WO2019013221A1 - Combustion chamber structure for direct injection internal combustion engine - Google Patents

Combustion chamber structure for direct injection internal combustion engine Download PDF

Info

Publication number
WO2019013221A1
WO2019013221A1 PCT/JP2018/026087 JP2018026087W WO2019013221A1 WO 2019013221 A1 WO2019013221 A1 WO 2019013221A1 JP 2018026087 W JP2018026087 W JP 2018026087W WO 2019013221 A1 WO2019013221 A1 WO 2019013221A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface portion
tapered surface
piston
cavity
combustion chamber
Prior art date
Application number
PCT/JP2018/026087
Other languages
French (fr)
Japanese (ja)
Inventor
祐多 清水
大輔 小澤
仁 建石
拓也 荒井
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201880045870.7A priority Critical patent/CN110869592B/en
Publication of WO2019013221A1 publication Critical patent/WO2019013221A1/en
Priority to PH12020500006A priority patent/PH12020500006A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/26Pistons  having combustion chamber in piston head
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to a combustion chamber structure of a direct injection type internal combustion engine, and more particularly to a combustion chamber structure suitable for a diesel engine.
  • the combustion chamber structure of a direct injection type internal combustion engine which is a diesel engine, generally includes a cavity which is recessed at the center of the top surface of the piston.
  • the fuel is self-ignited in the cylinder by injecting the fuel toward the cavity near the compression top dead center.
  • the outer periphery of the piston top surface located radially outward of the cavity is a simple flat or flat surface.
  • a flat surface can not efficiently use the air in the space above it, which is disadvantageous for smoke suppression.
  • the present disclosure is devised in view of the above circumstances, and provides a combustion chamber structure of a direct injection type internal combustion engine capable of effectively suppressing smoke.
  • the combustion chamber structure of a direct injection type internal combustion engine is A cavity recessed in the center of the piston top surface; An outer circumferential portion of the piston top surface located radially outward of the cavity; Equipped with The outer peripheral portion of the piston top surface is A first tapered surface portion connected to the inner wall of the cavity defining the cavity and located radially outward thereof and having a first inclination angle with respect to a virtual plane perpendicular to the central axis of the piston; A second tapered surface portion connected to the first tapered surface portion and located radially outward thereof and having a second inclination angle with respect to a virtual plane perpendicular to the piston central axis; Equipped with The second inclination angle of the second tapered surface portion is larger than the first inclination angle of the first tapered surface portion.
  • the first inclination angle may be larger than 0 degree.
  • the movement of the rich region is matched to the movement of the rich region.
  • the first tapered surface portion and the second tapered surface portion may be formed to move the vortex in the longitudinal direction.
  • the outer peripheral portion of the piston top surface is connected to the second tapered surface portion and located radially outside thereof and further including a flat portion perpendicular to the central axis of the piston May be
  • the inner wall of the cavity may have a bottom wall portion, and the bottom wall portion may have a slope portion which gradually becomes higher as approaching the central axis of the piston.
  • the slope section is A first curved surface portion formed in an arc shape in cross section which is located radially outward and has a center of a first curvature radius above the bottom wall portion; A second curved surface portion connected to the first curved surface portion and located radially inward of the first curved surface portion and formed in a circular arc shape having a center of a second curvature radius below the bottom wall portion; May be provided.
  • the second radius of curvature may be larger than the first radius of curvature.
  • the cavity is a reentrant cavity.
  • FIG. 1 is a longitudinal cross-sectional view showing a piston of an embodiment of the present disclosure.
  • FIG. 2 is a longitudinal sectional view showing the inside of the combustion chamber at the first specific timing.
  • FIG. 3 is a longitudinal sectional view showing the inside of the combustion chamber at a second specific timing.
  • FIG. 4 is a longitudinal sectional view showing the inside of the combustion chamber at the third specific timing.
  • the combustion chamber structure according to the present embodiment is applied to a diesel engine that is a typical example of a direct injection type internal combustion engine.
  • An engine is for vehicles, and is used as a vehicle power source of a large vehicle such as a truck in particular.
  • the types and applications of the internal combustion engine and the vehicle are not limited to these.
  • the vehicle may be a small vehicle such as a passenger car, and the engine may be a gasoline engine.
  • the combustion chamber structure 1 of the present embodiment includes a piston 2, a cylinder 3 in which the piston 2 can be moved up and down and coaxially housed, a cylinder head 4 that closes the upper end opening of the cylinder 3, and the piston 2.
  • a plurality of (three in this embodiment, only one is shown) piston rings 5 mounted on the outer peripheral surface of the combustion chamber 6 and a combustion chamber 6 which is a closed space defined by these.
  • the combustion chamber structure 1 includes an injector 7 attached to the cylinder head 4 and injecting fuel into the combustion chamber 6.
  • the piston 2 is configured to be substantially axially symmetrical with respect to a piston central axis C. Unless otherwise stated, the axial, radial and circumferential directions with respect to the piston center axis C are simply referred to as axial, radial and circumferential directions.
  • the piston 2 has a top surface (piston top surface) 8 and an outer peripheral surface 9. A plurality of (three in the present embodiment) ring grooves 10 for fitting the piston ring 5 are formed on the outer peripheral surface 9.
  • the piston 2 has a cavity 11 recessed at the center of the top surface 8.
  • the cavity 11 of the present embodiment is a reentrant type cavity, and has a shape in which the upper inlet side is narrowed relative to the lower bottom side.
  • the cavity 11 is defined by the inner cavity wall 30.
  • the inner cavity wall 30 defines the inlet of the cavity 11 and is continuously connected to the top surface 8 and is continuously connected to the radially inward projecting lip 12 and the lip 12. It has a side wall portion 13 which expands downward in the shape of an undercut at the lower side, and a bottom wall portion 14 continuously connected to the side wall portion 13.
  • connection position (or boundary position) of the top surface 8 and the lip portion 12 is indicated by a
  • connection position of the lip portion 12 and the side wall portion 13 is indicated by b
  • connection position of the side wall portion 13 and the bottom wall portion 14 is indicated by c. .
  • the cross-sectional shape of the lip portion 12 is an arc shape having a curvature radius R1, and the cross-sectional shape of the side wall portion 13 is also an arc shape having a curvature radius R2.
  • R1 is smaller than R2.
  • the cross-sectional shape of the lip portion 12 may be a shape in which a straight line is sandwiched between arcs.
  • the cross-sectional shape of the bottom wall portion 14 is mountain-shaped.
  • the bottom wall portion 14 has a sloped portion 16 which gradually becomes higher as it approaches the piston central axis C.
  • the inclined surface portion 16 extends from a connection position c of the side wall portion 13 and the bottom wall portion 14 to an apex position d of the bottom wall portion 14 located on the piston central axis C.
  • the sloped portion 16 is connected to the first curved surface portion 31 located radially outward and the first curved surface portion 31 and a second curved surface portion located radially inward of the first curved surface portion 31. And 32.
  • the connection position of the first curved surface portion 31 and the second curved surface portion 32 is indicated by e.
  • the first curved surface portion 31 is formed in a circular arc shape having a center or base point S3 of the first curvature radius R3 above the bottom wall portion 14 or the slope portion 16.
  • the second curved surface portion 32 is formed in a circular arc shape having a center or base point S4 of the second curvature radius R4 below the bottom wall portion 14 or the slope portion 16. Therefore, when viewed macroscopically, the first curved surface portion 31 and the second curved surface portion 32 have an S-shaped cross-sectional shape as a whole. It has a shape.
  • the second radius of curvature R4 is larger than the first radius of curvature R3.
  • the first curved surface portion 31 is located on the outermost radial direction of the slope portion 16 and is directly and continuously connected to the side wall portion 13 at the connection position c.
  • the second curved surface portion 32 extends from the connection position e with the first curved surface portion 31 to a vertex position d of the bottom wall portion 14, that is, except for the portion of the first curved surface portion 31 The whole is a second curved surface portion 32.
  • Continuous connected refers to a smooth connection mode in which no level difference or unevenness occurs at the connection position. With such a smooth connection, it is possible to suppress the retention of the gas in the combustion chamber at the connection position, to activate the flow, and to perform the combustion well.
  • a cooling passage 17 through which oil for cooling the piston 2 flows is formed inside the piston 2 located radially outward of the side wall portion 13.
  • the cooling passage 17 is in the form of a ring surrounding the cavity 11.
  • the oil discharged from the lower side of the piston 2 toward the piston 2 upward by an oil jet (not shown) is introduced into the cooling passage 17, and the oil outlet hole 18 for discharging the introduced oil is cooled It is formed penetrating between the passage 17 and the lower surface 19 of the piston 2.
  • the top surface 8 located radially outward of the cavity 11 forms an outer peripheral portion 20 of the top surface 8.
  • the top surface outer peripheral portion 20 is a portion of the top surface 8 located radially outward of the boundary position a of the top surface 8 and the lip portion 12.
  • the top outer peripheral portion 20 is connected to the first tapered surface portion 21 continuously connected to the lip portion 12 and located radially outward of the lip portion 12 and connected to the first tapered surface portion 21 and the radial outer side thereof. And a second tapered surface 22 located at the In addition, the top surface outer peripheral portion 20 of the present embodiment further includes a flat portion 23 connected to the second tapered surface portion 22 and positioned radially outward thereof.
