JP2008243646A - Fluoride positive electrode manufacturing method - Google Patents

Fluoride positive electrode manufacturing method Download PDF

Info

Publication number
JP2008243646A
JP2008243646A JP2007083634A JP2007083634A JP2008243646A JP 2008243646 A JP2008243646 A JP 2008243646A JP 2007083634 A JP2007083634 A JP 2007083634A JP 2007083634 A JP2007083634 A JP 2007083634A JP 2008243646 A JP2008243646 A JP 2008243646A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
fluoride
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007083634A
Other languages
Japanese (ja)
Other versions
JP5091517B2 (en
Inventor
Shigeto Okada
重人 岡田
Irina D Gocheva
ディ ゴシェヴァ イリナ
Manabu Nishijima
学 西嶋
Takayuki Doi
貴之 土井
Junichi Yamaki
準一 山木
Toshiyasu Kiyabu
敏康 木藪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Mitsubishi Heavy Industries Ltd
Original Assignee
Kyushu University NUC
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Mitsubishi Heavy Industries Ltd filed Critical Kyushu University NUC
Priority to JP2007083634A priority Critical patent/JP5091517B2/en
Priority to US12/515,212 priority patent/US8454925B2/en
Priority to KR1020097010138A priority patent/KR101159085B1/en
Priority to EP07832019A priority patent/EP2093821A4/en
Priority to CN2007800428008A priority patent/CN101558518B/en
Priority to PCT/JP2007/072289 priority patent/WO2008059961A1/en
Publication of JP2008243646A publication Critical patent/JP2008243646A/en
Application granted granted Critical
Publication of JP5091517B2 publication Critical patent/JP5091517B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology capable of preparing a fluorine-based positive electrode active material in which guest cation composed of sodium and lithium is contained in a nonaqueous electrolyte secondary battery. <P>SOLUTION: By applying a mechanical milling treatment to an alkaline metal fluoride (A shows Na or Li) expressed by a formula AF and a transition metal fluoride (M shows transition metal such as Fe, Ni, Co, or Mn) expressed by a formula MF<SB>2</SB>, a fluoride AMF<SB>3</SB>for the positive electrode active material of the nonaqueous electrolyte secondary battery is manufactured. It is preferable that planetary type ball mill is used for the mechanical milling. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、充放電可能な非水電解質二次電池の技術分野に属し、特に、非水電解質二次電池の正極活物質として有用なフッ化物を作製するための新規な技術に関する。   The present invention belongs to the technical field of chargeable / dischargeable nonaqueous electrolyte secondary batteries, and particularly relates to a novel technique for producing a fluoride useful as a positive electrode active material of a nonaqueous electrolyte secondary battery.

非水電解質二次電池においては、電解質イオン(ゲストカチオン)としてアルカリ金属イオン、特にリチウムイオンを用いるリチウムイオン電池がよく知られている。その正極活物質として、従来より用いられているLiMOで表される遷移金属酸化物(Mは遷移元素を示す)に代わり、LiMPOで表されるリン酸オリビン型化合物が電気自動車電池などに用いられる次世代正極活物質として注目されている。一方、負極には、当初、金属Liなどを用いることも提案されたが、発火事故などが相次ぎ、現在は、主として、グラファイトなどの炭素質材料が用いられている。 As non-aqueous electrolyte secondary batteries, lithium ion batteries using alkali metal ions, particularly lithium ions, as electrolyte ions (guest cations) are well known. As the positive electrode active material, an olivine phosphate compound represented by LiMPO 4 is used in an electric vehicle battery or the like instead of a conventionally used transition metal oxide represented by LiMO 2 (M represents a transition element). It is attracting attention as the next-generation positive electrode active material used. On the other hand, for the negative electrode, it was originally proposed to use metal Li or the like, but ignition accidents and the like were successively carried out, and currently, carbonaceous materials such as graphite are mainly used.

しかし、このリン酸オリビン系正極は、リン酸ポリアニオンの大きな分子量のために電池の理論容量(理論エネルギー密度、可逆容量)に限界があり、例えば、LiFePOの理論容量は170mAh/gで頭打ち状態であった。正極材料としては、電気陰性度のより高いアニオンを含むものを使用する方が、理論上、より高いエネルギー密度を得ることができる。例えば、アニオンとしてフッ素イオンを含むFeFを正極活物質として用いることが提案されており、このFeFの理論容量は240mAh/gに達するとされている(非特許文献1)。この系は、フッ化物はイオン性化合物なので、電解液に含まれる極性溶媒に溶解し易く正極として機能しなくなるという問題を有していた。このため、FeFのようなフッ化物は炭素コートしてはじめて極性溶媒電解液に対し、安定して使用に供することができる(非特許文献2)。但し、予めNaやLiなどのゲストカチオンが内包されていないため、炭素質材料を負極とするイオン電池を構成できないという欠点があった。 However, this olivine phosphate positive electrode has a limited battery theoretical capacity (theoretical energy density, reversible capacity) due to the large molecular weight of the phosphate polyanion. For example, the theoretical capacity of LiFePO 4 reaches a peak at 170 mAh / g. Met. As the positive electrode material, it is theoretically possible to obtain a higher energy density by using a material containing an anion having a higher electronegativity. For example, it has been proposed to use FeF 3 containing a fluorine ion as an anion as a positive electrode active material, and the theoretical capacity of this FeF 3 is supposed to reach 240 mAh / g (Non-patent Document 1). This system has a problem that since fluoride is an ionic compound, it easily dissolves in a polar solvent contained in the electrolyte and does not function as a positive electrode. For this reason, a fluoride such as FeF 3 can be stably used for a polar solvent electrolyte only after carbon coating (Non-patent Document 2). However, since guest cations such as Na and Li are not encapsulated in advance, there is a drawback that an ion battery using a carbonaceous material as a negative electrode cannot be configured.

