WO2019013301A1 - Single-crystal growth apparatus - Google Patents

Single-crystal growth apparatus Download PDF

Info

Publication number
WO2019013301A1
WO2019013301A1 PCT/JP2018/026393 JP2018026393W WO2019013301A1 WO 2019013301 A1 WO2019013301 A1 WO 2019013301A1 JP 2018026393 W JP2018026393 W JP 2018026393W WO 2019013301 A1 WO2019013301 A1 WO 2019013301A1
Authority
WO
WIPO (PCT)
Prior art keywords
irradiation intensity
intensity distribution
irradiation
single crystal
crystal growth
Prior art date
Application number
PCT/JP2018/026393
Other languages
French (fr)
Japanese (ja)
Inventor
金子 良夫
十倉 好紀
尚博 加賀
佐野 直樹
Original Assignee
国立研究開発法人理化学研究所
アウレアワークス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017179573A external-priority patent/JP7026345B2/en
Application filed by 国立研究開発法人理化学研究所, アウレアワークス株式会社 filed Critical 国立研究開発法人理化学研究所
Publication of WO2019013301A1 publication Critical patent/WO2019013301A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/16Heating of the molten zone
    • C30B13/22Heating of the molten zone by irradiation or electric discharge
    • C30B13/24Heating of the molten zone by irradiation or electric discharge using electromagnetic waves
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/28Controlling or regulating
    • C30B13/30Stabilisation or shape controlling of the molten zone, e.g. by concentrators, by electromagnetic fields; Controlling the section of the crystal