  • the first tapered surface portion 21 is formed by a tapered surface inclined by a first inclination angle ⁇ 1 with respect to a virtual plane f perpendicular to the piston central axis C.
  • the second tapered surface portion 22 is formed by a tapered surface which is inclined by a second inclination angle ⁇ 2 with respect to a virtual plane f perpendicular to the piston central axis C.
  • the second inclination angle ⁇ 2 is larger than the first inclination angle ⁇ 1, so that the second taper surface 22 has an inclination angle ⁇ 2 larger than that of the first taper surface 21.
  • the first tapered surface portion 21 and the second tapered surface portion 22 are tapered surfaces whose heights increase in the radially outward direction. Therefore, as it goes radially outward, the inclination angle of the tapered surface portion becomes stepwise stepwise, and the first tapered surface portion 21 and the second tapered surface portion 22 form a two-stage tapered shape.
  • the first tilt angle ⁇ 1 has a value slightly larger than zero, for example, about 10 °.
  • the second tilt angle ⁇ 2 has a value smaller than 90 °, for example about 30 °.
  • the flat portion 23 is formed by a flat surface or a flat surface perpendicular to the piston central axis C.
  • the flat portion 23 extends radially outward to the position of the outer circumferential surface 9.
  • the width of the flat portion 23 in the radial direction is approximately the same as the total width of the first tapered surface portion 21 and the second tapered surface portion 22.
  • injector 7 is disposed coaxially with the piston central axis C, that is, the cylinder central axis, as shown in FIG.
  • injector 7 injects fuel toward the top of lip portion 12, ie, the most radially inner portion, when piston 2 is located at or near the compression top dead center. So arranged and oriented. The fuel may be injected slightly below the top of the lip 12.
  • FIG. 2 shows the inside of the combustion chamber 6 at a first specific timing (for example, after compression top dead center (ATDC) 15 ° CA) after fuel injection from the injector 7 and when the piston 2 is descending.
  • ADC compression top dead center
  • Line h indicates the outer edge of the first region A where the equivalence ratio of gas in the combustion chamber 6 is equal to or greater than the first value
  • line i indicates that the equivalence ratio of gas is equal to or greater than the second value
  • gas is a generic term that refers to a mixture of air and fuel, or air.
  • the equivalence ratio means the mixing ratio or mixing ratio of fuel and air, and when the mixing ratio is the theoretical air fuel ratio, the equivalence ratio is 1, and the value of the equivalence ratio is large as the mixing ratio is on the fuel increase side (rich side) Become.
  • the first value is about 1
  • the second value is about 2
  • the second region B is a region relatively richer than the first region A.
  • the second region B is the richest region as viewed in the entire combustion chamber 6. Therefore, the second region B is referred to as a rich region here.
  • the fuel injected radially outward and obliquely downward from the injector 7 collides with the lip portion 12 and is branched or branched upward and downward.
  • the downwardly branched fuel flows to the side wall 13 and forms a mixture while mixing with the ambient air in the process.
  • the fuel branched upward flows radially outward along the top outer periphery 20, and forms a mixture while mixing with the surrounding air in the process.
  • the rich region B covers the lip portion 12 and the first tapered surface portion 21 and the side wall portion 13 located in the vicinity of the lip portion 12 and exists around them.
  • a flow of gas directed radially outward on the top surface outer peripheral portion 20 is generated.
  • This gas separates when moving from the lip portion 12 to the first tapered surface portion 21 and generates a vortex flow j in the longitudinal direction (or the vertical direction). Since the rich region B and the vortex flow j are aligned, the rich mixture in the rich region B is actively stirred and mixed with the thin mixture or air located thereabove by the vortex flow j. As a result, stirring and mixing of fuel and air can be promoted, and the utilization factor of air in the space between the top outer periphery 20 and the cylinder head 4, that is, the space above the top outer periphery 20 can be increased.
  • FIG. 3 shows the inside of the combustion chamber 6 at a second specific timing (for example, ATDC 25 ° CA) after the first specific timing.
  • the rich region B around the lip 12 is further expanded, and reaches the second tapered surface 22 above the lip 12.
  • the previous vortex flow j also moves radially outward in accordance with the movement of the rich region B, and reaches the second tapered surface portion 22 similarly to the rich region B.
  • the vortex flow j can be moved in accordance with or in conjunction with the movement of the rich region B from the first taper surface portion 21 to the second taper surface portion 22, and during the movement, the vortex flow j is used.
  • the rich mixture in the rich region B and the thin mixture or air thereabove can be actively stirred and mixed.
  • the air utilization factor in the space between the top surface outer peripheral portion 20 and the cylinder head 4, that is, the space above the top surface outer peripheral portion 20 can be increased, and smoke can be effectively suppressed.
  • the longitudinal direction is matched with the movement of the rich region B.
  • the first tapered surface portion 21 and the second tapered surface portion 22 are formed to move the eddy current j in the direction. For this reason, the utilization factor of air in the space above the top surface outer peripheral portion 20 can be increased, and smoke can be effectively suppressed. At the same time, combustion can be improved and fuel consumption can be improved.
  • the inclination of the second tapered surface portion 22 is so strong that the radially outward movement of the rich region B and the eddy current j is inhibited to some extent and they are stagnant It becomes. Therefore, they can be prevented from reaching the inner wall of the cylinder 3 and staying in the vicinity thereof. That is, when they stay in the vicinity of the cylinder inner wall, it becomes difficult to stir and mix, and the available air becomes limited, but if they stagnate in the vicinity of the second tapered surface portion 22, the central portion in the radial direction of the top surface outer peripheral portion 20 near Because it can be stirred and mixed, the air around it can be used effectively and the air utilization rate can be increased. Therefore, it is advantageous to smoke suppression.
  • the second tapered surface portion 22 is separated from the inner wall of the cylinder 3 by a predetermined distance, and stirring and mixing in the vicinity of the central portion can be promoted, and the air utilization rate can be improved to suppress smoke.
  • FIG. 4 shows the inside of the combustion chamber 6 at a third specific timing (for example, ATDC 45 ° CA) after the second specific timing.
  • a third specific timing for example, ATDC 45 ° CA
  • the fuel branched downward from the lip 12 flows through the side wall 13 to the slope 16 and mixes with the surrounding air in the process to form an air-fuel mixture.
  • the air-fuel mixture flows radially inward on the slope portion 16 while gradually mixing with the surrounding air and diluting. This flow is generally a flow along the slope portion 16 as indicated by the symbol m.
  • the air-fuel mixture sequentially passes through the first curved surface portion 31 and the second curved surface portion 32.
  • they all have an S-shaped cross-sectional shape when the air-fuel mixture moves from the first curved surface portion 31 to the second curved surface portion 32 or transfers, a separated flow as indicated by a symbol k occurs. That is, when the air-fuel mixture flowing along the first curved surface portion 31 transfers to the second curved surface portion 32, the curved shape of the second curved surface portion 32 is reversed, so that the second curved surface portion 32 can partially follow It peels off. As a result, an upward separating flow k is generated on the downstream side immediately after the connection position e.
  • the separated flow k of this mixture mixes well with the air in the space n above the connection position e. Therefore, the air of the space n can be effectively used to increase the air utilization rate.
  • the separation flow k also has the effect of removing fuel adhering to the slope 16 and mixing it with air. Therefore, mixing of fuel and air can be promoted and smoke can be suppressed.
  • the curvature of the first curved surface portion 31 becomes stronger than the curvature of the second curved surface portion 32. Therefore, separation at these connection positions e can be promoted, separation flow k can be effectively generated, and the air utilization rate can be increased.
  • the cavity may have a shape other than the reentrant type, and may be a shallow dish type, a toroidal type, or the like.
  • the first curved surface portion 31 is directly connected to the side wall portion 13.
  • the first curved surface portion 31 may be indirectly connected to the side wall portion 13 by providing a relaxation curve portion that smoothly connects the two arc-shaped cross sections between the first curved surface portion 31 and the side wall portion 13.
  • the relaxation curve portion has the same curvature radius R3 as the first curved surface portion 31 at the connection position with the first curved surface portion 31 in the cross sectional view, and has the same curvature radius R2 as the sidewall portion 13 at the connection position with the side wall portion 13. It has a radius of curvature that continuously changes from R3 to R2 from the connection position with the first curved surface portion 31 to the connection position with the side wall portion 13. In this case, there is a possibility that the air-fuel mixture can be smoothly moved when moving from the side wall 13 to the first curved surface 31.
  • the second curved surface portion 32 extends from the connection position e with the first curved surface portion 31 to the vertex position d of the bottom wall portion 14 and excludes the portion of the first curved surface portion 31
  • the entire 16 or the bottom wall 14 is a second curved surface 32.
  • the second curved surface portion 32 may be at least in the vicinity of the connection position e with the first curved surface portion 31, and the second curved surface portion 32 is necessarily provided in a portion relatively distant from the connection position e toward the piston center axis C side. There is no need. Therefore, it is possible to change the shape of the bottom wall 14 of the portion, that is, the top of the center side of the bottom wall 14.
  • the top may be in the form of a flat surface perpendicular to the piston center axis C.