FeFのようなフッ化物を正極に用い炭素質材料を負極とする安全でエネルギー密度(容量)の高い二次電池を得るには、正極にNaやLiなどが含まれている系を用いることが必要であるが、そのための化合物を簡便に調製できる手法は見出されていない。
H. Arai, S. Okada, & J. Yamaki, J. Power Sources, 68, p.716 (1997)。 F. Badwayet al., J. Electrochem. Soc. 150, A1318 (2003)。
To obtain a safe and high energy density (capacity) secondary battery using a fluoride such as FeF 3 as a positive electrode and a carbonaceous material as a negative electrode, use a system in which Na, Li, or the like is contained in the positive electrode. However, no method for easily preparing a compound has been found.
H. Arai, S. Okada, & J. Yamaki, J. Power Sources, 68, p.716 (1997). F. Badwayet al., J. Electrochem. Soc. 150, A1318 (2003).

本発明の目的は、非水電解質二次電池において、NaやLiなどのゲストカチオンが内包されているフッ素系正極活物質を調製できる新しい技術を提供することにある。   The objective of this invention is providing the new technique which can prepare the fluorine-type positive electrode active material in which guest cations, such as Na and Li, are included in the nonaqueous electrolyte secondary battery.

本発明者は、特定構造のアルカリ金属のフッ化物と遷移金属のフッ化物とをメカノケミカル反応させることにより、NaまたはLi含有ペロブスカイト型フッ素系正極活物質の合成に成功し本発明を導き出した。   The present inventor succeeded in synthesizing a Na or Li-containing perovskite-type fluorine-based positive electrode active material by causing a mechanochemical reaction between a fluoride of an alkali metal having a specific structure and a fluoride of a transition metal, and derived the present invention.

すなわち、本発明は、式AFで表されるアルカリ金属フッ化物(AはNaまたはLiを示す)と式MFで表される遷移金属フッ化物(Mは遷移元素を示す)とをメカニカルミリング処理する工程を含むことを特徴とする、非水電解質二次電池の正極活物質用フッ化物AMF(AはNaまたはLiを示し、Mは遷移元素を示す)の製造方法を提供するものである。 That is, the present invention mechanically mills an alkali metal fluoride represented by formula AF (A represents Na or Li) and a transition metal fluoride represented by formula MF 2 (M represents a transition element). A method for producing a fluoride AMF 3 for a positive electrode active material of a non-aqueous electrolyte secondary battery (A represents Na or Li, and M represents a transition element) is provided. .

さらに、本発明に従えば、上記の方法で製造されたフッ化物AMFから成る非水電解質二次電池正極の正極活物質、該正極活物質を含む非水電解質二次電池正極、および該正極と炭素質材料を含む負極とを有する非水電解質二次電池が提供される。 Furthermore, according to the present invention, a positive electrode active material of a non-aqueous electrolyte secondary battery positive electrode comprising the fluoride AMF 3 produced by the above method, a non-aqueous electrolyte secondary battery positive electrode including the positive electrode active material, and the positive electrode There is provided a non-aqueous electrolyte secondary battery having a negative electrode including a carbonaceous material.

本発明に従えば、式AFで表されるアルカリ金属(AはNaまたはLi)、すなわちNaFまたはLiFと遷移金属フッ化物とをメカニカルミリング処理することによりNaまたはLi含有ペロブスカイト型フッ素系正極活物質を製造することができる。ここで、アルカリ金属フッ化物(NaFまたはLiF)とともに原料となる遷移金属フッ化物は、遷移金属をMとしてMFで表される化合物が存在するものであれば適用可能である。この条件を満たし非水電解質二次電池の正極活物質として用いられるのに好適なフッ化物は、遷移元素MがFe、Ni、CoまたはMnから選ばれるフッ化物、すなわち、それぞれFeF、NiF、CoFまたはMnFである。 According to the present invention, an alkali metal (A is Na or Li) represented by the formula AF, that is, Na or Li-containing perovskite-type fluorine-based positive electrode active material by mechanically milling NaF or LiF and a transition metal fluoride. Can be manufactured. Here, the transition metal fluoride used as a raw material together with the alkali metal fluoride (NaF or LiF) is applicable as long as a compound represented by MF 2 is present with M as the transition metal. Fluorides suitable for satisfying this condition and used as the positive electrode active material of the non-aqueous electrolyte secondary battery are fluorides in which the transition element M is selected from Fe, Ni, Co or Mn, that is, FeF 2 and NiF 2 , respectively. CoF 2 or MnF 2 .

本発明において適用されるメカニカルミリング処理とは、よく知られているように、室温下で、原料に機械的な力を加えることにより、原料の物理的微細化とともに、原料間のメカニカルな拡散を介して化学反応を進行させる方法である。本発明に従えば、以下の反応により、非水電解質二次電池の正極活物質用フッ化物AMFが生成されるものと考えられる。 As is well known, the mechanical milling process applied in the present invention applies mechanical force to the raw material at room temperature to reduce the physical diffusion of the raw material and mechanical diffusion between the raw materials. This is a method of causing a chemical reaction to proceed. According to the present invention, the following reaction is considered to produce fluoride AMF 3 for the positive electrode active material of the nonaqueous electrolyte secondary battery.

