JP2019019676A - Combustion chamber structure of direct injection type internal combustion engine - Google Patents

Combustion chamber structure of direct injection type internal combustion engine Download PDF

Info

Publication number
JP2019019676A
JP2019019676A JP2017135615A JP2017135615A JP2019019676A JP 2019019676 A JP2019019676 A JP 2019019676A JP 2017135615 A JP2017135615 A JP 2017135615A JP 2017135615 A JP2017135615 A JP 2017135615A JP 2019019676 A JP2019019676 A JP 2019019676A
Authority
JP
Japan
Prior art keywords
surface portion
piston
cavity
combustion chamber
chamber structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017135615A
Other languages
Japanese (ja)
Other versions
JP7005974B2 (en
Inventor
祐多 清水
Yuta Shimizu
祐多 清水
大輔 小澤
Daisuke Ozawa
大輔 小澤
仁 建石
Hitoshi Tateishi
仁 建石
拓也 荒井
Takuya Arai
拓也 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2017135615A priority Critical patent/JP7005974B2/en
Priority to CN201880045870.7A priority patent/CN110869592B/en
Priority to PCT/JP2018/026087 priority patent/WO2019013221A1/en
Publication of JP2019019676A publication Critical patent/JP2019019676A/en
Priority to PH12020500006A priority patent/PH12020500006A1/en
Application granted granted Critical
Publication of JP7005974B2 publication Critical patent/JP7005974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/26Pistons  having combustion chamber in piston head
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

To effectively suppress smoke.SOLUTION: A combustion chamber structure of a direct injection type internal combustion engine comprises a cavity 11 which is recessed at center part of a piston apex face 8, and an external peripheral part 20 of the piston apex face which is located outside the cavity in a radial direction. The external peripheral part of the piston apex face comprises: a first tapered face part 21 which is connected to an inner wall 30 of the cavity defining the cavity, and located outside the radial direction; and a second tapered face part 22 which is connected to the first tapered face part, located outside the radial direction indicator, and has an inclination angle θ2 which is larger than the first tapered face part with respect to a virtual plane face f which is vertical to a piston center axis C. The first tapered face part and the second tapered face part are formed so as to move a vortex flow in a vertical direction conforming to the movement of a rich region when the rich region moves to the outside of the radial direction sequentially along the first tapered face part and the second tapered face part.SELECTED DRAWING: Figure 1

Description

本発明は直噴式内燃機関の燃焼室構造に係り、特に、ディーゼルエンジンに好適な燃焼室構造に関する。   The present invention relates to a combustion chamber structure of a direct injection internal combustion engine, and more particularly to a combustion chamber structure suitable for a diesel engine.

例えばディーゼルエンジンである直噴式内燃機関の燃焼室構造は一般的に、ピストン頂面の中央部に凹設されたキャビティを備える。そしてこのキャビティに向かって圧縮上死点付近で燃料を噴射することにより筒内で燃料を自着火させるようにしている。   For example, a combustion chamber structure of a direct-injection internal combustion engine, which is a diesel engine, generally includes a cavity recessed in the center of a piston top surface. The fuel is self-ignited in the cylinder by injecting the fuel near the compression top dead center toward the cavity.

特開平2−149719号公報JP-A-2-149719 特開平3−279617号公報JP-A-3-279617 特開2006−125388号公報JP 2006-125388 A

多くの場合、キャビティの半径方向外側に位置するピストン頂面の外周部は単純な平面すなわち平坦面である。しかし本発明者の鋭意研究の結果に依れば、こうした平面であるとその上方の空間の空気を効率的に利用できず、スモーク抑制に不利であることが判明した。   In many cases, the outer periphery of the top surface of the piston located radially outside the cavity is a simple flat or flat surface. However, according to the result of earnest research by the present inventor, it was found that such a flat surface cannot efficiently use the air in the space above it, which is disadvantageous for smoke suppression.

そこで本発明は、かかる事情に鑑みて創案され、その目的は、スモークを効果的に抑制できる直噴式内燃機関の燃焼室構造を提供することにある。   Accordingly, the present invention has been made in view of such circumstances, and an object thereof is to provide a combustion chamber structure of a direct injection internal combustion engine that can effectively suppress smoke.

本発明の一の態様によれば、
ピストン頂面の中央部に凹設されたキャビティと、
前記キャビティの半径方向外側に位置された前記ピストン頂面の外周部と、
を備え、
前記ピストン頂面の外周部は、
前記キャビティを画成するキャビティ内壁に接続され、その半径方向外側に位置された第1テーパ面部と、
前記第1テーパ面部に接続されると共にその半径方向外側に位置され、ピストン中心軸に垂直な仮想平面に対し、前記第1テーパ面部より大きい傾斜角を有する第2テーパ面部と、
を備え、
ピストンの下降中にリッチ領域が前記第1テーパ面部および前記第2テーパ面部に順に沿って半径方向外側に移動するとき、前記リッチ領域の移動に合わせて縦方向の渦流を移動させるよう、前記第1テーパ面部および前記第2テーパ面部が形成されている
ことを特徴とする直噴式内燃機関の燃焼室構造が提供される。
According to one aspect of the invention,
A cavity recessed in the center of the piston top surface;
An outer periphery of the piston top surface located radially outward of the cavity;
With
The outer periphery of the piston top surface is
A first tapered surface portion connected to an inner wall of the cavity defining the cavity and positioned radially outward thereof;
A second taper surface portion connected to the first taper surface portion and located radially outside thereof, and having an inclination angle larger than the first taper surface portion with respect to a virtual plane perpendicular to the piston central axis;
With
When the rich region moves radially outward along the first tapered surface portion and the second tapered surface portion while the piston is descending, the vortex flow in the vertical direction is moved in accordance with the movement of the rich region. There is provided a combustion chamber structure for a direct injection internal combustion engine, wherein a first tapered surface portion and the second tapered surface portion are formed.

好ましくは、前記ピストン頂面の外周部は、前記第2テーパ面部に接続されると共にその半径方向外側に位置され、ピストン中心軸に垂直な平面部をさらに備える。   Preferably, the outer peripheral portion of the piston top surface is further connected to the second taper surface portion and is positioned on the radially outer side, and further includes a flat portion perpendicular to the piston central axis.