Abstract

This combustion chamber structure for a direct injection internal combustion engine is provided with: a cavity 11 formed at the center of a piston top surface 8; and the outer peripheral section 20 of the piston top surface, which is located radially outside the cavity. The outer peripheral section of the piston top surface comprises: a first tapered surface 21 which is connected to a cavity inner wall 30 defining the cavity, is located radially outside the cavity inner wall, and has a first tilt angle θ1 relative to an imaginary plane perpendicular to a piston center axis; and a second tapered surface 22 which is connected to the first tapered surface, is located radially outside the first tapered surface, and has a second tilt angle θ2 relative to the imaginary plane f perpendicular to the piston center axis C. The second tilt angle θ2 of the second tapered surface 22 is greater than the first tilt angle θ1 of the first tapered surface 21.

Description

直噴式内燃機関の燃焼室構造Combustion chamber structure of direct injection type internal combustion engine
 本開示は直噴式内燃機関の燃焼室構造に係り、特に、ディーゼルエンジンに好適な燃焼室構造に関する。 The present disclosure relates to a combustion chamber structure of a direct injection type internal combustion engine, and more particularly to a combustion chamber structure suitable for a diesel engine.
 ディーゼルエンジンである直噴式内燃機関の燃焼室構造は一般的に、ピストン頂面の中央部に凹設されたキャビティを備える。そしてこのキャビティに向かって圧縮上死点付近で燃料を噴射することにより筒内で燃料を自着火させるようにしている。 The combustion chamber structure of a direct injection type internal combustion engine, which is a diesel engine, generally includes a cavity which is recessed at the center of the top surface of the piston. The fuel is self-ignited in the cylinder by injecting the fuel toward the cavity near the compression top dead center.
日本国特開平2-149719号公報Japanese Patent Application Laid-Open No. 2-149719 日本国特開平3-279617号公報Japanese Patent Application Laid-Open No. 3-279617 日本国特開2006-125388号公報Japanese Patent Laid-Open Publication No. 2006-125388
 多くの場合、キャビティの半径方向外側に位置するピストン頂面の外周部は単純な平面すなわち平坦面である。しかし本発明者の鋭意研究の結果に依れば、こうした平面であるとその上方の空間の空気を効率的に利用できず、スモークの抑制に不利であることが判明した。 In many cases, the outer periphery of the piston top surface located radially outward of the cavity is a simple flat or flat surface. However, according to the results of the inventors' intensive studies, it has been found that such a flat surface can not efficiently use the air in the space above it, which is disadvantageous for smoke suppression.
 そこで本開示は、かかる事情に鑑みて創案され、スモークを効果的に抑制できる直噴式内燃機関の燃焼室構造を提供する。 Therefore, the present disclosure is devised in view of the above circumstances, and provides a combustion chamber structure of a direct injection type internal combustion engine capable of effectively suppressing smoke.
 本開示の一の態様によれば、
 直噴式内燃機関の燃焼室構造は、
 ピストン頂面の中央部に凹設されたキャビティと、
 前記キャビティの半径方向外側に位置された前記ピストン頂面の外周部と、
 を備え、
 前記ピストン頂面の外周部は、
 前記キャビティを画成するキャビティ内壁に接続され、その半径方向外側に位置され、ピストン中心軸に垂直な仮想平面に対し、第1傾斜角を有する第1テーパ面部と、
 前記第1テーパ面部に接続されると共にその半径方向外側に位置され、ピストン中心軸に垂直な仮想平面に対し、第2傾斜角を有する第2テーパ面部と、
 を備え、
 前記第2テーパ面部の前記第2傾斜角は前記第1テーパ面部の前記第1傾斜角より大きい。
According to one aspect of the present disclosure,
The combustion chamber structure of a direct injection type internal combustion engine is
A cavity recessed in the center of the piston top surface;
An outer circumferential portion of the piston top surface located radially outward of the cavity;
Equipped with
The outer peripheral portion of the piston top surface is
A first tapered surface portion connected to the inner wall of the cavity defining the cavity and located radially outward thereof and having a first inclination angle with respect to a virtual plane perpendicular to the central axis of the piston;
A second tapered surface portion connected to the first tapered surface portion and located radially outward thereof and having a second inclination angle with respect to a virtual plane perpendicular to the piston central axis;
Equipped with
The second inclination angle of the second tapered surface portion is larger than the first inclination angle of the first tapered surface portion.
 上述の直噴式内燃機関の燃焼室構造において、前記第1傾斜角の角度は、0度よりも大きくてもよい。 In the combustion chamber structure of the direct injection type internal combustion engine described above, the first inclination angle may be larger than 0 degree.
 上述の直噴式内燃機関の燃焼室構造において、ピストンの下降中にリッチ領域が前記第1テーパ面部および前記第2テーパ面部に順に沿って半径方向外側に移動するとき、前記リッチ領域の移動に合わせて縦方向の渦流を移動させるよう、前記第1テーパ面部および前記第2テーパ面部が形成されていてもよい。 In the combustion chamber structure of the direct injection type internal combustion engine described above, when the rich region moves radially outward along the first tapered surface portion and the second tapered surface portion during descent of the piston, the movement of the rich region is matched to the movement of the rich region. The first tapered surface portion and the second tapered surface portion may be formed to move the vortex in the longitudinal direction.
 上述の直噴式内燃機関の燃焼室構造において、前記ピストン頂面の外周部は、前記第2テーパ面部に接続されると共にその半径方向外側に位置され、ピストン中心軸に垂直な平面部をさらに備えてもよい。 In the above-described combustion chamber structure of a direct injection type internal combustion engine, the outer peripheral portion of the piston top surface is connected to the second tapered surface portion and located radially outside thereof and further including a flat portion perpendicular to the central axis of the piston May be
 上述の直噴式内燃機関の燃焼室構造において、前記キャビティ内壁は底壁部を有し、前記底壁部は、ピストン中心軸に近づくにつれ徐々に高くなる斜面部を有してもよく、
 前記斜面部は、
 その半径方向外側に位置され、前記底壁部の上方に第1曲率半径の中心を有する断面円弧状に形成された第1湾曲面部と、
 前記第1湾曲面部に接続されると共にその半径方向内側に位置され、前記底壁部の下方に第2曲率半径の中心を有する断面円弧状に形成された第2湾曲面部と、
 を備えてもよい。
In the combustion chamber structure of the direct injection type internal combustion engine described above, the inner wall of the cavity may have a bottom wall portion, and the bottom wall portion may have a slope portion which gradually becomes higher as approaching the central axis of the piston.
The slope section is
A first curved surface portion formed in an arc shape in cross section which is located radially outward and has a center of a first curvature radius above the bottom wall portion;
A second curved surface portion connected to the first curved surface portion and located radially inward of the first curved surface portion and formed in a circular arc shape having a center of a second curvature radius below the bottom wall portion;
May be provided.
 上述の直噴式内燃機関の燃焼室構造において、前記第2曲率半径は、前記第1曲率半径より大きくてもよい。 In the combustion chamber structure of the direct injection type internal combustion engine described above, the second radius of curvature may be larger than the first radius of curvature.
 好ましくは、前記キャビティは、リエントラント型キャビティである。 Preferably, the cavity is a reentrant cavity.
 本開示によれば、スモークを効果的に抑制できる。 According to the present disclosure, smoke can be effectively suppressed.
図1は、本開示の実施形態のピストンを示す縦断面図である。FIG. 1 is a longitudinal cross-sectional view showing a piston of an embodiment of the present disclosure. 図2は、第1特定タイミングにおける燃焼室の内部の様子を示す縦断面図である。FIG. 2 is a longitudinal sectional view showing the inside of the combustion chamber at the first specific timing. 図3は、第2特定タイミングにおける燃焼室の内部の様子を示す縦断面図である。FIG. 3 is a longitudinal sectional view showing the inside of the combustion chamber at a second specific timing. 図4は、第3特定タイミングにおける燃焼室の内部の様子を示す縦断面図である。FIG. 4 is a longitudinal sectional view showing the inside of the combustion chamber at the third specific timing.
 以下、添付図面を参照して本開示の実施形態を説明する。なお本開示は以下の実施形態に限定されない点に留意されたい。 Hereinafter, embodiments of the present disclosure will be described with reference to the accompanying drawings. It should be noted that the present disclosure is not limited to the following embodiments.
 本実施形態に係る燃焼室構造は、直噴式内燃機関の代表例であるディーゼルエンジンに適用される。エンジンは車両用であり、特にトラック等の大型車両の車両動力源として使用される。しかしながら、内燃機関および車両の種類、用途等はこれらに限定されない。例えば車両は乗用車等の小型車両であってもよいし、エンジンはガソリンエンジンであってもよい。 The combustion chamber structure according to the present embodiment is applied to a diesel engine that is a typical example of a direct injection type internal combustion engine. An engine is for vehicles, and is used as a vehicle power source of a large vehicle such as a truck in particular. However, the types and applications of the internal combustion engine and the vehicle are not limited to these. For example, the vehicle may be a small vehicle such as a passenger car, and the engine may be a gasoline engine.
 図2に示すように、本実施形態の燃焼室構造1は、ピストン2と、ピストン2が昇降可能かつ同軸に収容されたシリンダ3と、シリンダ3の上端開口を閉じるシリンダヘッド4と、ピストン2の外周面に装着された複数(本実施形態では三つ、一つのみ図示)のピストンリング5と、これらにより画成された閉空間である燃焼室6とを備える。また図1に示すように、燃焼室構造1は、シリンダヘッド4に取り付けられ燃焼室6内に燃料を噴射するインジェクタ7を備える。 As shown in FIG. 2, the combustion chamber structure 1 of the present embodiment includes a piston 2, a cylinder 3 in which the piston 2 can be moved up and down and coaxially housed, a cylinder head 4 that closes the upper end opening of the cylinder 3, and the piston 2. A plurality of (three in this embodiment, only one is shown) piston rings 5 mounted on the outer peripheral surface of the combustion chamber 6 and a combustion chamber 6 which is a closed space defined by these. Further, as shown in FIG. 1, the combustion chamber structure 1 includes an injector 7 attached to the cylinder head 4 and injecting fuel into the combustion chamber 6.