〔化1〕
AF+MF → AMF
メカニカルミリング処理に適用される具体的手段は、特に限定されるものではなく、固形物質の粉砕・混合の目的で従来より用いられている各種の手段が適用可能であるが、好ましいのは、ボールミル、特に遊星型ボールミル(planetary ball milling)を用いることである。よく知られているように、遊星型ボールミルは、公転するミル本体と自転するミルポットとから構成され、自転するミルポットの中に、粉砕媒体(一般に小径ボール)と被処理物を入れ、自転・公転時に発生する遠心力でボールを運転させて被処理物を粉砕・混合する。このように、遊星型ボールミルは、自転・公転運動による粉砕により原料を充分に粉砕・混合することができる点から特に好ましい。
[Chemical formula 1]
AF + MF 2 → AMF 3
The specific means applied to the mechanical milling process is not particularly limited, and various means conventionally used for the purpose of pulverizing and mixing solid substances can be applied, but a ball mill is preferable. In particular, the use of planetary ball milling. As is well known, a planetary ball mill is composed of a revolving mill main body and a rotating mill pot, and a grinding medium (generally a small-diameter ball) and an object to be processed are placed in the rotating mill pot to rotate and revolve. The ball is driven by the centrifugal force that is sometimes generated to pulverize and mix the workpiece. Thus, the planetary ball mill is particularly preferable because the raw materials can be sufficiently pulverized and mixed by pulverization by rotation / revolution.

本発明に従うメカニカルミリング処理は、一般に、アルゴンガスのような不活性ガス雰囲気下に乾式で行う。メカニカルミリング処理の条件、例えば、処理時間、粉砕・混合の速度などは、XRD(X線回折)などにより生成物を分析・確認して、可及的に不純物(残存原料を含む)が少なく且つ目的の正極活物質用フッ化物の結晶が多く生成し得るように定めればよい。ここで、過当なメカニカルミリング処理、例えば、過当に長い処理時間は、正極活物質として好適なフッ化物AMFの結晶の生成に却って好ましくないことに留意すべきである。1例として、遊星型ボールミルを用いる場合、処理時間20〜30時間程度、ミルポットの自転速度150〜250rpm程度の条件が採用される。 The mechanical milling process according to the present invention is generally performed dry in an inert gas atmosphere such as argon gas. The conditions of mechanical milling treatment, such as processing time, pulverization / mixing speed, etc., are analyzed and confirmed by XRD (X-ray diffraction) etc. to minimize impurities (including residual raw materials) and What is necessary is just to determine so that many crystals of the target positive electrode active material fluoride can be produced | generated. Here, it should be noted that an excessive mechanical milling treatment, for example, an excessively long treatment time, is not preferable for the production of a fluoride AMF 3 crystal suitable as a positive electrode active material. As an example, when a planetary ball mill is used, conditions of a processing time of about 20 to 30 hours and a mill pot rotation speed of about 150 to 250 rpm are employed.

電極および電池
本発明に従えば、以上のようにして得られたペロブスカイト型フッ素化合物AMFから成る二次電池(非水電解質二次電池)の正極活物質、該正極活物質を含む二次電池正極、および該正極に負極を組み合わせた二次電池が提供される。
本発明に従う正極の作製は、上記の正極活物質を用いるほかは公知の電極の作製方法に従えばよい。例えば、上記活物質の粉末を必要に応じて公知の結着材(ポリテトラフルオロエチレン、ポリビニリデンフルオライド、ポリビニルクロライド、エチレンプロピレンジエンポリマー、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース等)、さらに必要に応じて公知の導電材(アセチレンブラック、カーボン、グラファイト、天然黒鉛、人造黒鉛、ニードルコークス等)と混合した後、得られた混合粉末をステンレス鋼製等の支持体上に圧着成形したり、金属製容器に充填すればよい。あるいは、例えば、上記混合粉末を有機溶剤(N−メチルピロリドン、トルエン、シクロヘキサン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N−N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等)と混合して得られたスラリーをアルミニウム、ニッケル、ステンレス、銅等の金属基板上に塗布する等の方法によっても本発明の正極を作製することができる。
Electrode and Battery According to the present invention, the positive electrode active material of the secondary battery (nonaqueous electrolyte secondary battery) made of the perovskite type fluorine compound AMF 3 obtained as described above, and the secondary battery containing the positive electrode active material Provided are a positive electrode and a secondary battery in which the negative electrode is combined with the positive electrode.
The production of the positive electrode according to the present invention may be carried out in accordance with a known production method of an electrode except that the positive electrode active material described above is used. For example, the above active material powder may be added to a known binder (polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, styrene-butadiene rubber, acrylonitrile-butadiene rubber, fluororubber, poly Vinyl acetate, polymethylmethacrylate, polyethylene, nitrocellulose, etc.) and, if necessary, mixing with known conductive materials (acetylene black, carbon, graphite, natural graphite, artificial graphite, needle coke, etc.) and then mixing obtained The powder may be press-molded on a support made of stainless steel or filled in a metal container. Alternatively, for example, the above mixed powder is mixed with an organic solvent (N-methylpyrrolidone, toluene, cyclohexane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran. The positive electrode of the present invention can also be produced by a method such as applying a slurry obtained by mixing with a metal substrate such as aluminum, nickel, stainless steel, or copper.

以上の正極と組み合わせて用いられる負極(負極活物質)としては、ナトリウムまたはリチウム、それらのアルカリ金属の化合物または合金なども用いることができるが、本発明の意義は負極として炭素質材料を使用できることである。本発明に従い負極に用いられる炭素質材料としては、グラファイト(黒鉛系)系炭素体が好ましく、その他に、各種高分子を焼成して得られるハードカーボンなども使用されるが、これらに限定されるものではない。さらに、これらの炭素質材料は二種類以上を混合して用いてもよい。   As the negative electrode (negative electrode active material) used in combination with the above positive electrode, sodium or lithium, an alkali metal compound or alloy thereof can be used, but the significance of the present invention is that a carbonaceous material can be used as the negative electrode. It is. The carbonaceous material used for the negative electrode according to the present invention is preferably a graphite (graphite-based) carbon body. Besides, hard carbon obtained by firing various polymers is also used, but is not limited thereto. It is not a thing. Furthermore, these carbonaceous materials may be used in combination of two or more.