Definitions

  • the present invention relates to a single crystal growth apparatus.
  • heating laser light is substantially uniform in the axial direction of the raw material rod and in the radial direction of the raw material rod
  • a heating method has been proposed in which a plurality of heating laser beams having an irradiation intensity distribution (this irradiation intensity distribution is often referred to as a top hat irradiation intensity distribution) having an irradiation intensity of Patent Document 1).
  • Patent Document 1 Patent No. 5181396
  • a plurality of heating laser beams having an irradiation intensity distribution that is, top hat irradiation intensity distribution
  • the heating laser light is substantially uniform in the axial direction of the raw material bar and substantially uniform in the radial direction of the raw material bar
  • a steep temperature gradient is generated in the axial direction of the crystal rod grown from the melting zone, so the quality of the obtained single crystal is deteriorated.
  • the raw material rod extending in the first direction with the vertical direction as the first direction and the material rod radially provided about the raw material rod, and M raw laser beams are applied to the raw material rod
  • the irradiation intensity distribution of the M heating laser beams in a two-dimensional plane orthogonal to the optical axis of the heating laser light is provided with M laser irradiation heads for irradiation, and the first irradiation intensity predetermined in the first direction
  • a second irradiation intensity distribution having a distribution and in a second direction orthogonal to the first direction has substantially uniform irradiation intensity, and the first irradiation intensity distribution has a maximum intensity Imax or a continuous maximum intensity Imax. Assuming that the position of the lower end portion of is 50, and the position of the downward 50% irradiation intensity (0.5 ⁇ Imax) of the maximum intensity Imax is Z1, ZL-Z1 2 2 mm To provide a single crystal growth apparatus.
  • the first irradiation intensity distribution is such that the position of the upper end portion of the maximum intensity Imax or the continuous maximum intensity Imax is ZU, and the upward 50% irradiation intensity of the maximum intensity Imax (0. Assuming that the position of 5 ⁇ Imax) is Z2, 3 mm Z Z2-ZU ⁇ 0 mm To provide a single crystal growth apparatus.
  • a raw material rod extending in the vertical direction is prepared, and M heating laser beams are applied to the raw material rod using M laser irradiation heads provided radially about the raw material rod.
  • the irradiation intensity distribution of M heating laser beams in a two-dimensional plane orthogonal to the optical axis of the heating laser beam has a first irradiation intensity distribution determined in advance with the vertical direction as the first direction.
  • the second irradiation intensity distribution in the second direction orthogonal to the first direction has a substantially uniform irradiation intensity
  • the first irradiation intensity distribution has the lower end of the maximum intensity Imax or the continuous maximum intensity Imax. Assuming that the position is ZL and the position of the 50% irradiation intensity (0.5 ⁇ Imax) below the maximum intensity Imax is Z1: ZL-Z1 2 2 mm A method of growing a single crystal is provided.
  • the first irradiation intensity distribution is such that the position of the upper end portion of the maximum intensity Imax or the continuous maximum intensity Imax is ZU, and the upward 50% irradiation intensity of the maximum intensity Imax ( Assuming that the position of 0.5 ⁇ Imax) is Z2, 3 mm Z Z2-ZU ⁇ 0 mm A method of growing a single crystal is provided.
  • FIG. 1 shows an example of a perspective view of a single crystal growth apparatus 100 according to a first embodiment.
  • 1 shows an example of a top view of a single crystal growth apparatus 100.
  • FIG. An example of lens composition of laser irradiation head 50 is shown.
  • An example of irradiation intensity n cloth of the heating laser beam 3 is shown.
  • An oval-shaped irradiation intensity distribution shape in the (XZ) plane of the heating laser light 3 of Example 1 is shown.
  • rod 1 which concerns on Example 1 is shown.
  • rod 1 which concerns on Example 1 is shown.
  • the example of melting temperature observation of the melting zone 4 during crystal growth is shown.
  • An example of the division method of the laser beam 5 is shown.
  • An example of upper arrangement of the reflective mirror 80 concerning Example 2 is shown.
  • An example of upper arrangement of the reflective mirror 80 concerning Example 2 is shown.
  • the irradiation intensity distribution of the X-axis of the heating laser beam 3 which concerns on Example 2, and Z-axis direction is shown.
  • positioning of the reflective mirror 80 which concerns on Example 3 is shown.
  • the irradiation intensity distribution of the X-axis of the heating laser beam 3 which concerns on Example 3, and Z-axis direction is shown.
  • the irradiation intensity distribution of the Z-axis direction of the heating laser beam 3 which concerns on Example 4 is shown.
  • the irradiation intensity distribution of the X-axis of the heating laser beam 3 which concerns on Example 4, and Z-axis direction is shown.
  • the irradiation intensity distribution of the Z-axis direction of the heating laser beam 3 which concerns on Example 5 is shown.
  • the irradiation intensity distribution of the Z-axis direction of the heating laser beam 3 which concerns on Example 6 is shown.
  • FIG. 1 shows an example of a perspective view of a single crystal growth apparatus 100 according to a first embodiment.
  • FIG. 2 shows an example of a top view of the single crystal growth apparatus 100 at the time of growth of the raw material rod 1 to the crystal rod 2.
  • the single crystal growth apparatus 100 includes N power supplies 10, one laser light source 20, one laser light dividing device 30, M optical fibers 40, M laser irradiation heads 50, and M And the plurality of dampers 60.
  • M is an integer greater than 1 (ie, M> 1).
  • the raw material rod 1, the crystal rod 2 and the melting zone 4 are shown.
  • the single crystal growth apparatus 100 of this example has two radiation thermometers 70 of a radiation thermometer 70-1 and a radiation thermometer 70-2.
  • the radiation thermometer 70-1 measures the temperature within a radius of 0.5 mm at the upper and lower centers on the central axis of the melting zone 4.
  • the radiation thermometer 70-2 measures the temperature of the crystal rod 2 within a radius of 0.5 mm in the range of about 0 mm to 20 mm directly below the melting zone 4 on the central axis of the crystal rod 2.
  • the vertical direction is taken as the first direction.
  • rod 1 extended along a 1st direction is installed.
  • the Z-axis direction is taken as the central axis direction of the raw material rod 1.
  • the direction perpendicular to the Z axis is taken as the X axis direction.
  • a direction perpendicular to the Z axis (that is, the radial direction of the raw material rod 1) with the central axis of the raw material rod 1 as a center is referred to as an R direction.
  • the raw material rod 1 of this example has a diameter D.
  • the height of the melting zone 4 is H.
  • the downward direction refers to the gravity direction in the vertical direction
  • the upward direction refers to the direction opposite to the gravity direction in the vertical direction.
  • heating irradiation light is required to melt the raw material rod 1.
  • the single crystal growth apparatus 100 of this example uses M pieces of heating laser light 3 as the heating irradiation light of the columnar raw material rod 1.
  • the M heating laser beams 3 are radially incident on the raw material rod 1 around the central axis of the raw material rod 1.
  • the M heating laser beams 3 have an oval-shaped irradiation intensity distribution in a (XZ) two-dimensional plane orthogonal to the optical axis of the heating laser beams 3.
  • the shape of the irradiation intensity distribution of the M heating laser beams 3 has a length including at least one shape of a circular shape, an elliptical shape, a rectangular shape, and a shape combining some of these shapes in the (XZ) plane It is circular.
  • M heating laser beams 3 have a bell-shaped irradiation intensity distribution in the Z-axis direction (that is, the extending direction of the raw material rod 1) in the (XZ) plane, and X
  • the irradiation intensity distribution is substantially uniform in the axial direction.
  • One laser light source 20 is driven by N power supplies 10 to generate one laser light 5.
  • One laser light source 20 may be controlled by the output of N power supplies provided to satisfy N ⁇ M.
  • the current required is several tens of A or more.
  • the amount of supply current of a commercially available power source is small, two or more may be used. Even in two or more power supplies, the power supply can be controlled like one by cascade connection.
  • One laser light source 20 emits the generated one laser beam 5 to one laser beam splitter 30.
  • One laser light source 20 may include a plurality of semiconductor diodes.
  • One laser beam splitting device 30 splits one laser beam 5 into M beams.
  • the laser beam splitting device 30 causes the split laser beam 5 to enter M optical fibers 40.
  • the laser beam splitting device 30 of this example splits one laser beam 5 into M beams.
  • the M optical fibers 40 have five optical fibers 40-1 to 40-5.
  • the M optical fibers 40 emit the M laser beams 5 as the M heating laser beams 3.
  • the cross-sectional shape of the M optical fibers 40 has an oval cross-sectional shape made of at least one of a circular cross-sectional shape, an elliptical cross-sectional shape, a rectangular shape, and a shape combining these shapes.
  • the M laser irradiation heads 50 condense the M heating laser beams 3 incident from the M optical fibers 40 on the raw material rod 1.
  • the M laser irradiation heads 50 are arranged radially about the Z-axis direction in which the raw material rod 1 extends. Further, the M laser irradiation heads 50 are disposed so as to irradiate the raw material rods 1 with the M heating laser beams 3 at equal angles.
  • the laser irradiation head 50 of the present example irradiates the heating laser light 3 from an odd number of five directions at an angle of an interval of about 72 degrees centering on the raw material rod 1.
  • the number of the M laser irradiation heads 50 is preferably an odd number.
  • the irradiation intensity distribution on the outer periphery of the raw material rod 1 has a uniformity of the irradiation intensity of 95%.
  • the irradiation intensity distribution on the outer periphery of the raw material rod 1 when M is 7 has a uniformity of the irradiation intensity of 97%.
  • the uniformity of the irradiation intensity of the irradiation intensity distribution on the outer periphery of the raw material rod 1 in the case of 6 where M is an even number is 85%.
  • the laser irradiation head 50 has an even number M, the uniformity of the irradiation intensity of the irradiation intensity distribution is reduced. Therefore, it is preferable that the number of the M laser irradiation heads 50 is an odd number.
  • the M laser irradiation heads 50 shape the M heating laser beams 3 into a predetermined irradiation shape.
  • the damper 60 shown in FIG. 2 has a water cooling mechanism, and absorbs the heating laser beam 3 which has passed around the raw material rod 1 of the M heating laser beams 3.
  • the M dampers 60 are provided to face the M laser irradiation heads 50 with the raw material rod 1 interposed therebetween. Thereby, damage due to heating of the inside of the single crystal growth apparatus 100 by the M laser irradiation heads 50 can be prevented.
  • the radiation thermometer 70-1 measures the temperature of the melting zone 4 by measuring the intensity of the light emitted from the melting zone 4 formed by melting the raw material rod 1.
  • the radiation thermometer 70-1 can measure the local temperature within the 0.5 mm radius of the melting zone 4 during crystal growth.
  • An in-situ observation method that can measure local temperature within 0.5 mm radius of melting zone 4 during crystal growth determines the crystal structure composition of the crystal material, realizes crystal growth of the composition, and optimum conditions for single crystal preparation It is extremely important in determining the For example, the composition obtained differs depending on the melting zone temperature. This is because the melting temperature gives inherent physical property information of the material which does not depend on the growth conditions of the crystal device.
  • the single crystal growth apparatus 100 controls the input power of the N power supplies 10 according to the radiation light intensity measured by the radiation thermometer 70. Thereby, the single crystal growth apparatus 100 adjusts the radiation light intensity of the heating laser light 3.
  • the radiation thermometer 70-2 measures temperatures in the range of about 0 to 20 mm in the vicinity of the upper end of the crystal rod 2 and immediately below the melting zone. This measurement makes it possible to monitor the cooling state near the upper end of the crystal rod 2.
  • the measurement of the temperature of the crystal rod 2 is important because the thermal conductivity coefficient is largely different depending on the material. Insulating materials, semiconductor materials and metals have thermal conductivity coefficients that differ by several orders of magnitude. Also, the heat conduction coefficient near the melting temperature is often unknown. For this reason, it is very important to measure the temperature of the crystal rod 2 in the crystal growth state in which the actual shape of the crystal rod 2 and the crystal rod 2 are held. Not only that, valuable physical information on the material can be obtained.
  • the temperature at a portion 10 mm below the upper end of the crystal rod 2 is measured. Thereby, the cooling rate of the crystal rod 2 can be monitored.
  • the temperature of melting zone 4 is observed at 70-1. Let that temperature be TM. It is assumed that the temperature of the crystal rod 2 of 10 mm downward from the upper end part boundary of the melting zone 4 and the crystal rod 2 is TS.
  • the growth rate is S mm / hour
  • (TM-TS) / (10 / S) is the average cooling temperature per hour from the melting temperature of the single crystal obtained.
  • S 4 mm / hour
  • the average cooling rate in one hour from the melting temperature is 160 ° C. Knowing the average cooling time near the high melting temperature is very important because it has a great influence on residual thermal strain during crystal formation.
  • the cooling time of the grown single crystal is preferably short.
  • the cooling time near the melting temperature is important. It is necessary for the elements constituting the crystal to settle at the crystal lattice point, which is a potential stable point, from the intense movement in the molten state. When moving from this intense movement to the potential stability point, it is necessary to gradually cool so that the metastable potential position is not determined before stabilizing at the crystal lattice point. In the case of rapid cooling, there is an opportunity for the element to stabilize at the metastable potential position.
  • Elements remaining in the metastable position may cause thermal residual strain to the crystal lattice due to the occurrence of cracks, affect the conduction electrons, and may cause serious adverse effects such as deterioration of reproducibility such as the superconducting transition temperature.
  • the cooling time 160 ° C. of the crystal rod 2 from the melting temperature is too large depends on the material properties.
  • the case where a crack is generated in the obtained crystal rod 2 is an example in which the cooling rate is obviously too fast. This is also an example in which the cooling rate is too fast even in the case where a change in the electron conduction properties of the crystal is exhibited, such as a decrease in the superconducting transition temperature.
  • the conventional laser FZ single crystal device having an irradiation intensity distribution (top hat irradiation intensity distribution) having a sharp irradiation intensity distribution in the Z-axis direction is extremely serious in terms of the quality of the obtained single crystal. May have.
  • the raw material rod 1 is a sintering rod of the raw material.
  • the melting zone 4 can be formed between the raw material rod 1 and the crystal rod 2 by heating and melting the lower end portion of the raw material rod 1 and the upper end portion of the crystal rod 2 with M heating laser beams 3.
  • the melting temperature of the raw material is 200 ° C. to 3000 ° C.
  • the crystal surface of the upper end of the crystal rod 2 is epitaxially grown to obtain a single crystal. This epitaxial growth can be realized by depositing layers by gradually lowering the crystal rod 2.
  • the descending speed of the crystal rod 2 is the crystal growth rate.
  • the quartz tube 6 is a circular tube made of quartz transparent to the wavelength of the M heating laser beams 3.
  • the raw material rod 1 is disposed on the central axis of the quartz tube 6.
  • the quartz tube 6 is filled with a gas optimum for crystal growth of the crystal rod 2.
  • the M laser irradiation heads 50 form M heating laser beams 3 having a bell-shaped irradiation intensity distribution in the Z-axis direction and a substantially uniform irradiation intensity distribution in the X-axis direction.
  • the bell-shaped irradiation intensity distribution refers to an irradiation intensity distribution having an intensity distribution in which the irradiation intensity decreases gradually in the upward and downward directions with the vicinity of the center of the irradiation intensity distribution in the Z-axis direction becoming maximum.
  • the irradiation intensity that is the maximum intensity of the irradiation intensity distribution in the Z-axis direction is Imax.
  • the M laser irradiation heads 50 make the reduction of the irradiation intensity distribution of the crystal part epitaxially grown at the interface between the melting zone 4 and the crystal rod 2 smooth and Suppress rapid cooling of parts.
  • the shape whose irradiation intensity decreases in the downward direction of the Z axis has a polygonal irradiation intensity distribution even if it has a curved irradiation intensity distribution or a linear irradiation intensity distribution.
  • the M heating laser beams 3 have a bell-shaped irradiation intensity distribution in the Z-axis direction.
  • the irradiation intensity distribution in the Z-axis direction has a bell shape
  • the irradiation intensity distribution is substantially uniform in the X-axis direction.
  • the conventional method using a halogen lamp differs greatly from this example in that the Z-axis direction and the X-axis direction also have a bell shape. Having a substantially uniform irradiation intensity distribution in the X-axis direction ensures that the uniformity of the irradiation intensity in the outer peripheral direction of the raw material rod 1 is as high as 95% in the case of the five laser irradiation heads 50. It is possible to suppress rapid cooling of the crystal rod 2 grown thereon.
  • the irradiation intensity distribution of the M heating laser beams 3 may be asymmetric in the Z-axis direction.
  • the lower end portion where the raw material rod 1 is melted may have a sharp irradiation intensity distribution in the M heating laser beams 3.
  • the decrease distribution of the irradiation intensity in the direction of the Z-axis of the bell shape may have an asymmetric distribution of irradiation intensity which is steeper than the decrease distribution of the irradiation intensity in the direction of the Z-axis.
  • the sharply decreasing irradiation intensity distribution suppresses the effect of the molten material of the melting zone 4 being sucked into the raw material rod 1.
  • the raw material rod 1 is a fired rod, and the material density is smaller than that of the crystal rod 2. For this reason, the liquefied material permeates into the gap of the raw material rod 1.
  • the suction of the melt into the rod 1 causes a decrease in the diameter W of the melting zone 4 in the R direction, and at the same time increases the diameter D of the lower end of the rod 1.
  • the decrease in the diameter W of the melting zone 4 and the increase in the diameter D of the raw material rod 1 due to the suction of the melt cause the melting zone 4 to become unstable.
  • the temperature gradient on the side of the material rod 1 needs to be steep.
  • Such asymmetrical irradiation intensity distribution in the Z-axis direction suppresses absorption to the raw material rod 1, and moreover, the thermal strain to the grown crystal rod 2 is alleviated by the gentle temperature gradient on the crystal rod 2 side.
  • a conventional halogen lamp can not realize such an illumination shape. It can be realized only if the heating light is a highly directional laser light.
  • the irradiation intensity distribution of the irradiation shape of the halogen lamp has an irradiation intensity distribution in a very wide range of 50 mm or more in the vertical direction, and is a light source which is essentially different from the laser light.
  • FIG. 3A shows an example of the lens configuration of the laser irradiation head 50.
  • FIG. 3B shows an example of the irradiation intensity distribution of the heating laser light 3.
  • the laser irradiation head 50 has a plurality of lenses.
  • the laser irradiation head 50 adjusts the shape and the irradiation intensity of the irradiation intensity distribution of the heating laser light 3 by adjusting the intervals and the focal lengths of the plurality of lenses.
  • the laser irradiation head 50 converts the laser light 5 from the M optical fibers 40 into parallel light with a convex lens.
  • the M parallel heating laser beams 3 pass through the transparent flat plate.
  • This portion is a component of the irradiation head A.
  • the component B is configured to transmit a transparent flat plate and thereafter have a bell shape in the Z-axis direction and a substantially uniform irradiation intensity distribution in the X-axis direction with three lenses.
  • An oval E in the drawing indicates a two-dimensional irradiation intensity distribution on the (XZ) plane formed on the laser irradiation head 50.
  • the laser irradiation head 50 is configured to move the distance L between the part A and the part B.
  • the laser irradiation head 50 fixes the component A on the optical bench and adjusts the movable distance L to adjust the irradiation distance with the raw material rod 1.
  • the lens replacement of the B component is designed in advance so that it can be easily replaced from the side.
  • FIG. 3B shows an example of the oval-shaped irradiation intensity distribution of the M heating laser beams 3 collected on the raw material rod 1.
  • the irradiation intensity distribution in the Z-axis direction of the M heating laser beams 3 is a bell-shaped irradiation intensity distribution.
  • Imax is the maximum value of the irradiation intensity in the Z-axis direction.
  • the laser irradiation head 50 adjusts the plurality of lenses so that the irradiation intensity distribution decreases in the vertical direction of the Z axis from the position of Imax at which the irradiation intensity in the Z axis direction is maximum.
  • Z1 is the position of 50% irradiation intensity (0.5 ⁇ Imax) in the downward direction (ie, in the negative direction of the Z axis).
  • Z2 is a position of 50% irradiation intensity (0.5 ⁇ Imax) in the upward direction (that is, the positive direction of the Z axis).
  • Z1 ′ is a position of 10% irradiation intensity (0.1 ⁇ Imax) in the downward direction (ie, in the negative direction of the Z axis).
  • Z2 ' is a position of 10% irradiation intensity (0.1 ⁇ Imax) in the upward direction (that is, the positive direction of the Z axis).
  • Z1 which is the position of the 50% irradiation intensity (0.5 ⁇ Imax) is [Equation 1] ZL-Z1 2 2 mm
  • Z1 has an irradiation intensity distribution that satisfies That is, the reduction of the irradiation intensity is suppressed so that the irradiation intensity is 50% or more at a position of 2 mm below the maximum intensity Imax. Thereby, the quenching of the obtained crystal rod 2 is relaxed. In the top hat irradiation intensity distribution, the irradiation intensity becomes zero at a position 2 mm below the maximum intensity Imax, and the obtained crystal rod 2 is rapidly cooled.
  • the cooling rate from the melting temperature of the crystal rod 2 to a temperature near room temperature can be controlled.
  • the irradiation intensity distribution in the direction of the Z-axis formed by the M heating laser beams 3 has an upward and downward width at which the irradiation intensity becomes 10% of the maximum value in the bell-shaped irradiation intensity distribution in the first direction.
  • Z 0 and the height in the first direction of the melting zone 4 where the material rod 1 is melted is H
  • [Equation 2] (Z 0 -H) / 2 ⁇ S Adjust multiple lenses to meet Moreover, it is preferable that the laser irradiation head 50 adjust the space
  • S is crystal growth rate (mm / hour).
  • Z 0 and (2S + H) mm so that the cooling time from the melting temperature of the grown crystal rod 2 was designed to be substantially 1 hour.
  • the crystal growth rate is 4 mm per hour.
  • the height H of the melting zone 4 is 5 mm.
  • the M laser irradiation heads 50 may adjust the bell-shaped irradiation intensity distribution according to the moving speed of the crystal rod 2 (that is, the crystal growth speed). For example, the M laser irradiation heads 50 may make the slope of the bell-shaped irradiation intensity distribution gentler as the moving speed of the crystal rod 2 increases. In addition, the M laser irradiation heads 50 may make the slope of the bell-shaped irradiation intensity distribution steep according to the decrease in the moving speed of the crystal rod 2. The M laser irradiation heads 50 adjust the lens replacement or the interval of L and adjust the irradiation intensity distribution of the M heating laser beams 3.
  • FIG. 4 shows the case of Example 1 of the irradiation temperature shape of the oval shape of the heating laser beam 3.
  • the irradiation intensity distribution of this example is a simulation result of the lens optical system calculated based on the irradiation intensity distribution from the circular optical fiber 40. By appropriately selecting the focal length and the like of the lens system, highly accurate results can be obtained. From the figure, it is confirmed that the irradiation temperature shape of the heating laser light 3 has an oval shape.
  • FIG. 5 shows an example of the irradiation intensity distribution in the Z-axis direction of the raw material rod 1.
  • the M heating laser beams 3 of this example have a bell-shaped irradiation intensity distribution in the Z-axis direction.
  • Such an irradiation intensity distribution is also called a Gaussian distribution shape.
  • the important point is the downward inclination of the Z axis.
  • the irradiation intensity is zero at about 2 mm from the lower end of the continuous Imax.
  • the 50% irradiation intensity is not even about 1 mm, and has a very steep temperature gradient downward from Imax.
  • the reason why the irradiation intensity at position Z1 of 50% irradiation intensity is important is that the thermal strain phenomenon to the crystal obtained a temperature gradient in the region of half (50%) of the melting temperature from the melting temperature of the material is greatly affected. It is because it exerts. Therefore, the irradiation intensity distribution of 100% to 50% of the irradiation intensity which makes this temperature range is crucial in relieving the residual thermal strain given to the crystal rod.
  • the irradiation intensity distribution of the M heating laser beams 3 must have a gradual decrease in the downward intensity.
  • the advantage of the bell-shaped radiation intensity distribution is that the intensity gradient near Imax is small. This feature ensures that the temperature gradient at this position can be reduced because the slope of the irradiation intensity distribution near the boundary between the melting zone 4 and the crystal rod 2 is small.
  • the position Z1 in the lower direction of the irradiation intensity of 0.5 ⁇ Imax is ⁇ 6 mm. This can suppress rapid cooling of the crystal rod to around room temperature.
  • the width Z 0 of the M heating laser beams 3 at which the irradiation intensity distribution of the M heating laser beams 3 is 10% is 21 mm.
  • the first radiation intensity distribution may have a linear or polygonal radiation intensity distribution. Further, the first irradiation intensity distribution may have an irradiation intensity distribution which is a combination of a part of a bell-shaped irradiation intensity distribution and a part of a linear or polygonal irradiation intensity distribution.
  • the heating laser beam 3 can moderate the rapid cooling to the crystal stick 2 by giving a desired inclination to the irradiation intensity distribution in the Z-axis direction, and can suppress the crack generation of the crystal due to the thermal stress. In addition, it reduces or eliminates the serious influence of residual thermal strain on the physical properties of the crystalline material.
  • the inclination of the irradiation intensity distribution in the Z-axis direction is an essential requirement.
  • the crystal rod 1 is included in the region having the diameter D of the raw material rod 1 and the substantially uniform irradiation intensity distribution in the X-axis direction.
  • the M heating laser beams 3 have a substantially uniform irradiation intensity distribution in the X-axis direction.
  • L is 8 mm long.
  • W has a uniform length suitable for the diameter of the raw material rod 1 of about 5 to 6 mm. Furthermore, it has a gentle irradiation intensity distribution of ⁇ 2 mm on the left and right. This inclination increases the margin when the raw material rod 1 is decentered to the left and right.
  • FIG. 7 shows an example of an actual measurement value of the radiation thermometer 70-1.
  • the vertical axis indicates the temperature [° C.] of the melting zone 4 and the horizontal axis indicates the time.
  • the material of the raw material rod 1 is Nd 2 Mo 2 O 7 .
  • Nd 2 Mo 2 O 7 melts around 1630 ° C.
  • the temperature of the melting zone 4 decreases by about 10 ° C. from 1630 ° C. to 1620 ° C. after 2 hours.
  • the temperature change of the melting zone 4 can not be determined by the monitor image monitoring the melting zone 4.
  • the temperature drop of the melting zone 4 is due to the attenuation of the transmitted light of the M heating laser beams 3 due to the adhesion to the inner surface of the quartz tube 6 due to the evaporation of the raw material.
  • the single crystal growth apparatus 100 can control the intensity of the M heating laser beams 3 in accordance with the temperature change of the melting zone 4. That is, the single crystal growth apparatus 100 can stably produce the crystal rod 2 by in-situ observation of the temperature of the melting zone 4.
  • the temperature reproducibility of the radiation thermometer is within ⁇ 1 ° C. Therefore, once the temperature of the melting zone 4 can be confirmed, the material can be easily controlled to the melting temperature after the next time.
  • the single crystal growth apparatus 100 controls the intensity of the M heating laser beams 3 so that the monitor temperature by the radiation thermometer 70-1 becomes constant. In one example, the single crystal growth apparatus 100 detects a decrease in melting temperature due to the evaporant from the source material, increases the applied current of the power supply 10, and controls the melting zone temperature to be kept constant. The single crystal growth apparatus 100 of this example can prevent the temperature of the melting zone 4 from lowering by controlling the intensity of the M heating laser beams 3.
  • the single crystal growth apparatus 100 may automatically control the temperature of the melting zone 4.
  • the single crystal growth apparatus 100 can control the temperature of the melting zone 4 within ⁇ 1 ° C. by detecting the output of the radiation thermometer 70-1 and performing PID control of the power supply current for the heating laser.
  • the single crystal growth apparatus 100 preferably includes the radiation thermometer 70-1.
  • FIG. 8 shows an example of the method of dividing the laser light 5.
  • One laser beam splitting device 30 includes a Y-direction collimator 31, an X-direction collimator 32, a splitting mirror 33, a first focusing lens 36, and a second focusing lens 37. Thereby, one laser beam 5 irradiated by one laser light source 20 is divided into five optical fibers 40.
  • One laser light source 20 irradiates one laser beam 5 to one laser beam splitter 30.
  • One laser light source 20 is connected to the heat sink 25.
  • the Y-direction collimator 31 and the X-direction collimator 32 convert one laser light 5 from one laser light source 20 into parallel light.
  • the Y-direction collimator 31 and the X-direction collimator 32 are an example of a collimator lens.
  • the split mirror 33 splits one incident laser beam 5 into M beams.
  • One laser beam splitter 30 of this example has four split mirrors 33 in order to split one laser beam 5 into five.
  • the splitting mirror 33 splits one laser beam 5 by reflecting a part of one laser beam 5 and transmitting the other.
  • the first condensing lens 36 and the second condensing lens 37 condense the laser light 5 split by the splitting mirror 33 and make it enter the optical fiber 40.
  • the first condenser lens 36 and the second condenser lens 37 are arranged to satisfy the condition of the beam parameter product (BPP) of the optical fiber 40.
  • BPP beam parameter product
  • the lens which condenses the laser beam 5 to the optical fiber 40 was comprised by the 1st condensing lens 36 and the 2nd condensing lens 37 which are two condensing lenses of the minimum number, the condensing more than that is carried out It may be a combination of lenses.
  • the split mirror 33 may be provided with a mechanism such as an actuator in order to move without changing the angle between the incident laser light 5 and the vertical axis of the split mirror 33.
  • the split mirror 33 includes an actuator, the ratio of splitting the laser beam 5 can be freely adjusted. Therefore, one laser beam splitting device 30 can control so that the laser beam intensity of the laser beam 5 split into M beams becomes uniform.
  • FIG. 9 shows an example of the configuration of a single crystal growth apparatus 100 having M reflection mirrors.
  • M reflection mirrors 80 are respectively provided between the M laser irradiation heads 50 and the raw material rod 1.
  • the distance WD between the laser irradiation head 50 and the raw material rod 1 is 160 mm
  • the distance d between the laser irradiation head 50 and the M reflection mirrors 80 is 77 mm.
  • the M reflection mirrors 80 reflect at least a part of the M heating laser beams 3.
  • the M reflection mirrors 80 make the upper and lower irradiation light intensity distributions asymmetric in the shape of the irradiation intensity distribution of the M heating laser beams 3.
  • the shape of the irradiation intensity distribution in the Z-axis direction is adjusted to an asymmetric bell shape.
  • the M reflection mirrors 80 adjust the asymmetric shape of the irradiation intensity distribution in the Z-axis direction by adjusting the incident angles of the M heating laser beams 3 and the height of the reflection mirror 80.
  • the M reflection mirrors 80 may adjust the shape of the irradiation intensity distribution in the Z-axis direction of the M heating laser beams 3 to an irradiation intensity distribution of an asymmetric triangle or an asymmetrical polygon.
  • the M reflection mirrors 80 are an example of M adjustment units for adjusting the shape of the irradiation intensity distribution of the M heating laser beams 3. In the second embodiment, the M adjustment units consist of five reflection mirrors 80-1 to 80-5.
  • the M reflection mirrors 80 may be disposed above the M heating laser beams 3. When the M reflection mirrors 80 are disposed at the top, the M reflection mirrors 80 reflect the top of the M heating laser beams 3. For example, the M reflection mirrors 80 reflect the upper portions of the M heating laser beams 3 downward in the single crystal growth apparatus 100.
  • the material of the M reflection mirrors 80 is not particularly limited as long as the material reflects M heating laser beams 3.
  • the material of the M reflective mirrors 80 is silver.
  • the reflection mirror 80 made of silver has a high reflectance of 97% or more when the wavelength of the laser light 5 is 940 nm.
  • the material of the M reflection mirrors 80 is preferably a material which is not affected by the heat from the melting zone 4 which is at a high temperature.
  • the position of the upper end of the maximum intensity Imax or the continuous maximum intensity Imax is ZU
  • the position of the upward 50% irradiation intensity (0.5 ⁇ Imax) of the maximum intensity Imax is Z2.
  • 3 mm Z Z2-ZU ⁇ 0 mm The height of the upper position and the angle of the five reflection mirrors with respect to the five heating laser beams 3 can be adjusted so that the irradiation intensity distribution in the upward direction of the Z direction is satisfied.
  • the single crystal growth apparatus 100 may use M absorbing materials that absorb the M heating laser beams 3 instead of the M reflecting mirrors 80 as the M adjusting units. In this case, the single crystal growth apparatus 100 may adjust the asymmetry of the irradiation intensity distribution in the Z-axis direction by adjusting the amount and height of absorption of the M absorption materials.
  • FIG. 11 shows the irradiation intensity distribution in the Z-axis direction of the heating laser light 3 according to the second embodiment.
  • the irradiation intensity distribution in the Z-axis direction and the irradiation intensity distribution in the X-axis direction are respectively shown.
  • the position Z2 of the upper 50% irradiation intensity (0.5 ⁇ Imax) is 3 mm.
  • the irradiation intensity becomes a steep irradiation intensity of 50% of Imax at a position 1 mm upward from the upper end of the melting zone 4.
  • the position Z2 ′ of the upper 10% irradiation intensity (0.1 ⁇ Imax) is 4 mm.
  • the irradiation intensity becomes zero at 2 mm upward from the upper end of the melting zone 4. Since the lower end portion of the material rod 1 can be rapidly cooled by such a temperature gradient, suction of the molten liquid into the material rod 1 is suppressed.
  • the position Z1 of the 50% irradiation intensity (0.5 ⁇ Imax) on the lower side is ⁇ 6 mm.
  • the crystal growth rate is 4 mm / hour, the cooling time in this period is 1 hour.
  • the position Z1 ′ of the lower 10% irradiation intensity (0.1 ⁇ Imax) is ⁇ 6 mm.
  • the crystal growth rate is 4 mm / hour
  • the cooling time in this period is 2.5 hours. If the crystal growth rate is 2 mm / hour, this cooling time is 5 hours. Since the upper end portion of the crystal rod 2 can be gradually cooled by such a temperature gradient, residual thermal strain on the crystal rod 2 is suppressed.
  • FIG. 12 shows an example of the lower arrangement of the reflection mirror 80 according to the third embodiment.
  • FIG. 13 shows the irradiation intensity distribution in the case of the lower arrangement of the heating laser light 3 according to the third embodiment.
  • FIG. 13 shows the irradiation intensity distribution in the Z-axis direction and the irradiation intensity distribution in the X-axis direction.
  • the irradiation shape at the upper end in the Z-axis direction realizes a linear sharp decrease according to the original top hat irradiation intensity distribution.
  • the height is about 4 mm wide and has a substantially uniform intensity distribution, and then the irradiation intensity gradually decreases over the height of 6 mm.
  • the irradiation intensity distribution in the X direction has a uniform irradiation intensity of 10 mm.
  • FIG. 14 shows an example of the irradiation intensity distribution before adjustment.
  • the laser irradiation head 50 of this example includes a Z axis adjustment lens 38 and an X axis adjustment lens 39.
  • the Z axis adjustment lens 38 and the X axis adjustment lens 39 are an example of an adjustment lens for adjusting the irradiation intensity distribution of the heating laser light 3.
  • the laser irradiation head 50 of this example shifts the Z-axis adjustment lens 38 downward from the optical axis of the M heating laser beams 3 to generate coma. Thereby, the laser irradiation head 50 adjusts the asymmetric shape of the irradiation intensity distribution in the Z-axis direction. For example, the laser irradiation head 50 of this example is adjusted so that the downward inclination of the irradiation intensity distribution is gentle.
  • the Z axis adjustment lens 38 has a curvature in the Z axis direction.
  • the laser irradiation head 50 can adjust the shape of the heating laser light 3 by adjusting the position of the Z axis adjustment lens 38.
  • the laser irradiation head 50 adjusts the asymmetric shape of the irradiation intensity distribution in the Z-axis direction by controlling the position of the Z-axis adjustment lens 38.
  • the graph of FIG. 14 shows the irradiation intensity distribution of the heating laser beam 3 obtained when the optical axis of one Z-axis adjustment lens 38 is shifted downward. That is, the optical axis of the Z axis adjustment lens 38 is shifted downward in parallel to the optical axis of the heating laser light 3.
  • the irradiation shape at the upper end in the Z-axis direction achieves a sharp and linear decrease.
  • FIG. 15 shows a simulation diagram of the irradiation intensity on the (X, Z) plane.
  • the graph of FIG. 15 shows the irradiation intensity (%) of the heating laser light 3 in the Z-axis direction and the irradiation intensity (%) of the heating laser light 3 in the X-axis direction.
  • the irradiation intensity (%) of the heating laser light 3 in the X-axis direction has a substantially uniform irradiation intensity with a width of ⁇ 4 mm.
  • the X axis adjustment lens 39 has a curvature in the X axis direction.
  • the laser irradiation head 50 can be adjusted to have an irradiation intensity distribution having substantially uniform irradiation intensity in the X-axis direction.
  • the irradiation intensity distribution in the predetermined Z-axis direction can be realized by changing the arrangement of the plurality of lenses constituting the laser irradiation head 50 without using the reflection mirror 80. Further, the downward inclination of the irradiation intensity distribution can be adjusted by adjusting the positions of the plurality of lenses without replacing the plurality of lenses.
  • FIG. 16 shows an example of a method of adjusting the irradiation intensity distribution in the Z-axis direction.
  • an acute angle is formed between the Z axis of one or more adjustment lenses of the plurality of adjustment lenses and the optical axis of the M heating laser beams 3.
  • the Z axis of one or more adjustment lenses of the plurality of adjustment lenses is rotated.
  • the asymmetric shape of the first irradiation intensity distribution is adjusted.
  • the laser irradiation head 50 adjusts the asymmetric shape of the irradiation intensity distribution in the Z-axis direction.
  • the laser irradiation head 50 of this example is adjusted so that the downward inclination of the irradiation intensity distribution is gentle.
  • the X axis adjustment lens 39 has a curvature in the X axis direction.
  • the laser irradiation head 50 can be adjusted to have an irradiation intensity distribution having substantially uniform irradiation intensity in the X-axis direction.
  • the irradiation intensity distribution in the predetermined Z-axis direction can be realized by changing the arrangement of the plurality of lenses constituting the laser irradiation head 50 without using the reflection mirror 80. Further, the downward inclination of the irradiation intensity distribution can be adjusted by adjusting the positions of the plurality of lenses without replacing the plurality of lenses.
  • FIG. 17 shows an example of a method of adjusting the irradiation intensity distribution in the Z-axis direction.
  • the optical axis of the heating laser beam 3 of this embodiment is inclined downward with respect to the optical axis of the laser irradiation head 50 to generate coma aberration, thereby adjusting the asymmetric shape of the first irradiation intensity distribution.
  • the laser irradiation head 50 adjusts the asymmetric shape of the irradiation intensity distribution in the Z-axis direction.
  • the laser irradiation head 50 of this example is adjusted so that the downward inclination of the irradiation intensity distribution is gentle.
  • the X axis adjustment lens 39 has a curvature in the X axis direction.
  • the laser irradiation head 50 can be adjusted to have a substantially uniform irradiation intensity distribution in the X-axis direction.
  • the irradiation intensity distribution in the predetermined Z-axis direction can be realized by changing the arrangement of the plurality of lenses constituting the laser irradiation head 50 without using the reflection mirror 80. Further, the downward inclination of the irradiation intensity distribution can be adjusted by adjusting the positions of the plurality of lenses without replacing the plurality of lenses.
  • the single crystal growth apparatus 100 of the present example suppresses the narrowing of the diameter of the melting zone 4 and the increase of the diameter of the raw material rod 1 by suppressing the suction from the melting zone 4 to the raw material rod 1, and the melting zone 4. Stabilize In addition, the single crystal growth apparatus 100 of this example can relieve the residual thermal strain on the crystal rod 2 and provide a crack-free single crystal with good physical properties.
  • the Z-axis adjustment lens 38 shown in FIGS. 14 to 17 may be configured of a cylindrical lens or a plurality of lens groups.
  • the single crystal growth apparatus 100 of the present example suppresses the narrowing of the diameter of the melting zone 4 and the increase of the diameter of the raw material rod 1 by suppressing the suction from the melting zone 4 to the raw material rod 1, and the melting zone 4. Stabilize In addition, the single crystal growth apparatus 100 of this example can relieve the residual thermal strain on the crystal rod 2 and provide a crack-free single crystal with good physical properties.
  • the single crystal growth apparatus 100 includes, as M adjustment units, transmission preventing materials provided with slits in the vicinity of the raw material rod 1.
  • the single crystal growth apparatus 100 may adjust the irradiation intensity distribution of the M heating laser beams 3 by the hologram method using the reflecting mirror having the concavo-convex shape.
  • the single crystal growth apparatus 100 may provide an optical path difference in the M laser irradiation heads 50 and adjust the irradiation intensity distribution by an interference method using a reflecting mirror.
  • the method of setting the irradiation shapes of the M heating laser beams 3 in the Z-axis direction to the asymmetric irradiation shape distribution by designing the arrangement of the lenses of the irradiation head without using the adjustment unit .
  • the Z axis of the M heating laser beams 3 is arranged by inclining the optical axis of the heating laser beams 3 downward from the optical axis of the lens of the laser irradiation head 50 without using the adjustment unit.
  • the method of making the irradiation shape of direction into the asymmetric irradiation shape distribution was described. These methods are excellent in that the adjustment section is not used and the loss of the M heating laser beams 3 can be reduced because the M heating laser beams 3 are not reflected.
  • the single crystal growth apparatus 100 generates M heating laser beams 3 having the following features and irradiates the raw material rods 1 and the crystal rods 2 with each other.
  • the single crystal growth apparatus 100 generates M heating laser beams 3 in which the irradiation intensity distribution at the upper end of the crystal rod 2 gradually decreases in the Z-axis direction.
  • the single crystal growth apparatus 100 generates M heating laser beams 3 whose irradiation intensity distribution at the lower end portion of the raw material rod 1 sharply decreases in the Z-axis direction.
  • the single crystal growth apparatus 100 generates M heating laser beams 3 in which the irradiation intensity distribution at the upper end of the crystal rod 2 gradually decreases in the Z-axis direction, and the irradiation intensity at the lower end of the raw material rod 1 M heating laser beams 3 whose distribution sharply decreases are generated.
  • the single crystal growth apparatus 100 may include M laser irradiation heads 50 that can easily adjust the irradiation intensity distribution.
  • the single crystal growth apparatus 100 generates M heating laser beams 3 in which the irradiation intensity distribution at the upper end of the crystal rod 2 gradually decreases in the Z-axis direction, and the irradiation intensity at the lower end of the raw material rod 1 M heating laser beams 3 whose distribution sharply decreases are generated.
  • the single crystal growth apparatus 100 may be provided with M reflection mirrors 80 which can easily adjust the irradiation intensity distribution.
  • the M optical fibers 40 are fibers having a circular cross-sectional shape and can generate the M heating laser beams 3 of the irradiation intensity distribution of the above (1) to (4).
  • the heating laser beam having an irradiation intensity distribution substantially uniform in the Z axis direction and the diameter (X direction or R direction) direction which is the central axis direction of the raw material rod 1 requires a rectangular fiber of an expensive rectangular cross section. Since circular fiber is inexpensive, the merit of cost reduction is also great.
  • the M laser irradiation heads 50 can adjust the irradiation intensity distribution of the above (1) to (4) with a small number of lenses. This reduces the cost of the M laser irradiation heads 50.
  • the size of the M laser irradiation heads 50 can be reduced, and the apparatus size of the single crystal growth apparatus 100 can also be reduced.
  • the apparatus size of the single crystal growth apparatus 100 is about 1100 mm in width and about 1100 mm in depth with respect to the conventional apparatus size of 1400 mm in width and 1600 mm in depth.
  • the single crystal growth apparatus 100 can monitor the temperature of a small region of about 0.5 mm ⁇ in radius of the melting zone 4 during crystal growth. Thereby, the temperature of the melting zone 4 can be accurately controlled, and a technique for stably growing a single crystal is provided. In addition, the temperature of the region at the upper end of the growing crystal rod 2 can be monitored during crystal growth. As a result, the reproducibility of setting of the melting temperature at the time of single crystal growth can be secured, the cooling rate of the crystal rod 2 can be monitored, and an important production technique for producing high quality single crystals is provided.
  • the M heating laser beams 3 are formed by two power supplies 10 and one laser beam splitting device 30.
  • the conventional apparatus requires five power supplies and five laser light sources for five heating laser beams 3. It is necessary to supply five cooling waters to five laser light sources.
  • two power supplies 10 may be sufficient.
  • a single wattage semiconductor laser may be prepared for the main body laser. As a result, it is possible to reduce the cost of an expensive laser light source which costs several million yen per unit.
  • the semiconductor laser requires a water cooling mechanism and dry air.
  • the cooling water to the five laser light sources does not require complicated adjustments such as five water distribution and five return water flow adjustment. In particular, the temperature of the return water can not be controlled individually by the five diodes.
  • the single crystal growth apparatus 100 enables control of one laser light source 20 with high temperature accuracy, and improves the temperature dependency of the irradiation intensity of the M heating laser beams 3.
  • segmenting by one set of laser beam splitter 30 can suppress easily the dispersion
  • segmenting by one set of laser beam splitter 30 can suppress easily the dispersion
  • segmenting by one set of laser beam splitter 30 can suppress easily the dispersion
  • segmenting by one set of laser beam splitter 30 can suppress easily the dispersion
  • variation in five irradiation lights It can be adjusted to about 5%.
  • variation in five irradiation lights It can be
  • the heating laser light single crystal growth apparatus 100 has a feature that is not found in the conventional laser heating method having the irradiation intensity distribution of the top hat irradiation intensity. That is, the single crystal growth apparatus 100 can significantly reduce the thermal strain on the grown single crystal. Being able to control the cooling time to the grown crystal while considering the crystal growth time is an essential technology for single crystal growth.
  • the heating laser method having the irradiation intensity distribution of the irradiation intensity distribution of the conventional top hat irradiation shape can not avoid the rapid cooling environment of the obtained crystal rod 2. It is obvious to apply a large residual strain to the crystal rod 2, and it has very serious problems in the crystal preparation technology.
  • the heating laser light type single crystal growth apparatus 100 can significantly reduce the thermal strain on the grown single crystal and, at the same time, can suppress the suction of the melt into the raw material rod. Thereby, the thermal strain to the grown single crystal can be greatly reduced without impairing the stability of the melting zone.

