentiel redox de l'électrode. Ceci permettra par conséquent, d'avoir une anode avec un bas potentiel de travail. In recent years, polyanionic compounds, such as phosphates [H. Chen et al, Chem. Mater., 2013, 25, 2777] and [H. Chen et al, J. Am. Chem. Soc., 2012, 134, 19619], sulfates [G. Rousse and JM Tarascon, Chem. Mater., 2014, 26, 394.], silicates [M. Saiful et al., J. Mater. Chem., 2011, 21, 9811], borates [A. Yamada et al, Adv. Mater., 2010, 22, 3583] and vanadates [GA Becht et al., Chem. Mater., 2010, 22, 1149-1154] have taken center stage as electrode materials for lithium-ion batteries. In these compounds, the change of the electronegativity of the central atom of the polyanion makes it possible to vary the iono-covalent character of the metal-ligand bond in the X-O-M sequence (X = B, S, P, If, and M = transition metal) by inductive effect of the X atom and consequently modify the redox potential of the transition metal. This attitude of modifying the redox potential makes the polyanion chemistry unique when compared to pure oxides [AK Padhi et al J. Electrochem. Soc., 1998, 145, 1518-1520]. The different types of connectivity between polyanion and transition metals give these materials the ability to form various crystal lattices; this which leads to the discovery of new structures with an advantage for the accommodation and exchange of lithium ions. In the same vein, the solid state chemists quickly realized the feasibility of replacing the form unit (P0 4 ) 3 " in phosphates with the phosphite group (HP0 3 ) 2 ~ . design new phases with original structures that are not usually found in the literature [J. Orive et al, J. Solid State Chem., 2009, 182, 2191-2201] The phosphite form group (HP0 3 ) 2 " offers three P-O bonds and a PH bond and a charge of 0.66 per oxygen atom, while the phosphates (P0 4 ) 3" are in the form of tetrahedra (4 PO bonds) whose charge per atom of oxygen is 0.75 [F. Hamchaoui, V. Alonzo, D. Venegas-Yazigi, H. Rebbah, E. Le Fur, Journal of Solid State Chemistry 198 (2013) 295-302]. The influence of the inductive effect of the central atom of the polyanion constitutes an essential tool for the modification of the redox potential of the electrode. t, to have an anode with a low working potential.
L'un des premiers matériaux phosphites inorganiques étudié dans les batteries lithium-ion est le composé. Ce matériau a été testé comme cathode et a montré une faible activité électrochimique avec une capacité spécifique de 12 mAh/g [U. C. Chung et coll, Chem. Mater., 2011, 23, 4317-4330]. Un autre phosphite de fer (III), LiFe(HP03)2 est électrochimiquement actif par rapport aux ions Li+ [H. Y. Asl, A. Choudhury, Inorg. Chem., 2015, 54, 6566-6572], mais ne présente qu'une capacité spécifique de 70 mAh/g. Le chloro- phosphite de fer Li3Fe2(HP03)3CI a été aussi testé comme cathode pour batterie lithium-ion [H. Y. Asl et coll, Mater. Chem. A., 2015, 3, 7488-9497] et a également délivré une capacité de 70 mAh/g et un potentiel de fonctionnement relativement élevé de 3,0 V, dû à l'introduction du chlore dans la structure. Les performances électrochimiques de ces composés restent néanmoins faibles et nécessitent encore des améliorations. Ce sont les trois cas où les phosphites ont vu leur application comme matériau d'électrode positive. A l'exception du phosphite de titane Ti2(HP03)3 découvert et breveté par notre équipe [F. Cherkaoui El Moursli et coll, (2015) N°38379 OMPIC, WO2017039427 (Al)— 2017-03-09], les phosphites inorganiques de métaux n'ont jamais été utilisés comme électrode négative pour batteries lithium-ion. La capacité théorique de la phase Ti2(HP03)3 est de 136,65 mAh/g, correspondant à l'insertion de deux lithiums ions par unité formulaire. Le cyclage galvanostatique de Ti2(HP03)3 prouve que ce matériau est électrochimiquement actif par rapport aux ions lithiums [F. Cherkaoui El Moursli et coll, (2015) N°38379 OMPIC, WO2017039427 (Al)— 2017-03-09]. La capacité de décharge fournie au premier cycle de Ti2(HP03)3 est de 795 mAh/g. L'insertion se produit à deux stades différents et implique le potentiel redox Ti3+/Ti2+ à 0,26/0,44 V. Malgré l'activité électrochimique de Ti2(HP03)3, ce matériau présente une perte de capacité après le premier cycle. One of the first inorganic phosphite materials studied in lithium-ion batteries is the compound. This material was tested as a cathode and showed low electrochemical activity with a specific capacity of 12 mAh / g [UC Chung et al., Chem. Mater., 2011, 23, 4317-4330]. Another iron (III) phosphite, LiFe (HPO 3 ) 2 is electrochemically active with respect to Li + ions [HY Asl, A. Choudhury, Inorg. Chem., 2015, 54, 6566-6572], but only has a specific capacity of 70 mAh / g. The iron chlorophosphite Li 3 Fe 2 (HPO 3 ) 3 CI has also been tested as cathode for lithium-ion battery [HY Asl et al., Mater. Chem. A., 2015, 3, 7488-9497] and also delivered a capacity of 70 mAh / g and a relatively high operating potential of 3.0 V, due to the introduction of chlorine into the structure. The electrochemical performances of these compounds remain nevertheless weak and still require improvements. These are the three cases where phosphites have been applied as a positive electrode material. With the exception of titanium phosphite Ti 2 (HP0 3 ) 3 discovered and patented by our team [F. Cherkaoui El Mursli et al, (2015) No. 38379 OMPIC, WO2017039427 (A1) - 2017-03-09], inorganic phosphites of metals have never been used as a negative electrode for lithium-ion batteries. The theoretical capacity of the Ti 2 (HPO 3 ) 3 phase is 136.65 mAh / g, corresponding to the insertion of two lithium ions per form unit. The galvanostatic cycling of Ti 2 (HPO 3 ) 3 proves that this material is electrochemically active by compared to lithium ions [F. Cherkaoui El Mursli et al, (2015) No. 38379 OMPIC, WO2017039427 (A1) - 2017-03-09]. The discharge capacity supplied to the first Ti 2 (HPO 3 ) 3 cycle is 795 mAh / g. The insertion occurs at two different stages and involves the redox potential Ti 3+ / Ti 2+ at 0.26 / 0.44 V. Despite the electrochemical activity of Ti 2 (HP0 3 ) 3 , this material shows a loss. of capacity after the first cycle.