負極の作製は公知の方法に従えばよく、例えば、正極に関連して上述した方法と同様にして作製することができる。すなわち、例えば、負極活物質の粉末を必要に応じて、既述の公知の結着材、さらに必要に応じて、既述の公知の導電材と混合した後、この混合粉末をシート状に成形し、これをステンレス、銅等の導電体網(集電体)に圧着すればよい。また、例えば、上記混合粉末を既述の公知の有機溶剤と混合して得られたスラリーを銅等の金属基板上に塗布することにより作製することもできる。
その他の構成要素としては、公知の非水電解質二次電池に使用されるものを構成要素として使用できる。例えば、以下のものが例示できる。
The negative electrode may be manufactured by a known method. For example, the negative electrode can be manufactured in the same manner as described above in relation to the positive electrode. That is, for example, if necessary, the negative electrode active material powder is mixed with the known binder described above and, if necessary, the known conductive material described above, and then the mixed powder is formed into a sheet shape. Then, this may be pressure-bonded to a conductor network (current collector) such as stainless steel or copper. Moreover, for example, it can also be produced by applying a slurry obtained by mixing the above mixed powder with the above-mentioned known organic solvent on a metal substrate such as copper.
As another component, what is used for a well-known nonaqueous electrolyte secondary battery can be used as a component. For example, the following can be illustrated.

電解液は通常、電解質及び溶媒を含む。電解液の溶媒としては、非水系であれば特に制限されず、例えばカーボネート類、エーテル類、ケトン類、スルホラン系化合物、ラクトン類、ニトリル類、塩素化炭化水素類、エーテル類、アミン類、エステル類、アミド類、リン酸エステル化合物等を使用することができる。これらの代表的なものを列挙すると、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、エチレンカーボネート、ビニレンカーボネート、メチルホルメート、ジメチルスルホキシド、プロピレンカーボネート、アセトニトリル、γ−ブチロラクトン、ジメチルホルムアミド、ジメチルカーボネート、ジエチルカーボネート、スルホラン、エチルメチルカーボネート、1,4−ジオキサン、4−メチル−2−ペンタノン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、プロピオニトリル、ベンゾニトリル、ブチロニトリル、バレロニトリル、1,2−ジクロロエタン、リン酸トリメチル、リン酸トリエチル等が使用できる。これらは1種または2種以上で用いることができる。また、耐酸化性の高いイミダゾリウム系や四級アンモニウム系イオン液体を溶媒として使用することもできる。   The electrolytic solution usually includes an electrolyte and a solvent. The solvent of the electrolytic solution is not particularly limited as long as it is non-aqueous, for example, carbonates, ethers, ketones, sulfolane compounds, lactones, nitriles, chlorinated hydrocarbons, ethers, amines, esters. Amides, phosphate ester compounds, and the like can be used. Listed as representative of these are 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, ethylene carbonate, vinylene carbonate, methyl formate, dimethyl sulfoxide, propylene carbonate, acetonitrile, γ-butyrolactone, dimethylformamide, dimethyl carbonate, diethyl carbonate, sulfolane, ethyl methyl carbonate, 1,4-dioxane, 4-methyl-2-pentanone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl Use ether, sulfolane, methyl sulfolane, propionitrile, benzonitrile, butyronitrile, valeronitrile, 1,2-dichloroethane, trimethyl phosphate, triethyl phosphate, etc. It can be. These can be used alone or in combination of two or more. Further, an imidazolium-based or quaternary ammonium-based ionic liquid having high oxidation resistance can be used as a solvent.

電解液としては、これらの溶媒に、負極活物質中のアルカリ金属イオンが、上記正極活物質又は正極活物質及び負極活物質と電気化学反応するための移動を行うことができる電解質物質、例えば、LiClO、LiPF、LiBF、LiCFSO、LiAsF、LiB(C、LiCl、LiBr、CHSOLi、CFSOLi、LiN(SOCF、LiN(SO、LiC(SOCF、LiN(SOCF等を使用することができる。また、本発明では公知の固体電解質、例えば、ナシコン構造を有するLiTi(PO等も使用できる。 As an electrolytic solution, an electrolyte material capable of performing migration for the alkali metal ions in the negative electrode active material to electrochemically react with the positive electrode active material or the positive electrode active material and the negative electrode active material, for example, LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiAsF 6 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, LiN (SO 2 CF 3 ) 2 LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) 3 , LiN (SO 3 CF 3 ) 2, or the like can be used. In the present invention, a known solid electrolyte such as LiTi 2 (PO 4 ) 3 having a NASICON structure can also be used.

本発明電池では、セパレータ、電池ケース他、構造材料等の要素についても従来公知の各種材料が使用でき、特に制限はない。本発明の電池は、上記の電池要素を用いて公知の方法に従って組み立てればよい。この場合、電池形状についても特に制限されることはなく、例えば円筒状、角型、コイン型等種々の形状、サイズを適宜採用することができる。
以下に、本発明の特徴をさらに具体的に示すために実施例を記すが、本発明は以下の実施例によって制限されるものではない。
In the battery of the present invention, conventionally known various materials can be used for elements such as a separator, a battery case, and other structural materials, and there is no particular limitation. What is necessary is just to assemble the battery of this invention according to a well-known method using said battery element. In this case, the shape of the battery is not particularly limited, and various shapes and sizes such as a cylindrical shape, a square shape, and a coin shape can be appropriately employed.
EXAMPLES Examples will be described below to more specifically illustrate the features of the present invention, but the present invention is not limited to the following examples.