Abstract

Provided is a single-crystal growth apparatus for growing a single crystal by irradiation with heating laser light. Provided is a growth apparatus provided with: a raw material rod extending along a first direction, the vertical direction being the first direction; and M laser irradiation heads for radiating M heating laser beams to the raw material rod, the laser irradiation heads being provided in a radial pattern with the raw material rod at the center thereof; the irradiation intensity distribution of the M heating laser beams in a two-dimensional plane orthogonal to the optical axes of the heating laser beams having heating laser beams having an irradiation intensity distribution asymmetrical in the first direction, a second irradiation intensity distribution in a second direction orthogonal to the first direction having a substantially uniform irradiation intensity, and the irradiation intensity gradually decreasing downward and the irradiation intensity steeply decreasing upward in the irradiation intensity distribution in the first direction.

Description

単結晶育成装置Single crystal growth system
 本発明は、単結晶育成装置に関する。 The present invention relates to a single crystal growth apparatus.
 鉛直方向に設置した原料棒を溶融して単結晶を育成するレーザ光を用いた浮遊溶融帯単結晶育成方式において、加熱レーザ光が原料棒の軸方向、且つ、原料棒の径方向に略均一の照射強度を有する照射強度分布(この照射強度分布はしばしばトップハット照射強度分布と呼称される)を有する複数の加熱レーザ光を周囲から原料棒に照射する加熱方式が提案されている(例えば、特許文献1)。
 [特許文献1] 特許第5181396号
In a floating melting zone single crystal growth method using laser light for growing a single crystal by melting a raw material rod installed in the vertical direction, heating laser light is substantially uniform in the axial direction of the raw material rod and in the radial direction of the raw material rod A heating method has been proposed in which a plurality of heating laser beams having an irradiation intensity distribution (this irradiation intensity distribution is often referred to as a top hat irradiation intensity distribution) having an irradiation intensity of Patent Document 1).
[Patent Document 1] Patent No. 5181396
解決しようとする課題Problem to be solved
 しかしながら、加熱レーザ光が原料棒の軸方向に略均一で、且つ、原料棒の径方向に略均一の照射強度を有する照射強度分布(即ち、トップハット照射強度分布)を有する複数の加熱レーザ光による従来の加熱方式では、溶融帯から成長した結晶棒の軸方向に急峻な温度勾配が生じるので、得られる単結晶の品質が悪化する。 However, a plurality of heating laser beams having an irradiation intensity distribution (that is, top hat irradiation intensity distribution) in which the heating laser light is substantially uniform in the axial direction of the raw material bar and substantially uniform in the radial direction of the raw material bar In the conventional heating method according to the above, a steep temperature gradient is generated in the axial direction of the crystal rod grown from the melting zone, so the quality of the obtained single crystal is deteriorated.
一般的開示General disclosure
 本発明の第1の態様においては、鉛直方向を第1方向として、第1方向に沿って延伸する原料棒と、原料棒を中心として放射状に設けられ、原料棒にM本の加熱レーザ光を照射するM個のレーザ照射ヘッドとを備え、加熱レーザ光の光軸に直交する2次元平面におけるM本の加熱レーザ光の照射強度分布は、第1方向において予め定められた第1の照射強度分布を有し、且つ、第1方向と直交する第2方向の第2の照射強度分布は略均一の照射強度を有し、第1の照射強度分布は、最大強度Imaxもしくは連続する最大強度Imaxの下端部の位置をZLとし、最大強度Imaxの下方向の50%照射強度(0.5×Imax)の位置をZ1とすると、
 ZL-Z1≧2mm
 である単結晶育成装置を提供する。
In the first aspect of the present invention, the raw material rod extending in the first direction with the vertical direction as the first direction and the material rod radially provided about the raw material rod, and M raw laser beams are applied to the raw material rod The irradiation intensity distribution of the M heating laser beams in a two-dimensional plane orthogonal to the optical axis of the heating laser light is provided with M laser irradiation heads for irradiation, and the first irradiation intensity predetermined in the first direction A second irradiation intensity distribution having a distribution and in a second direction orthogonal to the first direction has substantially uniform irradiation intensity, and the first irradiation intensity distribution has a maximum intensity Imax or a continuous maximum intensity Imax. Assuming that the position of the lower end portion of is 50, and the position of the downward 50% irradiation intensity (0.5 × Imax) of the maximum intensity Imax is Z1,
ZL-Z1 2 2 mm
To provide a single crystal growth apparatus.
 本発明の第2の態様においては、第1の照射強度分布は、最大強度Imaxもしくは連続する最大強度Imaxの上端部の位置をZUとし、最大強度Imaxの上方向の50%照射強度(0.5×Imax)の位置をZ2とすると、
 3mm≧Z2-ZU≧0mm
 である単結晶育成装置を提供する。
In the second aspect of the present invention, the first irradiation intensity distribution is such that the position of the upper end portion of the maximum intensity Imax or the continuous maximum intensity Imax is ZU, and the upward 50% irradiation intensity of the maximum intensity Imax (0. Assuming that the position of 5 × Imax) is Z2,
3 mm Z Z2-ZU ≧ 0 mm
To provide a single crystal growth apparatus.
 本発明の第3の態様においては、鉛直方向に延伸する原料棒を用意し、原料棒を中心として放射状に設けられたM個のレーザ照射ヘッドを用いて、原料棒にM本の加熱レーザ光を照射し、加熱レーザ光の光軸に直交する2次元平面におけるM本の加熱レーザ光の照射強度分布は、鉛直方向を第1方向として、予め定められた第1の照射強度分布を有し、且つ、第1方向と直交する第2方向の第2の照射強度分布は略均一の照射強度を有し、第1の照射強度分布は、最大強度Imaxもしくは連続する最大強度Imaxの下端部の位置をZLとし、最大強度Imaxの下方向の50%照射強度(0.5×Imax)の位置をZ1とすると、
 ZL-Z1≧2mm
 である単結晶の育成方法を提供する。
In the third aspect of the present invention, a raw material rod extending in the vertical direction is prepared, and M heating laser beams are applied to the raw material rod using M laser irradiation heads provided radially about the raw material rod. The irradiation intensity distribution of M heating laser beams in a two-dimensional plane orthogonal to the optical axis of the heating laser beam has a first irradiation intensity distribution determined in advance with the vertical direction as the first direction. And, the second irradiation intensity distribution in the second direction orthogonal to the first direction has a substantially uniform irradiation intensity, and the first irradiation intensity distribution has the lower end of the maximum intensity Imax or the continuous maximum intensity Imax. Assuming that the position is ZL and the position of the 50% irradiation intensity (0.5 × Imax) below the maximum intensity Imax is Z1:
ZL-Z1 2 2 mm
A method of growing a single crystal is provided.
 本発明の第4の態様においては、前記第1の照射強度分布は、最大強度Imaxもしくは連続する最大強度Imaxの上端部の位置をZUとし、前記最大強度Imaxの上方向の50%照射強度(0.5×Imax)の位置をZ2とすると、
 3mm≧Z2-ZU≧0mm
 である単結晶の育成方法を提供する。
In the fourth aspect of the present invention, the first irradiation intensity distribution is such that the position of the upper end portion of the maximum intensity Imax or the continuous maximum intensity Imax is ZU, and the upward 50% irradiation intensity of the maximum intensity Imax ( Assuming that the position of 0.5 × Imax) is Z2,
3 mm Z Z2-ZU ≧ 0 mm
A method of growing a single crystal is provided.
 なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群の組み合わせもまた、発明となりうる。 The above summary of the invention does not enumerate all of the features of the present invention. In addition, a combination of these feature groups can also be an invention.
実施例1に係る単結晶育成装置100の斜視図の一例を示す。1 shows an example of a perspective view of a single crystal growth apparatus 100 according to a first embodiment. 単結晶育成装置100の上面図の一例を示す。1 shows an example of a top view of a single crystal growth apparatus 100. FIG. レーザ照射ヘッド50のレンズ構成の一例を示す。An example of lens composition of laser irradiation head 50 is shown. 加熱レーザ光3の照射強度分n布の一例を示す。An example of irradiation intensity n cloth of the heating laser beam 3 is shown. 実施例1の加熱レーザ光3の(X-Z)平面での長円形状の照射強度分布形状を示す。An oval-shaped irradiation intensity distribution shape in the (XZ) plane of the heating laser light 3 of Example 1 is shown. 実施例1に係る原料棒1のZ軸方向の照射強度分布を示す。The irradiation intensity distribution of the Z-axis direction of the raw material stick | rod 1 which concerns on Example 1 is shown. 実施例1に係る原料棒1のX軸方向の照射強度分布を示す。The irradiation intensity distribution of the X-axis direction of the raw material stick | rod 1 which concerns on Example 1 is shown. 結晶成長中の溶融帯4の溶融温度観察例を示す。The example of melting temperature observation of the melting zone 4 during crystal growth is shown. レーザ光5の分割方法の一例を示す。An example of the division method of the laser beam 5 is shown. 実施例2に係る反射ミラー80の上部配置の一例を示す。An example of upper arrangement of the reflective mirror 80 concerning Example 2 is shown. 実施例2に係る反射ミラー80の上部配置の一例を示す。An example of upper arrangement of the reflective mirror 80 concerning Example 2 is shown. 実施例2に係る加熱レーザ光3のX軸、Z軸方向の照射強度分布を示す。The irradiation intensity distribution of the X-axis of the heating laser beam 3 which concerns on Example 2, and Z-axis direction is shown. 実施例3に係る反射ミラー80の下部配置の一例を示す。An example of lower part arrangement | positioning of the reflective mirror 80 which concerns on Example 3 is shown. 実施例3に係る加熱レーザ光3のX軸、Z軸方向の照射強度分布を示す。The irradiation intensity distribution of the X-axis of the heating laser beam 3 which concerns on Example 3, and Z-axis direction is shown. 実施例4に係る加熱レーザ光3のZ軸方向の照射強度分布を示す。The irradiation intensity distribution of the Z-axis direction of the heating laser beam 3 which concerns on Example 4 is shown. 実施例4に係る加熱レーザ光3のX軸、Z軸方向の照射強度分布を示す。The irradiation intensity distribution of the X-axis of the heating laser beam 3 which concerns on Example 4, and Z-axis direction is shown. 実施例5に係る加熱レーザ光3のZ軸方向の照射強度分布を示す。The irradiation intensity distribution of the Z-axis direction of the heating laser beam 3 which concerns on Example 5 is shown. 実施例6に係る加熱レーザ光3のZ軸方向の照射強度分布を示す。The irradiation intensity distribution of the Z-axis direction of the heating laser beam 3 which concerns on Example 6 is shown.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through the embodiments of the invention, but the following embodiments do not limit the invention according to the claims. Moreover, not all combinations of features described in the embodiments are essential to the solution of the invention.
 [実施例1]
 図1は、実施例1に係る単結晶育成装置100の斜視図の一例を示す。図2は、原料棒1から結晶棒2の成長時における単結晶育成装置100の上面図の一例を示す。
Example 1
FIG. 1 shows an example of a perspective view of a single crystal growth apparatus 100 according to a first embodiment. FIG. 2 shows an example of a top view of the single crystal growth apparatus 100 at the time of growth of the raw material rod 1 to the crystal rod 2.
 単結晶育成装置100は、N台の電源10と、1台のレーザ光源20と、1台のレーザ光分割装置30と、M本の光ファイバ40と、M個のレーザ照射ヘッド50と、M個のダンパ60とを備える。Mは1より大きい整数(即ち、M>1)である。本例では、電源10の台数N=2台で、分割本数M=5の場合を示す。原料棒1、結晶棒2および溶融帯4を示す。本例の単結晶育成装置100は、放射温度計70-1および放射温度計70-2の2台の放射温度計70を有する。放射温度計70-1は、溶融帯4の中心軸上、上下の中心において半径0.5mm内の温度を計測する。放射温度計70-2は、結晶棒2の中心軸上で、溶融帯4の直下の0mm~20mm程度の範囲で、半径0.5mm内の結晶棒2の温度を計測する。 The single crystal growth apparatus 100 includes N power supplies 10, one laser light source 20, one laser light dividing device 30, M optical fibers 40, M laser irradiation heads 50, and M And the plurality of dampers 60. M is an integer greater than 1 (ie, M> 1). In this example, the case where the number of power supplies 10 is N = 2 and the number of divisions M = 5 is shown. The raw material rod 1, the crystal rod 2 and the melting zone 4 are shown. The single crystal growth apparatus 100 of this example has two radiation thermometers 70 of a radiation thermometer 70-1 and a radiation thermometer 70-2. The radiation thermometer 70-1 measures the temperature within a radius of 0.5 mm at the upper and lower centers on the central axis of the melting zone 4. The radiation thermometer 70-2 measures the temperature of the crystal rod 2 within a radius of 0.5 mm in the range of about 0 mm to 20 mm directly below the melting zone 4 on the central axis of the crystal rod 2.
 なお、本明細書において、鉛直方向を第1方向とする。第1方向に沿って延伸する原料棒1を設置する。Z軸方向を原料棒1の中心軸方向とする。加熱レーザ光3の光軸に垂直な2次元平面内で、Z軸に垂直な方向をX軸方向とする。また、原料棒1の中心軸を中心として、Z軸に垂直な方向(即ち、原料棒1の径方向)をR方向と称する。本例の原料棒1は、直径Dを有する。溶融帯4の高さをHとする。さらに、本明細書において、下方向とは、鉛直方向における重力方向を指し、上方向とは、鉛直方向における重力方向と反対方向を指す。 In the present specification, the vertical direction is taken as the first direction. The raw material stick | rod 1 extended along a 1st direction is installed. The Z-axis direction is taken as the central axis direction of the raw material rod 1. In a two-dimensional plane perpendicular to the optical axis of the heating laser light 3, the direction perpendicular to the Z axis is taken as the X axis direction. In addition, a direction perpendicular to the Z axis (that is, the radial direction of the raw material rod 1) with the central axis of the raw material rod 1 as a center is referred to as an R direction. The raw material rod 1 of this example has a diameter D. The height of the melting zone 4 is H. Furthermore, in the present specification, the downward direction refers to the gravity direction in the vertical direction, and the upward direction refers to the direction opposite to the gravity direction in the vertical direction.
 単結晶育成装置100における浮遊溶融帯方式では、原料棒1を溶融するために加熱照射光が必要である。本例の単結晶育成装置100は、円柱状形状の原料棒1の加熱照射光としてM本の加熱レーザ光3を用いる。 In the floating melting zone method in the single crystal growth apparatus 100, heating irradiation light is required to melt the raw material rod 1. The single crystal growth apparatus 100 of this example uses M pieces of heating laser light 3 as the heating irradiation light of the columnar raw material rod 1.
 M本の加熱レーザ光3は、原料棒1の中心軸を中心として、放射状に原料棒1に入射する。M本の加熱レーザ光3は、加熱レーザ光3の光軸と直交する(X-Z)2次元平面において、長円形状の照射強度分布を有する。M本の加熱レーザ光3の照射強度分布の形状は、(X-Z)平面において、円形状、楕円形状、矩形状およびこれらの形状の一部を組み合わせた形状の少なくとも1つの形状を含む長円形状である。より具体的には、M本の加熱レーザ光3は、(X-Z)平面において、Z軸方向(即ち、原料棒1の延伸方向)に釣り鐘型の照射強度分布を有し、且つ、X軸方向に略均一の照射強度分布を有する。 The M heating laser beams 3 are radially incident on the raw material rod 1 around the central axis of the raw material rod 1. The M heating laser beams 3 have an oval-shaped irradiation intensity distribution in a (XZ) two-dimensional plane orthogonal to the optical axis of the heating laser beams 3. The shape of the irradiation intensity distribution of the M heating laser beams 3 has a length including at least one shape of a circular shape, an elliptical shape, a rectangular shape, and a shape combining some of these shapes in the (XZ) plane It is circular. More specifically, M heating laser beams 3 have a bell-shaped irradiation intensity distribution in the Z-axis direction (that is, the extending direction of the raw material rod 1) in the (XZ) plane, and X The irradiation intensity distribution is substantially uniform in the axial direction.
 1台のレーザ光源20は、N台の電源10により駆動し、1本のレーザ光5を生成する。1台のレーザ光源20は、N<Mを満たすように設けられたN台の電源の出力により制御されてよい。レーザ光源20が1KW以上の高出力の場合に必要な電流は数10A以上となる。市販されている電源の供給電流量が小さい場合は2台以上用いてよい。2台以上の電源においてもカスケード接続により1台のように供給電力を制御できる。1台のレーザ光源20は、生成した1本のレーザ光5を1台のレーザ光分割装置30に出射する。1台のレーザ光源20は、複数の半導体ダイオードを含んでよい。 One laser light source 20 is driven by N power supplies 10 to generate one laser light 5. One laser light source 20 may be controlled by the output of N power supplies provided to satisfy N <M. When the laser light source 20 has a high output of 1 KW or more, the current required is several tens of A or more. When the amount of supply current of a commercially available power source is small, two or more may be used. Even in two or more power supplies, the power supply can be controlled like one by cascade connection. One laser light source 20 emits the generated one laser beam 5 to one laser beam splitter 30. One laser light source 20 may include a plurality of semiconductor diodes.
 1台のレーザ光分割装置30は、1本のレーザ光5をM本に分割する。レーザ光分割装置30は、分割したレーザ光5をM本の光ファイバ40に入射する。本例のレーザ光分割装置30は、1本のレーザ光5をM本に分割する。 One laser beam splitting device 30 splits one laser beam 5 into M beams. The laser beam splitting device 30 causes the split laser beam 5 to enter M optical fibers 40. The laser beam splitting device 30 of this example splits one laser beam 5 into M beams.
 M本の光ファイバ40は、5本の光ファイバ40-1~光ファイバ40-5を有する。M本の光ファイバ40は、M本のレーザ光5をM本の加熱レーザ光3として出射する。M本の光ファイバ40の断面形状は、円形断面形状、楕円断面形状、矩形状およびこれらの形状を組み合わせた形状の少なくとも1つの組み合わせからなる長円形断面形状を有する。 The M optical fibers 40 have five optical fibers 40-1 to 40-5. The M optical fibers 40 emit the M laser beams 5 as the M heating laser beams 3. The cross-sectional shape of the M optical fibers 40 has an oval cross-sectional shape made of at least one of a circular cross-sectional shape, an elliptical cross-sectional shape, a rectangular shape, and a shape combining these shapes.
 M個のレーザ照射ヘッド50は、M本の光ファイバ40から入射したM本の加熱レーザ光3を原料棒1に集光する。M個のレーザ照射ヘッド50は、原料棒1が延伸するZ軸方向を中心として放射状に配置される。また、M個のレーザ照射ヘッド50は、等角度にM本の加熱レーザ光3を原料棒1に照射するように配置される。本例のレーザ照射ヘッド50は、原料棒1を中心に略72度の間隔の角度で奇数個の5方向から加熱レーザ光3を照射する。M個のレーザ照射ヘッド50の個数は奇数であることが好ましい。 The M laser irradiation heads 50 condense the M heating laser beams 3 incident from the M optical fibers 40 on the raw material rod 1. The M laser irradiation heads 50 are arranged radially about the Z-axis direction in which the raw material rod 1 extends. Further, the M laser irradiation heads 50 are disposed so as to irradiate the raw material rods 1 with the M heating laser beams 3 at equal angles. The laser irradiation head 50 of the present example irradiates the heating laser light 3 from an odd number of five directions at an angle of an interval of about 72 degrees centering on the raw material rod 1. The number of the M laser irradiation heads 50 is preferably an odd number.
 例えば、Mが5の奇数個配置の場合、原料棒1の外周上の照射強度分布は95%の照射強度の均一性を有する。Mが7の場合の原料棒1の外周上の照射強度分布は97%の照射強度の均一性を有する。Mが偶数である6の場合の原料棒1の外周上の照射強度分布の照射強度の均一性は85%である。Mが偶数のレーザ照射ヘッド50の場合、照射強度分布の照射強度の均一性が低下する。したがって、M個のレーザ照射ヘッド50の個数が奇数個であることが好ましい。M個のレーザ照射ヘッド50は、M本の加熱レーザ光3を予め定められた照射形状に整形する。 For example, when M is an odd number arrangement of five, the irradiation intensity distribution on the outer periphery of the raw material rod 1 has a uniformity of the irradiation intensity of 95%. The irradiation intensity distribution on the outer periphery of the raw material rod 1 when M is 7 has a uniformity of the irradiation intensity of 97%. The uniformity of the irradiation intensity of the irradiation intensity distribution on the outer periphery of the raw material rod 1 in the case of 6 where M is an even number is 85%. When the laser irradiation head 50 has an even number M, the uniformity of the irradiation intensity of the irradiation intensity distribution is reduced. Therefore, it is preferable that the number of the M laser irradiation heads 50 is an odd number. The M laser irradiation heads 50 shape the M heating laser beams 3 into a predetermined irradiation shape.
 図2に示したダンパ60は、水冷機構を有し、M本の加熱レーザ光3の原料棒1の周囲を通過した加熱レーザ光3を吸収する。M個のダンパ60は、原料棒1を挟んで、M個のレーザ照射ヘッド50とそれぞれ対向して設ける。これにより、M個のレーザ照射ヘッド50による単結晶育成装置100の内部の加熱による損傷を防止できる。 The damper 60 shown in FIG. 2 has a water cooling mechanism, and absorbs the heating laser beam 3 which has passed around the raw material rod 1 of the M heating laser beams 3. The M dampers 60 are provided to face the M laser irradiation heads 50 with the raw material rod 1 interposed therebetween. Thereby, damage due to heating of the inside of the single crystal growth apparatus 100 by the M laser irradiation heads 50 can be prevented.
 放射温度計70-1は、原料棒1が溶融し、形成した溶融帯4から発光する輻射光強度を計測することにより、溶融帯4の温度を計測する。放射温度計70-1は、溶融帯4の0.5mmの半径内の局所温度を結晶成長中に実測できる。結晶成長中に溶融帯4の0.5mmの半径内の局所温度計測できるその場観察方法は、結晶材料の結晶構造組成を決定し、その組成の結晶成長を実現し、単結晶作製の最適条件を決定する上で、極めて重要である。例えば、溶融帯温度により得られる組成が異なる。溶融温度は結晶装置の育成条件に依存しない材料の固有の物性情報を与えるからである。共焦点楕円体を用いる従来のハロゲンランプでの観察は溶融帯4の周囲が鏡体に囲まれるので、微小領域のその場温度観察は困難である。放射温度計70の温度再現性は±1℃以内である。一度、溶融温度の最適化が実現できると、溶融帯4の直径が変化しても、また、結晶成長時間を変更しても最適な温度になるようにレーザ光源20の出力を電源10により制御できる。溶融帯4の溶融状態をカメラで監視していただけの方法に対して、放射温度計70-1は、結晶成長中の制御法に大きな武器となる。例えば、単結晶育成装置100は、放射温度計70で計測した輻射光強度に応じて、N台の電源10の入力電力を制御する。これにより、単結晶育成装置100は、加熱レーザ光3の輻射光強度を調整する。 The radiation thermometer 70-1 measures the temperature of the melting zone 4 by measuring the intensity of the light emitted from the melting zone 4 formed by melting the raw material rod 1. The radiation thermometer 70-1 can measure the local temperature within the 0.5 mm radius of the melting zone 4 during crystal growth. An in-situ observation method that can measure local temperature within 0.5 mm radius of melting zone 4 during crystal growth determines the crystal structure composition of the crystal material, realizes crystal growth of the composition, and optimum conditions for single crystal preparation It is extremely important in determining the For example, the composition obtained differs depending on the melting zone temperature. This is because the melting temperature gives inherent physical property information of the material which does not depend on the growth conditions of the crystal device. In the case of observation with a conventional halogen lamp using a confocal ellipsoid, in-situ temperature observation of a minute area is difficult because the melting zone 4 is surrounded by a mirror. The temperature reproducibility of the radiation thermometer 70 is within ± 1 ° C. Once optimization of the melting temperature can be realized, the output of the laser light source 20 is controlled by the power supply 10 so that the optimum temperature is obtained even if the diameter of the melting zone 4 changes and the crystal growth time is changed. it can. The radiation thermometer 70-1 is a great weapon for the control method during crystal growth, as opposed to the method of monitoring the melting state of the melting zone 4 with a camera. For example, the single crystal growth apparatus 100 controls the input power of the N power supplies 10 according to the radiation light intensity measured by the radiation thermometer 70. Thereby, the single crystal growth apparatus 100 adjusts the radiation light intensity of the heating laser light 3.
 放射温度計70-2は、結晶棒2の上端部付近、溶融帯直下の0~20mm程度の範囲の温度を測定する。この測定により、結晶棒2の上端部付近の冷却状態を監視可能になる。結晶棒2の温度の実測は材料により熱伝導度係数は大きく異なることから重要である。絶縁性材料、半導体材料、金属で数桁異なる熱伝導度係数を有する。また、溶融温度近辺の熱伝導係数は未知である材料が多い。このために、実際の結晶棒2の形状や結晶棒2を保持した結晶育成状態での結晶棒2の温度測定は大変重要である。そればかりではなく、その材料に関する貴重な物性情報が得られる。 The radiation thermometer 70-2 measures temperatures in the range of about 0 to 20 mm in the vicinity of the upper end of the crystal rod 2 and immediately below the melting zone. This measurement makes it possible to monitor the cooling state near the upper end of the crystal rod 2. The measurement of the temperature of the crystal rod 2 is important because the thermal conductivity coefficient is largely different depending on the material. Insulating materials, semiconductor materials and metals have thermal conductivity coefficients that differ by several orders of magnitude. Also, the heat conduction coefficient near the melting temperature is often unknown. For this reason, it is very important to measure the temperature of the crystal rod 2 in the crystal growth state in which the actual shape of the crystal rod 2 and the crystal rod 2 are held. Not only that, valuable physical information on the material can be obtained.
