WO2019013220A1 - Rolling device - Google Patents

Rolling device Download PDF

Info

Publication number
WO2019013220A1
WO2019013220A1 PCT/JP2018/026085 JP2018026085W WO2019013220A1 WO 2019013220 A1 WO2019013220 A1 WO 2019013220A1 JP 2018026085 W JP2018026085 W JP 2018026085W WO 2019013220 A1 WO2019013220 A1 WO 2019013220A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
rolling
rolling device
functional layer
present
Prior art date
Application number
PCT/JP2018/026085
Other languages
French (fr)
Japanese (ja)
Inventor
義夫 滝
智則 金子
清水 博之
友子 天野
嘉伸 矢野
佐藤 慎一郎
Original Assignee
Thk株式会社
清水電設工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk株式会社, 清水電設工業株式会社 filed Critical Thk株式会社
Priority to JP2019529740A priority Critical patent/JP7016365B2/en
Publication of WO2019013220A1 publication Critical patent/WO2019013220A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts

Definitions

  • the present invention relates to a rolling device.
  • the rolling device includes an inner member having a raceway surface on the outer surface, an outer member having a raceway surface facing the raceway surface of the inner member and disposed outside the inner member, and the two raceways.
  • This is a device in which the outer member can freely reciprocate or rotate in the axial direction or the circumferential direction of the inner member by having a plurality of rolling elements disposed rollably between the surfaces.
  • a semiconductor manufacturing apparatus, a liquid crystal panel manufacturing apparatus, and a food processing apparatus are formed by forming a fluorocarbon resin film on an element forming a rolling device through an electroless nickel film. It can be suitably used in an environment requiring a clean atmosphere, etc., and can also be used in a vacuum, high temperature, corrosive atmosphere environment.
  • Patent Document 1 the technology described in the following Patent Document 1 is to form a fluorocarbon resin film after forming an electroless nickel film on a substrate such as a metal material, a technology having many manufacturing processes and cost increase It is.
  • the electroless nickel film and the electroless nickel-phosphorus film originally have an anticorrosive effect on the film itself, and an effect of improving the corrosion resistance can be obtained.
  • a rolling device having both rolling fatigue resistance and corrosion resistance can be realized by applying only a coating or an electroless nickel-phosphorus coating, the industrial utility value becomes extremely high.
  • fine cracks and pores are present in the electroless nickel film, and therefore, when the film in such a state is used as a component of the rolling device, repeated contact is made.
  • the peeling of the film or the like is generated by the stress, or the rust is generated from the crack or the hole as a starting point, so that the performance as a rolling device could not be sufficiently exhibited.
  • the technology for forming a coating film which can suitably improve the wear characteristics and the lubricating life characteristics of the rolling device has not been completed in the past.
  • the present invention has been made in view of the various problems existing in the above-mentioned prior art, and the object thereof is to prevent metal contact by forming a coating layer on a component, and to wear characteristics and lubrication life.
  • An object of the present invention is to realize a rolling device with improved characteristics.
  • the rolling device comprises an inward member having a raceway surface on the outer surface, and an outward member having a raceway surface opposed to the raceway surface of the inward member and disposed outside the inward member.
  • the functional layer is characterized in that it is configured as a composite layer having a laminated structure in which WC layers and C layers are alternately laminated.
  • a coating layer on a component by forming a coating layer on a component, metal contact can be prevented, and a new rolling device having improved wear characteristics and lubrication life characteristics can be realized.
  • FIG. 1 is a view for explaining the specific contents of a coating layer according to the present invention, and a portion (a) in the figure is a schematic view showing a cross-sectional configuration of the coating layer, and a portion (b) These are photographs showing a part of the cross-sectional configuration of the coating layer.
  • FIG. 2 is a graph showing the results of the oil lubrication load endurance test, and the test results of the respective test products shown on the vertical axis are represented as the travel distance shown on the horizontal axis.
  • FIG. 3 is a graph showing the results of the non-lubricant load endurance test, and the test results of the respective test products shown on the vertical axis are represented as the travel distance ratio shown on the horizontal axis.
  • FIG. 1 is a view for explaining the specific contents of a coating layer according to the present invention, and a portion (a) in the figure is a schematic view showing a cross-sectional configuration of the coating layer, and a portion (b) These are photographs showing a part of the cross
  • FIG. 4 is a view for explaining a modified embodiment of the base layer according to the present invention, and a section (a) in the figure is a schematic view showing a cross-sectional configuration of the coating layer, and a section (b) is It is a graph which shows the change of the C component rate in the film thickness direction of the base layer which comprises a coating layer.
  • FIG. 5 is a view illustrating one of the optimum design conditions of the coating hardness of the coating layer according to the present invention, and a diagram (a) in the figure is a schematic view showing a cross-sectional configuration of the coating layer
  • Section (b) is a graph showing a design example of the hardness value in the film thickness direction of the coating layer.
  • FIG. 6 is an external perspective view illustrating an embodiment in which the rolling device according to the present embodiment is configured as a linear guide device.
  • FIG. 7 is a cross-sectional view for explaining an infinite circulation path provided in the linear guide device shown in FIG.
  • FIG. 8 is a view exemplifying a case where the rolling device according to the present embodiment is configured as a ball screw device.
  • FIG. 9 is a view illustrating the case where the rolling device according to the present embodiment is configured as a spline device.
  • FIG. 10 is a partial vertical perspective view illustrating an embodiment in which the rolling device according to the present embodiment is configured as a rotating bearing device.
  • FIG. 11 is a longitudinal sectional view of the rotary bearing device shown in FIG. FIG.
  • FIG. 12 is an external perspective view illustrating an embodiment in which the rolling device according to the present embodiment is configured as a sliding screw device.
  • FIG. 13 is a view for explaining various application examples of the present invention, and is an external perspective partial cross-sectional view showing a rolling device of a type in which a linear motion guide and a ball screw are combined to form an integral structure. .
  • FIG. 1 is a figure for demonstrating the specific content of the coating layer based on this invention
  • the figure (a) in the figure in the figure is the schematic diagram which showed the cross-sectional structure of a coating layer
  • (B) is a photograph which showed a part of cross-sectional structure of a coating layer.
  • the coating layer according to the present invention includes an inner member having a raceway surface on the outer surface, and an outer member provided with a raceway surface facing the raceway surface of the inner member and disposed outside the inner member.
  • the present invention is applied to a rolling device including a rolling element disposed rollably between both raceway surfaces, and includes a raceway surface of an inward member, a raceway surface of an outward member, and a rolling At least one of the moving bodies is constituted by a base material made of a metal-based material, an underlayer formed on the surface side of the matrix, and a functional layer formed on the surface side of the underlayer, Specific embodiment examples will be described later.
  • the coating layer according to the present invention includes a base material 11 made of a metal-based material, an underlayer 12 formed on the surface side of the matrix 11, and an underlayer 12. And the functional layer 13 formed on the surface side of
  • the base material 11 is assumed to be a metal material generally used for a rolling device, and is made of, for example, bearing steel such as SUJ 2 or the like, high carbon steel, tool steel, or the like.
  • bearing steel such as SUJ 2 or the like
  • high carbon steel such as tool steel, or the like.
  • the applicable range of the base material according to the present invention is not limited to such iron-based metals, and includes non-ferrous metal alloys such as titanium alloys and aluminum alloys.
  • the foundation layer 12 is made of, for example, W (tungsten), and is a layer that suitably connects the base material 11 and the functional layer 13 described later.
  • the functional layer 13 is configured as a composite layer having a laminated structure in which a WC layer made of tungsten carbide and a C layer made of carbon are alternately laminated.
  • the C layer according to the present invention is assumed to be configured as a coating layer made of DLC (Diamond-like Carbon), and constitutes a coating layer having a very high hardness single layer structure.
  • the WC layer laminated alternately with the C layer made of DLC constitutes a coated layer having a hardness lower than that of the C layer made of DLC. Therefore, by alternately laminating the C layer having high hardness and the WC layer having high hardness, the functional layer 13 as a whole has high adaptability to elastic deformation and a very suitable coating layer which hardly causes a crack in the film. It has become.
  • the outermost surface of the composite layer constituting the functional layer 13 is constituted by the C layer.
  • the components of the rolling device on which the coating layer is formed are required to have a high surface hardness in order to be subjected to repeated stress. Therefore, in the present invention, by forming the C layer on the outermost surface of the composite layer constituting the functional layer 13 having a laminated structure, the coating layer having a single-layer structure having a very high hardness is a constituent member It is possible to form on the outermost surface of With such a configuration, durability to a stress load required of the rolling device is exhibited, and it is possible to improve wear characteristics and lubrication life characteristics.
  • the underlayer 12 is made of W (tungsten), but the WC layer is the connecting surface of the underlayer 12 and the functional layer 13 in the functional layer 13. It is configured to be The connection surface with the base layer 12 in the functional layer 13 formed on the surface side of the base layer 12 is a WC layer which forms a soft coating layer having a hardness lower than that of the C layer, and also forms the base layer 12
  • a WC layer that is a metal material of the same system as W (tungsten)
  • the base material 11, the base layer 12, and the functional layer 13 are bonded with high adhesion. That is, it can be said that the coating layer which concerns on this invention is a coating layer which is very hard to peel off. Therefore, according to the coating layer according to the present invention, it is possible to realize a new rolling device having improved wear characteristics and lubrication life characteristics.
  • the W (tungsten) composition ratio of the WC layer constituting the functional layer 13 is as follows: 0% by weight ⁇ w ⁇ 30% by weight It is preferable to be configured under the condition satisfying the inequality below.
  • the conditional expression consisting of 0% by weight ⁇ w ⁇ 30% by weight is found by an experiment conducted by the inventors. By satisfying the conditional expression, the W (tungsten) composition in the functional layer 13 is satisfied. Since the optimization of the ratio is realized, it is an effective condition for forming a film surface which is hard to wear on the raceway surface of the rolling device.
  • the hardness value of the composite layer as the functional layer 13 constituting the coating layer according to the present invention is configured to have a Vickers hardness Hv of 800 to 1,500.
  • the hardness measurement of the composite layer is performed with a nano indenter, and the functional layer 13 constituting the coating layer according to the present invention has a Vickers hardness Hv. It is configured to have a value of 12 GPa to 17 GPa corresponding to 800 to 1,500.
  • the Vickers hardness Hv is less than 800 (12 GPa)
  • the Vickers hardness is such that the condition of such hardness value is set for the composite layer constituting the functional layer 13 If Hv is greater than 1500 (17 GPa), coating cracking will occur.
  • the Vickers hardness Hv is preferably 800 to 1,500 to be suitably used for a rolling device that generates high surface pressure and shear force. Can be realized.
  • This oil lubrication load endurance test was conducted by setting a linear guide to this tester using a load endurance tester installed in a laboratory room temperature environment.
  • the linear guide prepares the coating member according to the present invention formed on the component members under various condition values, and the existing product without the coating layer according to the present invention which is the prior art, and forms a linear guide. It was decided to compare the endurance performance of the two by repeatedly reciprocating the moving block relative to the rail.
  • the test product is an existing product as comparative example 1 and the comparative example 2 has a hardness value of 10 GPa of the functional layer 13 and further the embodiment of the present invention
  • the hardness value of the functional layer 13 prepared five types of Examples 1, 2, 3 and 12 of 17 GPa as a form. Lubricating grease was initially sealed for the five types of test products, and then lubrication was continued under the condition of 0.5 cm 3 / min.
  • a constant load of 12.6 kN in radial load is always applied to the moving block that constitutes the linear guide, and the maximum moving speed of 60 m / min and acceleration / deceleration of 9.8 m / s 2 as relative moving conditions of the moving block with respect to the track rail.
  • Each condition value of (1.0 G) and stroke 350 mm was set. Under these conditions, the moving block was repeatedly reciprocated with respect to the track rail constituting the linear guide, and the distance traveled by the linear guide while maintaining the performance was recorded, and the evaluation was made based on the distance traveled.
  • FIG. 2 is a graph showing the result of the oil lubrication load endurance test, and the test result of each test product shown on the vertical axis is represented as the travel distance shown on the horizontal axis.
  • This non-lubricated load endurance test was conducted by setting a linear guide to this tester using a load endurance tester installed under a room temperature environment in a laboratory.
  • a load endurance tester installed under a room temperature environment in a laboratory.
  • the linear guide prepare an embodiment in which the hardness value of the coating layer according to the present invention is 15 GPa and a MoS 2 film formed as a comparative example for the component members, On the other hand, it was decided to compare the durability performance of the two by repeatedly reciprocating the moving block.
  • the hardness value of the coating layer according to the present invention is 15 GPa because the hardness value of the composite layer constituting the functional layer 13 performed by the nano indenter is the condition value of the functional layer 13 of the present invention.
  • a median value of about 12 GPa to 17 GPa is representatively selected.
  • FIG. 3 is a graph showing the results of the non-lubricant load endurance test, and the test results of the respective test products shown on the vertical axis are represented as the travel distance ratio shown on the horizontal axis.
  • the travel distance ratio is 1 when the MoS 2 film is formed as a comparative example conventionally used in a non-lubricated environment
  • the travel distance ratio was 3.2. That is, the coating layer according to the present invention exhibited a life extending effect of about three times or more as compared with the prior art.
  • the improvement effect magnification is almost the same as the effect in the oil lubrication load endurance test .
  • the condition that the hardness value of the composite layer constituting the functional layer 13 performed by the nano indenter is 12 GPa to 17 GPa as the condition value of the functional layer 13 of the present invention is compared to the prior art. It can be evaluated that the longevity can be realized. That is, according to the lubricant-free load endurance test conducted by the inventors, it has been confirmed that the coating layer according to the present invention suitably exhibits a long life effect even in a lubricant-free environment.
  • the coating layer according to the present invention can be suitably used for a rolling device which is subject to repeated rolling load and sliding load, and is about three times or more the conventional art. Achieved a long life.
  • the preferable conditions for forming the coating layer according to the present invention described above relate to the functional layer 13. Therefore, the inventors worked on the modification of the underlayer 12 while considering the further improvement of the present invention.
  • FIG. 4 is shown as a schematic view showing such a new base layer 12.
  • FIG. 4 is shown as a schematic view showing such a new base layer 12.
  • FIG. 4 is a view for explaining a modified embodiment of the base layer according to the present invention, and a portion (a) in the figure is a schematic view showing a cross-sectional configuration of the coating layer, a portion ((a) b) is a graph which shows the change of the C component rate in the film thickness direction of the base layer which comprises a coating layer.
  • the base layer 12 according to the modified embodiment is mainly composed of W (tungsten), but in the range of a constant film thickness from the connection surface with the base material 11, the C component ratio Is 0 (zero)%, and is composed only of W (tungsten).
  • the underlayer 12 according to the modified embodiment is configured such that the C component ratio gradually increases toward the surface layer side that is the connection surface with the functional layer 13, and the underlayer 12 connected to the functional layer 13.
  • the outermost surface portion of is configured such that the C component ratio is 80%.
  • the film is formed so that the C component ratio in W (tungsten) changes stepwise in the film thickness direction, whereby the peeling resistance is excellent. The effect of being the underlayer 12 can be obtained.
  • the inventors considered that when performing a film improvement experiment, a film that does not peel off in a high surface pressure environment is required as the optimum performance for the rolling device, so adhesion with the base material 11 is important. .
  • adhesion with the base material 11 is important.
  • in order to prevent abrasion of the mating material (rolling surface) it is necessary to reduce the unevenness on the surface of the ball, and it has been confirmed that it is effective to increase the hardness.
  • a method was adopted in which a portion close to the base material 11 was softened, laminated while inclining the hardness, and making the surface as hard as possible. Based on this idea, as a result of the inventors' earnest research, they have come to find conditions further excellent in film adhesion.
  • FIG. 5 is a diagram illustrating one of the optimum design conditions of the film hardness of the coating layer according to the present invention
  • a diagram (a) in the diagram is a schematic diagram showing the cross-sectional configuration of the coating layer Part (b) of the drawing is a graph showing a design example of the hardness value in the film thickness direction of the coating layer.
  • the coating hardness is increased from the connection surface of the base layer 12 with the base material 11 toward the surface of the functional layer 13 and the composite layer constituting the functional layer 13
  • An example configuration is shown where the coating hardness of the outermost surface C layer (DLC) is gradually reduced towards the surface.
  • the inventors found that the wear of the sliding surface is increased when the outermost layer of the coating layer is a hard C layer (DLC) as a result of the experiment, but the final step of the functional layer 12 (that is, slightly before the outermost layer) is the most
  • the hard outermost layer C layer (DLC) slightly soft, the outermost layer C layer (DLC) functions as a conformal layer, and the adhesion of the film is improved.
  • a coating layer having further excellent adhesion of the film is realized, and a rolling device realizing a long life can be obtained. It became clear.
  • the coating layer according to the present invention can be suitably used for a rolling device that receives repeated rolling load and sliding load. Then, the case in which the coating layer according to the present invention is applied to a rolling device will be described next.
  • rolling device A specific embodiment of a rolling device using a coating layer according to the present invention will be described using the drawings.
  • the embodiment of the rolling device illustrated below does not limit the invention according to each claim, and all combinations of the features described in the embodiments are essential for the solution means of the invention. Not necessarily.
  • the “rolling device” in the present specification includes, for example, general rolling bearings used in machine tools and the like, non-lubricated bearings used in vacuum, linear guides and linear guides, ball spline devices, ball screw devices, It includes devices with all rolling and sliding operations, such as roller screw devices, cross roller rings, etc.
  • the rolling device according to the present embodiment can be configured as a linear guide device as shown in FIG. 6 and FIG. 7, and by forming the coating layer described above on such a linear guide device, wear characteristics are obtained. And a new rolling device with improved lubrication life characteristics can be realized.
  • FIG. 6 is an appearance perspective view illustrating one form of the linear guide device according to the present embodiment.
  • 7 is a cross-sectional view for explaining an infinite circulation path provided in the linear guide device shown in FIG.
  • the linear guide device 40 as the rolling device according to the present embodiment includes the track rail 41 as the inward member and the track rail 41. And a moving block 43 as an outer member slidably mounted via balls 42 installed as a large number of rolling elements.
  • the track rail 41 is a long member whose cross section orthogonal to the longitudinal direction is formed in a substantially rectangular shape, and on the surface (upper surface and both side surfaces), a track surface which becomes a track when the ball 42 rolls.
  • the rolling element rolling surface 41 a is formed over the entire length of the track rail 41.
  • the track rail 41 may be formed to extend linearly or may be formed to extend curvilinearly. Further, although the number of rolling element rolling surfaces 41a illustrated in FIGS. 6 and 7 is a total of four in two on the left and two on the left and right, the number of the rows is arbitrarily changed according to the application of the linear guide device 40 can do.
  • the moving block 43 is provided with a load rolling element rolling surface 43a as a raceway surface at a position corresponding to the rolling element rolling surface 41a.
  • a load rolling path 52 is formed by the rolling element rolling surface 41 a of the raceway rail 41 and the load rolling element rolling surface 43 a of the moving block 43, and a plurality of balls 42 are sandwiched.
  • the moving block 43 is provided with four non-load rolling paths 53 extending in parallel to the rolling element rolling surfaces 41 a, and a direction changing path 55 connecting each non-loading rolling path 53 and each load rolling path 52. It is done.
  • a combination of one load rolling path 52 and no load rolling path 53 and a pair of direction changing paths 55 connecting them forms one infinite circulation path (see FIG. 7).
  • a plurality of balls 42 are installed in the infinite circulation path constituted by the load rolling path 52, the no-load rolling path 53, and the pair of direction changing paths 55, 55 in an infinitely circulating manner, whereby the moving block 43 is formed. Reciprocation relative to the track rail 41 is possible.
  • a coating layer composed of the above-described base layer 12 and the functional layer 13 can be formed on at least one of the balls 42 installed as a plurality of rolling elements and 43a.
  • the rolling element rolling surface 41 a of the track rail 41 and the moving block 43 The metal contact between the load rolling element rolling surface 43 a and the ball 42 is prevented.
  • the outermost surface of the functional layer 13 is a C layer which is a carbon-based coating film, and the functional layer 13 itself is a composite layer having a laminated structure, and the coating layer itself has lubricity. Can exhibit the reduction of frictional resistance and the function as a solid lubricant.
  • a coating layer consisting of the base layer 12 and the functional layer 13 on the surface of the ball 42 metal contact can be prevented even in an environment where an oil film is not formed. It is possible to extend the product life.
  • the rolling device according to the present embodiment can be configured as, for example, a ball screw device 56 as shown in FIG.
  • FIG. 8 is a view exemplifying a case where the rolling device according to the present embodiment is configured as a ball screw device.
  • the ball screw device 56 is a device including a screw shaft 57 as an inner member and a nut member 59 as an outer member attached to the screw shaft 57 so as to be relatively rotatable via a plurality of balls 58. .
  • the screw shaft 57 is an inward member in which rolling element rolling grooves 57a as a helical raceway surface are formed on the outer peripheral surface, while the nut member 59 corresponds to the rolling element rolling grooves 57a on the inner peripheral surface. Load rolling groove as a helical raceway surface.
  • the nut member 59 can reciprocate relative to the screw shaft 57 in accordance with the relative rotational movement of the screw shaft 57 with respect to the nut member 59.
  • the above-described underlayer 12 and functional layer 13 Coating layer can be formed for at least one of the rolling element rolling groove 57a of the screw shaft 57, the load rolling groove of the nut member 59, and the ball 58 constituting the ball screw device 56.
  • the rolling device according to the present embodiment can be configured as, for example, a spline device 60 as shown in FIG.
  • FIG. 9 is a view illustrating the case where the rolling device according to the present embodiment is configured as a spline device.
  • the spline device 60 includes a spline shaft 61 as an inward member and balls 62 as many rolling elements on the spline shaft 61. It has a cylindrical outer cylinder 63 as an outward member movably attached. On the surface of the spline shaft 61, a rolling element rolling surface 61a is formed as a raceway surface which becomes a track of the ball 62 and extends in the axial direction of the spline shaft 21. In the outer cylinder 63 attached to the spline shaft 61, a load rolling element rolling surface as a raceway surface corresponding to the rolling element rolling surface 61a is formed.
  • a plurality of strips of protrusions extending in the direction in which the rolling element rolling surfaces 61a extend are formed.
  • a load rolling path is formed between the load rolling element rolling surface formed on the outer cylinder 63 and the rolling element rolling surface 61 a formed on the spline shaft 61.
  • a no-load return path is formed to move the ball 62 released from the load.
  • the outer cylinder 63 incorporates a holder 64 that aligns and holds the plurality of balls 62 in a circuit shape.
  • a plurality of balls 62 are rotatably installed between the load rolling element rolling surface of the outer cylinder 63 and the rolling element rolling surface 61 a of the spline shaft 61, and circulate endlessly through the no load return passage.
  • the outer cylinder 63 can be reciprocated relative to the spline shaft 61 by being installed as described above.
  • the rolling element rolling surface 61 a of the spline shaft 61 constituting the spline device 60 and the load rolling element rolling surface of the outer cylinder 63 and the balls 62 At least one of the rolling element rolling surface 61 a of the spline shaft 61 constituting the spline device 60 and the load rolling element rolling surface of the outer cylinder 63 and the balls 62.
  • the coating layer which consists of base layer 12 and functional layer 13 which were mentioned above can be formed.
  • the rolling device according to the present embodiment can be configured, for example, as a rotating bearing device 70 as shown in FIGS. 10 and 11.
  • FIG. 10 is a partial vertical perspective view illustrating an embodiment in which the rolling device according to the present embodiment is configured as a rotating bearing device.
  • 11 is a longitudinal sectional view of the rotary bearing device shown in FIG.
  • the rolling device configured as the rotating bearing device 70 has an inner race surface 72 (as an inner member or an outer member) having an inner raceway surface 72 having a V-shaped cross section on the outer peripheral surface.
  • an outer race 73 (as an outer member or an inner member) having an outer raceway surface 74 having a V-shaped cross section on the inner peripheral surface, and a substantially rectangular cross section formed by the inner raceway surface 72 and the outer raceway surface 74
  • the inner ring 71 and the outer ring 73 perform relative rotational movement in the circumferential direction by having a plurality of rollers 77 as rolling elements cross arranged in a rollable manner between the track paths 75.
  • At least one of the inner raceway surface 72 of the inner ring 71 and the outer raceway surface 74 of the outer ring 73 of the rotary bearing device 70 and the roller 77 A coating layer composed of the functional layer 13 can be formed.
  • FIG. 12 is an external appearance perspective view which illustrates one form at the time of comprising the rolling device which concerns on this embodiment as a sliding screw apparatus.
  • the slide screw device 80 shown in FIG. 12 has a screw shaft 81 as an inward member in which a screw groove as a helical raceway surface is formed on the outer peripheral surface, and a spiral shape corresponding to the screw groove on the inner peripheral surface.
  • the nut member 83 By having a nut member 83 as an outward member in which a nut groove as a raceway surface is formed, the nut member 83 is attached to the screw shaft 81 in accordance with the relative rotational movement of the screw shaft 81 with respect to the nut member 83. It is configured to be able to reciprocate relative to it.
  • the coating layer which consists of the foundation layer 12 mentioned above and the functional layer 13 is formed with respect to the screw groove of the screw shaft 81 which is the component, and the nut groove of the nut member 83. can do.
  • metal contact in the screw groove of the screw shaft 81 and the nut groove of the nut member 83 which will be subjected to repeated sliding loads can be prevented, and the wear characteristics and lubrication life characteristics of the slide screw device 80 can be improved. It becomes possible.
  • the present invention can be applied to a rolling device 90 of a type in which a linear motion guide and a ball screw are combined to form an integral structure as shown in FIG.
  • a rolling device 90 of a type in which a linear motion guide and a ball screw are combined to form an integral structure as shown in FIG.
  • the screw shaft 91 and the moving block 93 are installed via the plurality of balls 95, the screw shaft 91 and the moving block are not performed via the plurality of balls 95.
  • 93 is configured as a slide screw.
  • the rolling device according to the present invention described above has various industrial applicability.
  • rolling devices may be used in a radiation exposure environment, but oil and resin are decomposed by radiation, and the decomposed substances become pollutants.
  • oil-free can be realized, and according to the present invention, the rolling device can be suitably used even in a radiation exposure environment. It is possible to
  • the application range of the rolling device is greatly expanded by using the coating layer according to the present invention for the rolling device.