好ましくは、前記キャビティ内壁は底壁部を有し、前記底壁部は、ピストン中心軸に近づくにつれ徐々に高くなる斜面部を有し、
前記斜面部は、
その半径方向外側に位置され、前記底壁部の上方に第1曲率半径の中心を有する断面円弧状に形成された第1湾曲面部と、
前記第1湾曲面部に接続されると共にその半径方向内側に位置され、前記底壁部の下方に第2曲率半径の中心を有する断面円弧状に形成された第2湾曲面部と、
を備える。
Preferably, the cavity inner wall has a bottom wall portion, and the bottom wall portion has a slope portion that gradually increases as it approaches the piston central axis,
The slope portion is
A first curved surface portion that is located on the radially outer side and is formed in a cross-sectional arc shape having a center of a first curvature radius above the bottom wall portion;
A second curved surface portion connected to the first curved surface portion and positioned radially inwardly, and formed in a cross-sectional arc shape having a center of a second radius of curvature below the bottom wall portion;
Is provided.

好ましくは、前記第2曲率半径は、前記第1曲率半径より大きい。   Preferably, the second radius of curvature is greater than the first radius of curvature.

好ましくは、前記キャビティは、リエントラント型キャビティである。   Preferably, the cavity is a reentrant type cavity.

本発明によれば、スモークを効果的に抑制できる。   According to the present invention, smoke can be effectively suppressed.

本発明の実施形態のピストンを示す縦断面図である。It is a longitudinal cross-sectional view which shows the piston of embodiment of this invention. 第1特定タイミングにおける燃焼室の内部の様子を示す縦断面図である。It is a longitudinal cross-sectional view which shows the mode inside the combustion chamber in a 1st specific timing. 第2特定タイミングにおける燃焼室の内部の様子を示す縦断面図である。It is a longitudinal cross-sectional view which shows the mode of the inside of a combustion chamber in a 2nd specific timing. 第3特定タイミングにおける燃焼室の内部の様子を示す縦断面図である。It is a longitudinal cross-sectional view which shows the mode of the inside of a combustion chamber in a 3rd specific timing.

以下、添付図面を参照して本発明の実施形態を説明する。なお本発明は以下の実施形態に限定されない点に留意されたい。   Embodiments of the present invention will be described below with reference to the accompanying drawings. It should be noted that the present invention is not limited to the following embodiment.

本実施形態に係る燃焼室構造は、直噴式内燃機関の代表例であるディーゼルエンジンに適用される。エンジンは車両用であり、特にトラック等の大型車両の車両動力源として使用される。しかしながら、内燃機関および車両の種類、用途等はこれらに限定されない。例えば車両は乗用車等の小型車両であってもよいし、エンジンはガソリンエンジンであってもよい。   The combustion chamber structure according to this embodiment is applied to a diesel engine that is a typical example of a direct injection internal combustion engine. The engine is for vehicles, and is used as a vehicle power source for large vehicles such as trucks. However, the types and applications of the internal combustion engine and the vehicle are not limited to these. For example, the vehicle may be a small vehicle such as a passenger car, and the engine may be a gasoline engine.

図2に示すように、本実施形態の燃焼室構造1は、ピストン2と、ピストン2が昇降可能かつ同軸に収容されたシリンダ3と、シリンダ3の上端開口を閉じるシリンダヘッド4と、ピストン2の外周面に装着された複数(本実施形態では三つ、一つのみ図示)のピストンリング5と、これらにより画成された閉空間である燃焼室6とを備える。また図1に示すように、燃焼室構造1は、シリンダヘッド4に取り付けられ燃焼室6内に燃料を噴射するインジェクタ7を備える。   As shown in FIG. 2, the combustion chamber structure 1 of the present embodiment includes a piston 2, a cylinder 3 in which the piston 2 can be moved up and down and accommodated coaxially, a cylinder head 4 that closes an upper end opening of the cylinder 3, and a piston 2. Are provided with a plurality of piston rings 5 (only three are shown in the present embodiment, only one is shown) and a combustion chamber 6 which is a closed space defined by these piston rings 5. As shown in FIG. 1, the combustion chamber structure 1 includes an injector 7 that is attached to the cylinder head 4 and injects fuel into the combustion chamber 6.

図1に示すように、ピストン2は、概ねピストン中心軸Cに対し軸対称となるよう構成されている。特に断らない限り、ピストン中心軸Cを基準とした軸方向、半径方向および周方向を単に軸方向、半径方向および周方向という。ピストン2は、頂面(ピストン頂面)8と外周面9とを有する。外周面9にはピストンリング5を嵌合させるための複数(本実施形態では三つ)のリング溝10が形成される。   As shown in FIG. 1, the piston 2 is configured to be substantially symmetric with respect to the piston central axis C. Unless otherwise specified, the axial direction, radial direction, and circumferential direction with respect to the piston central axis C are simply referred to as axial direction, radial direction, and circumferential direction. The piston 2 has a top surface (piston top surface) 8 and an outer peripheral surface 9. A plurality of (three in the present embodiment) ring grooves 10 for fitting the piston ring 5 are formed on the outer peripheral surface 9.

ピストン2は、頂面8の中央部に凹設されたキャビティ11を有する。本実施形態のキャビティ11はリエントラント型キャビティであり、下方の底部側に対し上方の入口側が絞られた形状となっている。キャビティ11はキャビティ内壁30によって画成される。キャビティ内壁30は、キャビティ11の入口部を画成すると共に頂面8に連続して接続され、半径方向内側に突出するリップ部12と、リップ部12に連続して接続され、リップ部12の下方でアンダーカット状に拡径する側壁部13と、側壁部13に連続して接続された底壁部14とを備える。頂面8とリップ部12の接続位置(もしくは境界位置)をaで示し、リップ部12と側壁部13の接続位置をbで示し、側壁部13と底壁部14の接続位置をcで示す。   The piston 2 has a cavity 11 that is recessed in the center of the top surface 8. The cavity 11 of this embodiment is a reentrant type cavity, and has a shape in which the upper inlet side is narrowed with respect to the lower bottom side. The cavity 11 is defined by the cavity inner wall 30. The cavity inner wall 30 defines an inlet portion of the cavity 11 and is continuously connected to the top surface 8. The lip portion 12 protrudes radially inward and is continuously connected to the lip portion 12. The side wall part 13 which expands in undercut shape below is provided, and the bottom wall part 14 connected to the side wall part 13 continuously is provided. The connection position (or boundary position) between the top surface 8 and the lip part 12 is indicated by a, the connection position between the lip part 12 and the side wall part 13 is indicated by b, and the connection position between the side wall part 13 and the bottom wall part 14 is indicated by c. .