Na含有ペロブスカイト型フッ素化合物AMF の調製
フッ化ナトリウム(NaF)と遷移金属フッ化物MF(MはFe、Ni、Mn)のいずれかの等モル混合物を遊星型ボールミルを用いてメカニカルミリング処理に供した。上記原料は、いずれも純度99%で、和光純薬社製または添川理化学社製のものである。用いた遊星型ボールミルは、実験用遊星回転ポットミルLP−4/2(伊藤製作所製)であり、80mlのミルポットに直径20mm、15mm、10mmのボールをそれぞれ2個、4個、15個、さらに3mmのボールを合計で175gになるように入れ、NaFとMFの等モルを、ミルポットの自転速度200rpmで、24時間または36時間処理した。
Preparation of Na-containing perovskite-type fluorine compound AMF 3 An equimolar mixture of either sodium fluoride (NaF) or transition metal fluoride MF 2 (M is Fe, Ni, Mn) is subjected to mechanical milling using a planetary ball mill. Provided. All of the above raw materials have a purity of 99% and are manufactured by Wako Pure Chemicals or Soekawa Riken. The planetary ball mill used was an experimental planetary rotating pot mill LP-4 / 2 (manufactured by Ito Seisakusho). Two, four, fifteen, and three mm balls with diameters of 20 mm, 15 mm, and 10 mm, respectively, in an 80 ml mill pot. Were added in an amount of 175 g in total, and equimolar amounts of NaF and MF 2 were treated for 24 hours or 36 hours at a rotation speed of the mill pot of 200 rpm.

図1、図2および図3に、NaFと、FeF、MnFまたはNiFとをメカニカルミリング処理して得られた生成物のXRDパターン(CuKα)を示しており、それぞれ、NaFeF、NaMnFまたはNaNiFの生成が認められる。図1に示されるように、24時間のミリング処理と36時間のミリング処理では、前者の方が不純物(残存原料)の少ない結晶性の高い生成物が得られる。これらの生成物は、ペロブスカイト構造単位が少し歪んだ斜方晶を呈する空間群Pnmaとして同定できる(非特許文献3)。
R. Hoppe et al., Z. Annorg. Allg. Chem., 632, 593 (2006)。
1, 2 and 3 show XRD patterns (CuKα) of products obtained by mechanical milling treatment of NaF and FeF 2 , MnF 2 or NiF 2 , respectively. NaFeF 3 , NaMnF 3 or NaNiF 3 production is observed. As shown in FIG. 1, in the 24-hour milling process and the 36-hour milling process, a product with high crystallinity with less impurities (remaining raw materials) is obtained in the former. These products can be identified as a space group P nma that exhibits orthorhombic crystals with a slightly distorted perovskite structural unit (Non-patent Document 3).
R. Hoppe et al., Z. Annorg. Allg. Chem., 632, 593 (2006).

電池特性の測定
実施例1で合成したNaFeF(24時間処理のもの)を正極活物質とする電池の特性を評価するためにコインセルを作製した。
図4に作製したコインセルの構造を示す。1は正極、2は負極、3はセパレータ+電解液、4は正極ケース、5は負極蓋である。正極活物質:導電剤(アセチレンブラック):結着剤(PTFE)を70:25:5の重量比になるように秤量し、ペレットを作製し、導電性向上のためにカーボンコートを行った。これらを正極とした。負極には金属ナトリウムを用いた。電解液に1M NaClO/PCを用いた。セパレータにはポリプロピレンを用いた。
上記のようにして作製したコインセルを用いて充放電測定(ナガノ社製BTS-2004)を行った。測定条件は、25℃、0.2mA/cm2の電流密度で、1.5〜4.0Vの電圧範囲にてCCV測定を行った。測定結果を図5(上段)に示す。なお、図5の下段には、比較のために、Naを含まないFeFを正極活物質としカーボンコートした正極から成り同様に作製した電池(コインセル)について、同じ条件で測定した場合の充放電特性も併せて示している。
Measurement of Battery Characteristics To evaluate the characteristics of a battery using NaFeF 3 (treated for 24 hours) synthesized in Example 1 as a positive electrode active material, a coin cell was prepared.
FIG. 4 shows the structure of the manufactured coin cell. 1 is a positive electrode, 2 is a negative electrode, 3 is a separator + electrolyte, 4 is a positive electrode case, and 5 is a negative electrode lid. A positive electrode active material: a conductive agent (acetylene black): a binder (PTFE) was weighed to a weight ratio of 70: 25: 5, pellets were prepared, and carbon coating was performed to improve conductivity. These were used as positive electrodes. Metal sodium was used for the negative electrode. 1M NaClO 4 / PC was used as the electrolyte. Polypropylene was used for the separator.
Charge / discharge measurement (BTS-2004 manufactured by Nagano Co., Ltd.) was performed using the coin cell produced as described above. The measurement conditions were CCV measurement in a voltage range of 1.5 to 4.0 V at 25 ° C. and a current density of 0.2 mA / cm 2 . The measurement results are shown in FIG. The lower part of FIG. 5 shows, for comparison, charge and discharge when a battery (coin cell) made of a carbon-coated positive electrode using NaF-free FeF 3 as a positive electrode active material and measured in the same condition is used. The characteristics are also shown.

NaFeFを正極活物質とする電池は、少なくとも90mAh/g程度の初期放電容量を有し、また、第2サイクルの充放電プロフィルはFeFを正極活物質とする電池と良く一致しており、本発明に従いメカニカルミリングにより合成されたフッ素化合物中のNaがその電気化学的活性を失うことなく、非水電解質二次電池の正極活物質として適用できることが理解される。 The battery using NaFeF 3 as the positive electrode active material has an initial discharge capacity of at least about 90 mAh / g, and the charge / discharge profile of the second cycle is in good agreement with the battery using FeF 3 as the positive electrode active material, It is understood that Na in a fluorine compound synthesized by mechanical milling according to the present invention can be applied as a positive electrode active material of a non-aqueous electrolyte secondary battery without losing its electrochemical activity.