 例えば、結晶棒2の上端部から10mm下の部位での温度を測定する。これにより、結晶棒2の冷却速度を監視できる。溶融帯4の温度を70-1で観測する。その温度をTMとする。溶融帯4と結晶棒2の上端部境界から下方向10mmの結晶棒2の温度がTSであるとする。成長速度はSmm/時間の場合、(TM-TS)/(10/S)が得られた単結晶の溶融温度からの1時間あたりの平均冷却温度となる。TM-TS=400℃、S=4mm/時間の場合、溶融温度から1時間での平均冷却速度は160℃となる。溶融温度の高温付近での平均冷却時間を知ることは、結晶作成時の残留熱歪に大きな影響を与えることから、極めて重要である。 For example, the temperature at a portion 10 mm below the upper end of the crystal rod 2 is measured. Thereby, the cooling rate of the crystal rod 2 can be monitored. The temperature of melting zone 4 is observed at 70-1. Let that temperature be TM. It is assumed that the temperature of the crystal rod 2 of 10 mm downward from the upper end part boundary of the melting zone 4 and the crystal rod 2 is TS. When the growth rate is S mm / hour, (TM-TS) / (10 / S) is the average cooling temperature per hour from the melting temperature of the single crystal obtained. In the case of TM-TS = 400 ° C., S = 4 mm / hour, the average cooling rate in one hour from the melting temperature is 160 ° C. Knowing the average cooling time near the high melting temperature is very important because it has a great influence on residual thermal strain during crystal formation.
 成長した単結晶の冷却時間は小さいことが好ましい。特に溶融温度近傍の冷却時間は重要である。結晶を構成する元素が溶融状態での激しい運動から、ポテンシャル安定点である結晶格子点に落ち着く必要がある。この激しい運動からポテンシャル安定点に移動する場合、結晶格子点に安定する前に、準安定ポテンシャル位置に決まらないように徐冷することが必要である。急速冷却の場合、元素が準安定ポテンシャル位置に安定してしまう機会が発生する。準安定位置にとどまった元素はクラック発生起因となる熱残留歪を結晶格子に与える、伝導電子に影響を及ぼし、超伝導転移温度などの再現性を損なうなどの深刻な悪影響の生じる場合がある。上記溶融温度からの結晶棒2の冷却時間160℃が大きすぎるかどうかは材料特性に依存する。得られた結晶棒2にクラックが発生したりする場合は、明らかに冷却速度が速すぎる例である。超伝導転移温度が低下するなどの結晶の電子の伝導特性に変化を示す場合も冷却速度が速すぎる例である。このような現象が認められた材料に関してのZ軸の下方向の照射強度分布をさらに強度傾斜を小さくする必要がある。もしくは、結晶成長速度を長くする必要がある。いずれにしてもZ軸方向に急峻な照射強度分布を有する照射強度分布(トップハット照射強度分布)を有する従来のレーザFZ単結晶装置は得られた単結晶の品質上において、極めて深刻な問題点を有する場合がある。 The cooling time of the grown single crystal is preferably short. In particular, the cooling time near the melting temperature is important. It is necessary for the elements constituting the crystal to settle at the crystal lattice point, which is a potential stable point, from the intense movement in the molten state. When moving from this intense movement to the potential stability point, it is necessary to gradually cool so that the metastable potential position is not determined before stabilizing at the crystal lattice point. In the case of rapid cooling, there is an opportunity for the element to stabilize at the metastable potential position. Elements remaining in the metastable position may cause thermal residual strain to the crystal lattice due to the occurrence of cracks, affect the conduction electrons, and may cause serious adverse effects such as deterioration of reproducibility such as the superconducting transition temperature. Whether the cooling time 160 ° C. of the crystal rod 2 from the melting temperature is too large depends on the material properties. The case where a crack is generated in the obtained crystal rod 2 is an example in which the cooling rate is obviously too fast. This is also an example in which the cooling rate is too fast even in the case where a change in the electron conduction properties of the crystal is exhibited, such as a decrease in the superconducting transition temperature. It is necessary to further reduce the intensity gradient in the downward irradiation intensity distribution of the Z-axis for materials in which such a phenomenon is recognized. Alternatively, it is necessary to increase the crystal growth rate. In any case, the conventional laser FZ single crystal device having an irradiation intensity distribution (top hat irradiation intensity distribution) having a sharp irradiation intensity distribution in the Z-axis direction is extremely serious in terms of the quality of the obtained single crystal. May have.
 原料棒1は、原料の焼結棒である。原料棒1の下端部と結晶棒2の上端部をM本の加熱レーザ光3で加熱および溶融することにより原料棒1と結晶棒2との間に溶融帯4を形成できる。例えば、原料の溶融温度は、200℃から3000℃である。浮遊溶融帯方式は結晶棒2の上端部の結晶表面にエピタキシャル成長させ、単結晶を得る。このエピタキシャル成長は、結晶棒2を徐々に下降させることにより積層堆積させることで実現できる。結晶棒2の下降速度が結晶の成長速度となる。 The raw material rod 1 is a sintering rod of the raw material. The melting zone 4 can be formed between the raw material rod 1 and the crystal rod 2 by heating and melting the lower end portion of the raw material rod 1 and the upper end portion of the crystal rod 2 with M heating laser beams 3. For example, the melting temperature of the raw material is 200 ° C. to 3000 ° C. In the floating melting zone method, the crystal surface of the upper end of the crystal rod 2 is epitaxially grown to obtain a single crystal. This epitaxial growth can be realized by depositing layers by gradually lowering the crystal rod 2. The descending speed of the crystal rod 2 is the crystal growth rate.
 石英管6は、M本の加熱レーザ光3の波長に対して透明な石英により形成した円管である。石英管6の中心軸上に原料棒1を配置する。石英管6内には、結晶棒2の結晶成長に最適なガスを充満させる。 The quartz tube 6 is a circular tube made of quartz transparent to the wavelength of the M heating laser beams 3. The raw material rod 1 is disposed on the central axis of the quartz tube 6. The quartz tube 6 is filled with a gas optimum for crystal growth of the crystal rod 2.
 M個のレーザ照射ヘッド50は、Z軸方向の照射強度分布形状が釣り鐘型形状であり、X軸方向の照射強度分布形状が略均一形状であるM本の加熱レーザ光3を形成する。本明細書において、釣り鐘型の照射強度分布とは、Z軸方向の照射強度分布の中央付近が最大となり、上方向ならびに下方向になだらかに照射強度が減少する強度分布を有する照射強度分布を指す。Z軸方向の照射強度分布の最大強度となる照射強度をImaxとする。M個のレーザ照射ヘッド50は、Z軸方向における照射強度分布を釣り鐘型とすることにより、溶融帯4と結晶棒2との界面にエピタキシャル成長した結晶部の照射強度分布の減少をなだらかにし、結晶部の急速冷却を抑制する。Z軸の下方向に照射強度が減少する形状は、曲線形状の照射強度分布を有していても、直線形状の照射強度分布を有していても、多角形型の照射強度分布を有してよい。一例において、M本の加熱レーザ光3は、Z軸方向において、釣り鐘型の照射強度分布を有する。 The M laser irradiation heads 50 form M heating laser beams 3 having a bell-shaped irradiation intensity distribution in the Z-axis direction and a substantially uniform irradiation intensity distribution in the X-axis direction. In the present specification, the bell-shaped irradiation intensity distribution refers to an irradiation intensity distribution having an intensity distribution in which the irradiation intensity decreases gradually in the upward and downward directions with the vicinity of the center of the irradiation intensity distribution in the Z-axis direction becoming maximum. . The irradiation intensity that is the maximum intensity of the irradiation intensity distribution in the Z-axis direction is Imax. By making the irradiation intensity distribution in the Z-axis direction bell-shaped, the M laser irradiation heads 50 make the reduction of the irradiation intensity distribution of the crystal part epitaxially grown at the interface between the melting zone 4 and the crystal rod 2 smooth and Suppress rapid cooling of parts. The shape whose irradiation intensity decreases in the downward direction of the Z axis has a polygonal irradiation intensity distribution even if it has a curved irradiation intensity distribution or a linear irradiation intensity distribution. You may In one example, the M heating laser beams 3 have a bell-shaped irradiation intensity distribution in the Z-axis direction.
 ここで重要な点は、Z軸方向の照射強度分布が釣り鐘型形状であっても、X軸方向に略均一な照射強度分布を有することである。ハロゲンランプを用いる従来方法はZ軸方向およびX軸方向も釣り鐘型形状になっている点で、本例とは大きく異なる。X軸方向に略均一な照射強度分布を有することは原料棒1の外周方向の照射強度の均一性が5個のレーザ照射ヘッド50の場合95%の高い均一性を確保できる。その上で成長した結晶棒2の急速冷却を抑制することができる。 The important point here is that even when the irradiation intensity distribution in the Z-axis direction has a bell shape, the irradiation intensity distribution is substantially uniform in the X-axis direction. The conventional method using a halogen lamp differs greatly from this example in that the Z-axis direction and the X-axis direction also have a bell shape. Having a substantially uniform irradiation intensity distribution in the X-axis direction ensures that the uniformity of the irradiation intensity in the outer peripheral direction of the raw material rod 1 is as high as 95% in the case of the five laser irradiation heads 50. It is possible to suppress rapid cooling of the crystal rod 2 grown thereon.
 さらに、M本の加熱レーザ光3の照射強度分布は、Z軸方向において非対称であってよい。一例において、M本の加熱レーザ光3は、原料棒1が溶融している下端部は、急峻な照射強度分布を有していてもよい。釣り鐘型のZ軸方向の上方向の照射強度の減少分布は、Z軸方向の下方向の照射強度の減少分布より急峻である非対称の照射強度分布を有してよい。この急峻に減少する照射強度分布は、原料棒1に溶融帯4の溶融液が吸い込まれる効果を抑制する。原料棒1は焼成された棒であり、結晶棒2に対して材料密度が小さい。このため、液体化した材料は原料棒1の間隙に浸透する。この原料棒1への溶融液の吸い込みは溶融帯4のR方向の直径Wの減少を招くと同時に原料棒1の下端部の直径Dを増大させる。溶融液の吸い込みによる溶融帯4の直径Wの減少や原料棒1の直径Dの増大は、溶融帯4が不安定化する要因となる。原料棒1に溶融液が吸収される量を抑制するためには、原料棒1側の温度勾配は急峻であることが必要である。このようなZ軸方向の非対称な照射強度分布は原料棒1への吸い込みを抑制し、尚且つ、結晶棒2側の温度勾配がなだらかであることにより成長した結晶棒2への熱歪を緩和する。従来のハロゲンランプではこのような照射形状を実現することはできない。加熱光が指向性の高いレーザ光であって初めて実現できる。ハロゲンランプの照射形状の照射強度分布は上下方向に50mm以上の大変広い範囲での照射強度分布を有し、レーザ光とは本質的に異なる光源である。 Furthermore, the irradiation intensity distribution of the M heating laser beams 3 may be asymmetric in the Z-axis direction. In one example, the lower end portion where the raw material rod 1 is melted may have a sharp irradiation intensity distribution in the M heating laser beams 3. The decrease distribution of the irradiation intensity in the direction of the Z-axis of the bell shape may have an asymmetric distribution of irradiation intensity which is steeper than the decrease distribution of the irradiation intensity in the direction of the Z-axis. The sharply decreasing irradiation intensity distribution suppresses the effect of the molten material of the melting zone 4 being sucked into the raw material rod 1. The raw material rod 1 is a fired rod, and the material density is smaller than that of the crystal rod 2. For this reason, the liquefied material permeates into the gap of the raw material rod 1. The suction of the melt into the rod 1 causes a decrease in the diameter W of the melting zone 4 in the R direction, and at the same time increases the diameter D of the lower end of the rod 1. The decrease in the diameter W of the melting zone 4 and the increase in the diameter D of the raw material rod 1 due to the suction of the melt cause the melting zone 4 to become unstable. In order to suppress the amount of the molten liquid absorbed by the material rod 1, the temperature gradient on the side of the material rod 1 needs to be steep. Such asymmetrical irradiation intensity distribution in the Z-axis direction suppresses absorption to the raw material rod 1, and moreover, the thermal strain to the grown crystal rod 2 is alleviated by the gentle temperature gradient on the crystal rod 2 side. Do. A conventional halogen lamp can not realize such an illumination shape. It can be realized only if the heating light is a highly directional laser light. The irradiation intensity distribution of the irradiation shape of the halogen lamp has an irradiation intensity distribution in a very wide range of 50 mm or more in the vertical direction, and is a light source which is essentially different from the laser light.
 また、従来のトップハット照射強度分布である加熱レーザ光を用いた場合は、原料棒1側の急峻な照射強度分布を実現できても、結晶棒2への急峻な照射強度分布による熱残留歪を発生させる。これは結晶棒2にクラックを発生させ、超電導転移温度Tcの再現性を損なうなどの深刻な問題を発生させる。 In addition, when heating laser light, which is the conventional top hat irradiation intensity distribution, is used, even if the steep irradiation intensity distribution on the side of the raw material rod 1 can be realized, the thermal residual strain due to the steep irradiation intensity distribution on the crystal rod 2 Generate This causes a crack in the crystal rod 2 and causes serious problems such as deterioration of the reproducibility of the superconducting transition temperature Tc.
 図3Aは、レーザ照射ヘッド50のレンズ構成の一例を示す。図3Bは、加熱レーザ光3の照射強度分布の一例を示す。 FIG. 3A shows an example of the lens configuration of the laser irradiation head 50. As shown in FIG. FIG. 3B shows an example of the irradiation intensity distribution of the heating laser light 3.
 レーザ照射ヘッド50は、複数のレンズを有する。レーザ照射ヘッド50は、複数のレンズの間隔および焦点距離を調整することにより、加熱レーザ光3の照射強度分布の形状および照射強度を調整する。例えば、レーザ照射ヘッド50は、M本の光ファイバ40からのレーザ光5を凸レンズで平行光に変換する。平行にされたM本の加熱レーザ光3は透明平板を透過する。この部分を照射ヘッドAの部品とする。その後、また透明平板を透過し、その後3枚のレンズでZ軸方向に釣り鐘型でX軸方向に略均一の照射強度分布を持つように部品Bを構成する。3枚のレンズを適切に選択することにより、Z軸方向は釣り鐘型、かつX軸方向は略均一の照射強度分布が得られる。図中の長円Eは、レーザ照射ヘッド50に形成された(X-Z)平面での二次元照射強度分布を示す。 The laser irradiation head 50 has a plurality of lenses. The laser irradiation head 50 adjusts the shape and the irradiation intensity of the irradiation intensity distribution of the heating laser light 3 by adjusting the intervals and the focal lengths of the plurality of lenses. For example, the laser irradiation head 50 converts the laser light 5 from the M optical fibers 40 into parallel light with a convex lens. The M parallel heating laser beams 3 pass through the transparent flat plate. This portion is a component of the irradiation head A. Thereafter, the component B is configured to transmit a transparent flat plate and thereafter have a bell shape in the Z-axis direction and a substantially uniform irradiation intensity distribution in the X-axis direction with three lenses. By appropriately selecting three lenses, a bell shape in the Z-axis direction and a substantially uniform irradiation intensity distribution in the X-axis direction can be obtained. An oval E in the drawing indicates a two-dimensional irradiation intensity distribution on the (XZ) plane formed on the laser irradiation head 50.
 レーザ照射ヘッド50は、部品Aと部品Bとの距離Lを可動となるように構成される。レーザ照射ヘッド50は、部品Aを光学台に固定し、可動距離Lを調整することにより、原料棒1との照射距離を調整する。Z軸方向の釣り鐘型の照射強度の強度が50%になるときの半値幅Wを変更するためにはB部品のレンズの焦点距離などの変更が必要である。そのためB部品のレンズ交換は側面から容易に交換可能となるようにあらかじめ設計してある。レンズ交換、および可動距離Lの調整により、X軸方向の略均一な長さを変化させることなく、Z軸方向の釣り鐘型を原料棒1の位置で予め定められた釣り鐘型に拡大、もしくは縮小できる。 The laser irradiation head 50 is configured to move the distance L between the part A and the part B. The laser irradiation head 50 fixes the component A on the optical bench and adjusts the movable distance L to adjust the irradiation distance with the raw material rod 1. In order to change the half width W 0 when the intensity of the bell-shaped irradiation intensity in the Z-axis direction becomes 50%, it is necessary to change the focal length of the lens of the B component. Therefore, the lens replacement of the B component is designed in advance so that it can be easily replaced from the side. By changing the lens length and adjusting the movable distance L, the bell shape in the Z-axis direction can be expanded or contracted to the predetermined bell shape at the position of the raw material rod 1 without changing the substantially uniform length in the X-axis direction. it can.
 また、図3Bは、原料棒1に集光するM本の加熱レーザ光3の長円形状の照射強度分布の一例を示す。M本の加熱レーザ光3のZ軸方向の照射強度分布は釣り鐘型形状照射強度分布である。Imaxは、Z軸方向の照射強度の最大値である。レーザ照射ヘッド50は、Z軸方向の照射強度が最大になるImaxの位置からZ軸の上下方向に照射強度が減少する照射強度分布となるように複数のレンズを調整する。 Further, FIG. 3B shows an example of the oval-shaped irradiation intensity distribution of the M heating laser beams 3 collected on the raw material rod 1. The irradiation intensity distribution in the Z-axis direction of the M heating laser beams 3 is a bell-shaped irradiation intensity distribution. Imax is the maximum value of the irradiation intensity in the Z-axis direction. The laser irradiation head 50 adjusts the plurality of lenses so that the irradiation intensity distribution decreases in the vertical direction of the Z axis from the position of Imax at which the irradiation intensity in the Z axis direction is maximum.
 Z1は、下方向(即ち、Z軸の負の方向)の50%照射強度(0.5×Imax)の位置である。また、Z2は、上方向(即ち、Z軸の正の方向)の50%照射強度(0.5×Imax)の位置である。Z1'は、下方向(即ち、Z軸の負の方向)の10%照射強度(0.1×Imax)の位置である。また、Z2'は、上方向(即ち、Z軸の正の方向)の10%照射強度(0.1×Imax)の位置である。 Z1 is the position of 50% irradiation intensity (0.5 × Imax) in the downward direction (ie, in the negative direction of the Z axis). Further, Z2 is a position of 50% irradiation intensity (0.5 × Imax) in the upward direction (that is, the positive direction of the Z axis). Z1 ′ is a position of 10% irradiation intensity (0.1 × Imax) in the downward direction (ie, in the negative direction of the Z axis). Further, Z2 'is a position of 10% irradiation intensity (0.1 × Imax) in the upward direction (that is, the positive direction of the Z axis).
 最大強度ImaxのZ軸における位置をZ=0とする。最大強度ImaxがZ軸方向に略均一な場合が連続する場合は連続する最大強度Imaxと表現する。連続する最大強度ImaxのZ軸方向の下端部の位置をZLとすると、50%照射強度(0.5×Imax)の位置であるZ1は、
 [数1]
 ZL-Z1≧2mm
 を満たすような照射強度分布を有する。即ち、最大強度Imaxの下方向に2mmの位置では照射強度が50%以上となるように照射強度の減少が抑えられる。これにより、得られた結晶棒2の急冷を緩和する。トップハット照射強度分布では最大強度Imaxの下方向に2mmの位置では照射強度がゼロとなり、得られた結晶棒2は急冷されてしまう。
The position of the maximum intensity Imax on the Z axis is Z = 0. When the case where the maximum intensity Imax is substantially uniform in the Z-axis direction is continuous, it is expressed as the continuous maximum intensity Imax. Assuming that the position of the lower end in the Z-axis direction of the continuous maximum intensity Imax is ZL, Z1 which is the position of the 50% irradiation intensity (0.5 × Imax) is
[Equation 1]
ZL-Z1 2 2 mm
It has an irradiation intensity distribution that satisfies That is, the reduction of the irradiation intensity is suppressed so that the irradiation intensity is 50% or more at a position of 2 mm below the maximum intensity Imax. Thereby, the quenching of the obtained crystal rod 2 is relaxed. In the top hat irradiation intensity distribution, the irradiation intensity becomes zero at a position 2 mm below the maximum intensity Imax, and the obtained crystal rod 2 is rapidly cooled.
 さらに、結晶棒2の溶融温度から室温付近の温度までの冷却速度を制御できる。M本の加熱レーザ光3によって形成されたZ軸の方向の照射強度分布は、第1方向の釣り鐘型の照射強度分布において、照射強度が最大値の10%となる上方向と下方向の幅をZとし、原料棒1が溶融した溶融帯4の第1方向の高さをHとしたとき、
 [数2]
 (Z-H)/2≧S
 を満たすように複数のレンズを調整する。また、レーザ照射ヘッド50は、複数のレンズの個数を変化させることなく、レンズの間隔を調整することが好ましい。
Furthermore, the cooling rate from the melting temperature of the crystal rod 2 to a temperature near room temperature can be controlled. The irradiation intensity distribution in the direction of the Z-axis formed by the M heating laser beams 3 has an upward and downward width at which the irradiation intensity becomes 10% of the maximum value in the bell-shaped irradiation intensity distribution in the first direction. Where Z 0 and the height in the first direction of the melting zone 4 where the material rod 1 is melted is H,
[Equation 2]
(Z 0 -H) / 2 ≧ S
Adjust multiple lenses to meet Moreover, it is preferable that the laser irradiation head 50 adjust the space | interval of a lens, without changing the number of objects of several lenses.
 Sは、結晶成長速度(mm/時)である。Zを(2S+H)mmと設計すれば、成長した結晶棒2の溶融温度からの冷却時間を略1時間となるように設計したことになる。例えば、結晶成長速度を1時間あたり4mmとする。溶融帯4の高さH=5mmとする。Z=21mmの照射強度分布を有する釣り鐘型の加熱レーザの場合、得られた結晶は溶融温度TからT×0.1の温度までの冷却時間を2時間と設計したことになる。S=2mm/時間とすれば、冷却時間を4時間と設計したことになる。 S is crystal growth rate (mm / hour). By designing the Z 0 and (2S + H) mm, so that the cooling time from the melting temperature of the grown crystal rod 2 was designed to be substantially 1 hour. For example, the crystal growth rate is 4 mm per hour. The height H of the melting zone 4 is 5 mm. In the case of a bell-shaped heating laser having an irradiation intensity distribution of Z 0 = 21 mm, the obtained crystal has a cooling time from the melting temperature T M to the temperature of T M × 0.1 designed to be 2 hours. If S = 2 mm / hour, the cooling time is designed to be 4 hours.
 M個のレーザ照射ヘッド50は、結晶棒2の移動速度(即ち、結晶の成長速度)に応じて、釣り鐘型の照射強度分布を調整してよい。例えば、M個のレーザ照射ヘッド50は、結晶棒2の移動速度の増加に応じて、釣り鐘型の照射強度分布の勾配を緩やかにしてよい。また、M個のレーザ照射ヘッド50は、結晶棒2の移動速度の低下に応じて、釣り鐘型の照射強度分布の勾配を急峻にしてよい。M個のレーザ照射ヘッド50は、レンズ交換もしくはLの間隔を調整し、M本の加熱レーザ光3の照射強度分布を調整する。 The M laser irradiation heads 50 may adjust the bell-shaped irradiation intensity distribution according to the moving speed of the crystal rod 2 (that is, the crystal growth speed). For example, the M laser irradiation heads 50 may make the slope of the bell-shaped irradiation intensity distribution gentler as the moving speed of the crystal rod 2 increases. In addition, the M laser irradiation heads 50 may make the slope of the bell-shaped irradiation intensity distribution steep according to the decrease in the moving speed of the crystal rod 2. The M laser irradiation heads 50 adjust the lens replacement or the interval of L and adjust the irradiation intensity distribution of the M heating laser beams 3.
 図4は、加熱レーザ光3の長円形状の照射温度形状の実施例1の場合を示す。本例の照射強度分布は円形の光ファイバ40からの照射強度分布に基づいて計算したレンズ光学系のシミュレーション結果である。レンズ系の焦点距離等を適切に選択することにより、高精度の結果が得られる。同図より、加熱レーザ光3の照射温度形状が長円形状を有することが確認される。 FIG. 4 shows the case of Example 1 of the irradiation temperature shape of the oval shape of the heating laser beam 3. The irradiation intensity distribution of this example is a simulation result of the lens optical system calculated based on the irradiation intensity distribution from the circular optical fiber 40. By appropriately selecting the focal length and the like of the lens system, highly accurate results can be obtained. From the figure, it is confirmed that the irradiation temperature shape of the heating laser light 3 has an oval shape.
 図5は、原料棒1のZ軸方向の照射強度分布の実施例を示す。本例のM本の加熱レーザ光3は、Z軸方向において、釣り鐘形状の照射強度分布を有する。 FIG. 5 shows an example of the irradiation intensity distribution in the Z-axis direction of the raw material rod 1. The M heating laser beams 3 of this example have a bell-shaped irradiation intensity distribution in the Z-axis direction.
 釣り鐘形状とは、最大照射強度Imaxの位置Z=0を中心として上下方向になだらかに強度が減少する照射強度分布である。このような照射強度分布はガウス分布形状とも呼ばれる。特に、重要な点は、Z軸の下方向の傾斜である。この下方向のなだらかな傾斜を有するM本の加熱レーザ光3を用いることにより、成長した結晶棒2の上端部が成長速度をもって下降することに伴う溶融温度からの温度冷却を緩和する。下方向の照射強度の急峻な減少は成長した結晶棒の上端部が成長速度をもって下降することに伴う溶融温度からの急速冷却を引き起こす。 The bell shape is an irradiation intensity distribution in which the intensity gradually decreases in the vertical direction around the position Z = 0 of the maximum irradiation intensity Imax. Such an irradiation intensity distribution is also called a Gaussian distribution shape. In particular, the important point is the downward inclination of the Z axis. By using the M heating laser beams 3 having the downward gentle slope, temperature cooling from the melting temperature accompanying the lowering of the upper end of the grown crystal rod 2 with the growth rate is alleviated. The sharp decrease in the downward irradiation intensity causes rapid cooling from the melting temperature as the upper end of the grown crystal rod falls with the growth rate.