リップ部12の断面形状は曲率半径R1を有する円弧状とされ、側壁部13の断面形状も曲率半径R2を有する円弧状とされる。R1<R2である。なおリップ部12の断面形状は、円弧と円弧の間に直線を挟んだ形状であってもよい。底壁部14の断面形状は山形とされる。底壁部14は、ピストン中心軸Cに近づくにつれ徐々に高くなる斜面部16を有する。斜面部16は、側壁部13と底壁部14の接続位置cから、ピストン中心軸C上に位置する底壁部14の頂点位置dまで延びている。   The cross-sectional shape of the lip portion 12 is an arc shape having a curvature radius R1, and the cross-sectional shape of the side wall portion 13 is also an arc shape having a curvature radius R2. R1 <R2. The cross-sectional shape of the lip portion 12 may be a shape in which a straight line is sandwiched between arcs. The cross-sectional shape of the bottom wall portion 14 is a mountain shape. The bottom wall portion 14 has a slope portion 16 that gradually increases as the piston central axis C is approached. The slope portion 16 extends from the connection position c between the side wall portion 13 and the bottom wall portion 14 to the vertex position d of the bottom wall portion 14 located on the piston central axis C.

斜面部16は、その半径方向外側に位置された第1湾曲面部31と、第1湾曲面部31に連続して接続されると共に第1湾曲面部31の半径方向内側に位置された第2湾曲面部32とを備える。第1湾曲面部31と第2湾曲面部32の接続位置をeで示す。第1湾曲面部31は、底壁部14もしくは斜面部16の上方に第1曲率半径R3の中心もしくは基点S3を有する断面円弧状に形成されている。他方、第2湾曲面部32は、底壁部14もしくは斜面部16の下方に第2曲率半径R4の中心もしくは基点S4を有する断面円弧状に形成されている。従って、第1湾曲面部31と第2湾曲面部32は、巨視的に見れば全体でS字状の断面形状を有し、端的に言えば、互いに逆方向のアールを接続位置eで繋いだ断面形状となっている。   The slope portion 16 is connected to the first curved surface portion 31 that is located radially outside and the second curved surface portion that is continuously connected to the first curved surface portion 31 and located radially inside the first curved surface portion 31. 32. The connection position of the 1st curved surface part 31 and the 2nd curved surface part 32 is shown by e. The first curved surface portion 31 is formed in a cross-sectional arc shape having the center of the first curvature radius R3 or the base point S3 above the bottom wall portion 14 or the slope portion 16. On the other hand, the second curved surface portion 32 is formed in a cross-sectional arc shape having the center of the second curvature radius R4 or the base point S4 below the bottom wall portion 14 or the slope portion 16. Accordingly, the first curved surface portion 31 and the second curved surface portion 32 have an S-shaped cross-sectional shape as a whole when viewed macroscopically. In short, a cross-section in which Rs in opposite directions are connected at the connection position e. It has a shape.

なお、図示する曲率半径の長さおよび向き、ならびに曲率半径の中心の位置は、概略的に示されたものであり、正確でない点に留意されたい。   It should be noted that the length and direction of the radius of curvature shown and the position of the center of the radius of curvature are schematically shown and are not accurate.

本実施形態の場合、第2曲率半径R4は第1曲率半径R3より大きい。第1湾曲面部31は斜面部16の最も半径方向外側に位置され、接続位置cにおいて側壁部13に直接かつ連続して接続されている。第2湾曲面部32は、第1湾曲面部31との接続位置eから底壁部14の頂点位置dまで延びており、つまり第1湾曲面部31の部分を除く斜面部16もしくは底壁部14の全体が第2湾曲面部32となっている。   In the present embodiment, the second radius of curvature R4 is larger than the first radius of curvature R3. The first curved surface portion 31 is located on the outermost side in the radial direction of the slope portion 16 and is directly and continuously connected to the side wall portion 13 at the connection position c. The second curved surface portion 32 extends from the connection position e with the first curved surface portion 31 to the apex position d of the bottom wall portion 14, that is, the slope portion 16 or the bottom wall portion 14 excluding the portion of the first curved surface portion 31. The entirety is a second curved surface portion 32.

なお「連続して接続」とは、接続位置にできるだけ段差や凹凸が生じないような滑らかな接続態様をいう。こうした滑らかな接続を行うことにより、燃焼室内ガスの接続位置における滞留を抑制し、流動を活発化させ、燃焼を良好に行うことができる。   Note that “continuously connected” refers to a smooth connection mode in which steps and unevenness are not generated as much as possible at the connection position. By performing such a smooth connection, it is possible to suppress the stay of the combustion chamber gas at the connection position, to activate the flow, and to perform the combustion well.

側壁部13の半径方向外側に位置するピストン2の内部には、ピストン2を冷却するためのオイルが流される冷却通路17が形成される。冷却通路17はキャビティ11を囲繞するリング状とされる。冷却通路17には、ピストン2の下側からピストン2に向けてオイルジェット(図示せず)により上向きに吹き出されたオイルが導入され、導入されたオイルの排出を行うオイル出口穴18が、冷却通路17とピストン2の下面19との間を貫通して形成される。   A cooling passage 17 through which oil for cooling the piston 2 flows is formed in the piston 2 located on the radially outer side of the side wall portion 13. The cooling passage 17 has a ring shape surrounding the cavity 11. Oil that is blown upward by an oil jet (not shown) from the lower side of the piston 2 toward the piston 2 is introduced into the cooling passage 17, and an oil outlet hole 18 that discharges the introduced oil has a cooling function. It is formed to penetrate between the passage 17 and the lower surface 19 of the piston 2.

キャビティ11の半径方向外側に位置する頂面8は、頂面8の外周部20をなす。具体的には、頂面外周部20は、頂面8とリップ部12の境界位置aより半径方向外側に位置された頂面8の部分である。   The top surface 8 located on the radially outer side of the cavity 11 forms an outer peripheral portion 20 of the top surface 8. Specifically, the top surface outer peripheral portion 20 is a portion of the top surface 8 that is located radially outward from the boundary position a between the top surface 8 and the lip portion 12.

この頂面外周部20は、リップ部12に連続して接続され、リップ部12の半径方向外側に位置された第1テーパ面部21と、第1テーパ面部21に接続されると共にその半径方向外側に位置された第2テーパ面部22とを備える。また本実施形態の頂面外周部20は、第2テーパ面部22に接続されると共にその半径方向外側に位置された平面部23をさらに備える。   The outer peripheral portion 20 of the top surface is continuously connected to the lip portion 12, and is connected to the first tapered surface portion 21 located on the radially outer side of the lip portion 12, and to the first tapered surface portion 21 and radially outward thereof. And a second taper surface portion 22 positioned at the center. Moreover, the top surface outer peripheral portion 20 of the present embodiment further includes a flat portion 23 that is connected to the second tapered surface portion 22 and is positioned on the outer side in the radial direction.

第1テーパ面部21は、ピストン中心軸Cに垂直な仮想平面fに対して第1傾斜角θ1だけ傾斜されたテーパ面により形成される。同様に第2テーパ面部22は、ピストン中心軸Cに垂直な仮想平面fに対して第2傾斜角θ2だけ傾斜されたテーパ面により形成される。第2傾斜角θ2は第1傾斜角θ1より大きく、従って第2テーパ面部22は第1テーパ面部21より大きい傾斜角θ2を有する。第1テーパ面部21および第2テーパ面部22は、半径方向外側に向かうにつれ高さが高くなるテーパ面とされる。従って半径方向外側に向かうにつれ、テーパ面部の傾斜角は段階的にきつくなり、第1テーパ面部21および第2テーパ面部22は二段テーパを形成する。   The first tapered surface portion 21 is formed by a tapered surface that is inclined by a first inclination angle θ1 with respect to a virtual plane f perpendicular to the piston center axis C. Similarly, the second tapered surface portion 22 is formed by a tapered surface that is inclined by a second inclination angle θ2 with respect to a virtual plane f perpendicular to the piston center axis C. The second inclination angle θ <b> 2 is larger than the first inclination angle θ <b> 1, so that the second taper surface portion 22 has an inclination angle θ <b> 2 larger than the first taper surface portion 21. The 1st taper surface part 21 and the 2nd taper surface part 22 are made into the taper surface where height becomes high as it goes to a radial direction outer side. Therefore, as it goes outward in the radial direction, the inclination angle of the taper surface portion becomes tighter in steps, and the first taper surface portion 21 and the second taper surface portion 22 form a two-step taper.

第1傾斜角θ1は、ゼロより若干大きい値を有し、例えば約10°である。第2傾斜角θ1は、90°より小さい値を有し、例えば約30°である。   The first inclination angle θ1 has a value slightly larger than zero, and is about 10 °, for example. The second inclination angle θ1 has a value smaller than 90 °, for example, about 30 °.

他方、平面部23は、ピストン中心軸Cに垂直な平面もしくは平坦面により形成される。平面部23は外周面9の位置まで半径方向外側に延びている。半径方向における平面部23の幅は、第1テーパ面部21および第2テーパ面部22の合計幅と同程度とされている。   On the other hand, the flat portion 23 is formed by a flat surface or a flat surface perpendicular to the piston central axis C. The flat portion 23 extends radially outward to the position of the outer peripheral surface 9. The width of the flat surface portion 23 in the radial direction is approximately the same as the total width of the first tapered surface portion 21 and the second tapered surface portion 22.

インジェクタ7は、図1に示すように、ピストン中心軸Cすなわちシリンダ中心軸に同軸になるよう配置される。またインジェクタ7は、矢印gで示すように、ピストン2が圧縮上死点またはその近傍に位置するときに、リップ部12の頂部、すなわち最も半径方向内側に位置する部分に向かって燃料を噴射するよう配置および指向されている。なおリップ部12の頂部の若干下側に向かって燃料を噴射してもよい。   As shown in FIG. 1, the injector 7 is disposed so as to be coaxial with the piston central axis C, that is, the cylinder central axis. Further, as shown by an arrow g, the injector 7 injects fuel toward the top portion of the lip portion 12, that is, the portion located on the innermost side in the radial direction when the piston 2 is located at or near the compression top dead center. So arranged and oriented. The fuel may be injected slightly below the top of the lip portion 12.

次に、本実施形態の作用効果を説明する。   Next, the effect of this embodiment is demonstrated.

図2は、インジェクタ7からの燃料噴射後で且つピストン2が下降中であるときの第1特定タイミング(例えば圧縮上死点後(ATDC)15°CA)における燃焼室6の内部の様子を示す。線hは、燃焼室6内におけるガスの当量比が第1値以上となっている第1領域Aの外縁を示し、線iは、ガスの当量比が第2値以上となっている第2領域Bの外縁を示す。ここでガスとは、空気と燃料の混合気、または空気を指す総称である。当量比とは燃料と空気の混合割合もしくは混合比をいい、当該混合比が理論空燃比のとき当量比は1で、当該混合比が燃料増加側(リッチ側)になるほど当量比の値は大きくなる。図示例の場合、第1値は約1、第2値は約2であり、第2領域Bは第1領域Aより相対的にリッチな領域である。また第2領域Bは燃焼室6内全体で見ても最もリッチな領域である。従ってここでは第2領域Bをリッチ領域と称する。   FIG. 2 shows the inside of the combustion chamber 6 at a first specific timing (for example, after compression top dead center (ATDC) 15 ° CA) after fuel injection from the injector 7 and when the piston 2 is descending. . Line h indicates the outer edge of the first region A where the gas equivalent ratio in the combustion chamber 6 is equal to or greater than the first value, and line i is the second where the gas equivalent ratio is equal to or greater than the second value. The outer edge of region B is shown. Here, the gas is a generic term indicating an air-fuel mixture or air. The equivalence ratio is the mixing ratio or mixing ratio of fuel and air. When the mixing ratio is the stoichiometric air-fuel ratio, the equivalence ratio is 1, and the equivalence ratio becomes larger as the mixing ratio becomes the fuel increasing side (rich side). Become. In the illustrated example, the first value is about 1, the second value is about 2, and the second region B is a relatively rich region than the first region A. Further, the second region B is the richest region as viewed in the entire combustion chamber 6. Therefore, here, the second region B is referred to as a rich region.