Des phosphites organiques ont également été ajoutés dans les électrolytes conventionnels des batteries lithium-ion comme retardateurs de flammes permettant une meilleure sécurité d'utilisation. Organic phosphites have also been added to the conventional electrolytes of lithium-ion batteries as flame retardants for improved safety of use.
Le brevet (electrolyte for high-capacity lithium ion battery, préparation method and lithium ion battery; FAN WEIZHEN; YU LE; XIE TIAN; ZHOU SHUNWU; ZHANG LIPING CN106299324 (A)— 2017-01-04) concerne un electrolyte pour batterie lithium-ion à haute capacité. Ce brevet constitue une étude pour améliorer les performances de la batterie à haute température en utilisant le phosphite comme stabilisant d'humidité dans l'électrolyte. L'électrolyte est préparé à partir d'un solvent non aqueux, de l'hexafluorophosphate de lithium, d'un additif formant un film d'anode, d'un additif inhibant le gonflement d'air, d'un stabilisateur de film de surface de cathode et d'un stabilisateur d'humidité. Dans ce cas le stabilisant d'humidité contient un ou deux phosphites de triphényle et deux phosphates de triphényle qui représentent 0,1 % - 1 % de la masse totale de l'électrolyte. The patent (electrolyte for high-capacity lithium ion battery, preparation method and lithium ion battery; FAN WEIZHEN; YU LE; XIE TIAN; ZHOU SHUNWU; ZHANG LIPING CN106299324 (A) - 2017-01-04) relates to an electrolyte for lithium battery -ion with high capacity. This patent is a study to improve the performance of the battery at high temperature by using phosphite as a moisture stabilizer in the electrolyte. The electrolyte is prepared from a nonaqueous solvent, lithium hexafluorophosphate, anode film forming additive, an air swelling inhibiting additive, a film stabilizer, and cathode surface and a moisture stabilizer. In this case the moisture stabilizer contains one or two triphenyl phosphites and two triphenyl phosphates which represent 0.1% - 1% of the total mass of the electrolyte.
Le brevet (Electrolyte comprising silyl phosphite material and lithium secondary battery having the same; Yim Tae Eun; Kim Young Jun; Song Jun Ho; Woo Sang Gil; Cho Woo Suk Yim; Tae Eun,; Kim, Young Jun,; Song, Jun Ho,; Woo, Sang Gil,; Cho, Woo Suk; KR20160049077 (A)— 2016-05-09) traite l'utilisation d'un électrolyte à base de silyle phosphite dans une batterie rechargeable au lithium qui a supprimé une diminution brutale de la tenue au cyclage de la batterie aux potentiels cathodiques élevées. Ce brevet reste tout de même limité à l'utilisation d'un phosphite organique comme additif dans l'électrolyte, pour permettre un bon fonctionnement de la batterie à haut potentiel. The patent (Electrolyte Comprising Silyl Phosphite Material and Lithium Secondary Battery Having the Same; Yim Tae Eun; Kim Young Jun; Song Jun Ho; Woo Sang Gil; Cho Woo Suk Yim; Tae Eun Kim; Young Jun; Ho, Woo, Sang Gil, Cho, Woo Suk, KR20160049077 (A) - 2016-05-09) treats the use of a silyl phosphite-based electrolyte in a rechargeable lithium battery that suppressed a sharp decrease the cycling behavior of the battery with high cathode potentials. This patent still remains limited to the use of an organic phosphite as an additive in the electrolyte, to allow proper operation of the high-potential battery.
Dans le brevet (Lithium secondary battery ; Choi Nam Soon; Cheon Myeong Jin; KR20160030765 (A)— 2016-03-21) le phosphite de tris (trialkylsilyle) a été utilisé comme additif dans un électrolyte comprenant un sel de lithium et un solvant organique. Cet électrolyte a permis la formation d'une couche interfaciale stable, appelée aussi Solid Electrolyte Interface (SEI) formée sur la surface de l'électrode négative qui a augmenté les performances électrochimiques de la batterie. Ce brevet reste aussi limité à l'utilisation des phosphites comme additifs aux électrolytes. In the patent (Lithium secondary battery, Choi Nam Soon, Cheon Myeong Jin, KR20160030765 (A) - 2016-03-21) the tris (trialkylsilyl) phosphite was used as an additive in an electrolyte comprising a lithium salt and a solvent organic. This electrolyte allowed the formation of a stable interfacial layer, also called Solid Electrolyte Interface (SEI) formed on the surface of the negative electrode which has increased the electrochemical performance of the battery. This patent also remains limited to the use of phosphites as additives to electrolytes.
La présente invention concerne la synthèse d'un nouveau matériau phosphite de formule chimique LiTi(HP03)2, comme anode pour batterie lithium-ion. Ce composé est le résultat de la volonté d'amélioration des performances électrochimiques du matériau Ti2(HP03)3 synthétisé au sein de notre laboratoire et précédemment breveté [F. Cherkaoui El Moursli et coll, (2015) N°38379 OMPIC, WO2017039427 (Al)— 2017-03-09]. Jusqu'à présent, le LiTi(HP03)2 est le premier matériau phosphite à base de titane et de lithium. La masse molaire de ce composé plus faible que celle du composé Ti2(HP03)3 par la réduction des groupements (HP03) et le remplacement d'un atome de titane par un atome de lithium dans la structure favorise une capacité théorique à l'insertion du lithium plus importante. The present invention relates to the synthesis of a new phosphite material of chemical formula LiTi (HP0 3 ) 2 , as anode for lithium-ion battery. This compound is the result of the desire to improve the electrochemical performance of Ti 2 (HP0 3 ) 3 material synthesized in our laboratory and previously patented [F. Cherkaoui El Mursli et al, (2015) No. 38379 OMPIC, WO2017039427 (A1) - 2017-03-09]. Until now, LiTi (HP0 3 ) 2 is the first phosphite material based on titanium and lithium. The molar mass of this compound lower than that of the compound Ti 2 (HPO 3 ) 3 by the reduction of the groups (HPO 3 ) and the replacement of a titanium atom by a lithium atom in the structure promotes a theoretical capacity to the insertion of lithium more important.
La structure cristalline de LiTi(HP03)2 est un réseau tri-dimensionnel construit à partir des octaèdres Ti06, et des tétraèdres HP03 qui partagent les sommets et forment des tunnels le long des trois axes cristallographiques. Deux types de tunnels sont observés le long des axes cristallographiques a et b occupés par les lithiums. Un autre type de tunnel, de diamètre plus large est observé le long de l'axe c. Le titane adopte une géométrie octaédrique tandis que le phosphore est situé dans un environnement tétraédrique. The crystalline structure of LiTi (HP0 3 ) 2 is a three-dimensional network constructed from TiO 6 octahedra, and HP0 3 tetrahedra which share the vertices and form tunnels along the three crystallographic axes. Two types of tunnels are observed along crystallographic axes a and b occupied by lithium. Another type of tunnel, of larger diameter is observed along the axis c. Titanium adopts an octahedral geometry while phosphorus is located in a tetrahedral environment.
La structure de LiTi(HP03)2 a été étudiée par diffraction des rayons X sur poudre. L'analyse thermogravimétrique (ATG) a été effectuée sous atmosphère d'air avec une vitesse de chauffage de 10 °C/min. Le composé LiTi(HP03)2 est stable jusqu'à 350 °C. La présence des éléments titane et phosphore a été confirmée par analyse EDX. The structure of LiTi (HP0 3 ) 2 was studied by X-ray powder diffraction. Thermogravimetric analysis (TGA) was performed under an air atmosphere with a heating rate of 10 ° C / min. LiTi compound (HP0 3 ) 2 is stable up to 350 ° C. The presence of titanium and phosphorus elements was confirmed by EDX analysis.
LiTi(HP03)2 délivre une capacité de décharge du premier cycle de 670 mAh/g et une capacité de charge de 262 mAh/g sous le régime C/20. Les tests montrent que le matériau présente une bonne réversibilité du processus d'insertion/extraction des ions lithiums après le premier cycle. Ce matériau testé sous différents régimes de cyclage C/20, C/10 et C/5, montre que la capacité obtenue tend vers des valeurs similaires à partir du 20eme cycle. De plus, en faisant subir différents régimes dégressifs à la même électrode de LiTi(HP03)2, le matériau montre une bonne tenue au cyclage et une résistance à la variation des régimes. Ces résultats montrent la propriété de puissance, importante pour un matériau d'électrode. D'autres systèmes de la solution solide LiTii.xMx(FIP03)2 avec M = V, Mn, Fe, Co, Ni, Cu, Zr, Nb, Sn, Si sont envisagés pour augmenter les conductivités électronique et ionique de l'électrode et créer plus de sites vacants dans la structure de LiTi(HP03)2. Ce qui pourrait par conséquent améliorer les propriétés électrochimiques de cette phase. LiTi (HP0 3 ) 2 delivers a first cycle discharge capacity of 670 mAh / g and a load capacity of 262 mAh / g under the C / 20 regime. The tests show that the material has a good reversibility of the lithium ion insertion / extraction process after the first cycle. This material tested under different regimes cycling C / 20, C / 10 and C / 5 shows that the capacity obtained tends to similar values from the 20 th cycle. In addition, by subjecting different regressive regimes to the same LiTi electrode (HP0 3 ) 2 , the material shows a good resistance to cycling and a resistance to variation of the regimes. These results show the power property, important for an electrode material. Other systems of LiTii solid solution. x M x (FIP0 3 ) 2 with M = V, Mn, Fe, Co, Ni, Cu, Zr, Nb, Sn, Si are envisaged to increase the electronic and ionic conductivities of the electrode and to create more vacant sites in the structure of LiTi (HP0 3 ) 2. This could therefore improve the electrochemical properties of this phase.
DESCRIPTION TECHNIQUE TECHNICAL DESCRIPTION
La présente invention constitue une application d'une nouvelle phase LiTi(HP03)2, appartenant à la famille des phosphites de métaux, comme électrode négative pour batterie lithium-ion. LiTi(HP03)2 est le premier matériau phosphite synthétisé à base de titane et de lithium. Le composé LiTi(HP03)2 contient des tunnels le long des trois axes cristallographiques permettant l'accommodation des ions lithiums. Le nombre réstreint des groupements (HP03)2 et de titane dans le composé LiTi(HP03)2 par rapport au composé Ti2(HP03)3 contribue à une masse molaire plus faible et favorise la capacité théorique à l'insertion des ions lithiums. The present invention constitutes an application of a new phase LiTi (HP0 3 ) 2 , belonging to the family of metal phosphites, as negative electrode for lithium-ion battery. LiTi (HP0 3 ) 2 is the first synthesized phosphite material based on titanium and lithium. The compound LiTi (HP0 3 ) 2 contains tunnels along the three crystallographic axes for accommodating lithium ions. The reduced number of (HPO 3 ) 2 and titanium groups in the compound LiTi (HPO 3 ) 2 relative to the compound Ti 2 (HPO 3 ) 3 contributes to a lower molecular weight and promotes the theoretical capacity for insertion of the lithium ions.
Synthèse du matériau Synthesis of the material