 照射強度分布がトップハット照射強度分布を有する方法では、連続するImaxの下端部から2mm程度で、照射強度はゼロとなる。50%照射強度は1mm程度もなく、Imaxから下方向に極めて急峻な温度勾配をもつ。50%の照射強度の位置Z1の照射強度が重要な理由は材料の溶融温度から溶融温度の半分(50%)の領域での温度勾配が得られた結晶への熱ひずみ現象に多大な影響を及ぼすからである。そのためにこの温度領域を作る照射強度100%から50%の照射強度分布が結晶棒に与える残留熱ひずみを緩和する上で決定的である。そのためにM本の加熱レーザ光3の照射強度分布は、下方向の強度減少がなだらかでなければならない。釣り鐘形状分布において最大強度Imaxの50%の位置Z1はImaxの位置Z=0から少なくとも2mm以上でなければならない。釣り鐘形状の照射強度分布の有利な点は、Imax付近の強度傾斜が小さい点である。この特徴は、溶融帯4と結晶棒2の境界近傍の照射強度分布の傾斜が小さいことから、この位置での温度傾斜が小さくできることを保証する。 In the method in which the irradiation intensity distribution has a top hat irradiation intensity distribution, the irradiation intensity is zero at about 2 mm from the lower end of the continuous Imax. The 50% irradiation intensity is not even about 1 mm, and has a very steep temperature gradient downward from Imax. The reason why the irradiation intensity at position Z1 of 50% irradiation intensity is important is that the thermal strain phenomenon to the crystal obtained a temperature gradient in the region of half (50%) of the melting temperature from the melting temperature of the material is greatly affected. It is because it exerts. Therefore, the irradiation intensity distribution of 100% to 50% of the irradiation intensity which makes this temperature range is crucial in relieving the residual thermal strain given to the crystal rod. Therefore, the irradiation intensity distribution of the M heating laser beams 3 must have a gradual decrease in the downward intensity. The position Z1 of 50% of the maximum intensity Imax in the bell shape distribution must be at least 2 mm or more from the position Z = 0 of Imax. The advantage of the bell-shaped radiation intensity distribution is that the intensity gradient near Imax is small. This feature ensures that the temperature gradient at this position can be reduced because the slope of the irradiation intensity distribution near the boundary between the melting zone 4 and the crystal rod 2 is small.
 照射強度が0.5×Imaxの下方向での位置Z1は-6mmである。これにより結晶棒の室温近傍までの急速冷却を抑制できる。M本の加熱レーザ光3の照射強度分布が10%になるM本の加熱レーザ光3の幅Zは21mmである。成長速度が4mm/時の結晶成長速度の場合、((21-5)/2)/4=2時間で溶融温度×0.1の温度まで冷却される。成長速度を2mm/時間とすれば、冷却時間を4時間とすることができる。成長速度を1mm/時間とすれば、冷却時間を8時間とすることができる。第1の照射強度分布は、直線形型もしくは多角形型の照射強度分布を有してよい。また、第1の照射強度分布は、釣り鐘型の照射強度分布の一部と、直線形もしくは多角形型の照射強度分布の一部との組み合わせからなる照射強度分布を有してよい。 The position Z1 in the lower direction of the irradiation intensity of 0.5 × Imax is −6 mm. This can suppress rapid cooling of the crystal rod to around room temperature. The width Z 0 of the M heating laser beams 3 at which the irradiation intensity distribution of the M heating laser beams 3 is 10% is 21 mm. In the case of a crystal growth rate of 4 mm / hour, the system is cooled to the temperature of the melting temperature × 0.1 in ((21-5) / 2) / 4 = 2 hours. If the growth rate is 2 mm / hour, the cooling time can be 4 hours. If the growth rate is 1 mm / hour, the cooling time can be 8 hours. The first radiation intensity distribution may have a linear or polygonal radiation intensity distribution. Further, the first irradiation intensity distribution may have an irradiation intensity distribution which is a combination of a part of a bell-shaped irradiation intensity distribution and a part of a linear or polygonal irradiation intensity distribution.
 以上、加熱レーザ光3は、Z軸方向における照射強度分布に所望の傾斜を付けることにより、結晶棒2への急速な冷却を緩和でき、熱ストレスのよる結晶のクラック発生を抑制できる。また、残留熱ひずみが結晶材料の物性特性に与える深刻な影響を緩和もしくは除去する。特に、熱伝導率の小さい絶縁性材料においては、Z軸方向における照射強度分布の傾斜は必須の要求である。 As mentioned above, the heating laser beam 3 can moderate the rapid cooling to the crystal stick 2 by giving a desired inclination to the irradiation intensity distribution in the Z-axis direction, and can suppress the crack generation of the crystal due to the thermal stress. In addition, it reduces or eliminates the serious influence of residual thermal strain on the physical properties of the crystalline material. In particular, in the case of an insulating material having a low thermal conductivity, the inclination of the irradiation intensity distribution in the Z-axis direction is an essential requirement.
 ここで、径方向の照射強度分布は、原料棒1の直径Dと、X軸方向の略均一な照射強度分布を有する領域は結晶棒1が含まれることが好ましい。M本の加熱レーザ光3は、X軸方向において、略均一の照射強度分布を有する。一定の照射強度の長さをLとする。長さLは原料棒1の直径をWとしたとき、
 [数2]
 L≧W
 を満たすように、複数のレンズを調整する。
Here, as for the irradiation intensity distribution in the radial direction, it is preferable that the crystal rod 1 is included in the region having the diameter D of the raw material rod 1 and the substantially uniform irradiation intensity distribution in the X-axis direction. The M heating laser beams 3 have a substantially uniform irradiation intensity distribution in the X-axis direction. Let L be the length of a constant irradiation intensity. When the diameter L of the raw material rod 1 is W, the length L is
[Equation 2]
L ≧ W
Adjust multiple lenses to meet
 図6に実施例1の場合、Lは8mm長である。Wが5~6mm程度の原料棒1の直径に適した均一長である。さらに左右に±2mmのなだらかな照射強度分布を有している。この傾斜は原料棒1が左右に偏芯する場合の余裕度を上げる。 In the case of Example 1 in FIG. 6, L is 8 mm long. W has a uniform length suitable for the diameter of the raw material rod 1 of about 5 to 6 mm. Furthermore, it has a gentle irradiation intensity distribution of ± 2 mm on the left and right. This inclination increases the margin when the raw material rod 1 is decentered to the left and right.
 図7は、放射温度計70-1による実測値の一例を示す。縦軸は溶融帯4の温度[℃]を示し、横軸は時刻を示す。原料棒1の材料は、NdMoである。NdMoは、1630℃付近で溶融する。溶融帯4の温度は、2時間経過すると1630℃から1620℃に10℃程度低下する。溶融帯4の温度変化は、溶融帯4を監視しているモニター画像では判別できない。溶融帯4の温度低下は、原料の蒸発による石英管6の内面への付着による、M本の加熱レーザ光3の透過光の減衰に起因する。石英管6の内面への付着物は、結晶作製後に確認できるが、結晶作製中に観察できない。本例では、放射温度計70を用いることにより、溶融帯4の温度変化を結晶作製中にモニターできる。これにより、単結晶育成装置100は、溶融帯4の温度変化に応じて、M本の加熱レーザ光3の強度を制御できる。即ち、単結晶育成装置100は、溶融帯4の温度のその場観察により、安定して結晶棒2を作製できる。 FIG. 7 shows an example of an actual measurement value of the radiation thermometer 70-1. The vertical axis indicates the temperature [° C.] of the melting zone 4 and the horizontal axis indicates the time. The material of the raw material rod 1 is Nd 2 Mo 2 O 7 . Nd 2 Mo 2 O 7 melts around 1630 ° C. The temperature of the melting zone 4 decreases by about 10 ° C. from 1630 ° C. to 1620 ° C. after 2 hours. The temperature change of the melting zone 4 can not be determined by the monitor image monitoring the melting zone 4. The temperature drop of the melting zone 4 is due to the attenuation of the transmitted light of the M heating laser beams 3 due to the adhesion to the inner surface of the quartz tube 6 due to the evaporation of the raw material. Although the deposit on the inner surface of the quartz tube 6 can be confirmed after crystal preparation, it can not be observed during crystal preparation. In this example, by using the radiation thermometer 70, the temperature change of the melting zone 4 can be monitored during crystal production. Thereby, the single crystal growth apparatus 100 can control the intensity of the M heating laser beams 3 in accordance with the temperature change of the melting zone 4. That is, the single crystal growth apparatus 100 can stably produce the crystal rod 2 by in-situ observation of the temperature of the melting zone 4.
 放射温度計の温度再現性は、±1℃以内である。そのため、一度、溶融帯4の温度を確認できれば、次回以降は容易に材料を溶融温度に制御できる。単結晶育成装置100は、放射温度計70-1によるモニター温度が一定になるように、M本の加熱レーザ光3の強度を制御する。一例において、単結晶育成装置100は、原料材料からの蒸発物による溶融温度低下を検知し、電源10の印加電流を増加させ、溶融帯温度を一定に保つように制御する。本例の単結晶育成装置100は、M本の加熱レーザ光3の強度の制御により、溶融帯4の温度の低下を防止できる。 The temperature reproducibility of the radiation thermometer is within ± 1 ° C. Therefore, once the temperature of the melting zone 4 can be confirmed, the material can be easily controlled to the melting temperature after the next time. The single crystal growth apparatus 100 controls the intensity of the M heating laser beams 3 so that the monitor temperature by the radiation thermometer 70-1 becomes constant. In one example, the single crystal growth apparatus 100 detects a decrease in melting temperature due to the evaporant from the source material, increases the applied current of the power supply 10, and controls the melting zone temperature to be kept constant. The single crystal growth apparatus 100 of this example can prevent the temperature of the melting zone 4 from lowering by controlling the intensity of the M heating laser beams 3.
 なお、単結晶育成装置100は、溶融帯4の温度を自動制御してもよい。例えば、単結晶育成装置100は、放射温度計70-1の出力を検知し、加熱レーザ用の電源電流をPID制御すれば、溶融帯4の温度を±1℃以内で制御できる。このように、単結晶育成装置100は、放射温度計70-1を備えることが好ましい。 The single crystal growth apparatus 100 may automatically control the temperature of the melting zone 4. For example, the single crystal growth apparatus 100 can control the temperature of the melting zone 4 within ± 1 ° C. by detecting the output of the radiation thermometer 70-1 and performing PID control of the power supply current for the heating laser. Thus, the single crystal growth apparatus 100 preferably includes the radiation thermometer 70-1.
 図8は、レーザ光5の分割方法の一例を示す。1台のレーザ光分割装置30は、Y方向コリメータ31と、X方向コリメータ32と、分割ミラー33と、第1集光レンズ36と、第2集光レンズ37とを備える。これにより、1台のレーザ光源20が照射した1本のレーザ光5を5本の光ファイバ40に分割する。 FIG. 8 shows an example of the method of dividing the laser light 5. One laser beam splitting device 30 includes a Y-direction collimator 31, an X-direction collimator 32, a splitting mirror 33, a first focusing lens 36, and a second focusing lens 37. Thereby, one laser beam 5 irradiated by one laser light source 20 is divided into five optical fibers 40.
 1台のレーザ光源20は、1本のレーザ光5を1台のレーザ光分割装置30に照射する。1台のレーザ光源20は、ヒートシンク25に接続されている。 One laser light source 20 irradiates one laser beam 5 to one laser beam splitter 30. One laser light source 20 is connected to the heat sink 25.
 Y方向コリメータ31およびX方向コリメータ32は、1台のレーザ光源20からの1本のレーザ光5を平行光に変換する。Y方向コリメータ31およびX方向コリメータ32は、コリメータレンズの一例である。 The Y-direction collimator 31 and the X-direction collimator 32 convert one laser light 5 from one laser light source 20 into parallel light. The Y-direction collimator 31 and the X-direction collimator 32 are an example of a collimator lens.
 分割ミラー33は、入射した1本のレーザ光5をM本に分割する。本例の1台のレーザ光分割装置30は、1本のレーザ光5を5本に分割するために、4つの分割ミラー33を有する。一例において、分割ミラー33は、1本のレーザ光5の一部を反射し、それ以外を通過させることにより、1本のレーザ光5を分割する。 The split mirror 33 splits one incident laser beam 5 into M beams. One laser beam splitter 30 of this example has four split mirrors 33 in order to split one laser beam 5 into five. In one example, the splitting mirror 33 splits one laser beam 5 by reflecting a part of one laser beam 5 and transmitting the other.
 第1集光レンズ36及び第2集光レンズ37は、分割ミラー33が分割したレーザ光5を、集光して光ファイバ40に入射する。第1集光レンズ36及び第2集光レンズ37は、光ファイバ40のビームパラメータプロダクト(BPP)の条件を満たして配置する。なお、レーザ光5を光ファイバ40に集光するレンズは、最小数の2枚の集光レンズである第1集光レンズ36及び第2集光レンズ37で構成したが、それ以上の集光レンズの組み合わせであってもよい。 The first condensing lens 36 and the second condensing lens 37 condense the laser light 5 split by the splitting mirror 33 and make it enter the optical fiber 40. The first condenser lens 36 and the second condenser lens 37 are arranged to satisfy the condition of the beam parameter product (BPP) of the optical fiber 40. In addition, although the lens which condenses the laser beam 5 to the optical fiber 40 was comprised by the 1st condensing lens 36 and the 2nd condensing lens 37 which are two condensing lenses of the minimum number, the condensing more than that is carried out It may be a combination of lenses.
 なお、分割ミラー33は、入射するレーザ光5と、分割ミラー33の垂直軸との角度を変更することなく移動するために、アクチュエータ等の機構を備えてよい。分割ミラー33がアクチュエータを備える場合、レーザ光5を分割する比率を自由に調整できる。そのため、1台のレーザ光分割装置30は、M本に分割されたレーザ光5のレーザ光強度が均一となるように制御できる。 The split mirror 33 may be provided with a mechanism such as an actuator in order to move without changing the angle between the incident laser light 5 and the vertical axis of the split mirror 33. When the split mirror 33 includes an actuator, the ratio of splitting the laser beam 5 can be freely adjusted. Therefore, one laser beam splitting device 30 can control so that the laser beam intensity of the laser beam 5 split into M beams becomes uniform.
 [実施例2]
 図9は、M個の反射ミラーを有する単結晶育成装置100の構成の一例を示す。図10に示すようにM個の反射ミラー80は、M個のレーザ照射ヘッド50と原料棒1との間にそれぞれ設けられる。本例の場合、レーザ照射ヘッド50および原料棒1の間隔WDが160mmであり、レーザ照射ヘッド50とM個の反射ミラー80との距離dは77mmである。M個の反射ミラー80は、M本の加熱レーザ光3の少なくとも一部を反射する。これにより、M個の反射ミラー80は、M本の加熱レーザ光3の照射強度分布の形状の上下の照射光強度分布を非対称にする。例えば、Z軸方向における照射強度分布の形状を、非対称な釣り鐘型に調整する。また、M個の反射ミラー80は、M本の加熱レーザ光3の入射角度および反射ミラー80の高さを調整することにより、Z軸方向における照射強度分布の非対称形状を調整する。例えば、M個の反射ミラー80は、M本の加熱レーザ光3のZ軸方向における照射強度分布の形状を、非対称な三角形又は非対称な多角形型の照射強度分布に調整してよい。M個の反射ミラー80は、M本の加熱レーザ光3の照射強度分布の形状を調整するM個の調整部の一例である。実施例2はM個の調整部は5個の反射ミラー80-1~80-5からなる。
Example 2
FIG. 9 shows an example of the configuration of a single crystal growth apparatus 100 having M reflection mirrors. As shown in FIG. 10, M reflection mirrors 80 are respectively provided between the M laser irradiation heads 50 and the raw material rod 1. In the case of this example, the distance WD between the laser irradiation head 50 and the raw material rod 1 is 160 mm, and the distance d between the laser irradiation head 50 and the M reflection mirrors 80 is 77 mm. The M reflection mirrors 80 reflect at least a part of the M heating laser beams 3. Thus, the M reflection mirrors 80 make the upper and lower irradiation light intensity distributions asymmetric in the shape of the irradiation intensity distribution of the M heating laser beams 3. For example, the shape of the irradiation intensity distribution in the Z-axis direction is adjusted to an asymmetric bell shape. Further, the M reflection mirrors 80 adjust the asymmetric shape of the irradiation intensity distribution in the Z-axis direction by adjusting the incident angles of the M heating laser beams 3 and the height of the reflection mirror 80. For example, the M reflection mirrors 80 may adjust the shape of the irradiation intensity distribution in the Z-axis direction of the M heating laser beams 3 to an irradiation intensity distribution of an asymmetric triangle or an asymmetrical polygon. The M reflection mirrors 80 are an example of M adjustment units for adjusting the shape of the irradiation intensity distribution of the M heating laser beams 3. In the second embodiment, the M adjustment units consist of five reflection mirrors 80-1 to 80-5.
 M個の反射ミラー80は、M本の加熱レーザ光3の上部に配置されてよい。M個の反射ミラー80が上部配置される場合、M個の反射ミラー80は、M本の加熱レーザ光3の上部を反射する。例えば、M個の反射ミラー80は、M本の加熱レーザ光3の上部を単結晶育成装置100の下方向に反射する。 The M reflection mirrors 80 may be disposed above the M heating laser beams 3. When the M reflection mirrors 80 are disposed at the top, the M reflection mirrors 80 reflect the top of the M heating laser beams 3. For example, the M reflection mirrors 80 reflect the upper portions of the M heating laser beams 3 downward in the single crystal growth apparatus 100.
 M個の反射ミラー80の材料は、M本の加熱レーザ光3を反射する材料であれば特に限られない。一例において、M個の反射ミラー80の材料は、銀である。銀で形成された反射ミラー80は、レーザ光5の波長が940nmの場合、97%以上の高い反射率を有する。M個の反射ミラー80の材料は、高温となる溶融帯4からの熱に影響されない材料であることが好ましい。また、M個の反射ミラー80は、高温となる溶融帯4からの熱に影響されない程度に、溶融帯4と離間して配置されることが好ましい。 The material of the M reflection mirrors 80 is not particularly limited as long as the material reflects M heating laser beams 3. In one example, the material of the M reflective mirrors 80 is silver. The reflection mirror 80 made of silver has a high reflectance of 97% or more when the wavelength of the laser light 5 is 940 nm. The material of the M reflection mirrors 80 is preferably a material which is not affected by the heat from the melting zone 4 which is at a high temperature. In addition, it is preferable that the M reflection mirrors 80 be spaced apart from the melting zone 4 so as not to be affected by the heat from the melting zone 4 which is high temperature.
 最大強度Imaxもしくは連続する最大強度Imaxの上端部の位置をZUとし、最大強度Imaxの上方向の50%照射強度(0.5×Imax)の位置をZ2とすると、
 3mm≧Z2-ZU≧0mm
 を満たすZ方向の上方向の照射強度分布になるように5個の反射ミラーの5本の加熱レーザ光3に対する角度、上部位置の高さが調整できる。
Assuming that the position of the upper end of the maximum intensity Imax or the continuous maximum intensity Imax is ZU, and the position of the upward 50% irradiation intensity (0.5 × Imax) of the maximum intensity Imax is Z2.
3 mm Z Z2-ZU ≧ 0 mm
The height of the upper position and the angle of the five reflection mirrors with respect to the five heating laser beams 3 can be adjusted so that the irradiation intensity distribution in the upward direction of the Z direction is satisfied.
 なお、単結晶育成装置100は、M個の調整部として、M個の反射ミラー80の代わりに、M本の加熱レーザ光3を吸収するM個の吸収材料を用いてもよい。この場合、単結晶育成装置100は、M個の吸収材料の吸収量および高さを調整することにより、Z軸方向における照射強度分布の非対称形状を調整してよい。 The single crystal growth apparatus 100 may use M absorbing materials that absorb the M heating laser beams 3 instead of the M reflecting mirrors 80 as the M adjusting units. In this case, the single crystal growth apparatus 100 may adjust the asymmetry of the irradiation intensity distribution in the Z-axis direction by adjusting the amount and height of absorption of the M absorption materials.
 図11は、実施例2に係る加熱レーザ光3のZ軸方向の照射強度分布を示す。本例では、Z軸方向の照射強度分布と、X軸方向の照射強度分布のそれぞれを示す。図11において、Z=0は最大強度Imaxの位置である。 FIG. 11 shows the irradiation intensity distribution in the Z-axis direction of the heating laser light 3 according to the second embodiment. In this example, the irradiation intensity distribution in the Z-axis direction and the irradiation intensity distribution in the X-axis direction are respectively shown. In FIG. 11, Z = 0 is the position of the maximum intensity Imax.
 上部の50%照射強度(0.5×Imax)の位置Z2は3mmである。溶融帯4の高さH=4mmの場合、溶融帯4の上端部はH=4mmの半分のZ=2mmである。溶融帯4の上端部から1mmの上方向の位置で照射強度はImaxの50%の急峻な照射強度となる。上部の10%照射強度(0.1×Imax)の位置Z2'は4mmである。この結果、溶融帯4の上端部から2mmの上方向の置で照射強度はゼロとなる。原料棒1の下端部がこのような温度勾配で急冷できることから、原料棒1への溶融液の吸い込みを抑制する。 The position Z2 of the upper 50% irradiation intensity (0.5 × Imax) is 3 mm. When the height H of the melting zone 4 is 4 mm, the upper end of the melting zone 4 is Z = 2 mm, which is half of H = 4 mm. The irradiation intensity becomes a steep irradiation intensity of 50% of Imax at a position 1 mm upward from the upper end of the melting zone 4. The position Z2 ′ of the upper 10% irradiation intensity (0.1 × Imax) is 4 mm. As a result, the irradiation intensity becomes zero at 2 mm upward from the upper end of the melting zone 4. Since the lower end portion of the material rod 1 can be rapidly cooled by such a temperature gradient, suction of the molten liquid into the material rod 1 is suppressed.
 一方、下部側の50%照射強度(0.5×Imax)の位置Z1は-6mmである。溶融帯4の高さH=4mmの場合、溶融帯4の下端部は-2mmである。この結果、結晶棒2において、6-2=4mmのZ軸の溶融帯4の下端部から4mmの結晶棒2の部位で照射強度はImaxの50%の照射強度を有する。結晶成長速度が4mm/時間の場合、この間の冷却時間は1時間となる。下部側の10%照射強度(0.1×Imax)の位置Z1'は-6mmである。溶融帯4の高さH=4mmの場合、溶融帯4の下端部は-12mmである。この結果、結晶棒2において、12-2=10mmのZ軸の溶融帯4の下端部から10mmの結晶棒2の部位でのM本の加熱レーザ光3の照射強度はImaxの10%の照射強度を有する。結晶成長速度が4mm/時間の場合、この間の冷却時間は2.5時間となる。結晶成長速度を2mm/時間とすれば、この冷却時間は5時間である。結晶棒2の上端部がこのような温度勾配で徐冷できることから、結晶棒2への残留熱歪を抑制する。 On the other hand, the position Z1 of the 50% irradiation intensity (0.5 × Imax) on the lower side is −6 mm. When the height H of the melting zone 4 is 4 mm, the lower end of the melting zone 4 is −2 mm. As a result, in the crystal rod 2, the irradiation intensity has an irradiation intensity of 50% of Imax at a portion of the crystal rod 2 of 4 mm from the lower end of the melting zone 4 of 6-2 = 4 mm in the Z axis. When the crystal growth rate is 4 mm / hour, the cooling time in this period is 1 hour. The position Z1 ′ of the lower 10% irradiation intensity (0.1 × Imax) is −6 mm. When the height H of the melting zone 4 is 4 mm, the lower end of the melting zone 4 is −12 mm. As a result, in the crystal rod 2, the irradiation intensity of the M heating laser beams 3 at the portion of the crystal rod 2 of 10 mm from the lower end of the melt zone 4 of Z axis of 12-2 = 10 mm is 10% of Imax. It has strength. When the crystal growth rate is 4 mm / hour, the cooling time in this period is 2.5 hours. If the crystal growth rate is 2 mm / hour, this cooling time is 5 hours. Since the upper end portion of the crystal rod 2 can be gradually cooled by such a temperature gradient, residual thermal strain on the crystal rod 2 is suppressed.
 [実施例3]
 図12は、実施例3に係る反射ミラー80の下部配置の一例を示す。図13は、実施例3に係る加熱レーザ光3の下部配置の場合の照射強度分布を示す。図13では、Z軸方向の照射強度分布と、X軸方向の照射強度分布とを示す。X軸方向の長さ10mm、Z軸方向の長さ10mmの矩形形状で、この矩形形状の照射強度分布は均一なトップハット形状の照射強度分布を有する加熱レーザ光3の下部にミラーを配置する。Z軸方向の上端部照射形状はもともとのトップハット照射強度分布に従い直線状の急峻な減少を実現する。高さ約4mm幅で略均一な強度分布を有し、その後6mmの高さにわたって、なだらかに照射強度が減少する。X方向の照射強度分布は10mmの均一な照射強度を有する。M個の反射ミラー80をM本の加熱レーザ光3の下部に配置し、光の回折効果を利用することによりZ軸の下方向になだらかな照射強度分布を実現できる。
[Example 3]
FIG. 12 shows an example of the lower arrangement of the reflection mirror 80 according to the third embodiment. FIG. 13 shows the irradiation intensity distribution in the case of the lower arrangement of the heating laser light 3 according to the third embodiment. FIG. 13 shows the irradiation intensity distribution in the Z-axis direction and the irradiation intensity distribution in the X-axis direction. A rectangular shape with a length of 10 mm in the X-axis direction and a length of 10 mm in the Z-axis direction, this rectangular shaped irradiation intensity distribution arranges a mirror under the heating laser beam 3 having a uniform top hat shaped irradiation intensity distribution. . The irradiation shape at the upper end in the Z-axis direction realizes a linear sharp decrease according to the original top hat irradiation intensity distribution. The height is about 4 mm wide and has a substantially uniform intensity distribution, and then the irradiation intensity gradually decreases over the height of 6 mm. The irradiation intensity distribution in the X direction has a uniform irradiation intensity of 10 mm. By disposing M reflection mirrors 80 below the M heating laser beams 3 and utilizing the light diffraction effect, it is possible to realize a gentle irradiation intensity distribution in the downward direction of the Z axis.
 [実施例4]
 図14は、調整前の照射強度分布の一例を示す。本例のレーザ照射ヘッド50は、Z軸調整用レンズ38およびX軸調整用レンズ39を備える。Z軸調整用レンズ38およびX軸調整用レンズ39は、加熱レーザ光3の照射強度分布を調整するための調整用レンズの一例である。本例のレーザ照射ヘッド50は、Z軸調整用レンズ38をM本の加熱レーザ光3の光軸より下方向にずらしてコマ収差を発生させる。これにより、レーザ照射ヘッド50は、Z軸方向における照射強度分布の非対称形状を調整する。例えば、本例のレーザ照射ヘッド50は、照射強度分布の下方向の傾斜が緩やかになるように調整する。
Example 4
FIG. 14 shows an example of the irradiation intensity distribution before adjustment. The laser irradiation head 50 of this example includes a Z axis adjustment lens 38 and an X axis adjustment lens 39. The Z axis adjustment lens 38 and the X axis adjustment lens 39 are an example of an adjustment lens for adjusting the irradiation intensity distribution of the heating laser light 3. The laser irradiation head 50 of this example shifts the Z-axis adjustment lens 38 downward from the optical axis of the M heating laser beams 3 to generate coma. Thereby, the laser irradiation head 50 adjusts the asymmetric shape of the irradiation intensity distribution in the Z-axis direction. For example, the laser irradiation head 50 of this example is adjusted so that the downward inclination of the irradiation intensity distribution is gentle.