図から理解されるように、インジェクタ7から半径方向外側且つ斜め下向きに噴射された燃料は、リップ部12に衝突して上方と下方に分岐ないし分流される。下方に分岐した燃料は、側壁部13へと流れ、その過程で周囲の空気と混合しながら混合気を形成する。他方、上方に分岐した燃料は、頂面外周部20に沿って半径方向外側に向かって流れ、その過程で周囲の空気と混合しながら混合気を形成する。図示のタイミングでは、リッチ領域Bが、リップ部12と、リップ部12付近に位置する第1テーパ面部21および側壁部13とを覆って、それらの周辺に存在する。なお図示のタイミングで着火が生じていることもあるが、ここでは説明の便宜上、着火は生じていないものとする。   As understood from the figure, the fuel injected from the injector 7 radially outward and diagonally downward collides with the lip portion 12 and branches or splits upward and downward. The fuel branched downward flows into the side wall portion 13 and forms an air-fuel mixture while mixing with the surrounding air in the process. On the other hand, the fuel branched upward flows radially outward along the top surface outer peripheral portion 20, and forms an air-fuel mixture while mixing with the surrounding air in the process. At the timing shown in the drawing, the rich region B covers the lip portion 12, the first tapered surface portion 21 and the side wall portion 13 located near the lip portion 12, and exists around them. Although ignition may occur at the timing shown in the figure, it is assumed here that ignition has not occurred for convenience of explanation.

リップ部12の上方に分岐する燃料の流れに駆動されて、頂面外周部20上を半径方向外側に向かうガスの流れが発生する。このガスは、リップ部12から第1テーパ面部21に移動する際に剥離し、縦方向(もしくは上下方向)の渦流jを発生させる。リッチ領域Bと渦流jの位置が合っているので、リッチ領域B内の濃い混合気が、その上方に位置する薄い混合気または空気と、渦流jにより積極的に攪拌混合される。これにより燃料と空気の攪拌混合を促進し、頂面外周部20とシリンダヘッド4の隙間、すなわち頂面外周部20の上方の空間における空気の利用率を高めることができる。   Driven by the flow of fuel that diverges above the lip portion 12, a gas flow is generated radially outward on the top outer peripheral portion 20. The gas is separated when moving from the lip portion 12 to the first tapered surface portion 21, and generates a vertical (or vertical) vortex j. Since the positions of the rich region B and the vortex j are aligned, the rich air-fuel mixture in the rich region B is actively stirred and mixed by the vortex j with the thin air-fuel mixture or air positioned above the rich air-fuel mixture. Thereby, stirring and mixing of fuel and air can be promoted, and the utilization rate of air in the space between the top surface outer peripheral portion 20 and the cylinder head 4, that is, the space above the top surface outer peripheral portion 20 can be increased.

次いで、ピストン2がさらに下降すると図3に示すような状態となる。図3は、第1特定タイミングより後の第2特定タイミング(例えばATDC25°CA)における燃焼室6の内部の様子を示す。先のリップ部12周辺のリッチ領域Bはさらに拡がり、リップ部12の上方では、第2テーパ面部22まで到達している。   Next, when the piston 2 is further lowered, the state shown in FIG. 3 is obtained. FIG. 3 shows the inside of the combustion chamber 6 at a second specific timing (for example, ATDC 25 ° CA) after the first specific timing. The rich region B around the previous lip portion 12 further expands and reaches the second tapered surface portion 22 above the lip portion 12.

その一方で、先の渦流jも、リッチ領域Bの移動に合わせて半径方向外側に移動し、リッチ領域Bと同様に第2テーパ面部22まで到達している。リッチ領域Bの移動中、渦流jの少なくとも一部はリッチ領域B内に位置される。従って、リッチ領域Bが第1テーパ面部21から第2テーパ面部22に移動するのに合わせて、或いはそれと連動して、渦流jを移動させることができ、その移動中に渦流jを利用して、リッチ領域B内の濃い混合気と、その上方の薄い混合気または空気とを積極的に攪拌混合できる。   On the other hand, the previous eddy current j also moves outward in the radial direction in accordance with the movement of the rich region B, and reaches the second tapered surface portion 22 as in the rich region B. During the movement of the rich region B, at least a part of the vortex j is located in the rich region B. Therefore, the eddy current j can be moved in accordance with or in conjunction with the movement of the rich region B from the first tapered surface portion 21 to the second tapered surface portion 22, and the eddy current j is utilized during the movement. The rich air-fuel mixture in the rich region B and the thin air-fuel mixture or air above the air-fuel mixture can be actively stirred and mixed.

それ故、頂面外周部20とシリンダヘッド4の隙間、すなわち頂面外周部20の上方の空間における空気の利用率を高めることができ、スモークを効果的に抑制できる。   Therefore, the air utilization factor in the gap between the top surface outer peripheral portion 20 and the cylinder head 4, that is, the space above the top surface outer peripheral portion 20 can be increased, and smoke can be effectively suppressed.

このように本実施形態では、ピストン2の下降中にリッチ領域Bが第1テーパ面部21および第2テーパ面部22に順に沿って半径方向外側に移動するとき、リッチ領域Bの移動に合わせて縦方向の渦流jを移動させるよう、第1テーパ面部21および第2テーパ面部22が形成されている。このため、頂面外周部20の上方の空間における空気の利用率を高めることができ、スモークを効果的に抑制できる。また併せて、燃焼を改善し、燃費を向上できる。   As described above, in the present embodiment, when the rich region B moves radially outward along the first tapered surface portion 21 and the second tapered surface portion 22 while the piston 2 is descending, the rich region B is vertically aligned with the movement of the rich region B. A first tapered surface portion 21 and a second tapered surface portion 22 are formed so as to move the eddy current j in the direction. For this reason, the utilization factor of the air in the space above the outer peripheral part 20 of the top surface can be increased, and smoke can be effectively suppressed. In addition, combustion can be improved and fuel consumption can be improved.

リッチ領域Bおよび渦流jが第2テーパ面部22に到達すると、第2テーパ面部22の傾斜がきついため、リッチ領域Bおよび渦流jの半径方向外側への移動が少なからず阻害され、それらが停滞気味となる。よってそれらがシリンダ3の内壁まで到達してその付近に滞留するのを抑制できる。すなわちそれらがシリンダ内壁付近に滞留すると、攪拌混合しづらくなり、利用できる空気が限定的となるが、それらが第2テーパ面部22付近に停滞すれば、頂面外周部20の半径方向中央部付近で攪拌混合できるので、その周りの空気を有効利用し、空気利用率を高められる。よってスモーク抑制に有利である。   When the rich region B and the eddy current j reach the second tapered surface portion 22, the inclination of the second tapered surface portion 22 is so tight that the movement of the rich region B and the eddy current j to the outside in the radial direction is not a little inhibited and they are stagnant. It becomes. Therefore, it can suppress that they reach the inner wall of the cylinder 3 and stay in the vicinity thereof. That is, if they stay near the inner wall of the cylinder, it becomes difficult to stir and mix, and the available air is limited, but if they stay near the second tapered surface portion 22, the vicinity of the central portion in the radial direction of the top outer peripheral portion 20 Therefore, the air around it can be used effectively and the air utilization rate can be increased. Therefore, it is advantageous for smoke suppression.

平面部23を設けたことにより、第2テーパ面部22をシリンダ3の内壁から一定距離離間させ、こうした中央部付近での攪拌混合を促進し、空気利用率を向上してスモークを抑制できる。   By providing the flat surface portion 23, the second tapered surface portion 22 is separated from the inner wall of the cylinder 3 by a certain distance, and stirring and mixing in the vicinity of the center portion is promoted, and the air utilization rate is improved and smoke can be suppressed.

次いで、ピストン2がさらに下降すると図4に示すような状態となる。図4は、第2特定タイミングより後の第3特定タイミング(例えばATDC45°CA)における燃焼室6の内部の様子を示す。   Next, when the piston 2 is further lowered, the state shown in FIG. 4 is obtained. FIG. 4 shows the inside of the combustion chamber 6 at a third specific timing (for example, ATDC 45 ° CA) after the second specific timing.

この段階では、燃焼室6内における混合気の希薄化が進み、もはやリッチ領域Bは消失し、より当量比の小さい(リーンな)第1領域Aのみが存在する。   At this stage, the air-fuel mixture is further diluted in the combustion chamber 6, the rich region B disappears, and only the first region A having a smaller equivalence ratio (lean) exists.

リップ部12から下方に分岐した燃料は、側壁部13を経て斜面部16に流れ、その過程で周囲の空気と混合して混合気を形成する。混合気は、徐々に周囲の空気と混合して希薄化しながら、斜面部16上を半径方向内側に向かって流れる。この流れは、概ね、符号mで示すような斜面部16に沿う流れである。   The fuel branched downward from the lip portion 12 flows to the slope portion 16 through the side wall portion 13 and mixes with ambient air in the process to form an air-fuel mixture. The air-fuel mixture flows radially inward on the slope 16 while gradually diluting by mixing with the surrounding air. This flow is generally a flow along the sloped portion 16 as indicated by the symbol m.

混合気は、第1湾曲面部31および第2湾曲面部32を順次通過する。しかし、これらが全体でS字断面形状を有することから、混合気が第1湾曲面部31から第2湾曲面部32に移動し、あるいは乗り移る際、符号kで示すような剥離流が発生する。すなわち第1湾曲面部31に沿って流れていた混合気が、第2湾曲面部32に乗り移る時に、第2湾曲面部32の湾曲形状が逆であるために、第2湾曲面部32に一部追従できず、剥離する。これによって接続位置eの直後の下流側に上向きの剥離流kが発生する。   The air-fuel mixture sequentially passes through the first curved surface portion 31 and the second curved surface portion 32. However, since they have an S-shaped cross section as a whole, when the air-fuel mixture moves from the first curved surface portion 31 to the second curved surface portion 32 or transfers, an exfoliation flow as indicated by a symbol k is generated. That is, when the air-fuel mixture flowing along the first curved surface portion 31 is transferred to the second curved surface portion 32, the curved shape of the second curved surface portion 32 is reversed, so that it can partially follow the second curved surface portion 32. Without peeling off. As a result, an upward separated flow k is generated on the downstream side immediately after the connection position e.

この混合気の剥離流kは、接続位置eの上方の空間nにある空気と良好に混合する。従って当該空間nの空気を有効利用し、空気利用率を高めることができる。また剥離流kは、斜面部16上に付着する燃料を引き剥がして空気と混合させる効果もある。よって燃料と空気の混合を促進し、スモークを抑制できる。   The separated flow k of the air-fuel mixture mixes well with the air in the space n above the connection position e. Therefore, the air in the space n can be used effectively and the air utilization rate can be increased. The separation flow k also has an effect of peeling off the fuel adhering to the slope portion 16 and mixing it with air. Therefore, mixing of fuel and air can be promoted and smoke can be suppressed.

第2曲率半径R4が第1曲率半径R3より大きいため、第1湾曲面部31の湾曲の方が第2湾曲面部32の湾曲よりきつくなる。このため、これらの接続位置eにおける剥離を促進し、剥離流kを効果的に発生させて空気利用率を高めることができる。   Since the second curvature radius R4 is larger than the first curvature radius R3, the curvature of the first curved surface portion 31 is tighter than the curvature of the second curved surface portion 32. For this reason, the separation at these connection positions e can be promoted, and the separation flow k can be effectively generated to increase the air utilization rate.

以上、本発明の実施形態を詳細に述べたが、本発明は以下のような他の実施形態も可能である。   As mentioned above, although embodiment of this invention was described in detail, the following other embodiments are also possible for this invention.

(1)例えばキャビティはリエントラント型以外の形状であってもよく、浅皿型、トロイダル型等であってもよい。   (1) For example, the cavity may have a shape other than the reentrant type, and may be a shallow dish type, a toroidal type, or the like.

(2)上記実施形態では、第1湾曲面部31を側壁部13に直接的に接続している。しかしながら、第1湾曲面部31と側壁部13の間に、両者の円弧状断面を滑らかに繋ぐ緩和曲線部を設け、第1湾曲面部31を間接的に側壁部13に接続してもよい。緩和曲線部は、断面視において、第1湾曲面部31との接続位置で第1湾曲面部31と同じ曲率半径R3を有し、側壁部13との接続位置で側壁部13と同じ曲率半径R2を有し、第1湾曲面部31との接続位置から側壁部13との接続位置にかけてR3からR2に連続的に変化する曲率半径を有する。こうすると、混合気が側壁部13から第1湾曲面部31に移動する際の移動をスムーズに行える可能性がある。   (2) In the above embodiment, the first curved surface portion 31 is directly connected to the side wall portion 13. However, between the first curved surface portion 31 and the side wall portion 13, a relaxation curve portion that smoothly connects the arcuate cross sections of both may be provided, and the first curved surface portion 31 may be indirectly connected to the side wall portion 13. In the sectional view, the relaxation curve portion has the same radius of curvature R3 as the first curved surface portion 31 at the connection position with the first curved surface portion 31, and the same curvature radius R2 as the side wall portion 13 at the connection position with the side wall portion 13. And has a radius of curvature that continuously changes from R3 to R2 from the connection position with the first curved surface portion 31 to the connection position with the side wall portion 13. In this case, there is a possibility that the air-fuel mixture can move smoothly when moving from the side wall portion 13 to the first curved surface portion 31.

(3)上記実施形態では、第2湾曲面部32が、第1湾曲面部31との接続位置eから底壁部14の頂点位置dまで延びており、第1湾曲面部31の部分を除く斜面部16全体もしくは底壁部14全体が第2湾曲面部32となっている。しかしながら、第2湾曲面部32は少なくとも第1湾曲面部31との接続位置e付近にあればよく、接続位置eからピストン中心軸C側に比較的離れた部位に、必ずしも第2湾曲面部32を設ける必要はない。従ってその部位の底壁部14、すなわち底壁部14の中心側の頂部の形状を変更することが可能である。例えば当該頂部を、ピストン中心軸Cに垂直な平面状にしてもよい。   (3) In the above embodiment, the second curved surface portion 32 extends from the connection position e with the first curved surface portion 31 to the apex position d of the bottom wall portion 14, and the slope portion excluding the portion of the first curved surface portion 31. The entire 16 or the entire bottom wall portion 14 is the second curved surface portion 32. However, the second curved surface portion 32 only needs to be at least in the vicinity of the connection position e with the first curved surface portion 31, and the second curved surface portion 32 is not necessarily provided in a portion relatively distant from the connection position e to the piston central axis C side. There is no need. Accordingly, it is possible to change the shape of the bottom wall portion 14 of the part, that is, the shape of the top portion on the center side of the bottom wall portion 14. For example, the top portion may be formed in a planar shape perpendicular to the piston center axis C.

本発明の実施形態は前述の実施形態のみに限らず、特許請求の範囲によって規定される本発明の思想に包含されるあらゆる変形例や応用例、均等物が本発明に含まれる。従って本発明は、限定的に解釈されるべきではなく、本発明の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。   The embodiment of the present invention is not limited to the above-described embodiment, and includes all modifications, applications, and equivalents included in the concept of the present invention defined by the claims. Therefore, the present invention should not be construed as being limited, and can be applied to any other technique belonging to the scope of the idea of the present invention.

1 燃焼室構造
2 ピストン
8 頂面
11 キャビティ
20 外周部
21 第1テーパ面部
22 第2テーパ面部
30 キャビティ内壁
B リッチ領域
C ピストン中心軸
f 仮想平面
j 渦流
θ1、θ2 傾斜角
DESCRIPTION OF SYMBOLS 1 Combustion chamber structure 2 Piston 8 Top surface 11 Cavity 20 Outer peripheral part 21 1st taper surface part 22 2nd taper surface part 30 Cavity inner wall B Rich area | region C Piston central axis f Virtual plane j Eddy current (theta) 1, (theta) 2 Inclination angle

Claims (5)

ピストン頂面の中央部に凹設されたキャビティと、
前記キャビティの半径方向外側に位置された前記ピストン頂面の外周部と、
を備え、
前記ピストン頂面の外周部は、
前記キャビティを画成するキャビティ内壁に接続され、その半径方向外側に位置された第1テーパ面部と、
前記第1テーパ面部に接続されると共にその半径方向外側に位置され、ピストン中心軸に垂直な仮想平面に対し、前記第1テーパ面部より大きい傾斜角を有する第2テーパ面部と、
を備え、
ピストンの下降中にリッチ領域が前記第1テーパ面部および前記第2テーパ面部に順に沿って半径方向外側に移動するとき、前記リッチ領域の移動に合わせて縦方向の渦流を移動させるよう、前記第1テーパ面部および前記第2テーパ面部が形成されている
ことを特徴とする直噴式内燃機関の燃焼室構造。
A cavity recessed in the center of the piston top surface;
An outer periphery of the piston top surface located radially outward of the cavity;
With
The outer periphery of the piston top surface is
A first tapered surface portion connected to an inner wall of the cavity defining the cavity and positioned radially outward thereof;
A second taper surface portion connected to the first taper surface portion and located radially outside thereof, and having an inclination angle larger than the first taper surface portion with respect to a virtual plane perpendicular to the piston central axis;
With
When the rich region moves radially outward along the first tapered surface portion and the second tapered surface portion while the piston is descending, the vortex flow in the vertical direction is moved in accordance with the movement of the rich region. A combustion chamber structure for a direct injection internal combustion engine, wherein one taper surface portion and the second taper surface portion are formed.
前記ピストン頂面の外周部は、前記第2テーパ面部に接続されると共にその半径方向外側に位置され、ピストン中心軸に垂直な平面部をさらに備える
請求項1に記載の直噴式内燃機関の燃焼室構造。
2. The combustion of the direct injection internal combustion engine according to claim 1, further comprising: a flat surface portion that is connected to the second tapered surface portion and is located radially outward of the outer peripheral portion of the piston top surface and perpendicular to the piston central axis. Chamber structure.
前記キャビティ内壁は底壁部を有し、前記底壁部は、ピストン中心軸に近づくにつれ徐々に高くなる斜面部を有し、
前記斜面部は、
その半径方向外側に位置され、前記底壁部の上方に第1曲率半径の中心を有する断面円弧状に形成された第1湾曲面部と、
前記第1湾曲面部に接続されると共にその半径方向内側に位置され、前記底壁部の下方に第2曲率半径の中心を有する断面円弧状に形成された第2湾曲面部と、
を備える
請求項1または2に記載の直噴式内燃機関の燃焼室構造。
The cavity inner wall has a bottom wall portion, and the bottom wall portion has a slope portion that gradually increases as it approaches the piston central axis,
The slope portion is
A first curved surface portion that is located on the radially outer side and is formed in a cross-sectional arc shape having a center of a first curvature radius above the bottom wall portion;
A second curved surface portion connected to the first curved surface portion and positioned radially inwardly, and formed in a cross-sectional arc shape having a center of a second radius of curvature below the bottom wall portion;
A combustion chamber structure for a direct injection internal combustion engine according to claim 1 or 2.
前記第2曲率半径は、前記第1曲率半径より大きい
請求項3に記載の直噴式内燃機関の燃焼室構造。
The combustion chamber structure of a direct injection internal combustion engine according to claim 3, wherein the second radius of curvature is larger than the first radius of curvature.
前記キャビティは、リエントラント型キャビティである
請求項1〜4のいずれか一項に記載の直噴式内燃機関の燃焼室構造。
The combustion chamber structure of a direct injection internal combustion engine according to any one of claims 1 to 4, wherein the cavity is a reentrant type cavity.
JP2017135615A 2017-07-11 2017-07-11 Combustion chamber structure of direct injection internal combustion engine Active JP7005974B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017135615A JP7005974B2 (en) 2017-07-11 2017-07-11 Combustion chamber structure of direct injection internal combustion engine
CN201880045870.7A CN110869592B (en) 2017-07-11 2018-07-10 Combustion chamber structure of direct injection internal combustion engine
PCT/JP2018/026087 WO2019013221A1 (en) 2017-07-11 2018-07-10 Combustion chamber structure for direct injection internal combustion engine
PH12020500006A PH12020500006A1 (en) 2017-07-11 2020-01-02 Combustion chamber structure for direct injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017135615A JP7005974B2 (en) 2017-07-11 2017-07-11 Combustion chamber structure of direct injection internal combustion engine