 図1に示すように、ピストン2は、概ねピストン中心軸Cに対し軸対称となるよう構成されている。特に断らない限り、ピストン中心軸Cを基準とした軸方向、半径方向および周方向を単に軸方向、半径方向および周方向という。ピストン2は、頂面(ピストン頂面)8と外周面9とを有する。外周面9にはピストンリング5を嵌合させるための複数(本実施形態では三つ)のリング溝10が形成される。 As shown in FIG. 1, the piston 2 is configured to be substantially axially symmetrical with respect to a piston central axis C. Unless otherwise stated, the axial, radial and circumferential directions with respect to the piston center axis C are simply referred to as axial, radial and circumferential directions. The piston 2 has a top surface (piston top surface) 8 and an outer peripheral surface 9. A plurality of (three in the present embodiment) ring grooves 10 for fitting the piston ring 5 are formed on the outer peripheral surface 9.
 ピストン2は、頂面8の中央部に凹設されたキャビティ11を有する。本実施形態のキャビティ11はリエントラント型キャビティであり、下方の底部側に対し上方の入口側が絞られた形状となっている。キャビティ11はキャビティ内壁30によって画成される。キャビティ内壁30は、キャビティ11の入口部を画成すると共に頂面8に連続して接続され、半径方向内側に突出するリップ部12と、リップ部12に連続して接続され、リップ部12の下方でアンダーカット状に拡径する側壁部13と、側壁部13に連続して接続された底壁部14とを備える。頂面8とリップ部12の接続位置(もしくは境界位置)をaで示し、リップ部12と側壁部13の接続位置をbで示し、側壁部13と底壁部14の接続位置をcで示す。 The piston 2 has a cavity 11 recessed at the center of the top surface 8. The cavity 11 of the present embodiment is a reentrant type cavity, and has a shape in which the upper inlet side is narrowed relative to the lower bottom side. The cavity 11 is defined by the inner cavity wall 30. The inner cavity wall 30 defines the inlet of the cavity 11 and is continuously connected to the top surface 8 and is continuously connected to the radially inward projecting lip 12 and the lip 12. It has a side wall portion 13 which expands downward in the shape of an undercut at the lower side, and a bottom wall portion 14 continuously connected to the side wall portion 13. The connection position (or boundary position) of the top surface 8 and the lip portion 12 is indicated by a, the connection position of the lip portion 12 and the side wall portion 13 is indicated by b, and the connection position of the side wall portion 13 and the bottom wall portion 14 is indicated by c. .
 リップ部12の断面形状は曲率半径R1を有する円弧状とされ、側壁部13の断面形状も曲率半径R2を有する円弧状とされる。R1はR2より小さい。なおリップ部12の断面形状は、円弧と円弧の間に直線を挟んだ形状であってもよい。底壁部14の断面形状は山形とされる。底壁部14は、ピストン中心軸Cに近づくにつれ徐々に高くなる斜面部16を有する。斜面部16は、側壁部13と底壁部14の接続位置cから、ピストン中心軸C上に位置する底壁部14の頂点位置dまで延びている。 The cross-sectional shape of the lip portion 12 is an arc shape having a curvature radius R1, and the cross-sectional shape of the side wall portion 13 is also an arc shape having a curvature radius R2. R1 is smaller than R2. The cross-sectional shape of the lip portion 12 may be a shape in which a straight line is sandwiched between arcs. The cross-sectional shape of the bottom wall portion 14 is mountain-shaped. The bottom wall portion 14 has a sloped portion 16 which gradually becomes higher as it approaches the piston central axis C. The inclined surface portion 16 extends from a connection position c of the side wall portion 13 and the bottom wall portion 14 to an apex position d of the bottom wall portion 14 located on the piston central axis C.
 斜面部16は、その半径方向外側に位置された第1湾曲面部31と、第1湾曲面部31に連続して接続されると共に第1湾曲面部31の半径方向内側に位置された第2湾曲面部32とを備える。第1湾曲面部31と第2湾曲面部32の接続位置をeで示す。第1湾曲面部31は、底壁部14もしくは斜面部16の上方に第1曲率半径R3の中心もしくは基点S3を有する断面円弧状に形成されている。他方、第2湾曲面部32は、底壁部14もしくは斜面部16の下方に第2曲率半径R4の中心もしくは基点S4を有する断面円弧状に形成されている。従って、第1湾曲面部31と第2湾曲面部32は、巨視的に見れば全体でS字状の断面形状を有し、端的に言えば、互いに逆方向のアールを接続位置eで繋いだ断面形状となっている。 The sloped portion 16 is connected to the first curved surface portion 31 located radially outward and the first curved surface portion 31 and a second curved surface portion located radially inward of the first curved surface portion 31. And 32. The connection position of the first curved surface portion 31 and the second curved surface portion 32 is indicated by e. The first curved surface portion 31 is formed in a circular arc shape having a center or base point S3 of the first curvature radius R3 above the bottom wall portion 14 or the slope portion 16. On the other hand, the second curved surface portion 32 is formed in a circular arc shape having a center or base point S4 of the second curvature radius R4 below the bottom wall portion 14 or the slope portion 16. Therefore, when viewed macroscopically, the first curved surface portion 31 and the second curved surface portion 32 have an S-shaped cross-sectional shape as a whole. It has a shape.
 なお、図示する曲率半径の長さおよび向き、ならびに曲率半径の中心の位置は、概略的に示されたものであり、正確でない点に留意されたい。 It should be noted that the length and orientation of the illustrated radius of curvature, and the location of the center of radius of curvature, are schematically illustrated and not accurate.
 本実施形態の場合、第2曲率半径R4は第1曲率半径R3より大きい。第1湾曲面部31は斜面部16の最も半径方向外側に位置され、接続位置cにおいて側壁部13に直接かつ連続して接続されている。第2湾曲面部32は、第1湾曲面部31との接続位置eから底壁部14の頂点位置dまで延びており、つまり第1湾曲面部31の部分を除く斜面部16もしくは底壁部14の全体が第2湾曲面部32となっている。 In the case of the present embodiment, the second radius of curvature R4 is larger than the first radius of curvature R3. The first curved surface portion 31 is located on the outermost radial direction of the slope portion 16 and is directly and continuously connected to the side wall portion 13 at the connection position c. The second curved surface portion 32 extends from the connection position e with the first curved surface portion 31 to a vertex position d of the bottom wall portion 14, that is, except for the portion of the first curved surface portion 31 The whole is a second curved surface portion 32.
 なお「連続して接続」とは、接続位置にできるだけ段差や凹凸が生じないような滑らかな接続態様をいう。こうした滑らかな接続を行うことにより、燃焼室内ガスの接続位置における滞留を抑制し、流動を活発化させ、燃焼を良好に行うことができる。 "Continuously connected" refers to a smooth connection mode in which no level difference or unevenness occurs at the connection position. With such a smooth connection, it is possible to suppress the retention of the gas in the combustion chamber at the connection position, to activate the flow, and to perform the combustion well.
 側壁部13の半径方向外側に位置するピストン2の内部には、ピストン2を冷却するためのオイルが流される冷却通路17が形成される。冷却通路17はキャビティ11を囲繞するリング状とされる。冷却通路17には、ピストン2の下側からピストン2に向けてオイルジェット(図示せず)により上向きに吹き出されたオイルが導入され、導入されたオイルの排出を行うオイル出口穴18が、冷却通路17とピストン2の下面19との間を貫通して形成される。 A cooling passage 17 through which oil for cooling the piston 2 flows is formed inside the piston 2 located radially outward of the side wall portion 13. The cooling passage 17 is in the form of a ring surrounding the cavity 11. The oil discharged from the lower side of the piston 2 toward the piston 2 upward by an oil jet (not shown) is introduced into the cooling passage 17, and the oil outlet hole 18 for discharging the introduced oil is cooled It is formed penetrating between the passage 17 and the lower surface 19 of the piston 2.
 キャビティ11の半径方向外側に位置する頂面8は、頂面8の外周部20をなす。具体的には、頂面外周部20は、頂面8とリップ部12の境界位置aより半径方向外側に位置された頂面8の部分である。 The top surface 8 located radially outward of the cavity 11 forms an outer peripheral portion 20 of the top surface 8. Specifically, the top surface outer peripheral portion 20 is a portion of the top surface 8 located radially outward of the boundary position a of the top surface 8 and the lip portion 12.
 この頂面外周部20は、リップ部12に連続して接続され、リップ部12の半径方向外側に位置された第1テーパ面部21と、第1テーパ面部21に接続されると共にその半径方向外側に位置された第2テーパ面部22とを備える。また本実施形態の頂面外周部20は、第2テーパ面部22に接続されると共にその半径方向外側に位置された平面部23をさらに備える。 The top outer peripheral portion 20 is connected to the first tapered surface portion 21 continuously connected to the lip portion 12 and located radially outward of the lip portion 12 and connected to the first tapered surface portion 21 and the radial outer side thereof. And a second tapered surface 22 located at the In addition, the top surface outer peripheral portion 20 of the present embodiment further includes a flat portion 23 connected to the second tapered surface portion 22 and positioned radially outward thereof.
 第1テーパ面部21は、ピストン中心軸Cに垂直な仮想平面fに対して第1傾斜角θ1だけ傾斜されたテーパ面により形成される。同様に第2テーパ面部22は、ピストン中心軸Cに垂直な仮想平面fに対して第2傾斜角θ2だけ傾斜されたテーパ面により形成される。第2傾斜角θ2は第1傾斜角θ1より大きく、従って第2テーパ面部22は第1テーパ面部21より大きい傾斜角θ2を有する。第1テーパ面部21および第2テーパ面部22は、半径方向外側に向かうにつれ高さが高くなるテーパ面とされる。従って半径方向外側に向かうにつれ、テーパ面部の傾斜角は段階的にきつくなり、第1テーパ面部21および第2テーパ面部22は二段テーパを形成する。 The first tapered surface portion 21 is formed by a tapered surface inclined by a first inclination angle θ1 with respect to a virtual plane f perpendicular to the piston central axis C. Similarly, the second tapered surface portion 22 is formed by a tapered surface which is inclined by a second inclination angle θ2 with respect to a virtual plane f perpendicular to the piston central axis C. The second inclination angle θ 2 is larger than the first inclination angle θ 1, so that the second taper surface 22 has an inclination angle θ 2 larger than that of the first taper surface 21. The first tapered surface portion 21 and the second tapered surface portion 22 are tapered surfaces whose heights increase in the radially outward direction. Therefore, as it goes radially outward, the inclination angle of the tapered surface portion becomes stepwise stepwise, and the first tapered surface portion 21 and the second tapered surface portion 22 form a two-stage tapered shape.