本発明によって得られるフッ化物正極は、炭素負極などと組み合わせることにより、安全で容量が大きく低コストの非水電解質二次電池の開発に資することができる。   By combining the fluoride positive electrode obtained by the present invention with a carbon negative electrode or the like, it can contribute to the development of a safe, large-capacity and low-cost non-aqueous electrolyte secondary battery.

本発明に従い合成されたNaFeFのXRDパターンを示す。2 shows the XRD pattern of NaFeF 3 synthesized according to the present invention. 本発明に従い合成されたNaMnFのXRDパターンを示す。2 shows the XRD pattern of NaMnF 3 synthesized according to the present invention. 本発明に従い合成されたNaNiFのXRDパターンを示す。2 shows the XRD pattern of NaNiF 3 synthesized according to the present invention. 本発明に従う電池の1例であり、電気特性の測定に用いられたコインセルの構造断面図である。It is an example of the battery according to the present invention, and is a structural cross-sectional view of a coin cell used for measurement of electrical characteristics. 本発明に従い合成されたNaFeFを正極活物質とする電池の充放電プロフィルを示す。2 shows a charge / discharge profile of a battery using NaFeF 3 synthesized according to the present invention as a positive electrode active material.

Claims (6)

式AFで表されるアルカリ金属フッ化物(AはNaまたはLiを示す)と式MFで表される遷移金属フッ化物(Mは遷移元素を示す)とをメカニカルミリング処理する工程を含むことを特徴とする、非水電解質二次電池の正極活物質用フッ化物AMF(AはNaまたはLiを示し、Mは遷移元素を示す)の製造方法。 Including a step of mechanically milling an alkali metal fluoride represented by Formula AF (A represents Na or Li) and a transition metal fluoride represented by Formula MF 2 (M represents a transition element). A method for producing a fluoride AMF 3 for a positive electrode active material of a nonaqueous electrolyte secondary battery (A represents Na or Li, and M represents a transition element). 遊星ボールミルを用いてメカニカルミリング処理を行うことを特徴とする、請求項1に記載の方法。 The method according to claim 1, wherein mechanical milling is performed using a planetary ball mill. 遷移元素Mが、Fe、Ni、CoまたはMnから選ばれることを特徴とする、請求項1または2に記載の方法。 The method according to claim 1 or 2, characterized in that the transition element M is selected from Fe, Ni, Co or Mn. 請求項1〜3のいずれかの方法で製造されたフッ化物AMF(AはNaまたはLiを示し、Mは遷移元素を示す)から成ることを特徴とする、非水電解質二次電池の正極活物質。 A positive electrode of a nonaqueous electrolyte secondary battery, characterized by comprising fluoride AMF 3 (A is Na or Li and M is a transition element) produced by the method according to any one of claims 1 to 3. Active material. 請求項4に記載の正極活物質を含むことを特徴とする、非水電解質二次電池正極。 A nonaqueous electrolyte secondary battery positive electrode comprising the positive electrode active material according to claim 4. 請求項5に記載の正極と、炭素質材料を含む負極とを有することを特徴とする、非水電解質二次電池。
A nonaqueous electrolyte secondary battery comprising the positive electrode according to claim 5 and a negative electrode containing a carbonaceous material.
JP2007083634A 2006-11-17 2007-03-28 Fluoride cathode fabrication method Expired - Fee Related JP5091517B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007083634A JP5091517B2 (en) 2007-03-28 2007-03-28 Fluoride cathode fabrication method
US12/515,212 US8454925B2 (en) 2006-11-17 2007-11-16 Cathode active material for non-aqueous electrolyte secondary battery and manufacturing method of the same
KR1020097010138A KR101159085B1 (en) 2006-11-17 2007-11-16 Cathode active material for nonaqueous electrolyte secondary battery and method of producing cathode active material for nonaqueous electrolyte secondary battery
EP07832019A EP2093821A4 (en) 2006-11-17 2007-11-16 Cathode active material for nonaqueous electrolyte secondary battery and method of producing cathode active material for nonaqueous electrolyte secondary battery
CN2007800428008A CN101558518B (en) 2006-11-17 2007-11-16 Cathode active material for nonaqueous electrolyte secondary battery and method of producing cathode active material for nonaqueous electrolyte secondary battery
PCT/JP2007/072289 WO2008059961A1 (en) 2006-11-17 2007-11-16 Cathode active material for nonaqueous electrolyte secondary battery and method of producing cathode active material for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007083634A JP5091517B2 (en) 2007-03-28 2007-03-28 Fluoride cathode fabrication method

Publications (2)

Publication Number Publication Date
JP2008243646A true JP2008243646A (en) 2008-10-09
JP5091517B2 JP5091517B2 (en) 2012-12-05

Family

ID=39914728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007083634A Expired - Fee Related JP5091517B2 (en) 2006-11-17 2007-03-28 Fluoride cathode fabrication method

Country Status (1)