 Z軸調整用レンズ38は、Z軸方向に曲率を有する。レーザ照射ヘッド50は、Z軸調整用レンズ38の位置を調整することにより、加熱レーザ光3の形状を調整できる。例えば、レーザ照射ヘッド50は、Z軸調整用レンズ38の位置を制御することにより、Z軸方向における照射強度分布の非対称形状を調整する。図14のグラフは、1枚のZ軸調整用レンズ38の光軸を下方向にシフトした場合に得られる加熱レーザ光3の照射強度分布を示す。即ち、加熱レーザ光3の光軸に対してZ軸調整用レンズ38の光軸を平行に下方向にシフトする。Z軸方向の上端部照射形状は直線状の急峻な減少を実現する。Z軸のZ=-8mmにわたって、なだらかに照射強度が減少する。 The Z axis adjustment lens 38 has a curvature in the Z axis direction. The laser irradiation head 50 can adjust the shape of the heating laser light 3 by adjusting the position of the Z axis adjustment lens 38. For example, the laser irradiation head 50 adjusts the asymmetric shape of the irradiation intensity distribution in the Z-axis direction by controlling the position of the Z-axis adjustment lens 38. The graph of FIG. 14 shows the irradiation intensity distribution of the heating laser beam 3 obtained when the optical axis of one Z-axis adjustment lens 38 is shifted downward. That is, the optical axis of the Z axis adjustment lens 38 is shifted downward in parallel to the optical axis of the heating laser light 3. The irradiation shape at the upper end in the Z-axis direction achieves a sharp and linear decrease. The radiation intensity decreases gently over Z = -8 mm of the Z axis.
 図15は、(X,Z)面での照射強度のシミュレーション図を示す。図15のグラフは、Z軸方向の加熱レーザ光3の照射強度(%)およびX軸方向の加熱レーザ光3の照射強度(%)を示す。X軸方向の加熱レーザ光3の照射強度(%)は、±4mmの幅で略均一な照射強度を有する。 FIG. 15 shows a simulation diagram of the irradiation intensity on the (X, Z) plane. The graph of FIG. 15 shows the irradiation intensity (%) of the heating laser light 3 in the Z-axis direction and the irradiation intensity (%) of the heating laser light 3 in the X-axis direction. The irradiation intensity (%) of the heating laser light 3 in the X-axis direction has a substantially uniform irradiation intensity with a width of ± 4 mm.
 X軸調整用レンズ39は、X軸方向に曲率を有する。これにより、レーザ照射ヘッド50は、X軸方向の略均一な照射強度を有する照射強度分布になるように調整できる。 The X axis adjustment lens 39 has a curvature in the X axis direction. Thus, the laser irradiation head 50 can be adjusted to have an irradiation intensity distribution having substantially uniform irradiation intensity in the X-axis direction.
 実施例4は、反射ミラー80を用いることなく、レーザ照射ヘッド50を構成する複数のレンズの配置を変更することにより、予め定められたZ軸方向の照射強度分布を実現できる。また、複数のレンズを交換することなく、複数のレンズの位置を調整することにより照射強度分布の下方向の傾斜を調整できる。 In the fourth embodiment, the irradiation intensity distribution in the predetermined Z-axis direction can be realized by changing the arrangement of the plurality of lenses constituting the laser irradiation head 50 without using the reflection mirror 80. Further, the downward inclination of the irradiation intensity distribution can be adjusted by adjusting the positions of the plurality of lenses without replacing the plurality of lenses.
 [実施例5]
 図16は、Z軸方向の照射強度分布の調整方法の一例を示す。本例のレーザ照射ヘッド50は、複数の調整用レンズのうち1枚もしくは複数枚の調整用レンズのZ軸とM本の加熱レーザ光3の光軸とのなす角を鋭角とするように、複数の調整用レンズのうち1枚もしくは複数枚の調整用レンズのZ軸を回転させる。コマ収差を発生させることにより、第1の照射強度分布の非対称形状を調整する。これにより、レーザ照射ヘッド50は、Z軸方向における照射強度分布の非対称形状を調整する。例えば、本例のレーザ照射ヘッド50は、照射強度分布の下方向の傾斜が緩やかになるように調整する。
[Example 5]
FIG. 16 shows an example of a method of adjusting the irradiation intensity distribution in the Z-axis direction. In the laser irradiation head 50 of this embodiment, an acute angle is formed between the Z axis of one or more adjustment lenses of the plurality of adjustment lenses and the optical axis of the M heating laser beams 3. The Z axis of one or more adjustment lenses of the plurality of adjustment lenses is rotated. By generating coma, the asymmetric shape of the first irradiation intensity distribution is adjusted. Thereby, the laser irradiation head 50 adjusts the asymmetric shape of the irradiation intensity distribution in the Z-axis direction. For example, the laser irradiation head 50 of this example is adjusted so that the downward inclination of the irradiation intensity distribution is gentle.
 X軸調整用レンズ39は、X軸方向に曲率を有する。これにより、レーザ照射ヘッド50は、X軸方向の略均一な照射強度を有する照射強度分布になるように調整できる。 The X axis adjustment lens 39 has a curvature in the X axis direction. Thus, the laser irradiation head 50 can be adjusted to have an irradiation intensity distribution having substantially uniform irradiation intensity in the X-axis direction.
 実施例5は、反射ミラー80を用いることなく、レーザ照射ヘッド50を構成する複数のレンズの配置を変更することにより、予め定められたZ軸方向の照射強度分布を実現できる。また、複数のレンズを交換することなく、複数のレンズの位置を調整することにより照射強度分布の下方向の傾斜を調整できる。 In the fifth embodiment, the irradiation intensity distribution in the predetermined Z-axis direction can be realized by changing the arrangement of the plurality of lenses constituting the laser irradiation head 50 without using the reflection mirror 80. Further, the downward inclination of the irradiation intensity distribution can be adjusted by adjusting the positions of the plurality of lenses without replacing the plurality of lenses.
 [実施例6]
 図17は、Z軸方向の照射強度分布の調整方法の一例を示す。本例の加熱レーザ光3の光軸をレーザ照射ヘッド50の光軸に対して下方向に傾けて入射し、コマ収差を発生させることにより、第1の照射強度分布の非対称形状を調整する。これにより、レーザ照射ヘッド50は、Z軸方向における照射強度分布の非対称形状を調整する。例えば、本例のレーザ照射ヘッド50は、照射強度分布の下方向の傾斜が緩やかになるように調整する。
[Example 6]
FIG. 17 shows an example of a method of adjusting the irradiation intensity distribution in the Z-axis direction. The optical axis of the heating laser beam 3 of this embodiment is inclined downward with respect to the optical axis of the laser irradiation head 50 to generate coma aberration, thereby adjusting the asymmetric shape of the first irradiation intensity distribution. Thereby, the laser irradiation head 50 adjusts the asymmetric shape of the irradiation intensity distribution in the Z-axis direction. For example, the laser irradiation head 50 of this example is adjusted so that the downward inclination of the irradiation intensity distribution is gentle.
 X軸調整用レンズ39は、X軸方向に曲率を有する。これにより、レーザ照射ヘッド50は、X軸方向に略均一な照射強度分布を有するように調整できる。 The X axis adjustment lens 39 has a curvature in the X axis direction. As a result, the laser irradiation head 50 can be adjusted to have a substantially uniform irradiation intensity distribution in the X-axis direction.
 実施例6は、反射ミラー80を用いることなく、レーザ照射ヘッド50を構成する複数のレンズの配置を変更することにより、予め定められたZ軸方向の照射強度分布を実現できる。また、複数のレンズを交換することなく、複数のレンズの位置を調整することにより照射強度分布の下方向の傾斜を調整できる。 In the sixth embodiment, the irradiation intensity distribution in the predetermined Z-axis direction can be realized by changing the arrangement of the plurality of lenses constituting the laser irradiation head 50 without using the reflection mirror 80. Further, the downward inclination of the irradiation intensity distribution can be adjusted by adjusting the positions of the plurality of lenses without replacing the plurality of lenses.
 本例の単結晶育成装置100は、溶融帯4から原料棒1への吸い込みを抑制することにより、溶融帯4の直径の狭幅化や原料棒1の直径の増大を抑制し、溶融帯4を安定化させる。また、本例の単結晶育成装置100は結晶棒2への残留熱歪を緩和させ、クラックフリーで、良質な物性特性の単結晶を提供できる。 The single crystal growth apparatus 100 of the present example suppresses the narrowing of the diameter of the melting zone 4 and the increase of the diameter of the raw material rod 1 by suppressing the suction from the melting zone 4 to the raw material rod 1, and the melting zone 4. Stabilize In addition, the single crystal growth apparatus 100 of this example can relieve the residual thermal strain on the crystal rod 2 and provide a crack-free single crystal with good physical properties.
 なお、図14から図17で示したZ軸調整用レンズ38は、シリンドリカルレンズ又は複数のレンズ群で構成されてよい。 The Z-axis adjustment lens 38 shown in FIGS. 14 to 17 may be configured of a cylindrical lens or a plurality of lens groups.
 本例の単結晶育成装置100は、溶融帯4から原料棒1への吸い込みを抑制することにより、溶融帯4の直径の狭幅化や原料棒1の直径の増大を抑制し、溶融帯4を安定化させる。また、本例の単結晶育成装置100は結晶棒2への残留熱歪を緩和させ、クラックフリーで、良質な物性特性の単結晶を提供できる。 The single crystal growth apparatus 100 of the present example suppresses the narrowing of the diameter of the melting zone 4 and the increase of the diameter of the raw material rod 1 by suppressing the suction from the melting zone 4 to the raw material rod 1, and the melting zone 4. Stabilize In addition, the single crystal growth apparatus 100 of this example can relieve the residual thermal strain on the crystal rod 2 and provide a crack-free single crystal with good physical properties.
 なお、本明細書において、実施例2および3において、M個の調整部としてM個の反射ミラー80を用いる場合について説明した。但し、単結晶育成装置100は、M本の加熱レーザ光3の照射強度分布を調整できるものであれば、任意の調整部を用いてよい。例えば、単結晶育成装置100は、原料棒1の近傍にスリットが設けられた透過防止用材料をM個の調整部として備える。また、単結晶育成装置100は、凹凸形状の反射鏡を用いたホログラム法により、M本の加熱レーザ光3の照射強度分布を調整してよい。さらに、単結晶育成装置100は、M個のレーザ照射ヘッド50内に光路差を設け、反射鏡を用いた干渉法により、照射強度分布を調整してよい。 In the present specification, in the second and third embodiments, the case where M reflection mirrors 80 are used as the M adjustment units has been described. However, as long as the single crystal growth apparatus 100 can adjust the irradiation intensity distribution of the M heating laser beams 3, any adjustment unit may be used. For example, the single crystal growth apparatus 100 includes, as M adjustment units, transmission preventing materials provided with slits in the vicinity of the raw material rod 1. In addition, the single crystal growth apparatus 100 may adjust the irradiation intensity distribution of the M heating laser beams 3 by the hologram method using the reflecting mirror having the concavo-convex shape. Furthermore, the single crystal growth apparatus 100 may provide an optical path difference in the M laser irradiation heads 50 and adjust the irradiation intensity distribution by an interference method using a reflecting mirror.
 また、実施例4~5において調整部を用いることなく照射ヘッドのレンズの配置を設計することによりM本の加熱レーザ光3のZ軸方向の照射形状を非対称照射形状分布にする方法を述べた。また、実施例6において調整部を用いることなく加熱レーザ光3の光軸をレーザ照射ヘッド50のレンズの光軸から下方向に傾けて配置することにより、M本の加熱レーザ光3のZ軸方向の照射形状を非対称照射形状分布にする方法を述べた。これらの方法は調整部を使わない、また、M本の加熱レーザ光3を反射しないことからM本の加熱レーザ光3のロスを小さくできる点で優れる。 Further, in the fourth to fifth embodiments, the method of setting the irradiation shapes of the M heating laser beams 3 in the Z-axis direction to the asymmetric irradiation shape distribution by designing the arrangement of the lenses of the irradiation head without using the adjustment unit . In the sixth embodiment, the Z axis of the M heating laser beams 3 is arranged by inclining the optical axis of the heating laser beams 3 downward from the optical axis of the lens of the laser irradiation head 50 without using the adjustment unit. The method of making the irradiation shape of direction into the asymmetric irradiation shape distribution was described. These methods are excellent in that the adjustment section is not used and the loss of the M heating laser beams 3 can be reduced because the M heating laser beams 3 are not reflected.
 以上説明したように、単結晶育成装置100は、次の特徴を有するM本の加熱レーザ光3を生成して原料棒1および結晶棒2に照射する。 As described above, the single crystal growth apparatus 100 generates M heating laser beams 3 having the following features and irradiates the raw material rods 1 and the crystal rods 2 with each other.
 (1)単結晶育成装置100は、Z軸方向において、結晶棒2の上端部の照射強度分布が緩やかに減少するM本の加熱レーザ光3を生成する。 (1) The single crystal growth apparatus 100 generates M heating laser beams 3 in which the irradiation intensity distribution at the upper end of the crystal rod 2 gradually decreases in the Z-axis direction.
 (2)単結晶育成装置100は、Z軸方向において、原料棒1の下端部の照射強度分布が急峻に減少するM本の加熱レーザ光3を生成する。 (2) The single crystal growth apparatus 100 generates M heating laser beams 3 whose irradiation intensity distribution at the lower end portion of the raw material rod 1 sharply decreases in the Z-axis direction.
 (3)単結晶育成装置100は、Z軸方向において、結晶棒2の上端部の照射強度分布が緩やかに減少するM本の加熱レーザ光3を生成し、原料棒1の下端部の照射強度分布が急峻に減少するM本の加熱レーザ光3を生成する。単結晶育成装置100は、簡便に照射強度分布を調整できるM個のレーザ照射ヘッド50を備えてよい。 (3) The single crystal growth apparatus 100 generates M heating laser beams 3 in which the irradiation intensity distribution at the upper end of the crystal rod 2 gradually decreases in the Z-axis direction, and the irradiation intensity at the lower end of the raw material rod 1 M heating laser beams 3 whose distribution sharply decreases are generated. The single crystal growth apparatus 100 may include M laser irradiation heads 50 that can easily adjust the irradiation intensity distribution.
 (4)単結晶育成装置100は、Z軸方向において、結晶棒2の上端部の照射強度分布が緩やかに減少するM本の加熱レーザ光3を生成し、原料棒1の下端部の照射強度分布が急峻に減少するM本の加熱レーザ光3を生成する。単結晶育成装置100は、簡便に照射強度分布を調整できるM個の反射ミラー80を備えてよい。
 (5)M本の光ファイバ40は、円形断面形状を有するファイバで上記(1)~(4)の照射強度分布のM本の加熱レーザ光3を生成できる。原料棒1の中心軸方向であるZ軸方向かつ径(X方向もしくはR方向)方向が略均一の照射強度分布を有する加熱レーザ光は、高価な矩形断面の矩形ファイバを必要とする。円形ファイバは安価であるので、コストダウンのメリットも大きい。
(4) The single crystal growth apparatus 100 generates M heating laser beams 3 in which the irradiation intensity distribution at the upper end of the crystal rod 2 gradually decreases in the Z-axis direction, and the irradiation intensity at the lower end of the raw material rod 1 M heating laser beams 3 whose distribution sharply decreases are generated. The single crystal growth apparatus 100 may be provided with M reflection mirrors 80 which can easily adjust the irradiation intensity distribution.
(5) The M optical fibers 40 are fibers having a circular cross-sectional shape and can generate the M heating laser beams 3 of the irradiation intensity distribution of the above (1) to (4). The heating laser beam having an irradiation intensity distribution substantially uniform in the Z axis direction and the diameter (X direction or R direction) direction which is the central axis direction of the raw material rod 1 requires a rectangular fiber of an expensive rectangular cross section. Since circular fiber is inexpensive, the merit of cost reduction is also great.
 (6)M個のレーザ照射ヘッド50は、上記(1)~(4)の照射強度分布を、少ないレンズ枚数で調整できる。これにより、M個のレーザ照射ヘッド50のコストが低減される。また、M個のレーザ照射ヘッド50のサイズが小さくなり、単結晶育成装置100の装置サイズも小さくできる。例えば、単結晶育成装置100の装置サイズは、従来の装置サイズ幅1400mm、奥行き1600mmに対して、幅1100mm、奥行き1100mm程度になる。 (6) The M laser irradiation heads 50 can adjust the irradiation intensity distribution of the above (1) to (4) with a small number of lenses. This reduces the cost of the M laser irradiation heads 50. In addition, the size of the M laser irradiation heads 50 can be reduced, and the apparatus size of the single crystal growth apparatus 100 can also be reduced. For example, the apparatus size of the single crystal growth apparatus 100 is about 1100 mm in width and about 1100 mm in depth with respect to the conventional apparatus size of 1400 mm in width and 1600 mm in depth.
 (7)単結晶育成装置100は、溶融帯4の半径0.5mmφ程度の小さな領域の温度を結晶成長中にモニターできる。これにより、溶融帯4の温度を精度よく制御でき、単結晶を安定して成長させるための技術を提供する。また、成長中の結晶棒2の上端部の領域の温度を結晶成長中にモニターできる。この結果、単結晶成長時の溶融温度設定の再現性を確保でき、結晶棒2の冷却速度をモニターでき、高品質の単結晶作製への重要な生産技術が提供される。 (7) The single crystal growth apparatus 100 can monitor the temperature of a small region of about 0.5 mmφ in radius of the melting zone 4 during crystal growth. Thereby, the temperature of the melting zone 4 can be accurately controlled, and a technique for stably growing a single crystal is provided. In addition, the temperature of the region at the upper end of the growing crystal rod 2 can be monitored during crystal growth. As a result, the reproducibility of setting of the melting temperature at the time of single crystal growth can be secured, the cooling rate of the crystal rod 2 can be monitored, and an important production technique for producing high quality single crystals is provided.
 (8)M本の加熱レーザ光3は、2台の電源10と1台のレーザ光分割装置30で形成される。従来の装置では5本の加熱レーザ光3のために、5台の電源、5台のレーザ光源が必要である。5台のレーザ光源への5本の冷却水の供給が必要である。1台のレーザ光分割装置30を有する単結晶育成装置100の場合、電源10は2台でよい。本体レーザを大きなワット数の半導体レーザを1個用意すればよい。この結果、1台当たり数百万円する高価なレーザ光源のコストを低減できる。半導体レーザには水冷機構や乾燥エアーが必要である。5台のレーザ光源への冷却水は5本の配水、5本の戻り水流量調整などの複雑な調整が不要となる。特に戻り水の温度を5台のダイオードで個別に制御できない。5台のレーザ光源を個別に温度制御するには5台のチラーが必要になってしまう。レーザ光源の冷却温度の精度が確保できないことはレーザ光の出力強度の安定性、再現性に大きな影響を与える。レーザ光を発生する半導体ダイオードの温度による出力強度依存性は大きいことによる。レーザ光源の付着水を防止するための乾燥ガスの複雑な配管も必要なくなる。このように、必要な周辺装置の個数を激減でき、大きなコストメリットをもたらす。単結晶育成装置100は、1台のレーザ光源20の高い温度精度での制御が可能になり、M本の加熱レーザ光3の照射強度の温度依存性を向上させる。 (8) The M heating laser beams 3 are formed by two power supplies 10 and one laser beam splitting device 30. The conventional apparatus requires five power supplies and five laser light sources for five heating laser beams 3. It is necessary to supply five cooling waters to five laser light sources. In the case of a single crystal growth apparatus 100 having one laser beam splitting device 30, two power supplies 10 may be sufficient. A single wattage semiconductor laser may be prepared for the main body laser. As a result, it is possible to reduce the cost of an expensive laser light source which costs several million yen per unit. The semiconductor laser requires a water cooling mechanism and dry air. The cooling water to the five laser light sources does not require complicated adjustments such as five water distribution and five return water flow adjustment. In particular, the temperature of the return water can not be controlled individually by the five diodes. Five chillers are required to individually control the temperature of the five laser light sources. The inability to ensure the accuracy of the cooling temperature of the laser light source greatly affects the stability and repeatability of the output intensity of the laser light. The output intensity dependency of the temperature of the semiconductor diode that generates laser light is large. It also eliminates the need for complex piping of dry gas to prevent water adhesion of the laser light source. In this way, the number of necessary peripheral devices can be drastically reduced, leading to a great cost advantage. The single crystal growth apparatus 100 enables control of one laser light source 20 with high temperature accuracy, and improves the temperature dependency of the irradiation intensity of the M heating laser beams 3.
 また、1台のレーザ光分割装置30により分割する方法は、5本の照射光のばらつきを簡単に抑えられる。5%程度まで調整できる。複数のレーザ光の場合、半導体レーザ特性の個体差が存在する。このため、加熱レーザ光のばらつきを10%以下に抑えることが困難である。また、ばらつき量は使用時間とともに変化していく。このように、多数個の半導体レーザを用いる場合、特性のばらつきが抑えられず結晶作製に深刻な問題が生じる。いくら原料棒1のX軸方向に均一性を確保しても、そもそもの照射強度分布に照射強度のばらつきを低減できない。本例の単結晶育成装置100は、1台のレーザ光源20を1台のレーザ光分割装置30により分割するので、原理的にM本の加熱レーザ光3の照射強度のばらつきが生じないばかりでなく経時変化によるばらつきを発生させない。 Moreover, the method of dividing | segmenting by one set of laser beam splitter 30 can suppress easily the dispersion | variation in five irradiation lights. It can be adjusted to about 5%. In the case of a plurality of laser beams, there are individual differences in semiconductor laser characteristics. For this reason, it is difficult to suppress the variation of the heating laser light to 10% or less. Also, the amount of variation changes with time of use. As described above, in the case of using a large number of semiconductor lasers, variation in the characteristics can not be suppressed and a serious problem occurs in crystal production. Even if the uniformity in the X-axis direction of the raw material rod 1 is secured, the variation of the irradiation intensity can not be reduced to the original irradiation intensity distribution. In the single crystal growth apparatus 100 of this example, one laser light source 20 is divided by one laser light dividing device 30, so that in principle there is no variation in the irradiation intensity of the M heating laser beams 3 There will be no variation due to aging.
 以上、加熱レーザ光方式の単結晶育成装置100は、トップハット照射強度の照射強度分布を有する従来のレーザ加熱方式にない特徴を有する。即ち、単結晶育成装置100は、成長した単結晶への熱歪を大幅に軽減できる。結晶成長時間を考慮しつつ、育成した結晶への冷却時間を制御できることは、単結晶育成に欠かせない技術である。従来のトップハット照射形状の照射強度分布の照射強度分布をもつ加熱レーザ方式は得られた結晶棒2の急速冷却環境を避けられない。結晶棒2への大きな残留ひずみを与えることは自明であり、結晶作製技術の上で大変深刻な問題を抱えている。 As described above, the heating laser light single crystal growth apparatus 100 has a feature that is not found in the conventional laser heating method having the irradiation intensity distribution of the top hat irradiation intensity. That is, the single crystal growth apparatus 100 can significantly reduce the thermal strain on the grown single crystal. Being able to control the cooling time to the grown crystal while considering the crystal growth time is an essential technology for single crystal growth. The heating laser method having the irradiation intensity distribution of the irradiation intensity distribution of the conventional top hat irradiation shape can not avoid the rapid cooling environment of the obtained crystal rod 2. It is obvious to apply a large residual strain to the crystal rod 2, and it has very serious problems in the crystal preparation technology.
 加熱レーザ光方式の単結晶育成装置100は、成長した単結晶への熱歪を大幅に軽減できると同時に、原料棒への溶融液の吸い込み抑制を実現する。これにより、溶融帯の安定性を損なうことなく、成長した単結晶への熱歪を大幅に軽減できる。 The heating laser light type single crystal growth apparatus 100 can significantly reduce the thermal strain on the grown single crystal and, at the same time, can suppress the suction of the melt into the raw material rod. Thereby, the thermal strain to the grown single crystal can be greatly reduced without impairing the stability of the melting zone.
 本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 Although the present invention has been described using the embodiment, the technical scope of the present invention is not limited to the scope described in the above embodiment. It is apparent to those skilled in the art that various changes or modifications can be added to the above embodiment. It is also apparent from the scope of the claims that the embodiments added with such alterations or improvements can be included in the technical scope of the present invention.
1・・・原料棒、2・・・結晶棒、3・・・加熱レーザ光、4・・・溶融帯、5・・・レーザ光、6・・・石英管、10・・・電源、20・・・レーザ光源、25・・・ヒートシンク、30・・・レーザ光分割装置、31・・・Y方向コリメータ、32・・・X方向コリメータ、33・・・分割ミラー、36・・・第1集光レンズ、37・・・第2集光レンズ、38・・・Z軸調整用レンズ、39・・・X軸調整用レンズ、40・・・光ファイバ、50・・・レーザ照射ヘッド、60・・・ダンパ、70-1・・・放射温度計、70-2・・・放射温度計、80・・・反射ミラー、100・・・単結晶育成装置、500・・・単結晶育成装置、501・・・原料棒、502・・・結晶棒、503・・・加熱レーザ光、504・・・溶融帯、540・・・光ファイバ、550・・・レーザ照射ヘッド DESCRIPTION OF SYMBOLS 1 ... Raw material stick | rod 2. Crystal rod 3 Heating laser beam 4 Melting zone 5 Laser beam 6 Quartz tube 10 Power source 20 ... Laser light source, 25 ... Heat sink, 30 ... Laser beam splitting device, 31 ... Y direction collimator, 32 ... X direction collimator, 33 ... Split mirror, 36 ... First Condenser lens 37: second condenser lens 38: Z-axis adjustment lens 39: X-axis adjustment lens 40: optical fiber 50: laser irradiation head 60 ... Damper, 70-1 ... Radiation thermometer, 70-2 ... Radiation thermometer, 80 ... Reflection mirror, 100 ... Single crystal growth device, 500 ... Single crystal growth device, 501: Raw material rod, 502: Crystal rod, 503: Heating laser beam, 504: Melting zone, 5 0 ... optical fiber, 550 ... laser irradiation head