 第1傾斜角θ1は、ゼロより若干大きい値を有し、例えば約10゜である。第2傾斜角θ2は、90゜より小さい値を有し、例えば約30゜である。 The first tilt angle θ1 has a value slightly larger than zero, for example, about 10 °. The second tilt angle θ2 has a value smaller than 90 °, for example about 30 °.
 他方、平面部23は、ピストン中心軸Cに垂直な平面もしくは平坦面により形成される。平面部23は外周面9の位置まで半径方向外側に延びている。半径方向における平面部23の幅は、第1テーパ面部21および第2テーパ面部22の合計幅と同程度とされている。 On the other hand, the flat portion 23 is formed by a flat surface or a flat surface perpendicular to the piston central axis C. The flat portion 23 extends radially outward to the position of the outer circumferential surface 9. The width of the flat portion 23 in the radial direction is approximately the same as the total width of the first tapered surface portion 21 and the second tapered surface portion 22.
 インジェクタ7は、図1に示すように、ピストン中心軸Cすなわちシリンダ中心軸に同軸になるよう配置される。またインジェクタ7は、矢印gで示すように、ピストン2が圧縮上死点またはその近傍に位置するときに、リップ部12の頂部、すなわち最も半径方向内側に位置する部分に向かって燃料を噴射するよう配置および指向されている。なおリップ部12の頂部の若干下側に向かって燃料を噴射してもよい。 The injector 7 is disposed coaxially with the piston central axis C, that is, the cylinder central axis, as shown in FIG. In addition, as indicated by arrow g, injector 7 injects fuel toward the top of lip portion 12, ie, the most radially inner portion, when piston 2 is located at or near the compression top dead center. So arranged and oriented. The fuel may be injected slightly below the top of the lip 12.
 次に、本実施形態の作用効果を説明する。 Next, the operation and effect of the present embodiment will be described.
 図2は、インジェクタ7からの燃料噴射後で且つピストン2が下降中であるときの第1特定タイミング(例えば圧縮上死点後(ATDC)15゜CA)における燃焼室6の内部の様子を示す。線hは、燃焼室6内におけるガスの当量比が第1値以上となっている第1領域Aの外縁を示し、線iは、ガスの当量比が第2値以上となっている第2領域Bの外縁を示す。ここでガスとは、空気と燃料の混合気、または空気を指す総称である。当量比とは燃料と空気の混合割合もしくは混合比をいい、当該混合比が理論空燃比のとき当量比は1で、当該混合比が燃料増加側(リッチ側)になるほど当量比の値は大きくなる。図示例の場合、第1値は約1、第2値は約2であり、第2領域Bは第1領域Aより相対的にリッチな領域である。また第2領域Bは燃焼室6内全体で見ても最もリッチな領域である。従ってここでは第2領域Bをリッチ領域と称する。 FIG. 2 shows the inside of the combustion chamber 6 at a first specific timing (for example, after compression top dead center (ATDC) 15 ° CA) after fuel injection from the injector 7 and when the piston 2 is descending. . Line h indicates the outer edge of the first region A where the equivalence ratio of gas in the combustion chamber 6 is equal to or greater than the first value, and line i indicates that the equivalence ratio of gas is equal to or greater than the second value The outer edge of region B is shown. Here, gas is a generic term that refers to a mixture of air and fuel, or air. The equivalence ratio means the mixing ratio or mixing ratio of fuel and air, and when the mixing ratio is the theoretical air fuel ratio, the equivalence ratio is 1, and the value of the equivalence ratio is large as the mixing ratio is on the fuel increase side (rich side) Become. In the case of the illustrated example, the first value is about 1, the second value is about 2, and the second region B is a region relatively richer than the first region A. The second region B is the richest region as viewed in the entire combustion chamber 6. Therefore, the second region B is referred to as a rich region here.
 図から理解されるように、インジェクタ7から半径方向外側且つ斜め下向きに噴射された燃料は、リップ部12に衝突して上方と下方に分岐ないし分流される。下方に分岐した燃料は、側壁部13へと流れ、その過程で周囲の空気と混合しながら混合気を形成する。他方、上方に分岐した燃料は、頂面外周部20に沿って半径方向外側に向かって流れ、その過程で周囲の空気と混合しながら混合気を形成する。図示のタイミングでは、リッチ領域Bが、リップ部12と、リップ部12付近に位置する第1テーパ面部21および側壁部13とを覆って、それらの周辺に存在する。なお図示のタイミングで着火が生じていることもあるが、ここでは説明の便宜上、着火は生じていないものとする。 As understood from the figure, the fuel injected radially outward and obliquely downward from the injector 7 collides with the lip portion 12 and is branched or branched upward and downward. The downwardly branched fuel flows to the side wall 13 and forms a mixture while mixing with the ambient air in the process. On the other hand, the fuel branched upward flows radially outward along the top outer periphery 20, and forms a mixture while mixing with the surrounding air in the process. At the illustrated timing, the rich region B covers the lip portion 12 and the first tapered surface portion 21 and the side wall portion 13 located in the vicinity of the lip portion 12 and exists around them. Although ignition may occur at the timing shown in the drawing, for convenience of explanation, it is assumed that no ignition occurs.
 リップ部12の上方に分岐する燃料の流れに駆動されて、頂面外周部20上を半径方向外側に向かうガスの流れが発生する。このガスは、リップ部12から第1テーパ面部21に移動する際に剥離し、縦方向(もしくは上下方向)の渦流jを発生させる。リッチ領域Bと渦流jの位置が合っているので、リッチ領域B内の濃い混合気が、その上方に位置する薄い混合気または空気と、渦流jにより積極的に攪拌混合される。これにより燃料と空気の攪拌混合を促進し、頂面外周部20とシリンダヘッド4の隙間、すなわち頂面外周部20の上方の空間における空気の利用率を高めることができる。 Driven by the flow of fuel branched to the upper side of the lip portion 12, a flow of gas directed radially outward on the top surface outer peripheral portion 20 is generated. This gas separates when moving from the lip portion 12 to the first tapered surface portion 21 and generates a vortex flow j in the longitudinal direction (or the vertical direction). Since the rich region B and the vortex flow j are aligned, the rich mixture in the rich region B is actively stirred and mixed with the thin mixture or air located thereabove by the vortex flow j. As a result, stirring and mixing of fuel and air can be promoted, and the utilization factor of air in the space between the top outer periphery 20 and the cylinder head 4, that is, the space above the top outer periphery 20 can be increased.
 次いで、ピストン2がさらに下降すると図3に示すような状態となる。図3は、第1特定タイミングより後の第2特定タイミング(例えばATDC25゜CA)における燃焼室6の内部の様子を示す。先のリップ部12周辺のリッチ領域Bはさらに拡がり、リップ部12の上方では、第2テーパ面部22まで到達している。 Next, when the piston 2 is further lowered, the state as shown in FIG. 3 is obtained. FIG. 3 shows the inside of the combustion chamber 6 at a second specific timing (for example, ATDC 25 ° CA) after the first specific timing. The rich region B around the lip 12 is further expanded, and reaches the second tapered surface 22 above the lip 12.
 その一方で、先の渦流jも、リッチ領域Bの移動に合わせて半径方向外側に移動し、リッチ領域Bと同様に第2テーパ面部22まで到達している。リッチ領域Bの移動中、渦流jの少なくとも一部はリッチ領域B内に位置される。従って、リッチ領域Bが第1テーパ面部21から第2テーパ面部22に移動するのに合わせて、或いはそれと連動して、渦流jを移動させることができ、その移動中に渦流jを利用して、リッチ領域B内の濃い混合気と、その上方の薄い混合気または空気とを積極的に攪拌混合できる。 On the other hand, the previous vortex flow j also moves radially outward in accordance with the movement of the rich region B, and reaches the second tapered surface portion 22 similarly to the rich region B. During the movement of the rich region B, at least a part of the eddy current j is located in the rich region B. Therefore, the vortex flow j can be moved in accordance with or in conjunction with the movement of the rich region B from the first taper surface portion 21 to the second taper surface portion 22, and during the movement, the vortex flow j is used. The rich mixture in the rich region B and the thin mixture or air thereabove can be actively stirred and mixed.
 それ故、頂面外周部20とシリンダヘッド4の隙間、すなわち頂面外周部20の上方の空間における空気の利用率を高めることができ、スモークを効果的に抑制できる。 Therefore, the air utilization factor in the space between the top surface outer peripheral portion 20 and the cylinder head 4, that is, the space above the top surface outer peripheral portion 20 can be increased, and smoke can be effectively suppressed.
 このように本実施形態では、ピストン2の下降中にリッチ領域Bが第1テーパ面部21および第2テーパ面部22の順に沿って半径方向外側に移動するとき、リッチ領域Bの移動に合わせて縦方向の渦流jを移動させるよう、第1テーパ面部21および第2テーパ面部22が形成されている。このため、頂面外周部20の上方の空間における空気の利用率を高めることができ、スモークを効果的に抑制できる。また併せて、燃焼を改善し、燃費を向上できる。 As described above, in the present embodiment, when the rich region B moves radially outward along the order of the first tapered surface portion 21 and the second tapered surface portion 22 during the descent of the piston 2, the longitudinal direction is matched with the movement of the rich region B. The first tapered surface portion 21 and the second tapered surface portion 22 are formed to move the eddy current j in the direction. For this reason, the utilization factor of air in the space above the top surface outer peripheral portion 20 can be increased, and smoke can be effectively suppressed. At the same time, combustion can be improved and fuel consumption can be improved.