Country Link
JP (1) JP5091517B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084701A1 (en) * 2009-01-23 2010-07-29 株式会社豊田自動織機 Active material for nonaqueous secondary battery, and nonaqueous secondary battery
WO2011036907A1 (en) * 2009-09-28 2011-03-31 住友電気工業株式会社 Battery and energy system
JP2012195093A (en) * 2011-03-15 2012-10-11 Mitsubishi Heavy Ind Ltd Positive electrode for secondary battery and secondary battery equipped with the same
JP2012195086A (en) * 2011-03-15 2012-10-11 Mitsubishi Heavy Ind Ltd Electrode active material, and positive electrode for secondary battery equipped with the same, as well as secondary battery
JP2012195087A (en) * 2011-03-15 2012-10-11 Mitsubishi Heavy Ind Ltd Positive electrode for secondary battery and secondary battery equipped with the same
JP2013168241A (en) * 2012-02-14 2013-08-29 Sumitomo Chemical Co Ltd Negative electrode material for sodium secondary battery, electrode for sodium secondary battery, and sodium secondary battery
KR101385001B1 (en) * 2012-03-13 2014-04-29 서울대학교산학협력단 Composite materials for cathode materials in lithium rechargeable battery, methods of manufacturing the same and lithium rechargeable batteries including the same
JP2014220203A (en) * 2013-05-10 2014-11-20 国立大学法人九州大学 Positive electrode active material for sodium ion battery and process of manufacturing the same
JP2015153697A (en) * 2014-02-18 2015-08-24 本田技研工業株式会社 positive electrode active material
JP2015195179A (en) * 2014-03-19 2015-11-05 本田技研工業株式会社 Positive electrode material for nonaqueous electrolyte secondary batteries
WO2016043444A1 (en) * 2014-09-16 2016-03-24 전자부품연구원 Electrolyte solution comprising sulfur dioxide-based ionic liquid electrolyte, and sodium-sulfur dioxide secondary battery having same
KR101622983B1 (en) * 2014-08-07 2016-05-23 전자부품연구원 Sodium-Metal Fluoride Secondary Battery and Manufacturing Method thereof
KR20170095122A (en) * 2016-02-12 2017-08-22 도요타 지도샤(주) Active material and fluoride ion battery
KR101936042B1 (en) 2017-07-04 2019-01-08 한국세라믹기술원 Manufacturing method of sodium metal fluorides, lithium secondary battery and manufacturing method of the lithium secondary battery using the sodium metal fluorides
KR20200073304A (en) * 2018-12-13 2020-06-24 한국세라믹기술원 Manufacturing method of sodium metal fluorides having high surface area, lithium secondary battery and manufacturing method of the lithium secondary battery using the sodium metal fluorides
WO2020240890A1 (en) * 2019-05-30 2020-12-03 パナソニックIpマネジメント株式会社 Active material for fluoride ion secondary batteries, and fluoride ion secondary battery using same
US11038171B2 (en) 2018-05-22 2021-06-15 Panasonic Intellectual Property Management Co., Ltd. Active material including composite fluoride for fluoride ion secondary battery, and fluoride ion secondary battery using the same
CN113394394A (en) * 2021-05-20 2021-09-14 华中科技大学 Bimetallic fluoride, preparation method thereof and application thereof in lithium-free anode
JP2022541157A (en) * 2019-07-15 2022-09-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Lithium-rich transition metal deficient spinels for fast charge/discharge lithium-ion battery materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922698A (en) * 1995-07-05 1997-01-21 Nippon Telegr & Teleph Corp <Ntt> Nonaqueous electrolyte battery
JPH0955201A (en) * 1995-08-11 1997-02-25 Nippon Telegr & Teleph Corp <Ntt> Nonaqueous electrolytic battery
JPH0955202A (en) * 1995-08-11 1997-02-25 Nippon Telegr & Teleph Corp <Ntt> Nonaqueous electrolytic battery
JPH11339800A (en) * 1998-05-28 1999-12-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922698A (en) * 1995-07-05 1997-01-21 Nippon Telegr & Teleph Corp <Ntt> Nonaqueous electrolyte battery
JPH0955201A (en) * 1995-08-11 1997-02-25 Nippon Telegr & Teleph Corp <Ntt> Nonaqueous electrolytic battery
JPH0955202A (en) * 1995-08-11 1997-02-25 Nippon Telegr & Teleph Corp <Ntt> Nonaqueous electrolytic battery
JPH11339800A (en) * 1998-05-28 1999-12-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084701A1 (en) * 2009-01-23 2010-07-29 株式会社豊田自動織機 Active material for nonaqueous secondary battery, and nonaqueous secondary battery
JP2010170865A (en) * 2009-01-23 2010-08-05 Toyota Industries Corp Active material for nonaqueous secondary battery, and nonaqueous secondary battery
US20110285353A1 (en) * 2009-01-23 2011-11-24 Kabushiki Kaisha Toyota Jidoshokki Active material for non-aqueous-system secondary battery and non-aqueous-system secondary battery
KR101354085B1 (en) * 2009-01-23 2014-01-22 가부시키가이샤 도요다 지도숏키 Active material for non-aqueous-system secondary battery, non-aqueous-system secondary battery, and charging-discharging method for non-aqueous-system secondary battery
WO2011036907A1 (en) * 2009-09-28 2011-03-31 住友電気工業株式会社 Battery and energy system
JP2012195087A (en) * 2011-03-15 2012-10-11 Mitsubishi Heavy Ind Ltd Positive electrode for secondary battery and secondary battery equipped with the same
JP2012195086A (en) * 2011-03-15 2012-10-11 Mitsubishi Heavy Ind Ltd Electrode active material, and positive electrode for secondary battery equipped with the same, as well as secondary battery
JP2012195093A (en) * 2011-03-15 2012-10-11 Mitsubishi Heavy Ind Ltd Positive electrode for secondary battery and secondary battery equipped with the same
JP2013168241A (en) * 2012-02-14 2013-08-29 Sumitomo Chemical Co Ltd Negative electrode material for sodium secondary battery, electrode for sodium secondary battery, and sodium secondary battery
KR101385001B1 (en) * 2012-03-13 2014-04-29 서울대학교산학협력단 Composite materials for cathode materials in lithium rechargeable battery, methods of manufacturing the same and lithium rechargeable batteries including the same
JP2014220203A (en) * 2013-05-10 2014-11-20 国立大学法人九州大学 Positive electrode active material for sodium ion battery and process of manufacturing the same
JP2015153697A (en) * 2014-02-18 2015-08-24 本田技研工業株式会社 positive electrode active material
JP2015195179A (en) * 2014-03-19 2015-11-05 本田技研工業株式会社 Positive electrode material for nonaqueous electrolyte secondary batteries
KR101622983B1 (en) * 2014-08-07 2016-05-23 전자부품연구원 Sodium-Metal Fluoride Secondary Battery and Manufacturing Method thereof
KR101610014B1 (en) * 2014-09-16 2016-04-11 전자부품연구원 Electrolyte solution comprising sulfur dioxide based ionic liquid electrolyte and sodium-sulfur dioxide secondary battery having the same
WO2016043444A1 (en) * 2014-09-16 2016-03-24 전자부품연구원 Electrolyte solution comprising sulfur dioxide-based ionic liquid electrolyte, and sodium-sulfur dioxide secondary battery having same
CN106415909A (en) * 2014-09-16 2017-02-15 电子部品研究院 Electrolyte solution comprising sulfur dioxide-based ionic liquid electrolyte, and sodium-sulfur dioxide secondary battery having same
KR20170095122A (en) * 2016-02-12 2017-08-22 도요타 지도샤(주) Active material and fluoride ion battery
KR101936042B1 (en) 2017-07-04 2019-01-08 한국세라믹기술원 Manufacturing method of sodium metal fluorides, lithium secondary battery and manufacturing method of the lithium secondary battery using the sodium metal fluorides
US11038171B2 (en) 2018-05-22 2021-06-15 Panasonic Intellectual Property Management Co., Ltd. Active material including composite fluoride for fluoride ion secondary battery, and fluoride ion secondary battery using the same
KR102200828B1 (en) 2018-12-13 2021-01-11 한국세라믹기술원 Manufacturing method of sodium metal fluorides having high surface area, lithium secondary battery and manufacturing method of the lithium secondary battery using the sodium metal fluorides
KR20200073304A (en) * 2018-12-13 2020-06-24 한국세라믹기술원 Manufacturing method of sodium metal fluorides having high surface area, lithium secondary battery and manufacturing method of the lithium secondary battery using the sodium metal fluorides
WO2020240890A1 (en) * 2019-05-30 2020-12-03 パナソニックIpマネジメント株式会社 Active material for fluoride ion secondary batteries, and fluoride ion secondary battery using same
JPWO2020240890A1 (en) * 2019-05-30 2021-09-13 パナソニックIpマネジメント株式会社 Fluoride ion secondary battery active material and fluoride ion secondary battery using it
US11271204B2 (en) 2019-05-30 2022-03-08 Panasonic Intellectual Property Management Co., Ltd. Active material for fluoride-ion secondary battery and fluoride-ion secondary battery using same
JP2022541157A (en) * 2019-07-15 2022-09-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Lithium-rich transition metal deficient spinels for fast charge/discharge lithium-ion battery materials
CN113394394A (en) * 2021-05-20 2021-09-14 华中科技大学 Bimetallic fluoride, preparation method thereof and application thereof in lithium-free anode
CN113394394B (en) * 2021-05-20 2022-06-21 华中科技大学 Bimetal fluoride, preparation method thereof and application thereof in lithium-free anode