Claims (37)

  1.  鉛直方向を第1方向として、前記第1方向に沿って延伸する原料棒と、
     前記原料棒を中心として放射状に設けられ、前記原料棒にM本の加熱レーザ光を照射するM個のレーザ照射ヘッドと
     を備え、
     前記加熱レーザ光の光軸に直交する2次元平面における前記M本の加熱レーザ光の照射強度分布は、前記第1方向において予め定められた第1の照射強度分布を有し、且つ、前記第1方向と直交する第2方向の第2の照射強度分布は略均一の照射強度を有し、
     前記第1の照射強度分布は、最大強度Imaxもしくは連続する最大強度Imaxの下端部の位置をZLとし、最大強度Imaxの下方向の50%照射強度(0.5×Imax)の位置をZ1とすると、
     ZL-Z1≧2mm
     である
     単結晶育成装置。
    A raw material rod extending along the first direction with the vertical direction as the first direction;
    M laser irradiation heads provided radially around the raw material rod and irradiating the raw material rods with M heating laser beams;
    The irradiation intensity distribution of the M heating laser beams in a two-dimensional plane orthogonal to the optical axis of the heating laser light has a first irradiation intensity distribution predetermined in the first direction, and The second radiation intensity distribution in the second direction orthogonal to the one direction has a substantially uniform radiation intensity,
    In the first irradiation intensity distribution, the position of the lower end of the maximum intensity Imax or the continuous maximum intensity Imax is ZL, and the position of the 50% irradiation intensity (0.5 × Imax) below the maximum intensity Imax is Z1. Then,
    ZL-Z1 2 2 mm
    A single crystal growth system.
  2.  前記第1の照射強度分布は、釣り鐘型の照射強度分布を有する
     請求項1に記載の単結晶育成装置。
    The single crystal growth apparatus according to claim 1, wherein the first irradiation intensity distribution has a bell-shaped irradiation intensity distribution.
  3.  前記第1の照射強度分布は、直線形型もしくは多角形型の照射強度分布を有する
     請求項1に記載の単結晶育成装置。
    The single crystal growth apparatus according to claim 1, wherein the first irradiation intensity distribution has a linear or polygonal irradiation intensity distribution.
  4.  前記第1の照射強度分布は、釣り鐘型の照射強度分布の一部と、直線形もしくは多角形型の照射強度分布の一部との組み合わせからなる照射強度分布を有する
     請求項1に記載の単結晶育成装置。
    The single radiation intensity distribution according to claim 1, wherein the first radiation intensity distribution comprises a combination of a part of a bell-shaped radiation intensity distribution and a part of a linear or polygonal radiation intensity distribution. Crystal growth device.
  5.  前記第1の照射強度分布は、前記第1方向において、上方向と下方向の照射強度分布が非対称である
     請求項1から4のいずれか一項に記載の単結晶育成装置。
    The single crystal growth apparatus according to any one of claims 1 to 4, wherein the first irradiation intensity distribution has an asymmetrical irradiation intensity distribution in the upper direction and the lower direction in the first direction.
  6.  前記第1の照射強度分布は、前記上方向の照射強度が減少する勾配は、前記下方向の照射強度が減少する勾配より大きい
     請求項5に記載の単結晶育成装置。
    The single crystal growth apparatus according to claim 5, wherein the first irradiation intensity distribution has a gradient in which the irradiation intensity in the upward direction decreases is larger than a gradient in which the irradiation intensity in the downward direction decreases.
  7.  前記第1の照射強度分布は、
     最大強度Imaxもしくは連続する最大強度Imaxの上端部の位置をZUとし、前記最大強度Imaxの上方向の50%照射強度(0.5×Imax)の位置をZ2とすると、
     3mm≧Z2-ZU≧0mm
     である
     請求項1から6のいずれか一項に記載の単結晶育成装置。
    The first irradiation intensity distribution is
    Assuming that the position of the upper end portion of the maximum intensity Imax or the continuous maximum intensity Imax is ZU, and the position of the upper 50% irradiation intensity (0.5 × Imax) of the maximum intensity Imax is Z2.
    3 mm Z Z2-ZU ≧ 0 mm
    The single crystal growth apparatus according to any one of claims 1 to 6.
  8.  前記M個のレーザ照射ヘッドと前記原料棒との間に設けられ、前記M個のレーザ照射ヘッドから照射された前記M本の加熱レーザ光の照射強度分布を調整するM個の調整部を更に備える
     請求項1から7のいずれか一項に記載の単結晶育成装置。
    The M adjustment units provided between the M laser irradiation heads and the raw material rod and adjusting the irradiation intensity distribution of the M heating laser beams irradiated from the M laser irradiation heads are further provided. An apparatus for growing a single crystal according to any one of claims 1 to 7, comprising.
  9.  前記M個の調整部は、前記M本の加熱レーザ光の少なくとも一部を反射することにより、前記M本の加熱レーザ光の照射強度分布を調整するM個の反射ミラーである
     請求項8に記載の単結晶育成装置。
    The M adjustment units are M reflection mirrors that adjust the irradiation intensity distribution of the M heating laser beams by reflecting at least a part of the M heating laser beams. The single crystal growth apparatus of description.
  10.  前記M個の反射ミラーは、前記第1の照射強度分布の上部もしくは下部に設けられる
     請求項9に記載の単結晶育成装置。
    The single crystal growth apparatus according to claim 9, wherein the M reflection mirrors are provided at the upper or lower part of the first irradiation intensity distribution.
  11.  前記M個の調整部は、前記M本の加熱レーザ光の少なくとも一部を吸収することにより、前記M本の加熱レーザ光の照射強度分布を調整するM個の吸収材料である
     請求項8に記載の単結晶育成装置。
    The M adjustment units are M absorption materials that adjust the irradiation intensity distribution of the M heating laser beams by absorbing at least a part of the M heating laser beams. The single crystal growth apparatus of description.
  12.  前記M個の吸収材料は、前記第1の照射強度分布の上部もしくは下部に設けられる
     請求項11に記載の単結晶育成装置。
    The single crystal growth apparatus according to claim 11, wherein the M absorption materials are provided at the upper or lower part of the first irradiation intensity distribution.
  13.  前記M個のレーザ照射ヘッドは、奇数個からなる
     請求項1から12のいずれか一項に記載の単結晶育成装置。
    The single crystal growth apparatus according to any one of claims 1 to 12, wherein the M laser irradiation heads are an odd number.
  14.  前記M個の調整部は、奇数個からなる
     請求項8から12のいずれか一項に記載の単結晶育成装置。
    The single crystal growth apparatus according to any one of claims 8 to 12, wherein the M adjustment units are an odd number.
  15.  1本のレーザ光を照射する1台のレーザ光源と、
     前記1本のレーザ光をM本に分割する1台のレーザ光分割装置と、
     前記1台のレーザ光分割装置から入射した前記M本のレーザ光をM本の加熱レーザ光として出射するM本の光ファイバと
     を備え、
     前記M本の光ファイバからの前記M本の加熱レーザ光を予め定められた照射強度分布に成形する前記M個のレーザ照射ヘッドは、M>1である
     請求項1から14のいずれか一項に記載の単結晶育成装置。
    One laser light source for irradiating one laser beam,
    One laser beam splitting device for splitting the one laser beam into M beams;
    And M optical fibers for emitting the M laser beams incident from the one laser beam splitting device as M heating laser beams.
    The M laser irradiation heads for forming the M heating laser beams from the M optical fibers into a predetermined irradiation intensity distribution have a relationship of M> 1. The single crystal growth apparatus described in.
  16.  前記M個のレーザ照射ヘッドは複数のレンズを備える
     請求項1から15のいずれか一項に記載の単結晶育成装置。
    The single crystal growth apparatus according to any one of claims 1 to 15, wherein the M laser irradiation heads include a plurality of lenses.
  17.  前記複数のレンズは、Z軸方向に曲率のある1又は複数のレンズを有し、
     前記M本の加熱レーザ光の光軸を前記Z軸方向に曲率のある1又は複数のレンズの光軸に対して下方向に傾けて入射する光軸配置として、コマ収差を発生させることにより、前記第1の照射強度分布の非対称形状を調整する
     請求項16に記載の単結晶育成装置。
    The plurality of lenses include one or more lenses having a curvature in the Z-axis direction,
    By generating a coma aberration as an optical axis arrangement in which the optical axes of the M heating laser beams are inclined downward with respect to the optical axes of one or a plurality of lenses having a curvature in the Z axis direction, The single crystal growth apparatus according to claim 16, wherein the asymmetric shape of the first irradiation intensity distribution is adjusted.
  18.  前記複数のレンズは、Z軸方向に曲率のある1又は複数の調整用レンズを有し、
     前記複数のレンズは、前記1又は複数の調整用レンズの位置を制御することにより、前記第1の照射強度分布の非対称形状を調整する
     請求項16に記載の単結晶育成装置。
    The plurality of lenses includes one or more adjustment lenses having a curvature in the Z-axis direction,
    17. The single crystal growth device according to claim 16, wherein the plurality of lenses adjust the asymmetric shape of the first irradiation intensity distribution by controlling the positions of the one or more adjustment lenses.
  19.  前記複数のレンズは、前記1又は複数の調整用レンズの光軸を前記M本の加熱レーザ光の光軸より前記下方向にずらしてコマ収差を発生させることにより、前記第1の照射強度分布の非対称形状を調整する
     請求項18に記載の単結晶育成装置。
    The first irradiation intensity distribution by causing the plurality of lenses to shift the optical axes of the one or more adjustment lenses downward with respect to the optical axes of the M heating laser beams to generate a coma aberration The single crystal growth apparatus according to claim 18, wherein the asymmetric shape of is adjusted.
  20.  前記複数のレンズは、前記1又は複数の調整用レンズのZ軸と前記M本の加熱レーザ光の光軸とのなす角を鋭角とするように、前記1又は複数の調整用レンズのZ軸を回転させ、コマ収差を発生させることにより、前記第1の照射強度分布の非対称形状を調整する
     請求項18に記載の単結晶育成装置。
    The plurality of lenses have an acute angle formed by the Z axis of the one or more adjustment lenses and the optical axes of the M heating laser beams, and the Z axis of the one or more adjustment lenses is The single crystal growth apparatus according to claim 18, wherein the asymmetry shape of the first irradiation intensity distribution is adjusted by rotating the light source to generate coma aberration.
  21.  前記複数の調整用レンズは、シリンドリカルレンズ又は複数のレンズ群である
     請求項18から20のいずれか一項に記載の単結晶育成装置。
    The single crystal growth device according to any one of claims 18 to 20, wherein the plurality of adjustment lenses are cylindrical lenses or a plurality of lens groups.
  22.  前記M本のレーザ照射ヘッドは、
     結晶の成長速度をSとし、
     前記第1方向の釣り鐘型の照射強度分布において、照射強度が最大値の10%となる幅をZとし、前記原料棒が溶融した溶融帯の前記第1方向の高さをHとしたとき、
     (Z-H)/2≧S
     を満たすように前記複数のレンズを配置する
     請求項16から21のいずれか一項に記載の単結晶育成装置。
    The M laser irradiation heads are
    Let S be the crystal growth rate,
    In bell-shaped irradiation intensity distribution of the first direction, when the irradiation intensity of the width of 10% of the maximum value and Z 0, the height of the first direction of the melting zone in which the feed rod is melted and H ,
    (Z 0 -H) / 2 ≧ S
    The single crystal growth apparatus according to any one of claims 16 to 21, wherein the plurality of lenses are arranged to satisfy the following.
  23.  前記M個のレーザ照射ヘッドは、
     前記M本の加熱レーザ光の前記第2方向の略均一の照射強度分布の幅をLとし、
     前記原料棒の直径をDとしたとき、
     L≧D
     を満たすように前記複数のレンズを配置する
     請求項16から22のいずれか一項に記載の単結晶育成装置。
    The M laser irradiation heads are
    Let L be the width of the substantially uniform irradiation intensity distribution in the second direction of the M heating laser beams,
    When the diameter of the raw material rod is D,
    L D D
    The single crystal growth apparatus according to any one of claims 16 to 22, wherein the plurality of lenses are arranged to satisfy the following.
  24.  前記レーザ光分割装置は、
     前記1台のレーザ光源からの前記1本のレーザ光を平行光に変換するコリメータレンズと、
     前記1本のレーザ光をM本のレーザ光に分割する複数の分割ミラーと、
     前記M本のレーザ光を前記M本の光ファイバに集光する集光レンズと
     を有する請求項15に記載の単結晶育成装置。
    The laser beam splitting device
    A collimator lens for converting the one laser beam from the one laser light source into parallel light;
    A plurality of split mirrors for splitting the one laser beam into M laser beams;
    The single crystal growth apparatus according to claim 15, further comprising: a condensing lens that condenses the M laser beams onto the M optical fibers.
  25.  前記原料棒が溶融した溶融帯から発光する輻射光強度を計測することにより、前記溶融帯の温度を計測する放射温度計を更に備え、
     前記M本の加熱レーザ光の照射強度を、N<Mを満たすように設けられたN台の電源の出力により制御する
     請求項1から24のいずれか一項に記載の単結晶育成装置。
    The radiation rod further includes a radiation thermometer which measures the temperature of the melting zone by measuring the intensity of light emitted from the melting zone where the raw material rod is melted.
    The single crystal growth apparatus according to any one of claims 1 to 24, wherein the irradiation intensity of the M heating laser beams is controlled by the output of N power supplies provided to satisfy N <M.
  26.  前記原料棒から育成した結晶棒から発光する輻射光強度を計測することにより、前記結晶棒の温度を計測する放射温度計を更に備え、
     前記放射温度計の計測温度に基づいて、前記M個の調整部を調整する
     請求項8から14のいずれか一項に記載の単結晶育成装置。
    The radiation rod further includes a radiation thermometer that measures the temperature of the crystal rod by measuring the intensity of light emitted from the crystal rod grown from the raw material rod.
    The single crystal growth apparatus according to any one of claims 8 to 14, wherein the M adjustment units are adjusted based on the measured temperature of the radiation thermometer.
  27.  前記M本の光ファイバの断面形状は、円形断面形状、楕円断面形状、矩形状およびこれらの形状を組み合わせた形状の少なくとも1つの組み合わせからなる長円形断面形状を有する
     請求項1から26のいずれか一項に記載の単結晶育成装置。
    The cross-sectional shape of the M optical fibers has an oval cross-sectional shape made of at least one combination of a circular cross-sectional shape, an elliptical cross-sectional shape, a rectangular shape, and a shape combining these shapes. The single crystal growth apparatus according to one aspect.
  28.  前記加熱レーザ光の光軸に直交する2次元平面における前記M本の加熱レーザ光の照射強度分布の形状は、円形状、楕円形状、矩形状およびこれらの形状の一部を組み合わせた形状の少なくとも1つの形状を含む長円形状を有する
     請求項1から27のいずれか一項に記載の単結晶育成装置。
    The shape of the irradiation intensity distribution of the M heating laser beams in a two-dimensional plane orthogonal to the optical axis of the heating laser beam has a circular shape, an elliptical shape, a rectangular shape, or at least a shape combining some of these shapes. 28. The single crystal growth device according to any one of claims 1 to 27, having an oval shape including one shape.
  29.  鉛直方向に延伸する原料棒を用意し、
     前記原料棒を中心として放射状に設けられたM個のレーザ照射ヘッドを用いて、前記原料棒にM本の加熱レーザ光を照射し、
     前記加熱レーザ光の光軸に直交する2次元平面における前記M本の加熱レーザ光の照射強度分布は、前記鉛直方向を第1方向として、予め定められた第1の照射強度分布を有し、且つ、前記第1方向と直交する第2方向の第2の照射強度分布は略均一の照射強度を有し、
     前記第1の照射強度分布は、最大強度Imaxもしくは連続する最大強度Imaxの下端部の位置をZLとし、最大強度Imaxの下方向の50%照射強度(0.5×Imax)の位置をZ1とすると、
     ZL-Z1≧2mm
     である
     単結晶の育成方法。
    Prepare a raw material rod that extends in the vertical direction,
    The raw material rods are irradiated with M heating laser beams using M laser irradiation heads provided radially about the raw material rod;
    The irradiation intensity distribution of the M heating laser beams in a two-dimensional plane orthogonal to the optical axis of the heating laser light has a first irradiation intensity distribution determined in advance with the vertical direction as a first direction, And, the second irradiation intensity distribution in the second direction orthogonal to the first direction has a substantially uniform irradiation intensity,
    In the first irradiation intensity distribution, the position of the lower end of the maximum intensity Imax or the continuous maximum intensity Imax is ZL, and the position of the 50% irradiation intensity (0.5 × Imax) below the maximum intensity Imax is Z1. Then,
    ZL-Z1 2 2 mm
    How to grow single crystals.
  30.  前記第1の照射強度分布は、上方向の照射強度減少する勾配は、前記下方向の照射強度減少する勾配より大きい
     請求項29に記載の単結晶の育成方法。
    The method for growing a single crystal according to claim 29, wherein the first irradiation intensity distribution is such that the gradient of decreasing the irradiation intensity in the upward direction is larger than the gradient of decreasing the irradiation intensity in the downward direction.
  31.  前記第1の照射強度分布は、
     最大強度Imaxもしくは連続する最大強度Imaxの上端部の位置をZUとし、前記最大強度Imaxの上方向の50%照射強度(0.5×Imax)の位置をZ2とすると、
     3mm≧Z2-ZU≧0mm
     である
     請求項29又は30に記載の単結晶の育成方法。
    The first irradiation intensity distribution is
    Assuming that the position of the upper end portion of the maximum intensity Imax or the continuous maximum intensity Imax is ZU, and the position of the upper 50% irradiation intensity (0.5 × Imax) of the maximum intensity Imax is Z2.
    3 mm Z Z2-ZU ≧ 0 mm
    A method of growing a single crystal according to claim 29 or 30.
  32.  前記M個のレーザ照射ヘッドが有する複数のレンズの間隔および焦点距離を調整することにより、前記第1の照射強度分布の形状および照射強度を調整する
     請求項29から31のいずれか一項に記載の単結晶の育成方法。
    The shape and the irradiation intensity of the first irradiation intensity distribution are adjusted by adjusting an interval and a focal length of a plurality of lenses of the M laser irradiation heads, according to any one of claims 29 to 31. Of growing single crystals.
  33.  前記M個の調整部が有するM個の反射ミラーの入射角度および高さを調整することにより、前記第1の照射強度分布の非対称形状を調整する
     請求項29から32のいずれか一項に記載の単結晶の育成方法。
    The asymmetric shape of the first irradiation intensity distribution is adjusted by adjusting the incident angles and heights of M reflection mirrors of the M adjustment units, according to any one of claims 29 to 32. Of growing single crystals.
  34.  前記M個の調整部が有するM個の吸収材料の吸収量および高さを調整することにより、前記第1の照射強度分布の非対称形状を調整する
     請求項29から33のいずれか一項に記載の単結晶の育成方法。
    The asymmetric shape of the first irradiation intensity distribution is adjusted by adjusting the absorption amounts and heights of M absorption materials of the M adjustment units, according to any one of claims 29 to 33. Of growing single crystals.
  35.  前記M個のレーザ照射ヘッドならびに前記M個の調整部は、
     結晶棒の移動速度の増加に応じて、前記第1の照射強度分布における前記下方向の照射強度分布の勾配を小さくし、
     前記結晶棒の移動速度の低下に応じて、前記第1の照射強度分布における前記下方向の照射強度分布の勾配を大きくする
     請求項29から34のいずれか一項に記載の単結晶の育成方法。
    The M laser irradiation heads and the M adjustment units are
    The gradient of the downward irradiation intensity distribution in the first irradiation intensity distribution is reduced according to the increase in the moving speed of the crystal rod,
    The method for growing a single crystal according to any one of claims 29 to 34, wherein the gradient of the downward irradiation intensity distribution in the first irradiation intensity distribution is increased according to the decrease in the moving speed of the crystal rod. .
  36.  前記原料棒が溶融した溶融帯から発光する輻射光強度を計測し、
     計測した前記輻射光強度に応じて、前記M本の加熱レーザ光を照射するために、N<Mを満たすように設けられたN台の電源の入力電力を制御する
     請求項29から35のいずれか一項に記載の単結晶の育成方法。
    Measuring the intensity of radiant light emitted from the melting zone where the raw material rod is melted;
    The input power of N power supplies provided to satisfy N <M is controlled to irradiate the M heating laser beams according to the measured radiant light intensity. The method of growing a single crystal according to any one of
  37.  結晶棒から発光する輻射光強度を計測し、
     計測した前記輻射光強度に応じて、前記M本の加熱レーザ光の下方向の照射強度分布を調整するために、M個の調整部を制御する
     請求項29から36のいずれか一項に記載の単結晶の育成方法。
    Measure the emitted light intensity emitted from the crystal rod,
    The M adjustment units are controlled to adjust the downward irradiation intensity distribution of the M heating laser beams according to the measured radiant light intensity. Of growing single crystals.
PCT/JP2018/026393 2017-07-12 2018-07-12 Single-crystal growth apparatus WO2019013301A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017136640 2017-07-12
JP2017-136640 2017-07-12
JP2017-179573 2017-09-19
JP2017179573A JP7026345B2 (en) 2017-07-12 2017-09-19 Single crystal growing device