Publications (2)

Publication Number Publication Date
JP2019019676A true JP2019019676A (en) 2019-02-07
JP7005974B2 JP7005974B2 (en) 2022-01-24

Family

ID=65001383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017135615A Active JP7005974B2 (en) 2017-07-11 2017-07-11 Combustion chamber structure of direct injection internal combustion engine

Country Status (4)

Country Link
JP (1) JP7005974B2 (en)
CN (1) CN110869592B (en)
PH (1) PH12020500006A1 (en)
WO (1) WO2019013221A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7518663B2 (en) * 2020-05-19 2024-07-18 株式会社小松製作所 Piston for diesel engine and diesel engine
CN112432204B (en) * 2020-12-04 2022-04-22 中国人民解放军国防科技大学 Reentrant structure and scramjet that can internal flow drag reduction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091389A1 (en) * 2006-02-08 2007-08-16 Hino Motors, Ltd. Combustion chamber structure of direct injection type diesel engine
JP2013527360A (en) * 2010-01-29 2013-06-27 リカルド ユーケー リミテッド Direct injection diesel engine
WO2015177897A1 (en) * 2014-05-22 2015-11-26 日産自動車株式会社 Combustion chamber structure for diesel engine
US20170096978A1 (en) * 2014-03-14 2017-04-06 IFP Energies Nouvelles Compression engine with direct fuel injection with compression ignition comprising means for cooling the piston

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2826435C (en) * 2013-09-06 2016-01-05 Westport Power Inc. Combustion system for gaseous fuelled internal combustion engine
JP2016125422A (en) * 2015-01-05 2016-07-11 いすゞ自動車株式会社 Combustion chamber structure of direct injection type engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091389A1 (en) * 2006-02-08 2007-08-16 Hino Motors, Ltd. Combustion chamber structure of direct injection type diesel engine
JP2013527360A (en) * 2010-01-29 2013-06-27 リカルド ユーケー リミテッド Direct injection diesel engine
US20170096978A1 (en) * 2014-03-14 2017-04-06 IFP Energies Nouvelles Compression engine with direct fuel injection with compression ignition comprising means for cooling the piston
WO2015177897A1 (en) * 2014-05-22 2015-11-26 日産自動車株式会社 Combustion chamber structure for diesel engine

Also Published As

Publication number Publication date
WO2019013221A1 (en) 2019-01-17
JP7005974B2 (en) 2022-01-24
CN110869592B (en) 2021-11-02
CN110869592A (en) 2020-03-06
PH12020500006A1 (en) 2020-12-07

Similar Documents

Publication Publication Date Title
US20140216393A1 (en) Direct-injection engine combustion chamber structure
CN101040108B (en) Combustion chamber shape for direct injection type diesel engine
JP2007120353A (en) Compression ignition internal combustion engine
EP3505735B1 (en) Internal combustion engine
CN107076007B (en) Direct injection internal combustion engine with double cone angle for producing a fuel mixture in a dual zone combustion chamber having a low compression ratio and method of using the same
JP2014517195A (en) Combustion chamber structure of opposed piston engine
US9938887B2 (en) Combustion chamber structure for diesel engine
US10288026B2 (en) Compression engine with direct fuel injection with compression ignition comprising means for cooling the piston
US9091199B2 (en) Combustion system for an engine having a swirl inducing combustion chamber
US9732665B2 (en) Compression ignition internal combustion engine
CN105121960B (en) The spraying system for including the annular wall with convergence inner section for the combustion chamber of turbogenerator
US9879590B2 (en) Direct injection diesel engine
KR102495810B1 (en) Piston for diesel engine and direct inejction diesel engine including the same
JP2016041915A (en) Internal combustion engine
JP2019019676A (en) Combustion chamber structure of direct injection type internal combustion engine
US20150047599A1 (en) Combustion chamber structure for direct injection engine
JP2014222041A (en) Direct injection diesel engine
EP3530906A1 (en) Diesel engine
JP2019007446A (en) Combustion chamber structure for direct-injection type internal combustion engine
JP2013160186A (en) Piston combustion chamber structure of internal combustion engine
JP2008151089A (en) Combustion chamber of diesel engine
US9790845B2 (en) Internal combustion engine
US10876464B2 (en) Piston design for flow re-direction
JP2009150361A (en) Piston for direct injection type diesel engine
JP6304022B2 (en) Internal combustion engine

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210607

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211021

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211021

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211021

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211029

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220

R150 Certificate of patent or registration of utility model

Ref document number: 7005974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150