Abstract

This rolling device is provided with an inner member having an orbital surface on the outer surface, an outer member arranged outside of the inner member and having an orbital surface opposite of the orbital surface of the inner member, and a rolling body rollably arranged between the two orbital surfaces. In the rolling device, at least one of the orbital surface of the inner member, the orbital surface of the outer member, and the rolling body is configured from a base material (11) formed from a metal material, an underlayer (12) formed on the surface of the base material (11), and a functional layer (13) formed on the surface of the underlayer (12), and the functional layer (13) is configured as a composite layer having a laminate structure formed by alternately laminating WC layers and C layers. By forming a coating layer on constituent members, it is possible to achieve a rolling device which prevents metal contact and improves wear characteristics and lubrication life characteristics.

Description

転動装置Rolling device
 本発明は、転動装置に関するものである。 The present invention relates to a rolling device.
 従来から用いられている機械要素として、例えば、ボールねじやリニアガイド、直動ベアリング、ボールスプライン等といった転動装置が知られている。かかる転動装置は、外面に軌道面を有する内方部材と、内方部材の前記軌道面に対向する軌道面を有して内方部材の外側に配置された外方部材と、前記両軌道面間に転動自在に配置された複数の転動体と、を有することにより、外方部材が内方部材の軸線方向又は周方向に往復運動自在又は回転運動自在とされる装置である。 As mechanical elements conventionally used, for example, rolling devices such as ball screws, linear guides, linear motion bearings, ball splines and the like are known. The rolling device includes an inner member having a raceway surface on the outer surface, an outer member having a raceway surface facing the raceway surface of the inner member and disposed outside the inner member, and the two raceways. This is a device in which the outer member can freely reciprocate or rotate in the axial direction or the circumferential direction of the inner member by having a plurality of rolling elements disposed rollably between the surfaces.
 この種の転動装置は、内方部材と外方部材との間に配設される複数の転動体が繰り返し転がり運動を行うことになるので、これら転動装置の構成部材には繰り返し接触応力が加わることとなる。そのため、内方部材、外方部材、および転動体を構成する材料には、一般的に、疲労寿命や耐摩耗性等に優れた金属材料や樹脂材料等が採用されている。 In this type of rolling device, since a plurality of rolling elements disposed between the inward member and the outward member repeatedly perform rolling motion, contact stress is repeatedly applied to the component members of these rolling devices. Will be added. Therefore, metal materials, resin materials and the like excellent in fatigue life, wear resistance and the like are generally adopted as materials constituting the inward member, the outward member and the rolling element.
 また、この種の転動装置は、クリーンルーム、半導体製造装置、液晶パネル製造装置、食品加工装置等のように清浄な環境を必要とする用途や真空環境下において用いられることがあるため、内方部材、外方部材、および転動体を構成する材料に対しては、固体潤滑剤からなる被膜を形成して用いられることがあった。例えば、下記特許文献1には、一方の移動部材と他方の移動部材とが、それぞれの案内面に接する転動体を介して相対的に直線移動する転動装置において、前記両移動部材又は転動体の少なくとも一つに対して、その表面に無電解ニッケル被膜を介してフッ素樹脂被膜を成膜する技術が開示されている。そして、下記特許文献1の記載によれば、転動装置の構成部材に対して無電解ニッケル被膜を介してフッ素樹脂被膜を成膜することで、半導体製造装置や液晶パネル製造装置、食品加工装置等の清浄な雰囲気を必要とする環境下等において好適に使用でき、また、真空、高温、腐食性雰囲気環境下においても使用することができるとされている。 In addition, since rolling devices of this type are sometimes used in applications requiring a clean environment such as clean rooms, semiconductor manufacturing devices, liquid crystal panel manufacturing devices, food processing devices, etc. or under a vacuum environment, With respect to the materials constituting the member, the outer member, and the rolling element, a film made of a solid lubricant is sometimes formed and used. For example, in Patent Document 1 below, in the rolling device in which one moving member and the other moving member relatively move linearly through the rolling elements in contact with the respective guide surfaces, the two moving members or the rolling elements For at least one of the above, there is disclosed a technique for forming a fluorocarbon resin film on the surface through an electroless nickel film. And according to the description of the following patent document 1, a semiconductor manufacturing apparatus, a liquid crystal panel manufacturing apparatus, and a food processing apparatus are formed by forming a fluorocarbon resin film on an element forming a rolling device through an electroless nickel film. It can be suitably used in an environment requiring a clean atmosphere, etc., and can also be used in a vacuum, high temperature, corrosive atmosphere environment.
 しかし、下記特許文献1に記載の技術は、金属材料等の基材に対して無電解ニッケル被膜を形成した後に、さらにフッ素樹脂被膜を成膜するものであり、製造工程が多くコストの嵩む技術である。特許文献1にも記載されているが、元来、無電解ニッケル被膜や無電解ニッケル-リン被膜には、膜自体に防錆作用があり、耐食性の向上効果が得られることから、無電解ニッケル被膜や無電解ニッケル-リン被膜のみを施すことで、転動疲労性と防錆性とを兼ね備えた転動装置を実現できれば、産業上の利用価値は非常に高いものとなる。しかしながら、従来公知の通り、無電解ニッケル被膜には、微細なクラックや空孔が存在しているため、このような状態の皮膜を転動装置の構成部材に用いた場合には、繰り返しの接触応力によって皮膜の剥離等が発生したり、クラックや空孔を起点として錆が発生したりするので、転動装置としての性能を十分に発揮することができなかった。このことからも分かる通り、転動装置の摩耗特性や潤滑寿命特性を好適に向上させることのできるコーティング被膜の形成技術は、従来未完成であった。 However, the technology described in the following Patent Document 1 is to form a fluorocarbon resin film after forming an electroless nickel film on a substrate such as a metal material, a technology having many manufacturing processes and cost increase It is. As described in Patent Document 1, the electroless nickel film and the electroless nickel-phosphorus film originally have an anticorrosive effect on the film itself, and an effect of improving the corrosion resistance can be obtained. If a rolling device having both rolling fatigue resistance and corrosion resistance can be realized by applying only a coating or an electroless nickel-phosphorus coating, the industrial utility value becomes extremely high. However, as conventionally known, fine cracks and pores are present in the electroless nickel film, and therefore, when the film in such a state is used as a component of the rolling device, repeated contact is made. The peeling of the film or the like is generated by the stress, or the rust is generated from the crack or the hole as a starting point, so that the performance as a rolling device could not be sufficiently exhibited. As understood from this fact, the technology for forming a coating film which can suitably improve the wear characteristics and the lubricating life characteristics of the rolling device has not been completed in the past.
 一方、金属やプラスチックの切削や成形過程に使用する工具には、有効寿命と処理条件の向上のためにコーティングすることが多く、このようなコーティングには、CVDやPVDのような公知の方法が用いられている。 On the other hand, tools used in metal or plastic cutting and forming processes are often coated to improve their useful life and processing conditions, and such coatings have known methods such as CVD and PVD. It is used.
特開平10-325414号公報Japanese Patent Application Laid-Open No. 10-325414
 しかしながら、構成部材に対して繰り返し接触応力が加わることとなる転動装置において、その構成部材に炭化タングステン(WC)と炭素(C)の混合物からなるコーティングを施すことは従来実施されておらず、そのコーティングの最適条件は未だ明らかとなっていなかった。特に、転動装置では、繰り返し加わる接触応力に応じた高い硬度を備えながらも、母材に対する密着力に優れるとともに弾性変形への追従性が高く、さらには表層の割れ等の不具合が発生し難いコーティングの実現が求められており、そのような様々な要求品質を満足するコーティング技術は実現されていなかった。 However, in a rolling device in which a contact stress is repeatedly applied to a component, applying a coating of a mixture of tungsten carbide (WC) and carbon (C) to the component has not been conventionally performed. The optimum conditions for the coating were not yet known. In particular, in the rolling device, while having high hardness corresponding to the contact stress repeatedly applied, it is excellent in adhesion to the base material and has high ability to follow elastic deformation, and further, defects such as surface layer cracking hardly occur. There is a need to realize a coating, and no coating technology has been realized that satisfies such various required qualities.
 本発明は、上述した従来技術に存在する種々の課題に鑑みて成されたものであって、その目的は、構成部材にコーティング層を形成することで金属接触を防止し、摩耗特性や潤滑寿命特性を向上させた転動装置を実現することにある。 The present invention has been made in view of the various problems existing in the above-mentioned prior art, and the object thereof is to prevent metal contact by forming a coating layer on a component, and to wear characteristics and lubrication life. An object of the present invention is to realize a rolling device with improved characteristics.
 本発明に係る転動装置は、外面に軌道面を有する内方部材と、前記内方部材の軌道面に対向する軌道面を有して前記内方部材の外側に配置された外方部材と、前記両軌道面間に転動自在に配置された転動体と、を備える転動装置であって、前記内方部材が有する軌道面、前記外方部材が有する軌道面、および前記転動体のうちの少なくとも1つが、金属系材料からなる母材と、前記母材の表面側に形成された下地層と、前記下地層の表面側に形成された機能層と、によって構成されており、前記機能層が、WC層とC層を交互に積層した積層構造を有する複合層として構成されていることを特徴とするものである。 The rolling device according to the present invention comprises an inward member having a raceway surface on the outer surface, and an outward member having a raceway surface opposed to the raceway surface of the inward member and disposed outside the inward member. A rolling device disposed between the two raceway surfaces so as to roll freely, wherein the raceway surface of the inner member, the raceway surface of the outer member, and the rolling member At least one of them is composed of a base material made of a metal-based material, an underlayer formed on the surface side of the matrix, and a functional layer formed on the surface side of the underlayer, The functional layer is characterized in that it is configured as a composite layer having a laminated structure in which WC layers and C layers are alternately laminated.
 本発明によれば、構成部材にコーティング層を形成することで金属接触を防止し、摩耗特性や潤滑寿命特性を向上させた新たな転動装置を実現することができる。 According to the present invention, by forming a coating layer on a component, metal contact can be prevented, and a new rolling device having improved wear characteristics and lubrication life characteristics can be realized.
図1は、本発明に係るコーティング層の具体的内容を説明するための図であり、図中の分図(a)はコーティング層の断面構成を示した模式図であり、分図(b)はコーティング層の断面構成の一部を示した写真図である。FIG. 1 is a view for explaining the specific contents of a coating layer according to the present invention, and a portion (a) in the figure is a schematic view showing a cross-sectional configuration of the coating layer, and a portion (b) These are photographs showing a part of the cross-sectional configuration of the coating layer. 図2は、油潤滑荷重耐久試験の結果を示すグラフ図であり、縦軸に示された各試験品の試験結果が、横軸に示された走行距離として表されている。FIG. 2 is a graph showing the results of the oil lubrication load endurance test, and the test results of the respective test products shown on the vertical axis are represented as the travel distance shown on the horizontal axis. 図3は、無潤滑荷重耐久試験の結果を示すグラフ図であり、縦軸に示された各試験品の試験結果が、横軸に示された走行距離比として表されている。FIG. 3 is a graph showing the results of the non-lubricant load endurance test, and the test results of the respective test products shown on the vertical axis are represented as the travel distance ratio shown on the horizontal axis. 図4は、本発明に係る下地層の変形形態を説明するための図であり、図中の分図(a)はコーティング層の断面構成を示した模式図であり、分図(b)はコーティング層を構成する下地層の膜厚方向でのC成分率の変化を示すグラフ図である。FIG. 4 is a view for explaining a modified embodiment of the base layer according to the present invention, and a section (a) in the figure is a schematic view showing a cross-sectional configuration of the coating layer, and a section (b) is It is a graph which shows the change of the C component rate in the film thickness direction of the base layer which comprises a coating layer. 図5は、本発明に係るコーティング層の被膜硬さの最適設計条件の一つを例示した図であり、図中の分図(a)はコーティング層の断面構成を示した模式図であり、分図(b)はコーティング層における膜厚方向での硬さ値の設計例を示すグラフ図である。FIG. 5 is a view illustrating one of the optimum design conditions of the coating hardness of the coating layer according to the present invention, and a diagram (a) in the figure is a schematic view showing a cross-sectional configuration of the coating layer Section (b) is a graph showing a design example of the hardness value in the film thickness direction of the coating layer. 図6は、本実施形態に係る転動装置をリニアガイド装置として構成した場合の一形態を例示する外観斜視図である。FIG. 6 is an external perspective view illustrating an embodiment in which the rolling device according to the present embodiment is configured as a linear guide device. 図7は、図6で示したリニアガイド装置が備える無限循環路を説明するための断面図である。FIG. 7 is a cross-sectional view for explaining an infinite circulation path provided in the linear guide device shown in FIG. 図8は、本実施形態に係る転動装置をボールねじ装置として構成した場合を例示する図である。FIG. 8 is a view exemplifying a case where the rolling device according to the present embodiment is configured as a ball screw device. 図9は、本実施形態に係る転動装置をスプライン装置として構成した場合を例示する図である。FIG. 9 is a view illustrating the case where the rolling device according to the present embodiment is configured as a spline device. 図10は、本実施形態に係る転動装置を回転ベアリング装置として構成した場合の一形態を例示する部分縦断斜視図である。FIG. 10 is a partial vertical perspective view illustrating an embodiment in which the rolling device according to the present embodiment is configured as a rotating bearing device. 図11は、図10に示す回転ベアリング装置の縦断面を示す図である。FIG. 11 is a longitudinal sectional view of the rotary bearing device shown in FIG. 図12は、本実施形態に係る転動装置を滑りねじ装置として構成した場合の一形態を例示する外観斜視図である。FIG. 12 is an external perspective view illustrating an embodiment in which the rolling device according to the present embodiment is configured as a sliding screw device. 図13は、本発明の多様な適用事例を説明するための図であり、リニアモーションガイドとボールねじが組み合わされて一体構造となっている形式の転動装置を示す外観斜視部分断面図である。FIG. 13 is a view for explaining various application examples of the present invention, and is an external perspective partial cross-sectional view showing a rolling device of a type in which a linear motion guide and a ball screw are combined to form an integral structure. .
 以下、本発明を実施するための好適な実施形態について、図面を用いて説明する。なお、以下の実施形態は、各請求項に係る発明を限定するものではなく、また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, preferred embodiments for carrying out the present invention will be described using the drawings. The following embodiments do not limit the invention according to each claim, and all combinations of features described in the embodiments are not necessarily essential to the solution means of the invention. .
 まず、図1を用いて、転動装置の構成部材に適用可能な本発明に係るコーティング層の具体的な内容について、説明を行う。ここで、図1は、本発明に係るコーティング層の具体的内容を説明するための図であり、図中の分図(a)はコーティング層の断面構成を示した模式図であり、分図(b)はコーティング層の断面構成の一部を示した写真図である。なお、本発明に係るコーティング層は、外面に軌道面を有する内方部材と、内方部材の軌道面に対向する軌道面を有して内方部材の外側に配置された外方部材と、両軌道面間に転動自在に配置された転動体と、を備える転動装置に対して適用されるものであって、内方部材が有する軌道面、外方部材が有する軌道面、および転動体のうちの少なくとも1つが、金属系材料からなる母材と、母材の表面側に形成された下地層と、下地層の表面側に形成された機能層と、によって構成されており、その具体的な実施形態例については、後述することとする。 First, the specific content of the coating layer which concerns on this invention applicable to the structural member of a rolling device is demonstrated using FIG. Here, FIG. 1 is a figure for demonstrating the specific content of the coating layer based on this invention, and the figure (a) in the figure in the figure is the schematic diagram which showed the cross-sectional structure of a coating layer, (B) is a photograph which showed a part of cross-sectional structure of a coating layer. The coating layer according to the present invention includes an inner member having a raceway surface on the outer surface, and an outer member provided with a raceway surface facing the raceway surface of the inner member and disposed outside the inner member. The present invention is applied to a rolling device including a rolling element disposed rollably between both raceway surfaces, and includes a raceway surface of an inward member, a raceway surface of an outward member, and a rolling At least one of the moving bodies is constituted by a base material made of a metal-based material, an underlayer formed on the surface side of the matrix, and a functional layer formed on the surface side of the underlayer, Specific embodiment examples will be described later.
 図1の分図(a)にて示すように、本発明に係るコーティング層は、金属系材料からなる母材11と、母材11の表面側に形成された下地層12と、下地層12の表面側に形成された機能層13と、によって構成されている。 As shown in the partial view (a) of FIG. 1, the coating layer according to the present invention includes a base material 11 made of a metal-based material, an underlayer 12 formed on the surface side of the matrix 11, and an underlayer 12. And the functional layer 13 formed on the surface side of
 母材11については、転動装置に対して一般的に用いられている金属材料を想定しており、例えば、SUJ2等といった軸受鋼や高炭素鋼、工具鋼などから構成されている。ただし、本発明に係る母材の適用範囲は、このような鉄系金属に限られるものではなく、チタン合金やアルミニウム合金などといった非鉄系の金属合金も含むものである。 The base material 11 is assumed to be a metal material generally used for a rolling device, and is made of, for example, bearing steel such as SUJ 2 or the like, high carbon steel, tool steel, or the like. However, the applicable range of the base material according to the present invention is not limited to such iron-based metals, and includes non-ferrous metal alloys such as titanium alloys and aluminum alloys.
 下地層12は、例えばW(タングステン)によって構成されており、母材11と後述する機能層13とを好適に接続する層となっている。 The foundation layer 12 is made of, for example, W (tungsten), and is a layer that suitably connects the base material 11 and the functional layer 13 described later.
 機能層13は、炭化タングステンからなるWC層と、炭素からなるC層とを交互に積層した積層構造を有する複合層として構成されている。なお、本発明に係るC層は、DLC(Diamond-like Carbon)からなる被膜層として構成されることを想定しており、非常に硬度の高い単層構造からなる被膜層を構成するものである。一方、DLCからなるC層と交互に積層されるWC層は、DLCからなるC層に比べて硬度が低く軟らかい被膜層を構成するものである。したがって、硬度の高いC層と軟らかいWC層とを交互に積層することで、機能層13全体として、弾性変形への追従性が高いとともに、膜の割れ発生がし難い非常に好適なコーティング層となっている。 The functional layer 13 is configured as a composite layer having a laminated structure in which a WC layer made of tungsten carbide and a C layer made of carbon are alternately laminated. The C layer according to the present invention is assumed to be configured as a coating layer made of DLC (Diamond-like Carbon), and constitutes a coating layer having a very high hardness single layer structure. . On the other hand, the WC layer laminated alternately with the C layer made of DLC constitutes a coated layer having a hardness lower than that of the C layer made of DLC. Therefore, by alternately laminating the C layer having high hardness and the WC layer having high hardness, the functional layer 13 as a whole has high adaptability to elastic deformation and a very suitable coating layer which hardly causes a crack in the film. It has become.
 また、本発明に係るコーティング層は、機能層13を構成する複合層の最表面が、C層によって構成されている。コーティング層を形成される転動装置の構成部材は、繰返しの応力を受けるために、高い表面硬さを付与することが要求されるものである。そこで、本発明では、積層構造からなる機能層13を構成する複合層の最表面にC層が配置されるように構成することで、非常に硬度の高い単層構造からなる被膜層を構成部材の最表面に形成することが可能となる。かかる構成によって、転動装置に要求される応力荷重への耐久性が発揮され、摩耗特性や潤滑寿命特性を向上させることが可能となっている。 In the coating layer according to the present invention, the outermost surface of the composite layer constituting the functional layer 13 is constituted by the C layer. The components of the rolling device on which the coating layer is formed are required to have a high surface hardness in order to be subjected to repeated stress. Therefore, in the present invention, by forming the C layer on the outermost surface of the composite layer constituting the functional layer 13 having a laminated structure, the coating layer having a single-layer structure having a very high hardness is a constituent member It is possible to form on the outermost surface of With such a configuration, durability to a stress load required of the rolling device is exhibited, and it is possible to improve wear characteristics and lubrication life characteristics.
 さらに、本発明に係るコーティング層では、上述したように、下地層12はW(タングステン)によって構成されているが、機能層13における下地層12と機能層13との接続面については、WC層となるように構成されている。下地層12の表面側に形成される機能層13における下地層12との接続面が、C層に比べて硬度が低く軟らかい被膜層を構成するWC層であり、また、下地層12を構成するW(タングステン)と同系統の金属材料であるWC層とすることで、母材11と下地層12、機能層13とが高い密着力で結合されることとなる。つまり、本発明に係るコーティング層は、非常に剥離し難いコーティング層であるということができる。したがって、本発明に係るコーティング層によれば、摩耗特性や潤滑寿命特性を向上させた新たな転動装置を実現することが可能となる。 Furthermore, in the coating layer according to the present invention, as described above, the underlayer 12 is made of W (tungsten), but the WC layer is the connecting surface of the underlayer 12 and the functional layer 13 in the functional layer 13. It is configured to be The connection surface with the base layer 12 in the functional layer 13 formed on the surface side of the base layer 12 is a WC layer which forms a soft coating layer having a hardness lower than that of the C layer, and also forms the base layer 12 By forming a WC layer that is a metal material of the same system as W (tungsten), the base material 11, the base layer 12, and the functional layer 13 are bonded with high adhesion. That is, it can be said that the coating layer which concerns on this invention is a coating layer which is very hard to peel off. Therefore, according to the coating layer according to the present invention, it is possible to realize a new rolling device having improved wear characteristics and lubrication life characteristics.
 なお、上述した本発明の構成のうち、機能層13を構成するWC層のW(タングステン)組成比については、
 0重量%<w≦30重量%
なる不等式を満たす条件で構成されることが好ましい。この0重量%<w≦30重量%からなる条件式は、発明者らによって行われた実験によって見出されたものであり、当該条件式を満たすことで、機能層13におけるW(タングステン)組成比の最適化が実現するので、転動装置の軌道面において摩耗し難い膜表面を形成するために有効な条件となっている。
In the configuration of the present invention described above, the W (tungsten) composition ratio of the WC layer constituting the functional layer 13 is as follows:
0% by weight <w ≦ 30% by weight
It is preferable to be configured under the condition satisfying the inequality below. The conditional expression consisting of 0% by weight <w ≦ 30% by weight is found by an experiment conducted by the inventors. By satisfying the conditional expression, the W (tungsten) composition in the functional layer 13 is satisfied. Since the optimization of the ratio is realized, it is an effective condition for forming a film surface which is hard to wear on the raceway surface of the rolling device.
 さらに、本発明に係るコーティング層を構成する機能層13としての複合層の硬さ値については、ビッカース硬さHvが800~1500となるように構成されている。かかる条件値を見出すに当たって発明者らが行った実験では、複合層の硬さ測定はナノインデンターで行われており、本発明に係るコーティング層を構成する機能層13は、ビッカース硬さHvで800~1500に相当する12GPa~17GPaという値になるように構成されている。機能層13を構成する複合層に対してこのような硬さ値の条件が設定されているのは、ビッカース硬さHvが800(12GPa)未満だと耐摩耗性に課題があり、ビッカース硬さHvが1500(17GPa)より大きいとコーティング割れが発生してしまうからである。機能層13を構成する複合層の硬さ値について、ビッカース硬さHvが800~1500となるように構成することで、高い面圧やせん断力が発生する転動装置に対して好適に用いることのできるコーティング層を実現することが可能となっている。 Furthermore, the hardness value of the composite layer as the functional layer 13 constituting the coating layer according to the present invention is configured to have a Vickers hardness Hv of 800 to 1,500. In experiments conducted by the inventors in finding such a condition value, the hardness measurement of the composite layer is performed with a nano indenter, and the functional layer 13 constituting the coating layer according to the present invention has a Vickers hardness Hv. It is configured to have a value of 12 GPa to 17 GPa corresponding to 800 to 1,500. When the Vickers hardness Hv is less than 800 (12 GPa), there is a problem with the wear resistance, and the Vickers hardness is such that the condition of such hardness value is set for the composite layer constituting the functional layer 13 If Hv is greater than 1500 (17 GPa), coating cracking will occur. With regard to the hardness value of the composite layer constituting the functional layer 13, the Vickers hardness Hv is preferably 800 to 1,500 to be suitably used for a rolling device that generates high surface pressure and shear force. Can be realized.
 以上、発明者らが見出した、本発明に係るコーティング層の好適な形成条件についての説明を行った。次に、上述した本発明に係るコーティング層の形成条件を満たすことで得られる効果について、発明者らは検証実験を行っているので、その結果を説明する。 In the above, the description about the suitable formation conditions of the coating layer which concerns on this invention which the inventors discovered was performed. Next, since the inventors have conducted verification experiments on the effects obtained by satisfying the formation conditions of the coating layer according to the present invention described above, the results will be described.
 まず、発明者らは、油潤滑を実施した条件下での転動装置の荷重耐久性能についての検証実験を行った。この油潤滑荷重耐久試験は、実験室内の常温環境下に設置された荷重耐久試験機を用い、この試験機に対してリニアガイドをセットして行った。リニアガイドは、構成部材に対して本発明に係るコーティング層を種々の条件値で形成したものと、従来技術である本発明に係るコーティング層の無い既存品を用意し、リニアガイドを構成する軌道レールに対して移動ブロックを繰り返し往復運動させることによって両者の耐久性能を比較することとした。 First, the inventors conducted a verification experiment on the load durability performance of the rolling device under the condition where oil lubrication was performed. This oil lubrication load endurance test was conducted by setting a linear guide to this tester using a load endurance tester installed in a laboratory room temperature environment. The linear guide prepares the coating member according to the present invention formed on the component members under various condition values, and the existing product without the coating layer according to the present invention which is the prior art, and forms a linear guide. It was decided to compare the endurance performance of the two by repeatedly reciprocating the moving block relative to the rail.
 なお、油潤滑荷重耐久試験のより具体的な条件としては、試験品に比較例1としての既存品と、比較例2として、機能層13の硬さ値が10GPaのもの、さらに本発明の実施形態として機能層13の硬さ値が12、15、17GPaの実施例1、2、3の、5種類を用意した。この5種類の試験品に対して、潤滑グリースを初期封入し、その後、0.5cm/minの条件で給油し続けた。リニアガイドを構成する移動ブロックに対しては、ラジアル荷重12.6kNの一定荷重を常時負荷し、軌道レールに対する移動ブロックの相対移動条件として、最高速度60m/min、加減速度9.8m/s(1.0G)、ストローク350mmの各条件値を設定した。かかる条件下でリニアガイドを構成する軌道レールに対して移動ブロックを繰り返し往復運動させ、リニアガイドが性能を維持しながら往復運動を行った走行距離を記録し、その走行距離によって評価を行った。 As more specific conditions of the oil lubrication load endurance test, the test product is an existing product as comparative example 1 and the comparative example 2 has a hardness value of 10 GPa of the functional layer 13 and further the embodiment of the present invention The hardness value of the functional layer 13 prepared five types of Examples 1, 2, 3 and 12 of 17 GPa as a form. Lubricating grease was initially sealed for the five types of test products, and then lubrication was continued under the condition of 0.5 cm 3 / min. A constant load of 12.6 kN in radial load is always applied to the moving block that constitutes the linear guide, and the maximum moving speed of 60 m / min and acceleration / deceleration of 9.8 m / s 2 as relative moving conditions of the moving block with respect to the track rail. Each condition value of (1.0 G) and stroke 350 mm was set. Under these conditions, the moving block was repeatedly reciprocated with respect to the track rail constituting the linear guide, and the distance traveled by the linear guide while maintaining the performance was recorded, and the evaluation was made based on the distance traveled.
 以上説明した試験条件にて得られた結果を、図2に示す。ここで、図2は、油潤滑荷重耐久試験の結果を示すグラフ図であり、縦軸に示された各試験品の試験結果が、横軸に示された走行距離として表されている。 The results obtained under the test conditions described above are shown in FIG. Here, FIG. 2 is a graph showing the result of the oil lubrication load endurance test, and the test result of each test product shown on the vertical axis is represented as the travel distance shown on the horizontal axis.
 図2から明らかな通り、今回実施された油潤滑荷重耐久試験では、すべての実施例で既存品を上回る結果が得られている。しかし、本発明の実施形態として機能層13の硬さ値が12、15、17GPaの実施例1、2、3については、走行距離が2500~4500kmとなり、既存品の約3倍を超えた走行距離を示している。この結果から、本発明の機能層13の条件値として、ナノインデンターで行った機能層13を構成する複合層の硬さ値が12GPa~17GPaであること、との条件は、従来技術に比べて長寿命化を実現するものであると評価できる。すなわち、発明者らの行った油潤滑荷重耐久試験によって、本発明に係るコーティング層が油潤滑環境下での潤滑状態の改善効果を好適に示すことが確認できた。 As is clear from FIG. 2, in the oil lubrication load endurance test conducted this time, results superior to the existing products were obtained in all the examples. However, for Examples 1, 2 and 3 with hardness values of 12, 15 and 17 GPa of the functional layer 13 according to the embodiment of the present invention, the travel distance is 2500 to 4500 km, which is about 3 times longer than the existing products. Indicates the distance. From this result, the condition that the hardness value of the composite layer constituting the functional layer 13 performed by the nano indenter is 12 GPa to 17 GPa as the condition value of the functional layer 13 of the present invention is compared to the prior art. It can be evaluated that the longevity can be realized. That is, according to the oil lubrication load endurance test conducted by the present inventors, it has been confirmed that the coating layer according to the present invention suitably shows the improvement effect of the lubrication state in the oil lubrication environment.
 なお、本発明の実施形態として機能層13の硬さ値が10GPaのものについては、既存品に対して有意な差異が見られなかった。しかし、この結果からは、本発明の機能層13の条件値の下限値を12GPaと設定したことについての有効性が確認できた。 In addition, as for the hardness value of the functional layer 13 of 10 GPa as an embodiment of the present invention, no significant difference was seen from the existing products. However, from these results, it was possible to confirm the effectiveness of setting the lower limit value of the condition value of the functional layer 13 of the present invention to 12 GPa.
 次に、発明者らは、油潤滑を実施しない無潤滑環境下での転動装置の荷重耐久性能についての検証実験を行った。この無潤滑荷重耐久試験は、実験室内の常温環境下に設置された荷重耐久試験機を用い、この試験機に対してリニアガイドをセットして行った。リニアガイドは、構成部材に対して本発明に係るコーティング層の硬さ値が15GPaで形成した実施例と、比較例としてMoS膜を形成したものを用意し、リニアガイドを構成する軌道レールに対して移動ブロックを繰り返し往復運動させることによって両者の耐久性能を比較することとした。なお、本発明に係るコーティング層の硬さ値を15GPaとしたのは、本発明の機能層13の条件値である、ナノインデンターで行った機能層13を構成する複合層の硬さ値が12GPa~17GPaである条件範囲の約中央値を代表的に選択したものである。 Next, the inventors conducted a verification experiment on the load durability performance of the rolling device in a non-lubricated environment in which oil lubrication is not performed. This non-lubricated load endurance test was conducted by setting a linear guide to this tester using a load endurance tester installed under a room temperature environment in a laboratory. For the linear guide, prepare an embodiment in which the hardness value of the coating layer according to the present invention is 15 GPa and a MoS 2 film formed as a comparative example for the component members, On the other hand, it was decided to compare the durability performance of the two by repeatedly reciprocating the moving block. The hardness value of the coating layer according to the present invention is 15 GPa because the hardness value of the composite layer constituting the functional layer 13 performed by the nano indenter is the condition value of the functional layer 13 of the present invention. A median value of about 12 GPa to 17 GPa is representatively selected.
 また、無潤滑荷重耐久試験のより具体的な条件としては、上記した2種類の試験品を、各1set用意し、各々のデータを採取した。潤滑条件は無潤滑とし、試験実施中の潤滑剤の供給についても停止した。リニアガイドを構成する移動ブロックに対しては、ラジアル荷重3.17kNの一定荷重を常時負荷し、軌道レールに対する移動ブロックの相対移動条件として、最高速度30m/min、加減速度9.8m/s(1.0G)、ストローク350mmの各条件値を設定した。かかる条件下でリニアガイドを構成する軌道レールに対して移動ブロックを繰り返し往復運動させ、リニアガイドが性能を維持しながら往復運動を行った走行距離を記録し、その走行距離によって評価を行った。 Further, as more specific conditions of the no-lubrication load endurance test, one set of each of the two types of the above-described test products was prepared, and data of each was collected. The lubrication conditions were unlubricated, and the supply of lubricant during the test was also stopped. A constant load of 3.17 kN in radial load is constantly applied to the moving block that constitutes the linear guide, and the maximum moving speed of 30 m / min and acceleration / deceleration of 9.8 m / s 2 as relative moving conditions of the moving block with respect to the track rail. Each condition value of (1.0 G) and stroke 350 mm was set. Under these conditions, the moving block was repeatedly reciprocated with respect to the track rail constituting the linear guide, and the distance traveled by the linear guide while maintaining the performance was recorded, and the evaluation was made based on the distance traveled.
 以上説明した試験条件にて得られた結果を、図3に示す。ここで、図3は、無潤滑荷重耐久試験の結果を示すグラフ図であり、縦軸に示された各試験品の試験結果が、横軸に示された走行距離比として表されている。 The results obtained under the test conditions described above are shown in FIG. Here, FIG. 3 is a graph showing the results of the non-lubricant load endurance test, and the test results of the respective test products shown on the vertical axis are represented as the travel distance ratio shown on the horizontal axis.
 図3から明らかな通り、今回実施された無潤滑荷重耐久試験では、従来から無潤滑環境下で用いられてきた比較例としてのMoS膜を形成した場合の走行距離比を1とした場合、本発明に係るコーティング層の硬さ値が15GPaで形成した実施例については、走行距離比が3.2であった。つまり、本発明に係るコーティング層については、従来技術に比べて約3倍以上の寿命延長効果を示すこととなった。また、無潤滑荷重耐久試験で得られた結果が従来技術に比べて約3倍以上の長寿命化を実現したことについては、油潤滑荷重耐久試験での効果とほぼ同様の改善効果倍率である。この結果から、本発明の機能層13の条件値として、ナノインデンターで行った機能層13を構成する複合層の硬さ値が12GPa~17GPaであること、との条件は、従来技術に比べて長寿命化を実現するものであると評価できる。すなわち、発明者らの行った無潤滑荷重耐久試験によって、本発明に係るコーティング層は、無潤滑環境下であっても長寿命効果を好適に発揮することが確認できた。 As apparent from FIG. 3, in the non-lubricated load endurance test carried out this time, assuming that the travel distance ratio is 1 when the MoS 2 film is formed as a comparative example conventionally used in a non-lubricated environment, For the embodiment in which the hardness value of the coating layer according to the present invention was 15 GPa, the travel distance ratio was 3.2. That is, the coating layer according to the present invention exhibited a life extending effect of about three times or more as compared with the prior art. In addition, about the fact that the result obtained in the non-lubricant load endurance test realized the life extension of about 3 times or more compared to the prior art, the improvement effect magnification is almost the same as the effect in the oil lubrication load endurance test . From this result, the condition that the hardness value of the composite layer constituting the functional layer 13 performed by the nano indenter is 12 GPa to 17 GPa as the condition value of the functional layer 13 of the present invention is compared to the prior art. It can be evaluated that the longevity can be realized. That is, according to the lubricant-free load endurance test conducted by the inventors, it has been confirmed that the coating layer according to the present invention suitably exhibits a long life effect even in a lubricant-free environment.
 以上、発明者らが見出した、本発明に係るコーティング層の好適な形成条件についての説明を行った。上述したように、本発明に係るコーティング層は、繰り返しの転がり負荷や摺動負荷を受けることとなる転動装置に対して好適に用いることが可能であり、従来技術に比べて約3倍以上の長寿命化を達成した。ただし、上述した本発明に係るコーティング層の好適な形成条件は、機能層13に関するものであった。そこで、発明者らは、本発明の更なる改良を検討する中で、下地層12の改良形態にも取り組んだ。そして、発明者らによる鋭意研究の結果、W(タングステン)単独で構成した下地層12に代えて、主成分がW(タングステン)によって構成されるとともに、母材11との接続面から機能層13との接続面に向けてC成分が段階的に増加するように構成した下地層12を採用することで、耐剥離性に優れる下地層12を形成することができることが確認できた。このような新たな下地層12を示す模式図として、図4を示す。ここで、図4は、本発明に係る下地層の変形形態を説明するための図であり、図中の分図(a)はコーティング層の断面構成を示した模式図であり、分図(b)はコーティング層を構成する下地層の膜厚方向でのC成分率の変化を示すグラフ図である。 In the above, the description about the suitable formation conditions of the coating layer which concerns on this invention which the inventors discovered was performed. As described above, the coating layer according to the present invention can be suitably used for a rolling device which is subject to repeated rolling load and sliding load, and is about three times or more the conventional art. Achieved a long life. However, the preferable conditions for forming the coating layer according to the present invention described above relate to the functional layer 13. Therefore, the inventors worked on the modification of the underlayer 12 while considering the further improvement of the present invention. Then, as a result of intensive studies by the inventors, the main component is made of W (tungsten) instead of the underlayer 12 made of W (tungsten) alone, and the functional layer 13 from the connection surface with the base material 11 It has been confirmed that the base layer 12 excellent in peeling resistance can be formed by adopting the base layer 12 configured so that the C component is gradually increased toward the connection surface with. FIG. 4 is shown as a schematic view showing such a new base layer 12. Here, FIG. 4 is a view for explaining a modified embodiment of the base layer according to the present invention, and a portion (a) in the figure is a schematic view showing a cross-sectional configuration of the coating layer, a portion ((a) b) is a graph which shows the change of the C component rate in the film thickness direction of the base layer which comprises a coating layer.
 図4に示すように、変形形態に係る下地層12は、主成分がW(タングステン)によって構成されるものであるが、母材11との接続面から一定の膜厚の範囲ではC成分率が0(ゼロ)%となっており、W(タングステン)のみで構成されている。そして、変形形態に係る下地層12は、機能層13との接続面である表層側に向けてC成分率が段階的に増加するように構成されており、機能層13と接続する下地層12の最表面部分は、C成分率が80%となるように構成されている。このように、本発明に係るコーティング層を構成する下地層12について、W(タングステン)中のC成分比率が膜厚方向で段階的に変化するように製膜することで、耐剥離性に優れる下地層12となるという効果を得ることができる。 As shown in FIG. 4, the base layer 12 according to the modified embodiment is mainly composed of W (tungsten), but in the range of a constant film thickness from the connection surface with the base material 11, the C component ratio Is 0 (zero)%, and is composed only of W (tungsten). The underlayer 12 according to the modified embodiment is configured such that the C component ratio gradually increases toward the surface layer side that is the connection surface with the functional layer 13, and the underlayer 12 connected to the functional layer 13. The outermost surface portion of is configured such that the C component ratio is 80%. As described above, with respect to the base layer 12 constituting the coating layer according to the present invention, the film is formed so that the C component ratio in W (tungsten) changes stepwise in the film thickness direction, whereby the peeling resistance is excellent. The effect of being the underlayer 12 can be obtained.
 なお、発明者らは、被膜の改良実験を行うに際して、転動装置に最適な性能として、高面圧環境で剥がれない被膜が必要となるため、母材11との密着度が重要と考えた。また、相手材(転動面)を摩耗させないため、ボール表面の凹凸を小さくすることが必要であり、硬さを上げることに効果があることを確認していた。この両条件のバランスをとるため、母材11に近い箇所を軟らかく、硬さを傾斜させながら積層し、表面をできるだけ硬くするという製法を選定した。このような考えのもと、発明者らが鋭意研究を進めた結果、さらに被膜の密着性に優れた条件を見出すに至った。その結果を図5に示す。ここで、図5は、本発明に係るコーティング層の被膜硬さの最適設計条件の一つを例示した図であり、図中の分図(a)はコーティング層の断面構成を示した模式図であり、分図(b)はコーティング層における膜厚方向での硬さ値の設計例を示すグラフ図である。 In addition, the inventors considered that when performing a film improvement experiment, a film that does not peel off in a high surface pressure environment is required as the optimum performance for the rolling device, so adhesion with the base material 11 is important. . In addition, in order to prevent abrasion of the mating material (rolling surface), it is necessary to reduce the unevenness on the surface of the ball, and it has been confirmed that it is effective to increase the hardness. In order to balance these two conditions, a method was adopted in which a portion close to the base material 11 was softened, laminated while inclining the hardness, and making the surface as hard as possible. Based on this idea, as a result of the inventors' earnest research, they have come to find conditions further excellent in film adhesion. The results are shown in FIG. Here, FIG. 5 is a diagram illustrating one of the optimum design conditions of the film hardness of the coating layer according to the present invention, and a diagram (a) in the diagram is a schematic diagram showing the cross-sectional configuration of the coating layer Part (b) of the drawing is a graph showing a design example of the hardness value in the film thickness direction of the coating layer.
 図5に示す改良例では、下地層12における母材11との接続面から機能層13の表面に向けて被膜硬さが増加するように構成されるとともに、機能層13を構成する複合層の最表面であるC層(DLC)の被膜硬さが表面に向けて漸減するように構成される形態例が示されている。発明者らは、実験の結果、コーティング層の最表層を硬いC層(DLC)にすると摺動面の摩耗が大きくなるが、機能層12の最終段階(つまり、最表層の少し手前)が最も硬く、最表層のC層(DLC)をやや軟質にすることで、最表層のC層(DLC)がなじみ層として機能し、被膜の密着性が向上する、という効果を得た。このような図5で示す被膜硬さの設計条件を満たすコーティング膜を実現することで、さらに被膜の密着性に優れたコーティング層が実現し、長寿命化を実現した転動装置が得られることが明らかとなった。 In the improved example shown in FIG. 5, the coating hardness is increased from the connection surface of the base layer 12 with the base material 11 toward the surface of the functional layer 13 and the composite layer constituting the functional layer 13 An example configuration is shown where the coating hardness of the outermost surface C layer (DLC) is gradually reduced towards the surface. The inventors found that the wear of the sliding surface is increased when the outermost layer of the coating layer is a hard C layer (DLC) as a result of the experiment, but the final step of the functional layer 12 (that is, slightly before the outermost layer) is the most By making the hard outermost layer C layer (DLC) slightly soft, the outermost layer C layer (DLC) functions as a conformal layer, and the adhesion of the film is improved. By realizing the coating film satisfying the design condition of the coating film hardness shown in FIG. 5 as described above, a coating layer having further excellent adhesion of the film is realized, and a rolling device realizing a long life can be obtained. It became clear.
 以上、発明者らが見出した、本発明に係るコーティング層の好適な形成条件についての説明を行った。上述したように、本発明に係るコーティング層は、繰り返しの転がり負荷や摺動負荷を受けることとなる転動装置に対して好適に用いることが可能である。そこで、次に、本発明に係るコーティング層を転動装置へ適用した場合の事例について、説明を行う。 In the above, the description about the suitable formation conditions of the coating layer which concerns on this invention which the inventors discovered was performed. As described above, the coating layer according to the present invention can be suitably used for a rolling device that receives repeated rolling load and sliding load. Then, the case in which the coating layer according to the present invention is applied to a rolling device will be described next.
[転動装置への適用例]
 本発明に係るコーティング層を用いた転動装置の具体的な実施形態について、図面を用いて説明する。なお、以下で例示する転動装置の実施形態は、各請求項に係る発明を限定するものではなく、また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。また、本明細書における「転動装置」は、例えば、工作機械などに用いられる転がり軸受全般や真空中で使用される無潤滑軸受、リニアガイドや直線案内装置、ボールスプライン装置、ボールねじ装置、ローラねじ装置、クロスローラリングなどのような、あらゆる転動・摺動動作を伴う装置を含むものである。
[Example of application to rolling device]
A specific embodiment of a rolling device using a coating layer according to the present invention will be described using the drawings. In addition, the embodiment of the rolling device illustrated below does not limit the invention according to each claim, and all combinations of the features described in the embodiments are essential for the solution means of the invention. Not necessarily. Further, the “rolling device” in the present specification includes, for example, general rolling bearings used in machine tools and the like, non-lubricated bearings used in vacuum, linear guides and linear guides, ball spline devices, ball screw devices, It includes devices with all rolling and sliding operations, such as roller screw devices, cross roller rings, etc.
(リニアガイド装置への適用例)
 本実施形態に係る転動装置は、図6および図7に示すようなリニアガイド装置として構成することが可能であり、かかるリニアガイド装置に対して上述したコーティング層を形成することにより、摩耗特性や潤滑寿命特性を向上させた新たな転動装置を実現することができる。ここで、図6は、本実施形態に係るリニアガイド装置の一形態を例示する外観斜視図である。また、図7は、図6で示したリニアガイド装置が備える無限循環路を説明するための断面図である。
(Example of application to linear guide device)
The rolling device according to the present embodiment can be configured as a linear guide device as shown in FIG. 6 and FIG. 7, and by forming the coating layer described above on such a linear guide device, wear characteristics are obtained. And a new rolling device with improved lubrication life characteristics can be realized. Here, FIG. 6 is an appearance perspective view illustrating one form of the linear guide device according to the present embodiment. 7 is a cross-sectional view for explaining an infinite circulation path provided in the linear guide device shown in FIG.
 まず、図6および図7に例示するリニアガイド装置40の構成について説明すると、本実施形態に係る転動装置としてのリニアガイド装置40は、内方部材としての軌道レール41と、軌道レール41に多数の転動体として設置されるボール42を介してスライド可能に取り付けられた外方部材としての移動ブロック43とを備えている。軌道レール41はその長手方向と直交する断面が概略矩形状に形成された長尺の部材であり、その表面(上面および両側面)には、ボール42が転がる際の軌道になる軌道面としての転動体転走面41aが軌道レール41の全長に渡って形成されている。 First, the configuration of the linear guide device 40 illustrated in FIGS. 6 and 7 will be described. The linear guide device 40 as the rolling device according to the present embodiment includes the track rail 41 as the inward member and the track rail 41. And a moving block 43 as an outer member slidably mounted via balls 42 installed as a large number of rolling elements. The track rail 41 is a long member whose cross section orthogonal to the longitudinal direction is formed in a substantially rectangular shape, and on the surface (upper surface and both side surfaces), a track surface which becomes a track when the ball 42 rolls. The rolling element rolling surface 41 a is formed over the entire length of the track rail 41.
 ここで軌道レール41は、直線的に伸びるように形成されることもあるし、曲線的に伸びるように形成されることもある。また、図6および図7において例示する転動体転走面41aの本数は左右で2条ずつ合計4条設けられているが、その条数はリニアガイド装置40の用途等に応じて任意に変更することができる。 Here, the track rail 41 may be formed to extend linearly or may be formed to extend curvilinearly. Further, although the number of rolling element rolling surfaces 41a illustrated in FIGS. 6 and 7 is a total of four in two on the left and two on the left and right, the number of the rows is arbitrarily changed according to the application of the linear guide device 40 can do.
 一方、移動ブロック43には、転動体転走面41aとそれぞれ対応する位置に軌道面としての負荷転動体転走面43aが設けられている。軌道レール41の転動体転走面41aと移動ブロック43の負荷転動体転走面43aとによって負荷転走路52が形成され、複数のボール42が挟まれている。さらに、移動ブロック43には、各転動体転走面41aと平行に伸びる4条の無負荷転走路53と、各無負荷転走路53と各負荷転走路52とを結ぶ方向転換路55が設けられている。1つの負荷転走路52および無負荷転走路53と、それらを結ぶ一対の方向転換路55との組み合わせによって、1つの無限循環路が構成される(図7参照)。 On the other hand, the moving block 43 is provided with a load rolling element rolling surface 43a as a raceway surface at a position corresponding to the rolling element rolling surface 41a. A load rolling path 52 is formed by the rolling element rolling surface 41 a of the raceway rail 41 and the load rolling element rolling surface 43 a of the moving block 43, and a plurality of balls 42 are sandwiched. Furthermore, the moving block 43 is provided with four non-load rolling paths 53 extending in parallel to the rolling element rolling surfaces 41 a, and a direction changing path 55 connecting each non-loading rolling path 53 and each load rolling path 52. It is done. A combination of one load rolling path 52 and no load rolling path 53 and a pair of direction changing paths 55 connecting them forms one infinite circulation path (see FIG. 7).
 そして、複数のボール42が、負荷転走路52と無負荷転走路53と一対の方向転換路55,55とから構成される無限循環路に無限循環可能に設置されることにより、移動ブロック43が軌道レール41に対して相対的に往復運動可能となっている。 A plurality of balls 42 are installed in the infinite circulation path constituted by the load rolling path 52, the no-load rolling path 53, and the pair of direction changing paths 55, 55 in an infinitely circulating manner, whereby the moving block 43 is formed. Reciprocation relative to the track rail 41 is possible.
 以上のような構成を備える本実施形態に係るリニアガイド装置40においては、内方部材としての軌道レール41の転動体転走面41a、外方部材としての移動ブロック43の負荷転動体転走面43a、および複数の転動体として設置されるボール42の少なくとも1つに対して、上述した下地層12と機能層13からなるコーティング層を形成することができる。 In the linear guide device 40 according to the present embodiment having the above configuration, the rolling element rolling surface 41 a of the track rail 41 as the inward member and the load rolling element rolling surface of the moving block 43 as the outward member. A coating layer composed of the above-described base layer 12 and the functional layer 13 can be formed on at least one of the balls 42 installed as a plurality of rolling elements and 43a.
 例えば、複数の転動体として設置されるボール42の表面に対して下地層12と機能層13からなるコーティング層を形成することで、軌道レール41の転動体転走面41aや、移動ブロック43の負荷転動体転走面43aと、ボール42との金属接触が防止されることとなる。そして、機能層13の最表面は、炭素系のコーティング膜であるC層であり、また、機能層13自体は積層構造からなる複合層であり、コーティング層自体が潤滑性を有しているので、摩擦抵抗の低下や固体潤滑剤としての機能を発揮できる。さらに、ボール42の表面に対して下地層12と機能層13からなるコーティング層を形成することで、油膜が形成されない環境においても金属接触を防止できるので、転動装置であるリニアガイド装置40の製品寿命を延長することが可能となる。 For example, by forming a coating layer including the foundation layer 12 and the functional layer 13 on the surface of the ball 42 installed as a plurality of rolling elements, the rolling element rolling surface 41 a of the track rail 41 and the moving block 43 The metal contact between the load rolling element rolling surface 43 a and the ball 42 is prevented. The outermost surface of the functional layer 13 is a C layer which is a carbon-based coating film, and the functional layer 13 itself is a composite layer having a laminated structure, and the coating layer itself has lubricity. Can exhibit the reduction of frictional resistance and the function as a solid lubricant. Furthermore, by forming a coating layer consisting of the base layer 12 and the functional layer 13 on the surface of the ball 42, metal contact can be prevented even in an environment where an oil film is not formed. It is possible to extend the product life.
(転動体ねじ装置への適用例)
 また、本実施形態に係る転動装置は、例えば、図8において示されるようなボールねじ装置56として構成することが可能である。図8は、本実施形態に係る転動装置をボールねじ装置として構成した場合を例示する図である。かかるボールねじ装置56は、内方部材としてのねじ軸57と、このねじ軸57に複数のボール58を介して相対回転可能に取り付けられる外方部材としてのナット部材59とを備えた装置である。
(Example of application to rolling element screw device)
Moreover, the rolling device according to the present embodiment can be configured as, for example, a ball screw device 56 as shown in FIG. FIG. 8 is a view exemplifying a case where the rolling device according to the present embodiment is configured as a ball screw device. The ball screw device 56 is a device including a screw shaft 57 as an inner member and a nut member 59 as an outer member attached to the screw shaft 57 so as to be relatively rotatable via a plurality of balls 58. .
 ねじ軸57は、外周面に螺旋状の軌道面としての転動体転走溝57aが形成される内方部材であり、一方、ナット部材59は、内周面に転動体転走溝57aに対応する螺旋状の軌道面としての負荷転走溝が形成される外方部材である。ねじ軸57のナット部材59に対する相対的な回転運動に伴って、ナット部材59がねじ軸57に対して相対的に往復運動可能となっている。 The screw shaft 57 is an inward member in which rolling element rolling grooves 57a as a helical raceway surface are formed on the outer peripheral surface, while the nut member 59 corresponds to the rolling element rolling grooves 57a on the inner peripheral surface. Load rolling groove as a helical raceway surface. The nut member 59 can reciprocate relative to the screw shaft 57 in accordance with the relative rotational movement of the screw shaft 57 with respect to the nut member 59.
 そして、ボールねじ装置56を構成するねじ軸57の転動体転走溝57aやナット部材59の負荷転走溝、およびボール58の少なくとも1つに対して、上述した下地層12と機能層13からなるコーティング層を形成することができる。かかる構成によって、繰返しの転がり負荷荷重を受けることとなるねじ軸57の転動体転走溝57aやナット部材59の負荷転走溝、およびボール58における金属接触が防止され、ボールねじ装置56の摩耗特性や潤滑寿命特性を向上させることが可能となる。 Then, for at least one of the rolling element rolling groove 57a of the screw shaft 57, the load rolling groove of the nut member 59, and the ball 58 constituting the ball screw device 56, the above-described underlayer 12 and functional layer 13 Coating layer can be formed. With this configuration, metal contact on the rolling element rolling groove 57a of the screw shaft 57, the load rolling groove of the nut member 59, and the ball 58 that will receive repeated rolling load is prevented, and the ball screw device 56 is worn out. It is possible to improve the characteristics and the lubrication life characteristics.
(スプライン装置への適用例)
 さらに、本実施形態に係る転動装置は、例えば、図9において示されるようなスプライン装置60として構成することが可能である。図9は、本実施形態に係る転動装置をスプライン装置として構成した場合を例示する図である。
(Example of application to spline device)
Furthermore, the rolling device according to the present embodiment can be configured as, for example, a spline device 60 as shown in FIG. FIG. 9 is a view illustrating the case where the rolling device according to the present embodiment is configured as a spline device.
 ここで、図9に示されるスプライン装置60の構成を簡単に説明すると、スプライン装置60は、内方部材としてのスプライン軸61と、そのスプライン軸61に多数の転動体としてのボール62を介して移動自在に取り付けられた外方部材としての円筒状の外筒63とを有している。スプライン軸61の表面には、ボール62の軌道となり、スプライン軸21の軸線方向に延びる軌道面としての転動体転走面61aが形成されている。スプライン軸61に取り付けられる外筒63には、転動体転走面61aに対応する軌道面としての負荷転動体転走面が形成される。これらの負荷転動体転走面には、転動体転走面61aが伸びる方向に伸びる複数条の突起が形成されている。外筒63に形成した負荷転動体転走面とスプライン軸61に形成した転動体転走面61aとの間で負荷転走路が形成される。負荷転走路の隣には、荷重から解放されたボール62が移動する無負荷戻し通路が形成されている。外筒63には、複数のボール62をサーキット状に整列・保持する保持器64が組み込まれている。そして、複数のボール62が、外筒63の負荷転動体転走面とスプライン軸61の転動体転走面61aとの間に転動自在に設置され、無負荷戻し通路を通って無限循環するように設置されることによって、外筒63がスプライン軸61に対して相対的に往復運動可能となっている。 Here, the configuration of the spline device 60 shown in FIG. 9 will be briefly described. The spline device 60 includes a spline shaft 61 as an inward member and balls 62 as many rolling elements on the spline shaft 61. It has a cylindrical outer cylinder 63 as an outward member movably attached. On the surface of the spline shaft 61, a rolling element rolling surface 61a is formed as a raceway surface which becomes a track of the ball 62 and extends in the axial direction of the spline shaft 21. In the outer cylinder 63 attached to the spline shaft 61, a load rolling element rolling surface as a raceway surface corresponding to the rolling element rolling surface 61a is formed. On these load rolling element rolling surfaces, a plurality of strips of protrusions extending in the direction in which the rolling element rolling surfaces 61a extend are formed. A load rolling path is formed between the load rolling element rolling surface formed on the outer cylinder 63 and the rolling element rolling surface 61 a formed on the spline shaft 61. Next to the load rolling path, a no-load return path is formed to move the ball 62 released from the load. The outer cylinder 63 incorporates a holder 64 that aligns and holds the plurality of balls 62 in a circuit shape. Then, a plurality of balls 62 are rotatably installed between the load rolling element rolling surface of the outer cylinder 63 and the rolling element rolling surface 61 a of the spline shaft 61, and circulate endlessly through the no load return passage. The outer cylinder 63 can be reciprocated relative to the spline shaft 61 by being installed as described above.
 そして、図9において示すスプライン装置60の場合においても、スプライン装置60を構成するスプライン軸61の転動体転走面61aや外筒63の負荷転動体転走面、およびボール62の少なくとも1つに対して、上述した下地層12と機能層13からなるコーティング層を形成することができる。かかる構成によって、繰返しの転がり負荷荷重を受けることとなるスプライン軸61の転動体転走面61aや外筒63の負荷転動体転走面、およびボール62における金属接触が防止され、スプライン装置60の摩耗特性や潤滑寿命特性を向上させることが可能となる。 Also in the case of the spline device 60 shown in FIG. 9, at least one of the rolling element rolling surface 61 a of the spline shaft 61 constituting the spline device 60 and the load rolling element rolling surface of the outer cylinder 63 and the balls 62. On the other hand, the coating layer which consists of base layer 12 and functional layer 13 which were mentioned above can be formed. With this configuration, metal contact on the rolling element rolling surface 61a of the spline shaft 61, the load rolling element rolling surface of the outer cylinder 63, and the balls 62 that will receive repeated rolling loads can be prevented. It becomes possible to improve wear characteristics and lubrication life characteristics.
(回転ベアリング装置への適用例)
 またさらに、本実施形態に係る転動装置は、例えば、図10および図11において示されるような回転ベアリング装置70として構成することが可能である。ここで、図10は、本実施形態に係る転動装置を回転ベアリング装置として構成した場合の一形態を例示する部分縦断斜視図である。また、図11は、図10に示す回転ベアリング装置の縦断面を示す図である。
(Example of application to rotary bearing device)
Furthermore, the rolling device according to the present embodiment can be configured, for example, as a rotating bearing device 70 as shown in FIGS. 10 and 11. Here, FIG. 10 is a partial vertical perspective view illustrating an embodiment in which the rolling device according to the present embodiment is configured as a rotating bearing device. 11 is a longitudinal sectional view of the rotary bearing device shown in FIG.
 図10および図11に示すように、回転ベアリング装置70として構成される転動装置は、外周面に断面V字形状の内側軌道面72を有する(内方部材又は外方部材としての)内輪71と、内周面に断面V字形状の外側軌道面74を有する(外方部材又は内方部材としての)外輪73と、内側軌道面72と外側軌道面74とによって形成される断面略矩形状の軌道路75の間に転動可能にクロス配列される複数の転動体としてのローラ77とを有することにより、内輪71および外輪73が周方向に相対的な回転運動を行うものである。 As shown in FIGS. 10 and 11, the rolling device configured as the rotating bearing device 70 has an inner race surface 72 (as an inner member or an outer member) having an inner raceway surface 72 having a V-shaped cross section on the outer peripheral surface. And an outer race 73 (as an outer member or an inner member) having an outer raceway surface 74 having a V-shaped cross section on the inner peripheral surface, and a substantially rectangular cross section formed by the inner raceway surface 72 and the outer raceway surface 74 The inner ring 71 and the outer ring 73 perform relative rotational movement in the circumferential direction by having a plurality of rollers 77 as rolling elements cross arranged in a rollable manner between the track paths 75.
 このような回転ベアリング装置70においても、回転ベアリング装置70を構成する内輪71の内側軌道面72や外輪73の外側軌道面74、およびローラ77の少なくとも1つに対して、上述した下地層12と機能層13からなるコーティング層を形成することができる。かかる構成によって、繰返しの転がり負荷荷重を受けることとなる内輪71の内側軌道面72や外輪73の外側軌道面74、およびローラ77における金属接触が防止され、回転ベアリング装置70の摩耗特性や潤滑寿命特性を向上させることが可能となる。 Also in such a rotary bearing device 70, at least one of the inner raceway surface 72 of the inner ring 71 and the outer raceway surface 74 of the outer ring 73 of the rotary bearing device 70 and the roller 77 A coating layer composed of the functional layer 13 can be formed. With this configuration, metal contact on the inner raceway surface 72 of the inner ring 71 and the outer raceway surface 74 of the outer race 73 and the roller 77 that will receive repeated rolling loads can be prevented, and the wear characteristics and lubrication life of the rotary bearing device 70 It is possible to improve the characteristics.
(滑りねじ装置への適用例)
 上述した各装置については、内方部材と外方部材の間に複数の転動体が介装された形態の装置を例示して説明した。しかしながら、転動装置の構成部材に対してコーティング層を形成することを特徴とする本発明の適用範囲は、かかる転動体を用いたものには限られず、転動体を介さずに内方部材と外方部材とが直接接触して相対運動可能に構成される装置に対しても好適に用いることが可能である。
(Example of application to slide screw device)
About each apparatus mentioned above, the apparatus of the form by which the several rolling element was interposed between the inward member and the outward member was illustrated and demonstrated. However, the application range of the present invention characterized in that a coating layer is formed on a component of a rolling device is not limited to the one using such a rolling element, and the inward member and the rolling member are not used. It is possible to use suitably also to the device constituted by direct contact with the outer member and capable of relative movement.
 例えば、図12に示すように、滑りねじ装置80として構成される転動装置に対して、本発明を適用することも可能である。ここで、図12は、本実施形態に係る転動装置を滑りねじ装置として構成した場合の一形態を例示する外観斜視図である。そして、図12に示す滑りねじ装置80は、外周面に螺旋状の軌道面としてのねじ溝が形成される内方部材としてのねじ軸81と、内周面にねじ溝に対応する螺旋状の軌道面としてのナット溝が形成される外方部材としてのナット部材83と、を有することにより、ねじ軸81のナット部材83に対する相対的な回転運動に伴って、ナット部材83がねじ軸81に対して相対的に往復運動することができるように構成されている。 For example, as shown in FIG. 12, the present invention can be applied to a rolling device configured as a slide screw device 80. Here, FIG. 12 is an external appearance perspective view which illustrates one form at the time of comprising the rolling device which concerns on this embodiment as a sliding screw apparatus. The slide screw device 80 shown in FIG. 12 has a screw shaft 81 as an inward member in which a screw groove as a helical raceway surface is formed on the outer peripheral surface, and a spiral shape corresponding to the screw groove on the inner peripheral surface. By having a nut member 83 as an outward member in which a nut groove as a raceway surface is formed, the nut member 83 is attached to the screw shaft 81 in accordance with the relative rotational movement of the screw shaft 81 with respect to the nut member 83. It is configured to be able to reciprocate relative to it.
 そして、図12に示す滑りねじ装置80についても、その構成部材であるねじ軸81のねじ溝やナット部材83のナット溝に対して、上述した下地層12と機能層13からなるコーティング層を形成することができる。かかる構成によって、繰返しの滑り負荷荷重を受けることとなるねじ軸81のねじ溝やナット部材83のナット溝における金属接触が防止され、滑りねじ装置80の摩耗特性や潤滑寿命特性を向上させることが可能となる。 And also about the slide screw apparatus 80 shown in FIG. 12, the coating layer which consists of the foundation layer 12 mentioned above and the functional layer 13 is formed with respect to the screw groove of the screw shaft 81 which is the component, and the nut groove of the nut member 83. can do. With such a configuration, metal contact in the screw groove of the screw shaft 81 and the nut groove of the nut member 83 which will be subjected to repeated sliding loads can be prevented, and the wear characteristics and lubrication life characteristics of the slide screw device 80 can be improved. It becomes possible.
 以上、本発明の好適な実施形態について説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。上記実施形態には、多様な変更又は改良を加えることが可能である。 As mentioned above, although the suitable embodiment of the present invention was described, the technical scope of the present invention is not limited to the range given in the above-mentioned embodiment. It is possible to add various change or improvement to the above-mentioned embodiment.
 例えば、図13において示されるような、リニアモーションガイドとボールねじが組み合わされて一体構造となっている形式の転動装置90について、本発明を適用することが可能である。なお、図13において示す転動装置90の場合、ねじ軸91と移動ブロック93とは、複数のボール95を介して設置されているが、複数のボール95を介さずにねじ軸91と移動ブロック93とが滑りねじとして構成されるようにすることも可能である。 For example, the present invention can be applied to a rolling device 90 of a type in which a linear motion guide and a ball screw are combined to form an integral structure as shown in FIG. In the case of the rolling device 90 shown in FIG. 13, although the screw shaft 91 and the moving block 93 are installed via the plurality of balls 95, the screw shaft 91 and the moving block are not performed via the plurality of balls 95. It is also possible that 93 is configured as a slide screw.
 その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 It is also apparent from the scope of the claims that the embodiments added with such alterations or improvements can be included in the technical scope of the present invention.
 なお、上述した本発明に係る転動装置については、多様な産業上の利用可能性を備えている。例えば、原子力・エネルギー関連の技術分野では、放射線被ばく環境下で転動装置を使用する場合があるが、油や樹脂は放射線により分解され、その分解物質は汚染物質となってしまう。しかし、本発明に係るコーティング層を転動装置に用いることで、オイルフリー化が実現できるので、本発明によれば、放射線被ばく環境下であっても好適に用いることのできる転動装置を実現することが可能となる。 The rolling device according to the present invention described above has various industrial applicability. For example, in the technical fields related to nuclear energy and energy, rolling devices may be used in a radiation exposure environment, but oil and resin are decomposed by radiation, and the decomposed substances become pollutants. However, by using the coating layer according to the present invention for the rolling device, oil-free can be realized, and according to the present invention, the rolling device can be suitably used even in a radiation exposure environment. It is possible to
 また例えば、転動装置における転がり運動や滑り運動が低速かつ高荷重で行われる使用方法の場合、従来の油やグリースを用いる潤滑剤では油膜の形成が困難となって摩耗が進行してしまうといった課題が存在していた。しかしながら、本発明に係るコーティング層を転動装置に用いることで、オイルフリー化が実現できるので、低速かつ高荷重での使用条件に有効な転動装置を提供することが可能となる。 Also, for example, in the case of the rolling and sliding movement in which the rolling movement and sliding movement are performed at a low speed and under a high load, formation of an oil film becomes difficult and wear progresses in a conventional lubricant using oil or grease A challenge existed. However, by using the coating layer according to the present invention for the rolling device, oil-free can be realized, so it is possible to provide a rolling device effective for use conditions under low speed and high load.
 また例えば、宇宙・航空産業における技術分野では、極低温環境下での転動装置の使用が求められるが、従来の油やグリースを用いる潤滑剤では、低温での粘性抵抗上昇のためにトルクが高くなってしまうという課題が存在していた。しかしながら、本発明に係るコーティング層を転動装置に用いることで、オイルフリー化が実現できるので、温度による摩擦抵抗の差が無くなり、どのような温度条件下であっても好適に使用可能な転動装置を提供することができる。 Also, for example, in the technical field in the space and aerospace industry, the use of a rolling device in a cryogenic environment is required, but with a conventional oil or grease lubricant, torque is increased due to the increase in viscous drag at low temperatures. There was a problem of getting higher. However, by using the coating layer according to the present invention for the rolling device, oil-free can be realized, so that the difference in frictional resistance due to temperature disappears, and it can be suitably used under any temperature condition. A dynamic device can be provided.
 また例えば、食品製造機械・医療機器の技術分野では、従来の油やグリースを用いる場合に潤滑剤の漏れや垂れに敏感にならざるを得ないといった課題が存在していた。しかしながら、本発明に係るコーティング層を転動装置に用いることで、オイルフリー化が実現できるので、潤滑剤の漏れや垂れに敏感な環境下であっても安心して使用することのできる転動装置を提供することが可能となる。 Further, for example, in the technical field of food manufacturing machinery and medical devices, there has been a problem that when using conventional oils and greases, they have to be sensitive to lubricant leakage and dripping. However, by using the coating layer according to the present invention for the rolling device, oil-free can be realized, so the rolling device can be used safely even in an environment sensitive to lubricant leakage and dripping. It is possible to provide
 また例えば、転動装置に対して振動が付加される使用環境の場合、従来の油やグリースを用いる潤滑剤では油膜の形成が困難となり、摩耗が進行してしまうといった課題が存在していた。しかしながら、本発明に係るコーティング層を転動装置に用いることで、金属接触が防止できるので、振動が付加される使用環境に有効な転動装置を提供することが可能となる。 Further, for example, in the case of a use environment where vibration is added to the rolling device, there has been a problem that the formation of an oil film becomes difficult with a conventional lubricant using oil or grease, and wear progresses. However, since the metal contact can be prevented by using the coating layer according to the present invention for the rolling device, it is possible to provide the rolling device effective for the use environment where vibration is added.
 以上説明したように、本発明に係るコーティング層を転動装置に用いることで、転動装置の適用範囲が大いに拡大することとなる。 As described above, the application range of the rolling device is greatly expanded by using the coating layer according to the present invention for the rolling device.
 11 母材、12 下地層、13 機能層、40 リニアガイド装置、41 軌道レール、41a 転動体転走面、42 ボール、43 移動ブロック、43a 負荷転動体転走面、48,49 ねじ孔、52 負荷転走路、53 無負荷転走路、55 方向転換路、56 ボールねじ装置、57 ねじ軸、57a 転動体転走溝、58 ボール、59 ナット部材、60 スプライン装置、61 スプライン軸、61a 転動体転走面、62 ボール、63 外筒、64 保持器、70 回転ベアリング装置、71 内輪、72 内側軌道面、73 外輪、74 外側軌道面、75 軌道路、77 ローラ、80 滑りねじ装置、81 ねじ軸、83 ナット部材、90 転動装置、91 ねじ軸、93 移動ブロック、95 ボール。 DESCRIPTION OF SYMBOLS 11 base material, 12 foundation layer, 13 functional layer, 40 linear guide apparatus, 41 track rail, 41a rolling element rolling surface, 42 ball, 43 moving block, 43a load rolling element rolling surface, 48, 49 screw hole, 52 Load rolling path, 53 no-load rolling path, 55 direction changing path, 56 ball screw device, 57 screw shaft, 57a rolling element rolling groove, 58 ball, 59 nut member, 60 spline device, 61 spline shaft, 61a rolling element rolling Running surface, 62 ball, 63 outer cylinder, 64 cage, 70 rotary bearing device, 71 inner ring, 72 inner raceway surface, 73 outer race ring, 74 outer raceway surface, 75 raceway, 77 roller, 80 slide screw device, 81 screw shaft , 83 nut member, 90 rolling device, 91 screw shaft, 93 moving block, 95 ball.

Claims (7)

  1.  外面に軌道面を有する内方部材と、
     前記内方部材の軌道面に対向する軌道面を有して前記内方部材の外側に配置された外方部材と、
     前記両軌道面間に転動自在に配置された転動体と、
     を備える転動装置において、
     前記内方部材が有する軌道面、前記外方部材が有する軌道面、および前記転動体のうちの少なくとも1つが、
     金属系材料からなる母材と、
     前記母材の表面側に形成された下地層と、
     前記下地層の表面側に形成された機能層と、
     によって構成されており、
     前記機能層が、WC層とC層を交互に積層した積層構造を有する複合層として構成され、
     前記機能層を構成する複合層の最表面が、C層によって構成されていることを特徴とする転動装置。
    An inner member having a raceway surface on the outer surface,
    An outer member disposed on the outer side of the inner member, the outer member having a raceway surface opposite to the raceway surface of the inner member;
    A rolling element disposed rotatably between the two raceways;
    In a rolling device provided with
    At least one of a raceway surface of the inner member, a raceway surface of the outer member, and the rolling elements is
    A base material made of a metallic material,
    An underlayer formed on the surface side of the base material;
    A functional layer formed on the surface side of the underlayer;
    Is composed of
    The functional layer is configured as a composite layer having a laminated structure in which WC layers and C layers are alternately laminated,
    The outermost surface of the composite layer which comprises the said functional layer is comprised by C layer, The rolling device characterized by the above-mentioned.
  2.  請求項1に記載の転動装置において、
     前記機能層を構成するWC層のW(タングステン)組成比が、
     0重量%<W≦30重量%
    なる不等式を満たす条件で構成されることを特徴とする転動装置。
    In the rolling device according to claim 1,
    The W (tungsten) composition ratio of the WC layer constituting the functional layer is
    0% by weight <W ≦ 30% by weight
    A rolling device characterized by satisfying the following inequality.
  3.  請求項1又は2に記載の転動装置において、
     前記下地層は、W(タングステン)によって構成されており、
     前記機能層における前記下地層との接続面が、WC層によって構成されていることを特徴とする転動装置。
    In the rolling device according to claim 1 or 2,
    The underlayer is made of W (tungsten),
    A rolling device characterized in that a connection surface of the functional layer with the base layer is constituted by a WC layer.
  4.  請求項1又は2に記載の転動装置において、
     前記下地層は、主成分がW(タングステン)によって構成されるとともに、前記母材との接続面から前記機能層との接続面に向けてC成分が段階的に増加するように構成されており、
     前記機能層における前記下地層との接続面が、WC層によって構成されていることを特徴とする転動装置。
    In the rolling device according to claim 1 or 2,
    The base layer is configured so that the main component is W (tungsten), and the C component is gradually increased from the connection surface with the base material toward the connection surface with the functional layer. ,
    A rolling device characterized in that a connection surface of the functional layer with the base layer is constituted by a WC layer.
  5.  請求項1又は2に記載の転動装置において、
     前記機能層を構成する複合層のビッカース硬さHvが800~1500であることを特徴とする転動装置。
    In the rolling device according to claim 1 or 2,
    A rolling device characterized in that a Vickers hardness Hv of a composite layer constituting the functional layer is 800 to 1,500.
  6.  請求項1又は2に記載の転動装置において、
     ナノインデンターで行った前記機能層を構成する複合層の硬さ値が12GPa~17GPaであることを特徴とする転動装置。
    In the rolling device according to claim 1 or 2,
    A rolling device characterized in that the hardness value of the composite layer constituting the functional layer performed by a nano indenter is 12 GPa to 17 GPa.
  7.  請求項1に記載の転動装置において、
     前記下地層における前記母材との接続面から前記機能層の表面に向けて被膜硬さが増加するように構成されるとともに、前記機能層を構成する複合層の最表面であるC層の被膜硬さが表面に向けて漸減するように構成されることを特徴とする転動装置。
    In the rolling device according to claim 1,
    The coating film of the C layer, which is the outermost surface of the composite layer constituting the functional layer, is configured to increase the coating hardness from the connection surface with the base material in the base layer toward the surface of the functional layer A rolling device characterized in that the hardness decreases gradually towards the surface.
PCT/JP2018/026085 2017-07-12 2018-07-10 Rolling device WO2019013220A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019529740A JP7016365B2 (en) 2017-07-12 2018-07-10 Rolling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017136298 2017-07-12
JP2017-136298 2017-07-12

Publications (1)

Publication Number Publication Date
WO2019013220A1 true WO2019013220A1 (en) 2019-01-17

Family

ID=65002075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026085 WO2019013220A1 (en) 2017-07-12 2018-07-10 Rolling device

Country Status (3)

Country Link
JP (1) JP7016365B2 (en)
TW (1) TW201908615A (en)
WO (1) WO2019013220A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI769806B (en) * 2021-05-03 2022-07-01 東佑達自動化科技股份有限公司 Compound screw slide table

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235748A (en) * 2001-02-13 2002-08-23 Koyo Seiko Co Ltd Rolling sliding component
JP2003254340A (en) * 2002-03-06 2003-09-10 Koyo Seiko Co Ltd Bearing device
JP2004076756A (en) * 2002-08-09 2004-03-11 Koyo Seiko Co Ltd Sliding bearing
JP2010106311A (en) * 2008-10-29 2010-05-13 Ntn Corp Formed article with hard multilayer film and method for producing the same
WO2016140225A1 (en) * 2015-03-03 2016-09-09 Ntn株式会社 Rolling bearing for use in extremely low-temperature environment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235748A (en) * 2001-02-13 2002-08-23 Koyo Seiko Co Ltd Rolling sliding component
JP2003254340A (en) * 2002-03-06 2003-09-10 Koyo Seiko Co Ltd Bearing device
JP2004076756A (en) * 2002-08-09 2004-03-11 Koyo Seiko Co Ltd Sliding bearing
JP2010106311A (en) * 2008-10-29 2010-05-13 Ntn Corp Formed article with hard multilayer film and method for producing the same
WO2016140225A1 (en) * 2015-03-03 2016-09-09 Ntn株式会社 Rolling bearing for use in extremely low-temperature environment

Also Published As

Publication number Publication date
JP7016365B2 (en) 2022-02-21
JPWO2019013220A1 (en) 2020-05-07
TW201908615A (en) 2019-03-01

Similar Documents

Publication Publication Date Title
EP1840395B1 (en) Rolling device
Borghi et al. Tribological effects of surface texturing on nitriding steel for high-performance engine applications
EP2995827A1 (en) Sliding member
JPH08100819A (en) Grease lubrication rolling device bearing with solid lubricant coating
Gold et al. Wear resistance of PVD-coatings in roller bearings
Walton et al. The wear of unlubricated metallic spur gears
EP2434172B1 (en) Roller and cage assembly, roller bearing and cage assembly, and cage
JP2006250316A (en) Rolling device
WO2019013220A1 (en) Rolling device
JP2009133408A (en) Rolling slide member, and rolling device and pulley device using this member
Koike et al. Influence of radial load on PEEK plastic bearings life cycle
CN1625657A (en) Rolling bearing having ceramic rolling element and steel inner or outer ring
Bhattacharjee et al. Selection of suitable lubricant for sliding contact bearing and the effect of different lubricants on bearing performance: a review and recommendations
WO2007026702A1 (en) Movement guide device and rolling element used therefor
JP2008180374A (en) Rolling bearing
JP2006250313A (en) Rolling device
Kröner et al. Greenbearings–friction behaviour of DLC-coated dry running deep groove ball bearings
JP2006308080A (en) Rolling bearing
JP2008019965A (en) Planetary gear device and rolling bearing
JP2007146889A (en) Rolling support device
Qu et al. Friction behavior of a multi-interface system and improved performance by AlMgB14–TiB2–C and diamond-like-carbon coatings
EP3901481B1 (en) Sliding member
JP2006266405A (en) Rolling bearing and its manufacturing method
JP5485922B2 (en) Rolling device
WO2023021786A1 (en) Rolling bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831035

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019529740

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831035

Country of ref document: EP

Kind code of ref document: A1