Publications (1)

Publication Number Publication Date
WO2019013301A1 true WO2019013301A1 (en) 2019-01-17

Family

ID=65001676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026393 WO2019013301A1 (en) 2017-07-12 2018-07-12 Single-crystal growth apparatus

Country Status (1)

Country Link
WO (1) WO2019013301A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4816082Y1 (en) * 1968-07-26 1973-05-08
JPS6241075U (en) * 1985-08-29 1987-03-11
JPH08203822A (en) * 1995-01-20 1996-08-09 Ricoh Co Ltd Thin film semiconductor material forming apparatus
JPH09260302A (en) * 1996-03-19 1997-10-03 Seiko Instr Inc Laser casting device
JP2008093706A (en) * 2006-10-12 2008-04-24 Mitsubishi Electric Corp Laser beam machining method and laser beam machining apparatus
JP2016199411A (en) * 2015-04-07 2016-12-01 国立研究開発法人理化学研究所 Laser single crystal growth apparatus and single crystal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4816082Y1 (en) * 1968-07-26 1973-05-08
JPS6241075U (en) * 1985-08-29 1987-03-11
JPH08203822A (en) * 1995-01-20 1996-08-09 Ricoh Co Ltd Thin film semiconductor material forming apparatus
JPH09260302A (en) * 1996-03-19 1997-10-03 Seiko Instr Inc Laser casting device
JP2008093706A (en) * 2006-10-12 2008-04-24 Mitsubishi Electric Corp Laser beam machining method and laser beam machining apparatus
JP2016199411A (en) * 2015-04-07 2016-12-01 国立研究開発法人理化学研究所 Laser single crystal growth apparatus and single crystal

Similar Documents

Publication Publication Date Title
Healy et al. CO 2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss
KR101298019B1 (en) Laser processing apparatus
KR102080613B1 (en) Laser annealing device and its annealing method
JP5181396B2 (en) Single crystal growth apparatus and single crystal growth method
US10641950B2 (en) Laterally emitting optical waveguide and method for introducing micromodifications into an optical waveguide
JP2019507493A5 (en)
JP6473649B2 (en) Laser single crystal growth apparatus and single crystal
CN107429420A (en) For being grown using laser heating pedestal to produce the device and method of thin brilliant optical fiber
CN113848657A (en) Reconfigurable and nonvolatile flat lens based on phase change material and manufacturing method thereof
US20090020069A1 (en) Multi-Beam Optical Afterheater for Laser Heated Pedestal Growth
JP7026345B2 (en) Single crystal growing device
CN112059404A (en) Superfine single crystal optical fiber cladding processing method and system
JP3185771B2 (en) Semiconductor processing method and semiconductor processing apparatus
WO2019013301A1 (en) Single-crystal growth apparatus
US20210146476A1 (en) Stealth dicing apparatus and stealth dicing method
JP2019019046A5 (en)
JP5087002B2 (en) Beam separation optics
JP6635365B2 (en) Single crystal growing device with laser beam splitting device
CN110004496B (en) Ring laser heating system
US20170351156A1 (en) Optical Device and Optical Device Manufacturing Method
KR20170039815A (en) Laser crystalling apparatus
CN217571287U (en) Bessel beam lens for laser cutting
JP4599514B2 (en) Line generator
CN113467095B (en) Non-imaging type laser homogenizing system and manufacturing method of homogenizing element
CN213022834U (en) Light path regulation and control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831902

Country of ref document: EP

Kind code of ref document: A1