Also Published As

Publication number Publication date
JP5091517B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5091517B2 (en) Fluoride cathode fabrication method
KR101159085B1 (en) Cathode active material for nonaqueous electrolyte secondary battery and method of producing cathode active material for nonaqueous electrolyte secondary battery
JP5235282B2 (en) Cathode active material and battery for non-aqueous electrolyte secondary battery
JP5268134B2 (en) Method for producing positive electrode active material and non-aqueous electrolyte battery using the same
JP4151210B2 (en) Positive electrode active material and method for producing the same, non-aqueous electrolyte battery and method for producing the same
JP5110565B2 (en) Lithium secondary battery, method for producing positive electrode active material coating particles, and method for producing lithium secondary battery
JP3921931B2 (en) Cathode active material and non-aqueous electrolyte battery
EP2203948B1 (en) Positive electrode active material, lithium secondary battery, and manufacture methods therefore
JP5671831B2 (en) Method for producing lithium nitride-transition metal composite oxide, lithium nitride-transition metal composite oxide, and lithium battery
CN101558518B (en) Cathode active material for nonaqueous electrolyte secondary battery and method of producing cathode active material for nonaqueous electrolyte secondary battery
JP5540281B2 (en) Method for producing positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US10361451B2 (en) Sulfide solid electrolyte material, lithium solid battery, and producing method for sulfide solid electrolyte material
KR101042009B1 (en) Manufacturing Method of Negative Active Material, Negative Active Material thereof And Lithium Secondary Battery Comprising The Same
WO2016063877A1 (en) Positive electrode for all-solid secondary battery, method for manufacturing same, and all-solid secondary battery
JP2004087299A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP2002117833A (en) Nonaqueous electrolyte secondary battery
JP5494792B2 (en) Electrode active material and method for producing electrode active material
JP7207261B2 (en) Method for manufacturing positive electrode active material, and method for manufacturing lithium ion battery
US10205168B2 (en) Sodium transition metal silicates
JP4848582B2 (en) Method for producing positive electrode active material
JP2013506960A (en) Anode materials for high-power lithium-ion batteries
JP2013095613A (en) CARBON-COATED LiVP2O7 PARTICLE, METHOD FOR PRODUCING THE SAME, AND LITHIUM ION SECONDARY BATTERY
JP3624205B2 (en) Electrode active material for non-aqueous electrolyte secondary battery, electrode and battery including the same
JP5598684B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode and battery
JP5553057B2 (en) Cathode active material and non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5091517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees