WO2019013217A1 - 補正装置、撮像装置、補正装置の制御方法、および制御プログラム - Google Patents

補正装置、撮像装置、補正装置の制御方法、および制御プログラム Download PDF

Info

Publication number
WO2019013217A1
WO2019013217A1 PCT/JP2018/026074 JP2018026074W WO2019013217A1 WO 2019013217 A1 WO2019013217 A1 WO 2019013217A1 JP 2018026074 W JP2018026074 W JP 2018026074W WO 2019013217 A1 WO2019013217 A1 WO 2019013217A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
affine transformation
correction
motion vector
transformation coefficient
Prior art date
Application number
PCT/JP2018/026074
Other languages
English (en)
French (fr)
Inventor
淳毅 朝井
雄三 林
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2019013217A1 publication Critical patent/WO2019013217A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/254Analysis of motion involving subtraction of images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present invention relates to a correction device that corrects a captured image, an imaging device including the correction device, a control method of the correction device, and a control program.
  • Patent Document 1 describes an image processing apparatus that divides an image into a plurality of pieces and extracts feature points using extraction parameters for each divided area.
  • Patent Document 1 allows the user to set extraction parameters for extracting feature points, and is not changed during moving image capturing. Therefore, even if the captured image is out of focus or the brightness suddenly changes during moving image capturing, feature points are extracted using the same extraction parameter, so a frame with low reliability is used as it is. Feature points may be extracted or motion vectors may be erroneously detected. In this case, the motion picture shake correction itself performed using the feature point is not appropriate.
  • the present invention has been made in view of the above problems, and an object thereof is to realize a correction device or the like capable of performing high-quality correction using appropriate feature points.
  • a correction device concerning one mode of the present invention is a correction device which corrects image shake of a photography picture, and the extraction part which extracts a plurality of feature points of a photography picture and extracted
  • a motion vector deriving unit for deriving a motion vector between frames of each of the plurality of feature points, and an affine transformation coefficient computing unit for computing an affine transformation coefficient of the entire screen used for the correction of the photographed image from the motion vector derived
  • a correction unit that corrects a photographed image using the affine transformation coefficient when the number of extracted feature points is equal to or greater than a threshold and the calculated affine transformation coefficient satisfies a predetermined standard. It is.
  • a control method of a correction device concerning one mode of the present invention is a control method of a correction device which corrects image shake of a photography picture, and extracts a plurality of feature points of a photography picture
  • An affine transformation coefficient of the entire screen used for the correction of the photographed image is calculated from the extraction step, the motion vector derivation step of deriving the motion vector of each of the plurality of extracted feature points, and the derived motion vector
  • An affine transformation coefficient calculation step and a correction step of correcting a photographed image using the affine transformation coefficient when the number of extracted feature points is equal to or more than a threshold and the computed affine transformation coefficient satisfies a predetermined criterion , And.
  • the present invention it is possible to exclude low-reliability extracted data and not to perform correction when the reliability of the extracted data used for correction is low, so that the quality of the correction result can be improved. Play an effect.
  • FIG. 2 is a block diagram showing a main configuration of an imaging device according to the present embodiment. It is a flowchart which shows the flow of the process in the said imaging device. It is a figure which shows the outline
  • the imaging device 1 has a camera shake correction function, and in the case of extracting a feature point in an image (frame) to execute the camera shake correction function, it is determined whether the extracted feature point is appropriate or not. , Deriving motion vectors (optical flows) using appropriate feature points and performing affine transformation. As a result, since an inappropriate point is not used as a feature point, camera shake correction can be appropriately performed.
  • FIG. 1 is a block diagram showing the main configuration of the imaging device 1.
  • the imaging device 1 includes a control unit 10, a temporary storage unit 20, an imaging unit 30, a display unit 40, and a storage unit 50.
  • the control unit 10 integrally controls various types of processing in the imaging device 1, and the imaging processing unit 11, a captured image processing unit 12, an image correction unit (correction device) 13, and a display processing unit (display control unit) 14. , And storage processing unit 15.
  • the imaging processing unit 11 stores an image (captured image) captured by the imaging unit 30 described later in the temporary storage unit 20 as captured image data 21. More specifically, the imaging processing unit 11 performs image processing specific to the imaging unit on the electric signal from the imaging unit 30, for example, sensitivity correction for each line (white balance adjustment), position-dependent luminance correction (shading correction), Image processing such as correction (scratch correction) for compensating pixel defects is performed to convert the image data into image data, and the image data is stored in the temporary storage unit 20.
  • An example of the imaging processing unit 11 is an ISP (Image Signal Processor).
  • the captured image processing unit 12 performs processing such as enlargement, reduction, rotation, and clipping from the captured image data 21 to create the original data (for display) 22 and the original data (for recording) 23, and the temporary storage unit 20 Store.
  • the image correction unit 13 realizes a camera shake correction function by correcting an image, and includes a feature point extraction unit (extraction unit) 131, a motion vector derivation unit 132, an affine transformation coefficient calculation unit 133, and a correction unit 134. including.
  • the feature point extraction unit 131 extracts feature points of each frame in the original data (for display) 22 and the original data (for recording) 23 using the extraction parameter.
  • the motion vector derivation unit 132 derives a motion vector (optical flow) from the inter-frame motion of the feature points extracted by the feature point extraction unit 131.
  • the affine transform coefficient calculation unit 133 calculates an affine transform coefficient using the motion vector derived by the motion vector derivation unit 132.
  • the correction unit 134 performs correction by shifting the subject to the target position by performing affine transformation using the affine transformation coefficient calculated by the affine transformation coefficient calculation unit 133. That is, the camera shake correction function is realized.
  • the display processing unit 14 causes the display unit 40 to display corrected data (for display) 24 that is a corrected image. More specifically, the display processing unit 14 cuts out a partial area including the center in the entire screen, and displays the corrected data (for display) 24 corrected for the area by the image correction unit 13 on the display unit 40.
  • the storage processing unit 15 compresses the corrected data (for recording) 25 and stores the compressed data 25 in the storage unit 50.
  • the temporary storage unit 20 temporarily stores various data during processing in the imaging device 1, and as described above, the captured image data 21, the original data (for display) 22, the original data (recording 23), post-correction data (for display) 24, and post-correction data (for recording) 25 are stored.
  • a specific example of the temporary storage unit 20 is a RAM (Random Access Memory) capable of temporary storage.
  • the imaging unit 30 performs imaging of a subject, and includes a lens, and an imaging element such as a charge coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS) image sensor that converts light from the subject into an electrical signal. Including.
  • CCD charge coupled device
  • CMOS complementary metal-oxide semiconductor
  • the display unit 40 displays a captured image, an image stored in the storage unit 50, and the like.
  • the display part 40 may be implement
  • the storage unit 50 stores data on which the post-correction data (for recording) 25 has been processed for storage by the storage processing unit 15.
  • FIG. 2 is a flowchart showing the flow of processing in the image correction unit 13.
  • the imaging device 1 performs the following processing for each frame.
  • the image correction unit 13 when performing the correction process, the image correction unit 13 first extracts the luminance in the correction target frame in the original data (for display) 22 and the original data (for recording) 23, and extracts the feature points. (S101, extraction step). This is to perform correction based on the luminance. Note that the chromaticity may be extracted instead of the luminance, and the correction may be performed based on the chromaticity, or the correction may be performed using both the luminance and the chromaticity.
  • an image pyramid is a set of identical images of different resolutions.
  • the processing speed can be increased by constructing an image pyramid, executing roughly processing on a low resolution image, and gradually increasing the accuracy.
  • the image correction unit 13 estimates the optical flow of the extracted feature point from the information of the previous frame and the information of the current frame (S103, motion vector derivation step).
  • the optical flow is a vector representation of the movement of feature points between frames. Since the optical flow can be estimated using a known technique, the description thereof is omitted, but it can be estimated, for example, by the iterative gradient method.
  • the image correction unit 13 calculates an affine transformation coefficient for affine transforming the entire screen using the estimated optical flow to correct blurring of the captured image (S104, affine transformation coefficient calculation step) .
  • the affine transformation coefficients are coefficients in the affine transformation equation.
  • the image correction unit 13 performs control to return the subject (the subject area, a predetermined area) to the center (S105, correction step).
  • the control for returning the subject to the center is control for returning the subject that is shifted from the center due to camera shake or the like. As a result, it is possible to prevent the camera shake control from becoming impossible due to the angle of view being cut, and the camera shake correction function can be realized.
  • the display processing unit 14 causes the display unit 40 to display the post-correction data (for display) 24 corrected by the image correction unit 13 (S106).
  • FIG. 3 is a diagram showing an outline of the flow of affine transformation coefficient calculation processing of the entire screen.
  • FIG. 4 is a flowchart showing details of the flow of affine transformation coefficient calculation processing of the entire screen.
  • the number of feature points extracted by the feature point extraction unit 131 in the image correction unit 13 is a number sufficient for camera shake correction.
  • S201 or the motion vector derived by the motion vector deriving unit 132 determines whether there is an abnormal one (S202), and thereafter, the affine transform coefficient calculation unit 133 calculates an affine transform coefficient (S203) It is determined whether the calculated affine transformation coefficient is abnormal (S204), and the process proceeds to step S105.
  • the image correction unit 13 obtains the average and standard deviation of each component (X direction, Y direction) of the motion vector derived by the motion vector derivation unit 132 (S301) .
  • the image correction unit 13 determines whether the score of the feature points extracted by the feature point extraction unit 131 is smaller than the threshold th_vector1 (S302). This corresponds to step S201 of FIG. 3 described above.
  • the value of th_vector1 is 5, for example. If the number of feature points extracted by the feature point extraction unit 131 is smaller than the threshold th_vector1 (YES in S302), the affine transformation coefficient calculation unit 133 of the image correction unit 13 sets the affine transformation coefficient as having no movement. (S307). That is, in the following affine transformation equation (1):
  • the image correction unit 13 determines whether the standard deviation of each component obtained in step S301 is smaller than the threshold It is determined whether or not it is (S303). Specifically, it is determined whether the standard deviation ⁇ x in the X direction> the threshold th_ ⁇ and the standard deviation ⁇ y in the Y direction> the threshold th_ ⁇ are satisfied.
  • the value of the threshold th_ ⁇ is, for example, 3.0.
  • step S305 If the standard deviation ( ⁇ x, ⁇ y) of each component is smaller than the threshold th_ ⁇ (YES in S303), the process proceeds to step S305, and the affine transformation coefficient calculation unit 133 uses the motion vector derived by the motion vector derivation unit 132 to affine A conversion factor is calculated (S305).
  • the image correction unit 13 determines whether or not the following judgment formula is satisfied for each component of each motion vector derived by the motion vector derivation unit 132. It is determined (S304).
  • the value of the threshold th_vector2 is, for example, 2.0.
  • the image correction unit 13 deletes the motion vector that satisfies the above equation (S304). Thereafter, the affine transform coefficient calculation unit 133 calculates affine transform coefficients using the remaining motion vectors excluding the motion vector deleted in step S304 among the motion vectors derived by the motion vector derivation unit 132 (S305) .
  • the image correction unit 13 determines whether there is an abnormality in the affine transformation coefficient calculated in step S305 (S306). Specifically, it is determined whether or not any of the affine transformation coefficients calculated in step S305 satisfy the following coefficient abnormality determination formula.
  • the value of th_aff is, for example, 0.2.
  • step S305 If any of the affine transformation coefficients calculated in step S305 satisfy the above coefficient abnormality determination formula (YES in S306), the process proceeds to step S307, and the affine transformation coefficient calculation unit 133 determines that there is no movement. Set the coefficients of affine transformation. Thereby, when the affine transformation coefficient is abnormal, correction can not be performed, and when the frame indicates a blurred image, the frame is used when the reliability of the frame is low, or the like. It is possible to make no correction.
  • the image correction unit 13 performs correction using the affine transformation coefficients calculated in step S305. It does (S105 of FIG. 2).
  • the display unit 40, the storage unit 50, and the control unit 10 may be singular or plural.
  • the present embodiment is different from the processing flow (FIG. 4) in the first embodiment in the following points. That is, after deleting the motion vector which satisfies the judgment formula in step S304, the process returns to step S301 again to obtain the average and standard deviation of the motion vector after deletion. Then, the process proceeds to step S302. That is, the process of step 302 is performed again on the feature points for which the condition (predetermined condition) of step S304 is satisfied.
  • the display processing unit 14 storage processing unit 15 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software.
  • the imaging device 1 includes a computer that executes instructions of a program that is software that implements each function.
  • the computer includes, for example, one or more processors, and a computer readable recording medium storing the program.
  • the processor reads the program from the recording medium and executes the program to achieve the object of the present invention.
  • a CPU Central Processing Unit
  • the recording medium a tape, a disk, a card, a semiconductor memory, a programmable logic circuit or the like can be used besides “a non-temporary tangible medium”, for example, a ROM (Read Only Memory).
  • a RAM Random Access Memory
  • the program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
  • any transmission medium communication network, broadcast wave, etc.
  • one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
  • the correction device (image correction unit 13) is a correction device that corrects image shake of a captured image, and is an extraction unit (feature point extraction unit 131) that extracts a plurality of feature points of the captured image.
  • a motion vector deriving unit (132) for deriving a motion vector between frames of each of the plurality of extracted feature points, and an affine transformation coefficient of the whole screen used for the correction of the photographed image from the motion vector derived If the number of extracted feature points is equal to or greater than the threshold and the calculated affine transformation coefficient satisfies a predetermined criterion, the captured image is corrected using the affine transformation coefficient.
  • a correction unit (134) to be performed.
  • the correction when the number of extracted feature points is small, that is, when the number of motion vectors is small, the correction is not performed. If the calculated affine transformation coefficient is inappropriate, no correction is made. As a result, it is possible to prevent the correction from being performed when the reliability of the parameter used for the correction is low, so it is possible to improve the quality of the correction result.
  • the affine transformation coefficient calculating portion may be calculated using all the motion vectors derived by the derivation unit.
  • the affine transformation coefficient is calculated using all the derived motion vectors. .
  • abnormal motion vectors can be eliminated and affine transformation coefficients can be calculated, so that high-quality correction can be performed.
  • the affine transformation coefficient calculation unit is configured to calculate the standard deviation of each component of the motion vector derived by the motion vector derivation unit.
  • the above affine transform coefficient calculating unit is calculated using only motion vectors having a value obtained by dividing the difference between the derived component and the average of each component of the derived motion vector by the above standard deviation. It may be configured to
  • the affine transformation coefficient is calculated using only the motion vector included in a certain range. calculate.
  • abnormal motion vectors can be eliminated and affine transformation coefficients can be calculated, so that high-quality correction can be performed.
  • the correction unit compares each of the affine transformation coefficients calculated by the affine transformation coefficient calculation unit with the corresponding threshold, If at least one of the conversion coefficients is larger than the corresponding threshold value, it may be determined that the above-mentioned predetermined criterion is not satisfied.
  • the correction using the affine transformation coefficients is not performed. As a result, correction is performed only when a normal affine transformation coefficient is calculated, so that the quality of the correction result can be improved.
  • the correction unit corrects the photographed image when the number of feature points satisfying a predetermined condition among the extracted feature points is equal to or more than a threshold. It is also good.
  • An imaging apparatus is a correction apparatus according to any one of aspects 1 to 5 above, an imaging unit and a display unit, and a correction image obtained by correcting the photographed image taken by the imaging unit with the correction apparatus.
  • the display control unit may be configured to be displayed on the display unit.
  • a control method of a correction device is a control method of a correction device that corrects image shake of a captured image, and includes an extraction step of extracting a plurality of feature points of the captured image; An affine transformation coefficient calculating step for calculating an affine transformation coefficient of the whole screen used for the above correction of the photographed image from a motion vector deriving step for deriving a motion vector between frames of each feature point, and the derived motion vector And correcting the captured image using the affine transformation coefficients if the number of feature points is equal to or greater than a threshold and the calculated affine transformation coefficients satisfy a predetermined criterion.
  • the correction device may be realized by a computer, and in this case, the computer is realized as a component (software element) included in the correction device to realize the correction device by the computer.
  • the control program of the correction device and the computer readable recording medium recording the same also fall within the scope of the present invention.
  • An imaging apparatus is an imaging apparatus including at least one imaging unit, at least one display unit, and at least one control unit, and extracts a plurality of feature points of a captured image. Processing, processing for deriving motion vectors between frames of each of the plurality of extracted feature points, processing for calculating affine transformation coefficients of the entire screen used for the correction of the photographed image from the derived motion vectors, extracted feature points Is characterized in that when the calculated affine transformation coefficient satisfies a predetermined criterion, the processing of correcting the photographed image using the affine transformation coefficient is performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

適切な特徴点を用いて補正を行う。撮像装置(1)は、撮影画像の特徴点を抽出する特徴点抽出部(131)と、特徴点のフレーム間における動きベクトルを導出する動きベクトル導出部(132)と、画面全体のアフィン変換係数を算出するアフィン変換係数算出部(133)と、特徴点の数が閾値以上で、かつ、アフィン変換係数が所定の基準を満たした場合、撮影画像の補正を行う補正部(134)と、を備える。

Description

補正装置、撮像装置、補正装置の制御方法、および制御プログラム
 本発明は、撮像画像を補正する補正装置、補正装置を含む撮像装置、補正装置の制御方法、および制御プログラムに関する。
 近年、動画撮像時の手振れによる画像の揺れを軽減させる、いわゆる動画手振れ補正機能を備えた動画撮像装置が普及している。動画手振れ補正では、画面における特徴点を抽出し、抽出した特徴点を追尾することにより、換言すれば、画面全体の動きを検出して積算することにより、撮像画像を補正して手振れによる画像の揺れを軽減している。例えば、特許文献1には、画像を複数に分割し、分割領域ごとに抽出パラメータを用いて、特徴点を抽出する画像処理装置が記載されている。
日本国公開特許公報「特開2016-208252号公報(2016年12月8日公開)」
 しかしながら、上記特許文献1に記載された技術は、特徴点を抽出するための抽出パラメータをユーザに設定させ、動画撮像中に変更はされない。よって、動画撮像中に、撮像画像のピントがずれた場合や、明るさが急に変わった場合でも、同じ抽出パラメータを用いて特徴点の抽出を行うため、信頼性の低いフレームをそのまま用いて特徴点が抽出されてしまったり、動きベクトルが誤検出されたりする可能性がある。この場合、当該特徴点を用いて行う動画手振れ補正自体も適切なものでなくなってしまう。
 本発明は、上記問題点に鑑みてなされたものであり、その目的は、適切な特徴点を用いて品質の高い補正を行うことができる補正装置等を実現することにある。
 上記の課題を解決するために、本発明の一態様に係る補正装置は、撮影画像の像揺れを補正する補正装置であって、撮影画像の複数の特徴点を抽出する抽出部と、抽出した上記複数の特徴点それぞれのフレーム間における動きベクトルを導出する動きベクトル導出部と、導出した動きベクトルから、上記撮影画像の上記補正に用いる画面全体のアフィン変換係数を算出するアフィン変換係数算出部と、抽出した特徴点の数が閾値以上で、かつ、算出したアフィン変換係数が所定の基準を満たした場合、上記アフィン変換係数を用いて撮影画像の補正を行う補正部と、を備えている構成である。
 上記の課題を解決するために、本発明の一態様に係る補正装置の制御方法は、撮影画像の像揺れを補正する補正装置の制御方法であって、撮影画像の複数の特徴点を抽出する抽出ステップと、抽出した上記複数の特徴点それぞれのフレーム間における動きベクトルを導出する動きベクトル導出ステップと、導出した動きベクトルから、上記撮影画像の上記補正に用いる画面全体のアフィン変換係数を算出するアフィン変換係数算出ステップと、抽出した特徴点の数が閾値以上で、かつ、算出したアフィン変換係数が所定の基準を満たした場合、上記アフィン変換係数を用いて撮影画像の補正を行う補正ステップと、を含む方法である。
 本発明によれば、信頼性の低い抽出データを排除でき、補正に用いる抽出データの信頼性が低い場合に補正を行なわないとすることができるので、補正結果の品質を向上させることができるという効果を奏する。
本実施形態に係る撮像装置の要部構成を示すブロック図である。 上記撮像装置における処理の流れを示すフローチャートである。 上記撮像装置における、オプティカルフロー推定処理、および画面全体のアフィン変換係数算出処理の流れの概要を示す図である。 上記撮像装置における、オプティカルフロー推定処理、および画面全体のアフィン変換係数算出処理の流れの詳細を示すフローチャートである。 別の実施形態にかかる撮像装置における、オプティカルフロー推定処理、および画面全体のアフィン変換係数算出処理の流れの詳細を示すフローチャートである。
 〔実施形態1〕
 以下、図1~4を参照して、本発明の実施の形態について、詳細に説明する。本実施形態に係る撮像装置1は、手振れ補正機能を備え、手振れ補正機能を実行するために、画像(フレーム)における特徴点を抽出する場合、抽出された特徴点が適切か否かを判定し、適切な特徴点を用いて動きベクトル(オプティカルフロー)を導出して、アフィン変換を行う。これにより、特徴点として不適切な点を用いることがないので、手振れ補正を適切に行うことができる。
  〔撮像装置〕
 まず、図1を参照して撮像装置1の要部構成について説明する。図1は、撮像装置1の要部構成を示すブロック図である。図1に示すように、撮像装置1は、制御部10、一時記憶部20、撮像部30、表示部40、および記憶部50を含む。
 制御部10は、撮像装置1における各種処理を統括して制御するものであり、撮像処理部11、撮像画像処理部12、画像補正部(補正装置)13、表示処理部(表示制御部)14、および記憶処理部15を含む。
 撮像処理部11は、後述する撮像部30で撮像した画像(撮影画像)を撮像画像データ21として一時記憶部20に格納する。より詳細には、撮像処理部11は、撮像部30からの電気信号に撮像部特有の画像処理、例えば、ラインごとの感度補正(ホワイトバランス調整)、位置に依存した輝度補正(シェーディング補正)、画素欠陥を補完する補正(傷補正)等の画像処理を行って画像データに変換し、一時記憶部20に格納する。撮像処理部11の例としては、ISP(Image Signal Processor:画像信号プロセッサ)が挙げられる。
 撮像画像処理部12は、撮像画像データ21から拡大、縮小、回転、切り出し等の処理を行って元データ(表示用)22、および元データ(録画用)23を作成し、一時記憶部20に格納する。
 画像補正部13は、画像を補正することにより、手振れ補正機能を実現するものであり、特徴点抽出部(抽出部)131、動きベクトル導出部132、アフィン変換係数算出部133、および補正部134を含む。特徴点抽出部131は、抽出パラメータを用いて、元データ(表示用)22、および元データ(録画用)23における各フレームの特徴点を抽出する。動きベクトル導出部132は、特徴点抽出部131が抽出した特徴点のフレーム間の動きから動きベクトル(オプティカルフロー)を導出する。アフィン変換係数算出部133は、動きベクトル導出部132が導出した動きベクトルを用いてアフィン変換係数を算出する。補正部134は、アフィン変換係数算出部133が算出したアフィン変換係数を用いてアフィン変換することにより、被写体を目標位置にシフトさせることにより補正を行う。すなわち、手振れ補正機能を実現する。
 表示処理部14は、補正画像である補正後データ(表示用)24を表示部40に表示させる。より詳細には、表示処理部14は、画面全体のうち、中央を含む一部領域を切り出し、当該領域について画像補正部13により補正された補正後データ(表示用)24を表示部40に表示させる。
 記憶処理部15は、補正後データ(録画用)25を、圧縮等を行い、記憶部50に格納する。
 一時記憶部20は、撮像装置1における処理中に、各種データを一時的に記憶しておくものであり、上述したように、撮像画像データ21、元データ(表示用)22、元データ(録画用)23、補正後データ(表示用)24、および補正後データ(録画用)25を格納している。一時記憶部20の具体例としては、一時的な記憶が可能なRAM(Random Access Memory)が挙げられる。
 撮像部30は、被写体の撮像を行うものであり、レンズ、および、被写体からの光を電気信号に変換するCCD(Charge Coupled Device)、CMOS(Complementary Metal-oxide Semiconductor)イメージセンサなどの撮像素子を含む。
 表示部40は、撮像画像、記憶部50に格納されている画像等の表示を行う。表示部40は、情報の表示が可能な表示装置であればどのような装置によって実現されてもよいが、具体的な例としては、液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ等が挙げられる。
 記憶部50は、補正後データ(録画用)25を、記憶処理部15により格納用に処理されたデータを格納している。
  〔画像補正部13による処理の流れ〕
 次に、図2~4を参照して、画像補正部13における補正処理の流について説明する。図2は、画像補正部13における処理の流れを示すフローチャートである。
 撮像装置1は、フレームごとに以下の処理を行う。
 図2に示すように、補正処理を行う場合、画像補正部13はまず、元データ(表示用)22および元データ(録画用)23における補正対象フレームにおける輝度を抽出するとともに、特徴点を抽出する(S101、抽出ステップ)。輝度に基づいて補正を行うためである。なお、輝度ではなく色度を抽出し、色度に基づいて補正を行ってもよいし、輝度と色度との両方を用いて補正を行ってもよい。
 次に、画像補正部13は画像ピラミッドの構築を行う(S102)。画像ピラミッドとは、解像度の異なる同一画像の集合のことをいう。画像ピラミッドを構築し、低解像度画像に対して、ざっくりとした処理を実行し、徐々に精度を上げていくことにより、処理を高速化することができる。
 次に、画像補正部13は、前フレームの情報と現フレームの情報とから、抽出した特徴点のオプティカルフローを推定する(S103、動きベクトル導出ステップ)。オプティカルフローとは、フレーム間の特徴点の動きをベクトルで表したものである。オプティカルフローの推定は公知技術を用いて可能であるので、その説明は省略するが、例えば、反復勾配法により推定することができる。
 次に、画像補正部13は、撮像画像のブレを補正するために、推定したオプティカルフローを用いて、画面全体をアフィン変換するためのアフィン変換係数を算出する(S104、アフィン変換係数算出ステップ)。アフィン変換係数とは、アフィン変換の式における係数である。
 その後、画像補正部13は、被写体(被写体領域、所定領域)を中心に戻す制御を行う(S105、補正ステップ)。被写体を中心に戻す制御とは、手振れ等により中心からずれた被写体を中心に戻す制御である。これにより、画角が切れて手振れ制御ができなくなることを防ぐことができ、手振れ補正機能を実現することができる。
 最後に、表示処理部14は、画像補正部13により補正された補正後データ(表示用)24を表示部40に表示させる(S106)。
  〔オプティカルフロー推定処理、アフィン変換係数算出処理の詳細〕
 次に、図3、4を参照して、上述したステップS104(画面全体のアフィン変換係数算出処理)における処理の詳細について説明する。図3は、画面全体のアフィン変換係数算出処理の流れの概要を示す図である。また、図4は、画面全体のアフィン変換係数算出処理の流れの詳細を示すフローチャートである。
 図3に示すように、オプティカルフロー推定処理、および画面全体のアフィン変換係数算出処理では、画像補正部13において、特徴点抽出部131が抽出した特徴点数は、手振れ補正を行うのに十分な数であるか(S201)、動きベクトル導出部132が導出した動きベクトルに異常なものはないか(S202)を判定し、その後に、アフィン変換係数算出部133はアフィン変換係数を算出し(S203)、算出したアフィン変換係数に異常はないか(S204)を判定して、ステップS105に進む。
 詳細には、図4に示すように、まず、画像補正部13は、動きベクトル導出部132が導出した動きベクトルの各成分(X方向、Y方向)の平均、および標準偏差を求める(S301)。次に、画像補正部13は、特徴点抽出部131が抽出した特徴点の点数が閾値th_vector1よりも少ないか否かを判定する(S302)。これは、上述した図3のステップS201に対応する。th_vector1の値は、例えば5である。特徴点抽出部131が抽出した特徴点の点数が閾値th_vector1よりも少ない場合(S302でYES)、画像補正部13のアフィン変換係数算出部133は、動きがなかったものとしてアフィン変換の係数を設定する(S307)。すなわち、以下のアフィン変換の式(1)において、
Figure JPOXMLDOC01-appb-M000001
各係数を以下のように設定する。
aff=1
aff=0
aff=0
aff=1
aff=0
aff=0
 これにより、特徴点数が少ない場合は、補正を行わないとすることができるので、当該フレームがぼけた画像を示しているとき、当該フレームの信頼性が低いときなどに、当該フレームを用いて補正を行わないとすることができる。
 一方、特徴点抽出部131が抽出した特徴点の点数が閾値th_vector1よりも少なくない場合(S302でNO)、画像補正部13は、ステップS301で求めた各成分の標準偏差が閾値よりも小さいか否かを判定する(S303)。具体的には、X方向の標準偏差σx>閾値th_σ、かつ、Y方向の標準偏差σy>閾値th_σを満たすか否かを判定する。閾値th_σの値は、例えば3.0である。
 各成分の標準偏差(σx、σy)が閾値th_σよりも小さい場合(S303でYES)、ステップS305に進み、アフィン変換係数算出部133は、動きベクトル導出部132が導出した動きベクトルを用いてアフィン変換係数を算出する(S305)。
 一方、各成分の標準偏差が閾値よりも小さくない場合(S303でNO)、画像補正部13は、動きベクトル導出部132が導出した各動きベクトルの各成分について、以下の判定式を満たすか否かを判定する(S304)。
|動きベクトル-平均|/標準偏差>閾値th_vector2
閾値th_vector2の値は、例えば、2.0である。これにより、動きベクトルのばらつきが大きい場合、まとまりから外れすぎた動きベクトル、例えば、突発的な異常値を除外することができる。
 そして、画像補正部13は、上記式を満たす動きベクトルを削除する(S304)。その後、アフィン変換係数算出部133は、動きベクトル導出部132が導出した動きベクトルのうち、ステップS304で削除された動きベクトルを除いた残りの動きベクトルを用いてアフィン変換係数を算出する(S305)。
 次に、画像補正部13は、ステップS305で算出されたアフィン変換係数に異常がないか否かを判定する(S306)。具体的には、ステップS305で算出されたアフィン変換係数の何れかが、以下の係数異常判定式を満たすか否かを判定する。
|aff-1|>th_aff
|aff|>th_aff
|aff|>th_aff
|aff-1|>th_aff
|aff|>最大偏移量×(1-th_aff)
|aff|>最大偏移量×(1-th_aff)
th_affの値は、例えば、0.2である。
 そして、ステップS305で算出されたアフィン変換係数の何れかでも上記の係数異常判定式を満たした場合(S306でYES)、ステップS307に進み、アフィン変換係数算出部133は、動きがなかったものとしてアフィン変換の係数を設定する。これにより、アフィン変換係数が異常な場合に、補正を行なわないとすることができ、当該フレームがぼけた画像を示しているとき、当該フレームの信頼性が低いときなどに、当該フレームを用いて補正を行わないとすることができる。
 一方、ステップS305で算出されたアフィン変換係数の何れも上記の係数異常判定式を満たさなかった場合(S306でNO)、ステップS305で算出したアフィン変換係数を用いて、画像補正部13は補正を行う(図2のS105)。
 なお、表示部40、記憶部50、および制御部10は、単数であってもよいし、複数であってもよい。
 〔実施形態2〕
 本発明の他の実施形態について、図5に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 本実施形態では、上記実施形態1における処理フロー(図4)において、以下の点が異なる。すなわち、ステップS304にて判定式を満たす動きベクトルを削除した後、再びステップS301に戻り、削除後の動きベクトルの平均、および標準偏差を求める。そして、ステップS302へと進む。すなわち、ステップS304の条件(所定の条件)が満たされた特徴点に対し、再びステップ302の処理を行う。
 これにより特徴点数が閾値th_vector1以下か、標準偏差が閾値th_σ以下となる動きベクトルのみを用いて、アフィン変換係数を算出することができる。換言すれば、平均から外れすぎている動きベクトルを排除して、ある程度まとまった動きベクトルを用いてアフィン変換係数を算出することができる。
 〔実施形態3〕〔ソフトウェアによる実現例〕
 撮像装置1の制御ブロック(特に制御部10(撮像処理部11、撮像画像処理部12、画像補正部13、特徴点抽出部131、動きベクトル導出部132、アフィン変換係数算出部133、補正部134、表示処理部14記憶処理部15))は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
 後者の場合、撮像装置1は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
 〔まとめ〕
 本発明の態様1に係る補正装置(画像補正部13)は、撮影画像の像揺れを補正する補正装置であって、撮影画像の複数の特徴点を抽出する抽出部(特徴点抽出部131)と、抽出した上記複数の特徴点それぞれのフレーム間における動きベクトルを導出する動きベクトル導出部(132)と、導出した動きベクトルから、上記撮影画像の上記補正に用いる画面全体のアフィン変換係数を算出するアフィン変換係数算出部(133)と、抽出した特徴点の数が閾値以上で、かつ、算出したアフィン変換係数が所定の基準を満たした場合、上記アフィン変換係数を用いて撮影画像の補正を行う補正部(134)と、を備えている構成である。
 上記の構成によれば、抽出した特徴点数が少ない場合、すなわち動きベクトルの数が少ない場合、補正を行わない。また、算出したアフィン変換係数が不適切な場合、補正を行わない。これにより、補正に用いるパラメータの信頼性が低い場合に補正を行なわないとすることができるので、補正結果の品質を向上させることができる。
 本発明の態様2に係る補正装置は、上記の態様1において、上記アフィン変換係数算出部は、上記動きベクトル導出部が導出した動きベクトルの各成分の標準偏差が閾値未満の場合、上記動きベクトル導出部が導出した全ての動きベクトルを用いて上記アフィン変換係数算出部を算出する構成としてもよい。
 上記の構成によれば、導出した動きベクトルの標準偏差が閾値未満の場合、すわなち、導出した動きベクトルのばらつきの幅が小さい場合、導出した動きベクトルをすべて用いてアフィン変換係数を算出する。これにより、異常な動きベクトルを排除してアフィン変換係数を算出することができるので、高品質な補正を行うことができる。
 本発明の態様3に係る補正装置は、上記の態様1または2において、上記アフィン変換係数算出部は、上記動きベクトル導出部が導出した動きベクトルの各成分の標準偏差が閾値以上の場合、上記動きベクトル導出部が導出した動きベクトルのうち、導出した動きベクトルの各成分の平均との差分を上記標準偏差で除した値が閾値以下の動きベクトルのみを用いて上記アフィン変換係数算出部を算出する構成としてもよい。
 上記の構成によれば、導出した動きベクトルの標準偏差が閾値以上の場合、すなわち、導出した動きベクトルのばらつきの幅が大きい場合、一定の範囲に含まれる動きベクトルのみを用いてアフィン変換係数を算出する。これにより、異常な動きベクトルを排除してアフィン変換係数を算出することができるので、高品質な補正を行うことができる。
 本発明の態様4に係る補正装置は、上記の態様1~3のいずれかにおいて、上記補正部は、上記アフィン変換係数算出部が算出したアフィン変換係数それぞれを、対応する閾値と比較し、アフィン変換係数それぞれの少なくとも何れかが、対応する閾値よりも大きい場合、上記の所定の基準を満たさないと判定する構成としてもよい。
 上記の構成によれば、算出したアフィン変換係数のうち、1つでも異常な係数があれば、当該アフィン変換係数を用いた補正を行わない。これにより、正常なアフィン変換係数が算出された場合のみ補正を行うので、補正結果の品質を向上させることができる。
 本発明の態様5に係る補正装置は、上記補正部は、抽出した特徴点のうち、所定の条件を満たした特徴点の数が閾値以上の場合、上記撮影画像の補正を行うものであってもよい。
 本発明の態様6に係る撮像装置は、上記の態様1~5のいずれかの補正装置と、撮像部と表示部と、上記撮像部で撮像した撮影画像を上記補正装置で補正した補正画像を上記表示部に表示させる表示制御部と、を備えている構成としてもよい。
 本発明の態様7に係る補正装置の制御方法は、撮影画像の像揺れを補正する補正装置の制御方法であって、撮影画像の複数の特徴点を抽出する抽出ステップと、抽出した上記複数の特徴点それぞれのフレーム間における動きベクトルを導出する動きベクトル導出ステップと、導出した動きベクトルから、上記撮影画像の上記補正に用いる画面全体のアフィン変換係数を算出するアフィン変換係数算出ステップと、抽出した特徴点の数が閾値以上で、かつ、算出したアフィン変換係数が所定の基準を満たした場合、上記アフィン変換係数を用いて撮影画像の補正を行う補正ステップと、を含む方法である。
 本発明の各態様に係る補正装置は、コンピュータによって実現してもよく、この場合には、コンピュータを上記補正装置が備える各部(ソフトウェア要素)として動作させることにより上記補正装置をコンピュータにて実現させる補正装置の制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 本発明の態様8に係る撮像装置は、少なくとも1つの撮像部と、少なくとも1つの表示部と、少なくとも1つの制御部とを備えた撮像装置であって、撮影画像の複数の特徴点を抽出する処理、抽出した上記複数の特徴点それぞれのフレーム間における動きベクトルを導出する処理、導出した動きベクトルから、上記撮影画像の上記補正に用いる画面全体のアフィン変換係数を算出する処理、抽出した特徴点の数が閾値以上で、かつ、算出したアフィン変換係数が所定の基準を満たした場合、上記アフィン変換係数を用いて撮影画像の補正を行う処理、を行うことを特徴としている。
 上記の構成によれば、上述した態様1と同様の効果を奏する。
1 撮像装置
10 制御部
11 撮像処理部
12 撮像画像処理部
13 画像補正部(補正装置)
14 表示処理部(表示制御部)
15 記憶処理部
20 一時記憶部
21 撮像画像データ
30 撮像部
40 表示部
50 記憶部
131 特徴点抽出部
132 動きベクトル導出部
133 アフィン変換係数算出部
134 補正部

Claims (9)

  1.  撮影画像の像揺れを補正する補正装置であって、
     撮影画像の複数の特徴点を抽出する抽出部と、
     抽出した上記複数の特徴点それぞれのフレーム間における動きベクトルを導出する動きベクトル導出部と、
     導出した動きベクトルから、上記撮影画像の上記補正に用いる画面全体のアフィン変換係数を算出するアフィン変換係数算出部と、
     抽出した特徴点の数が閾値以上で、かつ、算出したアフィン変換係数が所定の基準を満たした場合、上記アフィン変換係数を用いて撮影画像の補正を行う補正部と、を備えていることを特徴とする補正装置。
  2.  上記アフィン変換係数算出部は、上記動きベクトル導出部が導出した動きベクトルの各成分の標準偏差が閾値未満の場合、上記動きベクトル導出部が導出した全ての動きベクトルを用いて上記アフィン変換係数算出部を算出することを特徴とする請求項1に記載の補正装置。
  3.  上記アフィン変換係数算出部は、
      上記動きベクトル導出部が導出した動きベクトルの各成分の標準偏差が閾値以上の場合、上記動きベクトル導出部が導出した動きベクトルのうち、導出した動きベクトルの各成分の平均との差分を上記標準偏差で除した値が閾値以下の動きベクトルのみを用いて上記アフィン変換係数算出部を算出することを特徴とする請求項1または2に記載の補正装置。
  4.  上記補正部は、上記アフィン変換係数算出部が算出したアフィン変換係数それぞれを、対応する閾値と比較し、アフィン変換係数それぞれの少なくとも何れかが、対応する閾値よりも大きい場合、上記の所定の基準を満たさないと判定することを特徴とする請求項1~3のいずれか1項に記載の補正装置。
  5.  上記補正部は、抽出した特徴点のうち、所定の条件を満たした特徴点の数が閾値以上の場合、上記撮影画像の補正を行うことを特徴とする請求項1~4のいずれか1項に記載の補正装置。
  6.  請求項1~5のいずれか1項に記載の補正装置と、
     撮像部と
     表示部と、
     上記撮像部で撮像した撮影画像を上記補正装置で補正した補正画像を上記表示部に表示させる表示制御部と、を備えていることを特徴とする撮像装置。
  7.  撮影画像の像揺れを補正する補正装置の制御方法であって、
     撮影画像の複数の特徴点を抽出する抽出ステップと、
     抽出した上記複数の特徴点それぞれのフレーム間における動きベクトルを導出する動きベクトル導出ステップと、
     導出した動きベクトルから、上記撮影画像の上記補正に用いる画面全体のアフィン変換係数を算出するアフィン変換係数算出ステップと、
     抽出した特徴点の数が閾値以上で、かつ、算出したアフィン変換係数が所定の基準を満たした場合、上記アフィン変換係数を用いて撮影画像の補正を行う補正ステップと、を含むことを特徴とする補正装置の制御方法。