LiTi(HP03)2 a été synthétisé par voie hydrothermale. Les précurseurs de départ, l'acide phosphoreux, l'hydroxyde de lithium hydraté et un précurseur de titane ont été mélangés dans les proportions stœchiométriques. Le mélange réactionnel est ensuite porté dans une chemise à téflon d'un autoclave d'acier inoxydable. L'autoclave est porté à 180 °C pendant 3 jours. La poudre LiTi(HP03)2, est par la suite lavée plusieurs fois avec de l'eau distillée, puis séchée à température ambiante pendant 24 heures. LiTi (HP0 3 ) 2 was synthesized hydrothermally. The starting precursors, phosphorous acid, hydrated lithium hydroxide and a titanium precursor were mixed in stoichiometric proportions. The reaction mixture is then carried in a teflon jacket of a stainless steel autoclave. The autoclave is heated at 180 ° C. for 3 days. The LiTi (HPO 3 ) 2 powder is subsequently washed several times with distilled water and then dried at room temperature for 24 hours.
Etude structurale et morphologique Structural and morphological study
La structure du composé LiTi(HP03)2 sous forme de poudre a été étudiée par diffraction de rayons X en utilisant un diffractomètre Bruker D5000 qui fonctionne avec la radiation Cu K. Le domaine de collection des données s'étend sur l'intervalle 10° < 2Θ < 70°, avec un pas de 0,04 sec"1. L'affinement a été réalisé par le programme FullProf et donne lieu aux paramètres de maille montrés dans le tableau 1. The structure of the LiTi (HP0 3 ) 2 compound in powder form was studied by X-ray diffraction using a Bruker D5000 diffractometer that works with Cu K radiation. The data collection domain spans the interval 10 ° <2Θ <70 °, with a step of 0.04 sec "1. The refinement was performed by the program FullProf and gives rise to the mesh parameters shown in Table 1.
La résolution structurale de LiTi(HP03)2 a été effectuée en utilisant la structure de LiFe(HP03)2 [H. Y. Asl, A. Choudhury, Inorg. Chem., 2015, 54, 6566-6572] comme modèle de départ. L'analyse Rietveld donne les facteurs de fiabilité illustrée dans le tableau 1. Les positions des atomes et les facteurs de déplacement atomique sont donnés dans le tableau 2. Une bonne concordance entre le modèle expérimental et le modèle calculé (figure 1) montre bien la pureté de la phase LiTi(HP03)2. The structural resolution of LiTi (HP0 3 ) 2 was performed using the structure of LiFe (HP0 3 ) 2 [HY Asl, A. Choudhury, Inorg. Chem., 2015, 54, 6566-6572] as a starting model. The Rietveld analysis gives the reliability factors shown in Table 1. The positions of the atoms and the atomic displacement factors are given in the table. Table 2. A good agreement between the experimental model and the calculated model (Figure 1) shows the purity of the LiTi phase (HP0 3 ) 2 .
La structure cristalline de LiTi(HP03)2 est un réseau tri-dimensionnel construit à partir des octaèdres Ti06, et des tétraèdres HP03 qui partagent les sommets et forment des tunnels. Les atomes Li sont situés dans des octaèdres distordus Li04. La structure de LiTi(HP03)2 est également iso- structurale à la phase vanadium, LiV(HP03)2 [Huang, H.-L et coll, J. Chin. Chem. Soc. 2013, 60, 691-694]. De point de vue cristallographique, il existe un seul atome de titane, localisé en position spéciale 8d, et adopte une géométrie octaédrique formée par les atomes d'oxygènes des groupements phosphites. La distance interatomique Ti— O est de l'ordre de 1,982 (5) Â, équivalente à celle observée dans le cas du composé Ti2(HP03)3, 1,983 (2) Â [F. Cherkaoui El Moursli et coll, (2015) WO2017039427 (Al)— 2017-03-09]. Le phosphore du groupement phosphite de degré d'oxydation +III est situé dans un environnement tétraédrique formé par trois atomes d'oxygène et un atome d'hydrogène. Les distances interatomiques de la liaison P— O dans LiTi(HP03)2 varient entre 1,445 (1) Â et 1,551 (7) Â et sont en concordance avec d'autres distances P— O répertoriées dans la littérature pour des phosphites de métaux [Zhen Zhu, Asian Soc. Sci., 6 (2010) 201-208] et [X. J. Wang et coll CrystEngComm., 15 (2013) 2519-2526]. La distance interatomique de la liaison P— H est de l'ordre de 1,26 (2) Â, proche de celle obtenue pour le composé , et qui est de 1,27 (4) Â [U. C. Chung et coll, Chem. Mater., 2011, 23, 4317-4330] L'atome du lithium occupant la position spéciale 8d est entouré de quatre atomes d'oxygènes, de deux natures cristallographiques distinctes, placés dans une géométrie non planaire. The crystalline structure of LiTi (HP0 3 ) 2 is a three-dimensional network constructed from TiO 6 octahedra and HP0 3 tetrahedra which share vertices and form tunnels. The Li atoms are located in distorted LiO 4 octahedra. The structure of LiTi (HP0 3 ) 2 is also iso-structural to the vanadium phase, LiV (HPO 3 ) 2 [Huang, H.-L et al., J. Chin. Chem. Soc. 2013, 60, 691-694]. From a crystallographic point of view, there exists a single titanium atom, located in a special position 8d, and adopts an octahedral geometry formed by the oxygen atoms of the phosphite groups. The interatomic distance TiO is of the order of 1.982 (5) Å, equivalent to that observed in the case of the compound Ti 2 (HPO 3 ) 3 , 1.983 (2) Å [F. Cherkaoui El Mursli et al, (2015) WO2017039427 (A1) - 2017-03-09]. The phosphite of the phosphite group of degree of oxidation + III is located in a tetrahedral environment formed by three oxygen atoms and one hydrogen atom. The interatomic distances of the P-O bond in LiTi (HP0 3 ) 2 vary between 1.445 (1) Å and 1.551 (7) Å and are in agreement with other P-O distances listed in the literature for metal phosphites. [Zhen Zhu, Asian Soc. Sci., 6 (2010) 201-208] and [XJ Wang et al. CrystEngComm., 15 (2013) 2519-2526]. The interatomic distance of the P-H bond is of the order of 1.26 (2) Å, close to that obtained for the compound, and which is 1.27 (4) Å (UC Chung et al., Chem. Mater., 2011, 23, 4317-4330] The lithium atom occupying the special position 8d is surrounded by four oxygen atoms, of two distinct crystallographic natures, placed in a non-planar geometry.
Les atomes du titane et du phosphore font de manière simultanée chacun six liaisons Ti— O— P (chaque titane est lié à six oxygène, dont chacun est lié à un phosphore) et trois liaisons P— O— Ti (chaque phosphore est lié à trois oxygène, dont chacun est lié à un titane) respectivement. Ainsi la structure est composée en alternance des octaèdres Ti06 et des tétraèdres HP03 qui partagent les sommets. La mise en commun des sommets par ces polyèdres forme des anneaux le long de l'axe c. Ces anneaux sont aussi connectés les uns aux autres via les unités HP03 et créent des tunnels le long des trois axes cristallographiques. Deux types de tunnels peuvent être observés le long des axes cristallographiques a (figure 2) et b (figure 3), dont les atomes Li occupent les canaux étroits. Les canaux de forme hexagonale sont laissés vacants. Les distances Li— 01 et Li— 02 sont de 1,886 (5) Â et 2,452 (2) Â respectivement. Les tunnels le long de l'axe c (figure 4) sont aussi vacants et possèdent un large diamètre. Les atomes d'hydrogène sont orientés vers l'intérieur de ces tunnels. La morphologie de LiTi(HP03)2 a été étudiée par microscopie électronique à balayage (figure 5). L'image montre des particules de tailles irrégulières qui ont tendance à former des agglomérats— La microscopie électronique à transmission a été utilisée pour observer la microstructure de la poudre LiTi(HP03)2. L'image (figure 6) montre des particules de tailles irrégulières. L'analyse EDX (figure 7) révèle la présence des éléments titane et phosphore. Sur la courbe de l'analyse thermogravimétrique (ATG) (figure 8), une perte initiale en masse de 0,87 % est observée de la température ambiante jusqu'à 350 °C. Ce qui correspond au départ de l'eau adsorbée à la surface du matériau. Au-delà de cette température, un gain de masse est observé confirmant ainsi l'oxydation des phosphites aux phosphates en présence de l'oxygène [F. Hamchaoui et coll, Solid State Chem., 2013, 198, 295-302] The atoms of titanium and phosphorus simultaneously make six TiO-P bonds (each titanium is bound to six oxygen, each of which is bound to a phosphorus) and three P-O-Ti bonds (each phosphorus is bound to three oxygen, each of which is bound to a titanium) respectively. Thus the structure is alternately composed of Ti0 6 octahedra and HP0 3 tetrahedra which share the vertices. The pooling of the vertices by these polyhedra forms rings along the axis c. These rings are also connected to each other via the HP0 3 units and create tunnels along the three crystallographic axes. Two types of tunnels can be observed along the crystallographic axes a (Figure 2) and b (Figure 3), whose Li atoms occupy the narrow channels. Hexagonal channels are left vacant. The distances L110 and L110 are 1.886 (5) Å and 2.452 (2) Å, respectively. The tunnels along the c axis (Figure 4) are also vacant and have a large diameter. The hydrogen atoms are oriented towards the interior of these tunnels. The morphology of LiTi (HP0 3 ) 2 was studied by scanning electron microscopy (FIG. 5). The image shows particles of irregular sizes which tend to form agglomerates. Transmission electron microscopy was used to observe the microstructure of the LiTi (HPO 3 ) 2 powder. The image (Figure 6) shows particles of irregular sizes. The EDX analysis (FIG. 7) reveals the presence of titanium and phosphorus elements. In the thermogravimetric analysis (TGA) curve (FIG. 8), an initial mass loss of 0.87% is observed from room temperature to 350 ° C. This corresponds to the start of the water adsorbed on the surface of the material. Beyond this temperature, a gain in mass is observed thus confirming the oxidation of phosphites to phosphates in the presence of oxygen [F. Hamchaoui et al., Solid State Chem., 2013, 198, 295-302]
Etude électrochimique Electrochemical study
Les électrodes ont été préparées à partir de 75 % de la matière active LiTi(HP03)2, de 15 % de noir de carbone comme agent conducteur et de 10 % de liant PVDF (polyvinylidene fluoride). Le mélange s'homogénéise par broyage manuel dans un mortier en agate. Une quantité adéquate du solvant MP (N-methyl-2-pyrrolidine) est ajoutée au mélange. L'électrolyte utilisé est constitué d'un sel de lithium LiPF6 dissout dans les solvants organiques : (carbonate d'éthylène (EC) : carbonate de diéthyle (DEC) dans les proportions volumiques EC : DMC = 2 : 1. Les cellules de type pile bouton ont été assemblées en boîte à gants sous atmosphères d'argon. The electrodes were prepared from 75% LiTi (HPO 3 ) 2 active material, 15% carbon black as conductive agent and 10% PVDF binder (polyvinylidene fluoride). The mixture is homogenized by manual grinding in an agate mortar. An adequate amount of the solvent MP (N-methyl-2-pyrrolidine) is added to the mixture. The electrolyte used consists of a lithium salt LiPF 6 dissolved in organic solvents: (ethylene carbonate (EC): diethyl carbonate (DEC) in the proportions by volume EC: DMC = 2: 1. Button cell type were assembled in a glove box under argon atmospheres.
Pour étudier les propriétés électrochimiques de l'anode LiTi(HP03)2, les tests du cyclage galvanostatique et de la voltamètrie cyclique ont été effectués sur les cellules préparées en demi-pile. To study the electrochemical properties of the LiTi (HP0 3 ) 2 anode, the galvanostatic cycling and cyclic voltammetry tests were carried out on the cells prepared in half-cells.
La figure 9 présente la courbe galvanostatique de charge-décharge de LiTi(HP03)2, pour 6 cycles mesurés entre 0,5 et 2,5 V sous un régime de C/20. Un plateau à ~ 0,66 V est observé à la première lithiation puis disparaît lors de la délithiation ainsi que pour les cycles suivants dû à la formation de la SEL Les valeurs du potentiel d'insertion sont obtenues à partir de la courbe dérivée du cyclage galvanostatique (dQ/dV) par rapport au potentiel (V) pour le deuxième cycle (graphe présenté dans le coin supérieur droit de la figure 9). Durant le processus de lithiation, un pic est observé à ~ 0,73 V et qui correspond probablement à la réduction des ions titane (Ti3+ en Ti2+). La délithiation présente un pic large avec un maximum à ~ 1,03 V, que l'on peut attribuer à l'oxydation de Ti2+ en Ti3+. Sur le voltamogramme, enregistré sous une vitesse de 0,02 mV/S, le même pic est observé au deuxième et au troisième cycle avec un décalage de 0,09 V par rapport à la courbe (dQ/dV) (figure 10). Figure 9 shows the galvanostatic charge-discharge curve of LiTi (HP0 3 ) 2 , for 6 cycles measured between 0.5 and 2.5 V under a C / 20 regime. A plateau at ~ 0.66 V is observed at the first lithiation and then disappears during delithiation as well as for the following cycles due to the formation of the SEL The values of the insertion potential are obtained from the curve derived from the cycling galvanostatic (dQ / dV) with respect to the potential (V) for the second cycle (graph presented in the upper right corner of FIG. 9). During the lithiation process, a peak is observed at ~ 0.73 V and probably corresponds to the reduction of titanium ions (Ti 3+ to Ti 2+ ). The delithiation has a broad peak with a maximum at ~ 1.03 V, which can be attributed to the oxidation of Ti 2+ to Ti 3+ . On the voltammogram, recorded at a speed of 0.02 mV / S, the same peak is observed at second and third cycles with an offset of 0.09 V relative to the curve (dQ / dV) (Figure 10).
La cellule délivre une capacité de lithiation du premier cycle de 670 mAh/g correspondant à 5 Li+ ions par unité formulaire de LiTi(HP03)2 (figure 11). Lors de la première délithiation, l'électrode génère une capacité de 262 mAh/gr The cell delivers a lithiation capacity of the first cycle of 670 mAh / g corresponding to 5 Li + ions per form unit LiTi (HP0 3 ) 2 (Figure 11). During the first delithiation, the electrode generates a capacity of 262 mAh / gr
La figure 12 montre l'évolution de la capacité réversible en fonction du nombre de cycles sous différents régimes C/20, C/10 et C/5 dans la gamme du potentiel 0,5 - 2,5 V. Les courbes montrent une bonne réversibilité du processus d'insertion/extraction des ions lithiums après le premier cycle avec une efficience coulombienne de 100 %. Les tests montrent que la capacité obtenue à différents régimes de cyclage tend vers des valeurs similaires à partir du 20eme cycle. La stabilité du phosphite LiTi(HP03)2 au cyclage électrochimique a été également testée sous le régime de C/2 pendant 100 cycles (figure 13) et montre que ce matériau est capable de générer la même valeur de capacité que les régimes plus lents avec une efficience coulombienne de 100 %. Ainsi, ce matériau est intéressant car il montre une propriété de puissance qui se traduit par la production d'une capacité constante quelque-soit le régime imposé. FIG. 12 shows the evolution of the reversible capacitance as a function of the number of cycles under different regimes C / 20, C / 10 and C / 5 in the range of the potential 0.5 - 2.5 V. The curves show a good reversibility of the insertion / extraction process of lithium ions after the first cycle with a 100% Coulomb efficiency. Tests show that the capacity obtained at various cycling regimes tends to similar values as of 20 th cycle. The stability of phosphite LiTi (HP0 3 ) 2 during electrochemical cycling has also been tested under the C / 2 regime for 100 cycles (FIG. 13) and shows that this material is capable of generating the same capacitance value as the slower ones. with a Coulomb efficiency of 100%. Thus, this material is interesting because it shows a power property that results in the production of a constant capacity whatever the imposed regime.
Le cyclage électrochimique avec variation du régime (figure 14) a été effectué, d'abord par l'application d'un régime de C/20 pendant 6 cycles. Ensuite, 5 cycles ont été successivement effectués sous les régimes de C/10, de C/5 et de C/2, respectivement. Finalement, les derniers 5 cycles ont été réalisés au régime de départ de C/10. Cette analyse montre que la phase LiTi(HP03)2 retrouve sa capacité initiale entre la première et la deuxième série sous le régime C/10, avec seulement une perte de l'ordre de 3,7%. The electrochemical cycling with variation of the regime (FIG. 14) was carried out, firstly by applying a C / 20 regime for 6 cycles. Then 5 cycles were successively carried out under the C / 10, C / 5 and C / 2 regimes, respectively. Finally, the last 5 cycles were carried out at the starting rate of C / 10. This analysis shows that the LiTi (HP0 3 ) 2 phase regains its initial capacity between the first and the second series under the C / 10 regime, with only a loss of the order of 3.7%.
La bonne tenue au cyclage et l'excellente propriété de puissance font de notre nouvelle phase un candidat potentiel comme anode des batteries rechargeables. Le composé LiTi(HP03)2 est le premier matériau phosphite qui présente l'avantage d'associer ces deux propriétés majeures. The good cycling performance and the excellent power property make our new phase a potential candidate as anode rechargeable batteries. The compound LiTi (HP0 3 ) 2 is the first phosphite material which has the advantage of combining these two major properties.

Claims

REVENDICATIONS
1. UN matériau du phosphite inorganique de titane (I II) et de lithium, avec ou sans dopage, caractérisé en tant que le dit matériau est électrode négative pour batteries rechargeables et que sa formule chimique est : a. [LiTii-xMx(HP03)2], avec M=V, Mn, Fe, Co, Ni, Al, Cu, Sn, Si 1. A material of titanium (I II) inorganic phosphite and lithium, with or without doping, characterized in that said material is negative electrode for rechargeable batteries and that its chemical formula is: a. [LiTii -x M x (HP0 3) 2], with M = V, Mn, Fe, Co, Ni, Al, Cu, Sn, Si
b. avec x = 0, [LiTii_xMx(HP03)2] est [LiTi(HP03)2] b. with x = 0, [LiTii_ x M x (HP0 3 ) 2 ] is [LiTi (HP0 3 ) 2 ]
2. Le matériau [LiTi(HP03)2] selon les revendications 1, caractérisée en ce qu'il cristallise dans un système quadratique, groupe d'espace I2d, structure tridimentionnelle construite à partir des octaèdres Ti06, et des tétraèdres HP03 qui partagent les sommets et forment des tunnels le long des trois axes cristallographiques selon les figures 2, 3 et 4. 2. The material [LiTi (HP0 3 ) 2 ] according to claims 1, characterized in that it crystallizes in a quadratic system, space group I2d, three-dimensional structure constructed from TiO 6 octahedra, and HP0 3 tetrahedra. which share the vertices and form tunnels along the three crystallographic axes according to Figures 2, 3 and 4.
3. Le Matériau selon les revendications 1 et 2, caractérisé par un gain de masse à partir de 350°C en ce qui concerne son comportement thermique sous atmosphère oxygénée selon la figure 8. 3. The material according to claims 1 and 2, characterized by a weight gain from 350 ° C with respect to its thermal behavior under oxygenated atmosphere according to Figure 8.
4. Le Matériau selon les revendications 1 et 2, caractérisé en ce qu'il délivre une capacité de lithiation du premier cycle de 670 mAh/g correspondant à 5 Li+ ions par unité formulaire de LiTi(HP03)2 et une capacité de délithiation du premier cycle de 262 mAh/g selon les figures 9 et 11. 4. The material according to claims 1 and 2, characterized in that it delivers a lithiation capacity of the first cycle of 670 mAh / g corresponding to 5 Li + ions per form unit of LiTi (HP0 3 ) 2 and a capacity of delithiation of the first cycle of 262 mAh / g according to Figures 9 and 11.
5. Le Matériau, selon la revendication 4, caractérisé en ce qu'il montre une propriété de puissance qui se traduit par la production d'une capacité constante au cours du cyclage quelque-soit le régime imposé selon les figures 12 et 13. 5. The material according to claim 4, characterized in that it shows a power property which results in the production of a constant capacity during cycling whatever the imposed regime according to Figures 12 and 13.
6. Le Matériau selon les revendications précédentes, caractérisé en ce qu'il retrouve sa capacité initiale après cyclage électrochimique de la même électrode sous les régimes C/20-C/10-C/5-C/2-C10, avec seulement une perte de 3,7%, entre la première et la deuxième série sous le régime C/10 selon la figure 14. 6. The material according to the preceding claims, characterized in that it regains its initial capacity after electrochemical cycling of the same electrode under the C / 20-C / 10-C / 5-C / 2-C10 regimes, with only one loss of 3.7%, between the first and second series under the C / 10 regime according to Figure 14.
7. Un Procédé de synthèse du phosphite de titane et de lithium selon les revendications 1 et 2, a été effectué par voie hydrothermale. 7. A process for synthesizing lithium titanium phosphite according to claims 1 and 2 has been carried out hydrothermally.
8. Le Procédé selon la revendication 7, caractérisé en ce qu'il consiste à mettre en proportions stœchiométriques l'acide phosphoreux, l'hydroxyde de lithium hydraté et un précurseur de titane dans une chemise en téflon d'un autoclave d'acier inoxydable. Pendant 72 heures à 180 °C. 8. The method of claim 7, characterized in that it consists in stoichiometric proportions of phosphorous acid, hydrated lithium hydroxide and a titanium precursor in a teflon jacket of a stainless steel autoclave. . For 72 hours at 180 ° C.
9. Le Procédé selon les revendications 1, 2, 7et 8, caractérisé en ce qu'une variété de dopants M=V, Mn, Fe, Co, Ni, Al, Cu, Sn, Si, sont envisagés pour avoir des systèmes de la solution solide LiTii-xMx(FIP03)2 dans une proportion x variant entre 0 et 1, visant de nouvelles propriétés électrochimiques. 9. The method according to claims 1, 2, 7 and 8, characterized in that a variety of dopants M = V, Mn, Fe, Co, Ni, Al, Cu, Sn, Si, are envisaged to have control systems. the solid solution LiTii -x M x (FIP03) 2 in a proportion x varying between 0 and 1, aimed at new electrochemical properties.
PCT/MA2018/050004 2017-07-14 2018-02-23 Novel insertion material for rechargeable batteries: titanium (iii) and lithium phosphite liti(hpo3)2. WO2019013609A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MA40700A MA40700B1 (en) 2017-07-14 2017-07-14 New insertion material for rechargeable batteries, titanium (iii) phosphite and lithium liti (hp03) 2.
MA40700 2017-07-14

Publications (1)

Publication Number Publication Date
WO2019013609A1 true WO2019013609A1 (en) 2019-01-17

Family

ID=62028081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MA2018/050004 WO2019013609A1 (en) 2017-07-14 2018-02-23 Novel insertion material for rechargeable batteries: titanium (iii) and lithium phosphite liti(hpo3)2.

Country Status (2)

Country Link
MA (1) MA40700B1 (en)
WO (1) WO2019013609A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111591971A (en) * 2020-05-15 2020-08-28 宁波锋成纳米科技有限公司 Titanium lithium phosphate nanocomposite, preparation method and application in aqueous battery
CN114203452A (en) * 2021-12-10 2022-03-18 吉林化工学院 Preparation method of amorphous hydrated nickel cobalt phosphate flexible electrode material
CN115522261A (en) * 2022-09-27 2022-12-27 合肥学院 Second-order nonlinear optical crystal lithium aluminum borophosphate and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160030765A (en) 2014-09-11 2016-03-21 울산과학기술원 Lithium secondary battery
KR20160049077A (en) 2014-10-24 2016-05-09 전자부품연구원 Electrolyte comprising silyl phosphite material and lithium secondary battery having the same
CN106299324A (en) 2016-10-17 2017-01-04 广州天赐高新材料股份有限公司 A kind of electrolyte for high-capacity lithium ion cell, preparation method and lithium ion battery
WO2017039427A1 (en) 2015-09-04 2017-03-09 Mohammed V De Rabat Universite Synthesis of a novel material: titanium (+iii) phosphite τi2(ηρo3)3, anode for lithium-ion batteries

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160030765A (en) 2014-09-11 2016-03-21 울산과학기술원 Lithium secondary battery
KR20160049077A (en) 2014-10-24 2016-05-09 전자부품연구원 Electrolyte comprising silyl phosphite material and lithium secondary battery having the same
WO2017039427A1 (en) 2015-09-04 2017-03-09 Mohammed V De Rabat Universite Synthesis of a novel material: titanium (+iii) phosphite τi2(ηρo3)3, anode for lithium-ion batteries
CN106299324A (en) 2016-10-17 2017-01-04 广州天赐高新材料股份有限公司 A kind of electrolyte for high-capacity lithium ion cell, preparation method and lithium ion battery