 リッチ領域Bおよび渦流jが第2テーパ面部22に到達すると、第2テーパ面部22の傾斜がきついため、リッチ領域Bおよび渦流jの半径方向外側への移動が少なからず阻害され、それらが停滞気味となる。よってそれらがシリンダ3の内壁まで到達してその付近に滞留するのを抑制できる。すなわちそれらがシリンダ内壁付近に滞留すると、攪拌混合しづらくなり、利用できる空気が限定的となるが、それらが第2テーパ面部22付近に停滞すれば、頂面外周部20の半径方向中央部付近で攪拌混合できるので、その周りの空気を有効利用し、空気利用率を高められる。よってスモーク抑制に有利である。 When the rich region B and the eddy current j reach the second tapered surface portion 22, the inclination of the second tapered surface portion 22 is so strong that the radially outward movement of the rich region B and the eddy current j is inhibited to some extent and they are stagnant It becomes. Therefore, they can be prevented from reaching the inner wall of the cylinder 3 and staying in the vicinity thereof. That is, when they stay in the vicinity of the cylinder inner wall, it becomes difficult to stir and mix, and the available air becomes limited, but if they stagnate in the vicinity of the second tapered surface portion 22, the central portion in the radial direction of the top surface outer peripheral portion 20 near Because it can be stirred and mixed, the air around it can be used effectively and the air utilization rate can be increased. Therefore, it is advantageous to smoke suppression.
 平面部23を設けたことにより、第2テーパ面部22をシリンダ3の内壁から一定距離離間させ、こうした中央部付近での攪拌混合を促進し、空気利用率を向上してスモークを抑制できる。 By providing the flat portion 23, the second tapered surface portion 22 is separated from the inner wall of the cylinder 3 by a predetermined distance, and stirring and mixing in the vicinity of the central portion can be promoted, and the air utilization rate can be improved to suppress smoke.
 次いで、ピストン2がさらに下降すると図4に示すような状態となる。図4は、第2特定タイミングより後の第3特定タイミング(例えばATDC45゜CA)における燃焼室6の内部の様子を示す。 Next, when the piston 2 is further lowered, the state as shown in FIG. 4 is obtained. FIG. 4 shows the inside of the combustion chamber 6 at a third specific timing (for example, ATDC 45 ° CA) after the second specific timing.
 この段階では、燃焼室6内における混合気の希薄化が進み、もはやリッチ領域Bは消失し、より当量比の小さい(リーンな)第1領域Aのみが存在する。 At this stage, the fuel-air mixture leans in the combustion chamber 6, and the rich region B disappears, and only the first region A having a smaller equivalence ratio (lean) exists.
 リップ部12から下方に分岐した燃料は、側壁部13を経て斜面部16に流れ、その過程で周囲の空気と混合して混合気を形成する。混合気は、徐々に周囲の空気と混合して希薄化しながら、斜面部16上を半径方向内側に向かって流れる。この流れは、概ね、符号mで示すような斜面部16に沿う流れである。 The fuel branched downward from the lip 12 flows through the side wall 13 to the slope 16 and mixes with the surrounding air in the process to form an air-fuel mixture. The air-fuel mixture flows radially inward on the slope portion 16 while gradually mixing with the surrounding air and diluting. This flow is generally a flow along the slope portion 16 as indicated by the symbol m.
 混合気は、第1湾曲面部31および第2湾曲面部32を順次通過する。しかし、これらが全体でS字断面形状を有することから、混合気が第1湾曲面部31から第2湾曲面部32に移動し、あるいは乗り移る際、符号kで示すような剥離流が発生する。すなわち第1湾曲面部31に沿って流れていた混合気が、第2湾曲面部32に乗り移る時に、第2湾曲面部32の湾曲形状が逆であるために、第2湾曲面部32に一部追従できず、剥離する。これによって接続位置eの直後の下流側に上向きの剥離流kが発生する。 The air-fuel mixture sequentially passes through the first curved surface portion 31 and the second curved surface portion 32. However, since they all have an S-shaped cross-sectional shape, when the air-fuel mixture moves from the first curved surface portion 31 to the second curved surface portion 32 or transfers, a separated flow as indicated by a symbol k occurs. That is, when the air-fuel mixture flowing along the first curved surface portion 31 transfers to the second curved surface portion 32, the curved shape of the second curved surface portion 32 is reversed, so that the second curved surface portion 32 can partially follow It peels off. As a result, an upward separating flow k is generated on the downstream side immediately after the connection position e.
 この混合気の剥離流kは、接続位置eの上方の空間nにある空気と良好に混合する。従って当該空間nの空気を有効利用し、空気利用率を高めることができる。また剥離流kは、斜面部16上に付着する燃料を引き剥がして空気と混合させる効果もある。よって燃料と空気の混合を促進し、スモークを抑制できる。 The separated flow k of this mixture mixes well with the air in the space n above the connection position e. Therefore, the air of the space n can be effectively used to increase the air utilization rate. The separation flow k also has the effect of removing fuel adhering to the slope 16 and mixing it with air. Therefore, mixing of fuel and air can be promoted and smoke can be suppressed.
 第2曲率半径R4が第1曲率半径R3より大きいため、第1湾曲面部31の湾曲の方が第2湾曲面部32の湾曲よりきつくなる。このため、これらの接続位置eにおける剥離を促進し、剥離流kを効果的に発生させて空気利用率を高めることができる。 Since the second radius of curvature R4 is larger than the first radius of curvature R3, the curvature of the first curved surface portion 31 becomes stronger than the curvature of the second curved surface portion 32. Therefore, separation at these connection positions e can be promoted, separation flow k can be effectively generated, and the air utilization rate can be increased.
 以上、本開示の実施形態を詳細に述べたが、本開示は以下のような他の実施形態も可能である。 Although the embodiments of the present disclosure have been described in detail above, the present disclosure can be other embodiments as follows.
 (1)例えばキャビティはリエントラント型以外の形状であってもよく、浅皿型、トロイダル型等であってもよい。 (1) For example, the cavity may have a shape other than the reentrant type, and may be a shallow dish type, a toroidal type, or the like.
 (2)上記実施形態では、第1湾曲面部31を側壁部13に直接的に接続している。しかしながら、第1湾曲面部31と側壁部13の間に、両者の円弧状断面を滑らかに繋ぐ緩和曲線部を設け、第1湾曲面部31を間接的に側壁部13に接続してもよい。緩和曲線部は、断面視において、第1湾曲面部31との接続位置で第1湾曲面部31と同じ曲率半径R3を有し、側壁部13との接続位置で側壁部13と同じ曲率半径R2を有し、第1湾曲面部31との接続位置から側壁部13との接続位置にかけてR3からR2に連続的に変化する曲率半径を有する。こうすると、混合気が側壁部13から第1湾曲面部31に移動する際の移動をスムーズに行える可能性がある。 (2) In the above embodiment, the first curved surface portion 31 is directly connected to the side wall portion 13. However, the first curved surface portion 31 may be indirectly connected to the side wall portion 13 by providing a relaxation curve portion that smoothly connects the two arc-shaped cross sections between the first curved surface portion 31 and the side wall portion 13. The relaxation curve portion has the same curvature radius R3 as the first curved surface portion 31 at the connection position with the first curved surface portion 31 in the cross sectional view, and has the same curvature radius R2 as the sidewall portion 13 at the connection position with the side wall portion 13. It has a radius of curvature that continuously changes from R3 to R2 from the connection position with the first curved surface portion 31 to the connection position with the side wall portion 13. In this case, there is a possibility that the air-fuel mixture can be smoothly moved when moving from the side wall 13 to the first curved surface 31.
 (3)上記実施形態では、第2湾曲面部32が、第1湾曲面部31との接続位置eから底壁部14の頂点位置dまで延びており、第1湾曲面部31の部分を除く斜面部16全体もしくは底壁部14全体が第2湾曲面部32となっている。しかしながら、第2湾曲面部32は少なくとも第1湾曲面部31との接続位置e付近にあればよく、接続位置eからピストン中心軸C側に比較的離れた部位に、必ずしも第2湾曲面部32を設ける必要はない。従ってその部位の底壁部14、すなわち底壁部14の中心側の頂部の形状を変更することが可能である。例えば当該頂部を、ピストン中心軸Cに垂直な平面状にしてもよい。 (3) In the above embodiment, the second curved surface portion 32 extends from the connection position e with the first curved surface portion 31 to the vertex position d of the bottom wall portion 14 and excludes the portion of the first curved surface portion 31 The entire 16 or the bottom wall 14 is a second curved surface 32. However, the second curved surface portion 32 may be at least in the vicinity of the connection position e with the first curved surface portion 31, and the second curved surface portion 32 is necessarily provided in a portion relatively distant from the connection position e toward the piston center axis C side. There is no need. Therefore, it is possible to change the shape of the bottom wall 14 of the portion, that is, the top of the center side of the bottom wall 14. For example, the top may be in the form of a flat surface perpendicular to the piston center axis C.
 本開示の実施形態は前述の実施形態のみに限らず、特許請求の範囲によって規定される本開示の思想に包含されるあらゆる変形例や応用例、均等物が本開示に含まれる。従って本開示は、限定的に解釈されるべきではなく、本開示の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。 The embodiment of the present disclosure is not limited to the above-described embodiment, and all variations, applications, and equivalents included in the concept of the present disclosure defined by the claims are included in the present disclosure. Accordingly, the present disclosure should not be construed as limiting, and can be applied to any other technology falling within the scope of the present disclosure.
 本出願は、2017年7月11日付で出願された日本国特許出願(特願2017-135615)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on the Japanese Patent Application (Japanese Patent Application No. 2017-135615) filed on July 11, 2017, the contents of which are incorporated herein by reference.
 本開示によれば、スモークを効果的に抑制できる。 According to the present disclosure, smoke can be effectively suppressed.
1 燃焼室構造
2 ピストン
8 頂面
11 キャビティ
20 外周部
21 第1テーパ面部
22 第2テーパ面部
30 キャビティ内壁
B リッチ領域
C ピストン中心軸
f 仮想平面
j 渦流
θ1、θ2 傾斜角
DESCRIPTION OF SYMBOLS 1 combustion chamber structure 2 piston 8 top surface 11 cavity 20 outer peripheral part 21 first taper surface 22 second taper surface 30 cavity inner wall B rich region C piston central axis f imaginary plane j eddy current θ1, θ2 inclination angle

Claims (7)

  1.  ピストン頂面の中央部に凹設されたキャビティと、
     前記キャビティの半径方向外側に位置された前記ピストン頂面の外周部と、
     を備え、
     前記ピストン頂面の外周部は、
     前記キャビティを画成するキャビティ内壁に接続され、その半径方向外側に位置され、ピストン中心軸に垂直な仮想平面に対し、第1傾斜角を有する第1テーパ面部と、
     前記第1テーパ面部に接続されると共にその半径方向外側に位置され、ピストン中心軸に垂直な仮想平面に対し、第2傾斜角を有する第2テーパ面部と、
     を備え、
     前記第2テーパ面部の前記第2傾斜角は前記第1テーパ面部の前記第1傾斜角より大きく、
     ピストンの下降中にリッチ領域が前記第1テーパ面部および前記第2テーパ面部に順に沿って半径方向外側に移動するとき、前記リッチ領域の移動に合わせて縦方向の渦流を移動させるよう、前記第1テーパ面部および前記第2テーパ面部が形成されている
     直噴式内燃機関の燃焼室構造。
    A cavity recessed in the center of the piston top surface;
    An outer circumferential portion of the piston top surface located radially outward of the cavity;
    Equipped with
    The outer peripheral portion of the piston top surface is
    A first tapered surface portion connected to the inner wall of the cavity defining the cavity and located radially outward thereof and having a first inclination angle with respect to a virtual plane perpendicular to the central axis of the piston;
    A second tapered surface portion connected to the first tapered surface portion and located radially outward thereof and having a second inclination angle with respect to a virtual plane perpendicular to the piston central axis;
    Equipped with
    The second inclination angle of the second tapered surface portion is larger than the first inclination angle of the first tapered surface portion,
    When the rich region moves radially outward along the first tapered surface portion and the second tapered surface portion sequentially during the lowering of the piston, the first vortex surface is moved in accordance with the movement of the rich region. 1. A combustion chamber structure of a direct injection type internal combustion engine in which a tapered surface portion and the second tapered surface portion are formed.
  2.  前記第1傾斜角の角度は、0度よりも大きい
     請求項1に記載の直噴式内燃機関の燃焼室構造。
    The combustion chamber structure of a direct injection type internal combustion engine according to claim 1, wherein an angle of the first inclination angle is larger than 0 degree.
  3.  ピストンの下降中にリッチ領域が前記第1テーパ面部および前記第2テーパ面部に順に沿って半径方向外側に移動するとき、前記リッチ領域の移動に合わせて縦方向の渦流を移動させるよう、前記第1テーパ面部および前記第2テーパ面部が形成されている
     請求項1に記載の直噴式内燃機関の燃焼室構造。
    When the rich region moves radially outward along the first tapered surface portion and the second tapered surface portion sequentially during the lowering of the piston, the first vortex surface is moved in accordance with the movement of the rich region. The combustion chamber structure of a direct injection type internal combustion engine according to claim 1, wherein the first tapered surface portion and the second tapered surface portion are formed.
  4.  前記ピストン頂面の外周部は、前記第2テーパ面部に接続されると共にその半径方向外側に位置され、ピストン中心軸に垂直な平面部をさらに備える
     請求項1に記載の直噴式内燃機関の燃焼室構造。
    The combustion of a direct injection type internal combustion engine according to claim 1, wherein the outer peripheral portion of the piston top surface is connected to the second tapered surface portion and is located radially outside thereof and further includes a flat portion perpendicular to the central axis of the piston. Room structure.
  5.  前記キャビティ内壁は底壁部を有し、前記底壁部は、ピストン中心軸に近づくにつれ徐々に高くなる斜面部を有し、
     前記斜面部は、
     その半径方向外側に位置され、前記底壁部の上方に第1曲率半径の中心を有する断面円弧状に形成された第1湾曲面部と、
     前記第1湾曲面部に接続されると共にその半径方向内側に位置され、前記底壁部の下方に第2曲率半径の中心を有する断面円弧状に形成された第2湾曲面部と、
     を備える
     請求項1~4のいずれか一項に記載の直噴式内燃機関の燃焼室構造。
    The inner wall of the cavity has a bottom wall, and the bottom wall has a slope which gradually rises toward the central axis of the piston,
    The slope section is
    A first curved surface portion formed in an arc shape in cross section which is located radially outward and has a center of a first curvature radius above the bottom wall portion;
    A second curved surface portion connected to the first curved surface portion and located radially inward of the first curved surface portion and formed in a circular arc shape having a center of a second curvature radius below the bottom wall portion;
    A combustion chamber structure of a direct injection type internal combustion engine according to any one of claims 1 to 4, comprising:
  6.  前記第2曲率半径は、前記第1曲率半径より大きい
     請求項5に記載の直噴式内燃機関の燃焼室構造。
    The combustion chamber structure of a direct injection type internal combustion engine according to claim 5, wherein the second radius of curvature is larger than the first radius of curvature.
  7.  前記キャビティは、リエントラント型キャビティである
     請求項1~4のいずれか一項に記載の直噴式内燃機関の燃焼室構造。
    The combustion chamber structure of a direct injection type internal combustion engine according to any one of claims 1 to 4, wherein the cavity is a reentrant type cavity.
PCT/JP2018/026087 2017-07-11 2018-07-10 Combustion chamber structure for direct injection internal combustion engine WO2019013221A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880045870.7A CN110869592B (en) 2017-07-11 2018-07-10 Combustion chamber structure of direct injection internal combustion engine
PH12020500006A PH12020500006A1 (en) 2017-07-11 2020-01-02 Combustion chamber structure for direct injection internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-135615 2017-07-11
JP2017135615A JP7005974B2 (en) 2017-07-11 2017-07-11 Combustion chamber structure of direct injection internal combustion engine