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
A. K. PADHI, J. ELECTROCHEM. SOC., vol. 145, 1998, pages 1518 - 1520
A. YAMADA, ADV. MATER., vol. 22, 2010, pages 3583
F. HAMCHAOUI, SOLID STATE CHEM., vol. 198, 2013, pages 295 - 302
F. HAMCHAOUI; V. ALONZO; D. VENEGAS-YAZIGI; H. REBBAH; E. LE FUR, JOURNAL OF SOLID STATE CHEMISTRY, vol. 198, 2013, pages 295 - 302
G. A. BECHT, CHEM. MATER., vol. 22, 2010, pages 1149 - 1154
G. ROUSSE; J. M. TARASCON, CHEM. MATER., vol. 26, 2014, pages 394
H. CHEN, CHEM. MATER., vol. 25, 2013, pages 2777
H. CHEN, J. AM. CHEM. SOC., vol. 134, 2012, pages 19619
H. Y. ASL, A. CHOUDHURY, INORG. CHEM., vol. 54, 2015, pages 6566 - 6572
H. Y. ASL, MATER. CHEM. A., vol. 3, 2015, pages 7488 - 9497
H. Y. ASL; A. CHOUDHURY, INORG. CHEM., vol. 54, 2015, pages 6566 - 6572
HOOMAN YAGHOOBNEJAD ASL ET AL: "Phosphite as Polyanion-Based Cathode for Li-Ion Battery: Synthesis, Structure, and Electrochemistry of LiFe(HPO 3 ) 2", INORGANIC CHEMISTRY, vol. 54, no. 13, 6 July 2015 (2015-07-06), EASTON, US, pages 6566 - 6572, XP055343872, ISSN: 0020-1669, DOI: 10.1021/acs.inorgchem.5b00900 *
HUANG, H.-L, J. CHIN. CHEM. SOC., vol. 60, 2013, pages 691 - 694
HUI-LIN HUANG ET AL: "Alkali Transition Metal Phosphites as Potential Cathode Materials Grown from Molten Boric Acid", JOURNAL OF THE CHINESE CHEMICAL SOCIETY., vol. 60, no. 7, 21 March 2013 (2013-03-21), CHINA, pages 691 - 694, XP055344190, ISSN: 0009-4536, DOI: 10.1002/jccs.201200600 *
J. ORIVÉ, J. SOLID STATE CHEM., vol. 182, 2009, pages 2191 - 2201
M. SAIFUL, J. MATER. CHEM., vol. 21, 2011, pages 9811
U. C. CHUNG, CHEM. MATER., vol. 23, 2011, pages 4317 - 4330
VANCHIAPPAN ARAVINDAN ET AL: "Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors", CHEMICAL REVIEWS, vol. 114, no. 23, 10 July 2014 (2014-07-10), US, pages 11619 - 11635, XP055484305, ISSN: 0009-2665, DOI: 10.1021/cr5000915 *
X. J. WANG, CRYSTENGCOMM., vol. 15, 2013, pages 2519 - 2526
ZHEN ZHU, ASIAN SOC. SCI., vol. 6, 2010, pages 201 - 208

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111591971A (en) * 2020-05-15 2020-08-28 宁波锋成纳米科技有限公司 Titanium lithium phosphate nanocomposite, preparation method and application in aqueous battery
CN114203452A (en) * 2021-12-10 2022-03-18 吉林化工学院 Preparation method of amorphous hydrated nickel cobalt phosphate flexible electrode material
CN114203452B (en) * 2021-12-10 2023-11-21 吉林化工学院 Preparation method of amorphous hydrated nickel cobalt phosphate flexible electrode material
CN115522261A (en) * 2022-09-27 2022-12-27 合肥学院 Second-order nonlinear optical crystal lithium aluminum borophosphate and preparation method and application thereof
CN115522261B (en) * 2022-09-27 2024-03-15 合肥学院 Second-order nonlinear optical crystal aluminum lithium borophosphate and preparation method and application thereof

Also Published As

Publication number Publication date
MA40700B1 (en) 2019-05-31
MA40700A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
RU2670920C1 (en) Method for obtaining a sulfide solid electrolyte
JP5431144B2 (en) Composites based on titanium diphosphate and carbon, production methods and use as active materials for lithium storage battery electrodes
JP2009532323A5 (en)
US8404305B2 (en) Synthesis of a LiMPO4 compound and use as electrode material in a lithium storage battery
US20110315919A1 (en) Production process for lithium-borate-system compound
JP2015522915A (en) Lithium ion battery
TW201304239A (en) Lithium-ion electrochemical cells that include fluorocarbon electrolyte additives
JP2008243646A (en) Fluoride positive electrode manufacturing method
WO2019013609A1 (en) Novel insertion material for rechargeable batteries: titanium (iii) and lithium phosphite liti(hpo3)2.
KR20170064562A (en) Process for making fluorinated lithium vanadium polyanion powders for batteries
JP5440460B2 (en) Method for manufacturing secondary battery electrode active material, secondary battery electrode active material, secondary battery, and secondary battery electrode active material precursor
CA2689096A1 (en) Method for producing lithium vanadium polyanion powders for batteries
JP2012006810A (en) Method for producing lithium silicate compound
KR20190098240A (en) Method for producing lithium difluorophosphate
JP4952080B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
WO2018142082A1 (en) Liquid process for preparing a vanadium phosphate-carbon composite material
Piana et al. Characterization of phospho-olivines as materials for Li-ion cell cathodes
JP5011518B2 (en) Method for producing positive electrode material for secondary battery, and secondary battery
EP2757068A1 (en) Method for synthesising a LiM1-x-y-zNyQzFexPO4 compound and use thereof as electrode material for a lithium battery
JP6186568B2 (en) One-dimensional nanostructure for electrochemical device electrode material, manufacturing method by electrospinning method
JP2013163602A (en) Iron-containing combined phosphate fluoride, its production method, and secondary battery using it as cathode active material
KR101616900B1 (en) Mehod of preparing olivine positive active material
KR20150035740A (en) Low-cost method for making lithium transition metal olivines with high energy density
KR20140082635A (en) Lithiated manganese phosphate and composite material comprising same
KR101923104B1 (en) Method for manufacturing electrode material having rhombohedral crystal structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18719321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18719321

Country of ref document: EP

Kind code of ref document: A1