Publications (1)

Publication Number Publication Date
WO2019013221A1 true WO2019013221A1 (en) 2019-01-17

Family

ID=65001383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026087 WO2019013221A1 (en) 2017-07-11 2018-07-10 Combustion chamber structure for direct injection internal combustion engine

Country Status (4)

Country Link
JP (1) JP7005974B2 (en)
CN (1) CN110869592B (en)
PH (1) PH12020500006A1 (en)
WO (1) WO2019013221A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021235241A1 (en) * 2020-05-19 2021-11-25 株式会社小松製作所 Diesel engine piston and diesel engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112432204B (en) * 2020-12-04 2022-04-22 中国人民解放军国防科技大学 Reentrant structure and scramjet that can internal flow drag reduction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091389A1 (en) * 2006-02-08 2007-08-16 Hino Motors, Ltd. Combustion chamber structure of direct injection type diesel engine
JP2013527360A (en) * 2010-01-29 2013-06-27 リカルド ユーケー リミテッド Direct injection diesel engine
WO2015177897A1 (en) * 2014-05-22 2015-11-26 日産自動車株式会社 Combustion chamber structure for diesel engine
US20170096978A1 (en) * 2014-03-14 2017-04-06 IFP Energies Nouvelles Compression engine with direct fuel injection with compression ignition comprising means for cooling the piston

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2826435C (en) * 2013-09-06 2016-01-05 Westport Power Inc. Combustion system for gaseous fuelled internal combustion engine
JP2016125422A (en) * 2015-01-05 2016-07-11 いすゞ自動車株式会社 Combustion chamber structure of direct injection type engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091389A1 (en) * 2006-02-08 2007-08-16 Hino Motors, Ltd. Combustion chamber structure of direct injection type diesel engine
JP2013527360A (en) * 2010-01-29 2013-06-27 リカルド ユーケー リミテッド Direct injection diesel engine
US20170096978A1 (en) * 2014-03-14 2017-04-06 IFP Energies Nouvelles Compression engine with direct fuel injection with compression ignition comprising means for cooling the piston
WO2015177897A1 (en) * 2014-05-22 2015-11-26 日産自動車株式会社 Combustion chamber structure for diesel engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021235241A1 (en) * 2020-05-19 2021-11-25 株式会社小松製作所 Diesel engine piston and diesel engine
US11795868B2 (en) 2020-05-19 2023-10-24 Komatsu Ltd. Diesel engine piston and diesel engine

Also Published As

Publication number Publication date
PH12020500006A1 (en) 2020-12-07
JP2019019676A (en) 2019-02-07
JP7005974B2 (en) 2022-01-24
CN110869592B (en) 2021-11-02
CN110869592A (en) 2020-03-06

Similar Documents

Publication Publication Date Title
KR900007815B1 (en) Structure of combustion chamber in diesel engine
CN101040108B (en) Combustion chamber shape for direct injection type diesel engine
US6314933B1 (en) Piston for internal combustion engines
US20140216393A1 (en) Direct-injection engine combustion chamber structure
US20080276900A1 (en) Vehicle Piston Internal Combustion Engine Comprising an Adapted Recess
EP3596320B1 (en) A piston for an internal combustion engine
US10619594B2 (en) Combustion system for an internal combustion engine
US10288026B2 (en) Compression engine with direct fuel injection with compression ignition comprising means for cooling the piston
CN107076007B (en) Direct injection internal combustion engine with double cone angle for producing a fuel mixture in a dual zone combustion chamber having a low compression ratio and method of using the same
EP3023610B1 (en) Engine piston
JP2007120353A (en) Compression ignition internal combustion engine
JP6049450B2 (en) Sub-chamber gas engine
US9879590B2 (en) Direct injection diesel engine
US20140238341A1 (en) Combustion system for an engine having a swirl inducing combustion chamber
US9869270B1 (en) Piston design for jet placement
WO2019013221A1 (en) Combustion chamber structure for direct injection internal combustion engine
US20150068487A1 (en) Piston of an internal combustion engine
JP2013160186A (en) Piston combustion chamber structure of internal combustion engine
RU2472949C2 (en) Heat engine asymmetric combustion chamber
US20180119603A1 (en) Piston Design for Flow Re-Direction
US10876464B2 (en) Piston design for flow re-direction
JP2008151089A (en) Combustion chamber of diesel engine
JP2019007446A (en) Combustion chamber structure for direct-injection type internal combustion engine
EP3023612B1 (en) Engine piston
JP6299775B2 (en) Engine and piston ring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832176

Country of ref document: EP

Kind code of ref document: A1