  8.  請求項1に記載の補正装置としてコンピュータを機能させるための制御プログラムであって、上記抽出部、上記動きベクトル導出部、上記アフィン変換係数算出部、および上記補正部としてコンピュータを機能させるための制御プログラム。
  9.  少なくとも1つの撮像部と、少なくとも1つの表示部と、少なくとも1つの制御部とを備えた撮像装置であって、
     撮影画像の複数の特徴点を抽出する処理、抽出した上記複数の特徴点それぞれのフレーム間における動きベクトルを導出する処理、導出した動きベクトルから、上記撮影画像の上記補正に用いる画面全体のアフィン変換係数を算出する処理、抽出した特徴点の数が閾値以上で、かつ、算出したアフィン変換係数が所定の基準を満たした場合、上記アフィン変換係数を用いて撮影画像の補正を行う処理、を行うことを特徴とする撮像装置。
PCT/JP2018/026074 2017-07-12 2018-07-10 補正装置、撮像装置、補正装置の制御方法、および制御プログラム WO2019013217A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-136531 2017-07-12
JP2017136531 2017-07-12

Publications (1)

Publication Number Publication Date
WO2019013217A1 true WO2019013217A1 (ja) 2019-01-17

Family

ID=65001905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026074 WO2019013217A1 (ja) 2017-07-12 2018-07-10 補正装置、撮像装置、補正装置の制御方法、および制御プログラム

Country Status (1)

Country Link
WO (1) WO2019013217A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020132A1 (ja) * 2019-07-29 2021-02-04 ソニー株式会社 内視鏡手術システム、画像処理装置、および画像処理方法
WO2020256600A3 (en) * 2019-09-30 2021-03-04 Huawei Technologies Co., Ltd. Affine motion model restrictions for memory bandwidth reduction
CN113794842A (zh) * 2021-11-16 2021-12-14 广东皓耘科技有限公司 视频图像处理方法、装置、系统、电子设备及存储介质
CN116616817A (zh) * 2023-07-21 2023-08-22 深圳华声医疗技术股份有限公司 超声心率检测方法、装置、超声设备及存储介质
US11985354B2 (en) 2019-09-30 2024-05-14 Huawei Technologies Co., Ltd. Affine motion model restrictions reducing number of fetched reference lines during processing of one block row with enhanced interpolation filter
US12047599B2 (en) 2020-01-07 2024-07-23 Huawei Technologies Co., Ltd. Motion vector range derivation for enhanced interpolation filter
US12058337B2 (en) 2019-09-30 2024-08-06 Huawei Technologies Co., Ltd. Usage of DCT based interpolation filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114499A1 (ja) * 2007-03-20 2008-09-25 Panasonic Corporation 撮影装置および撮影方法
JP2010141486A (ja) * 2008-12-10 2010-06-24 Fujifilm Corp 画像合成装置、画像合成方法および画像合成プログラム
JP2014011569A (ja) * 2012-06-28 2014-01-20 Olympus Corp ブレ補正装置及び方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114499A1 (ja) * 2007-03-20 2008-09-25 Panasonic Corporation 撮影装置および撮影方法
JP2010141486A (ja) * 2008-12-10 2010-06-24 Fujifilm Corp 画像合成装置、画像合成方法および画像合成プログラム
JP2014011569A (ja) * 2012-06-28 2014-01-20 Olympus Corp ブレ補正装置及び方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020132A1 (ja) * 2019-07-29 2021-02-04 ソニー株式会社 内視鏡手術システム、画像処理装置、および画像処理方法
WO2020256600A3 (en) * 2019-09-30 2021-03-04 Huawei Technologies Co., Ltd. Affine motion model restrictions for memory bandwidth reduction
US11985354B2 (en) 2019-09-30 2024-05-14 Huawei Technologies Co., Ltd. Affine motion model restrictions reducing number of fetched reference lines during processing of one block row with enhanced interpolation filter
US12058337B2 (en) 2019-09-30 2024-08-06 Huawei Technologies Co., Ltd. Usage of DCT based interpolation filter
US12047599B2 (en) 2020-01-07 2024-07-23 Huawei Technologies Co., Ltd. Motion vector range derivation for enhanced interpolation filter
CN113794842A (zh) * 2021-11-16 2021-12-14 广东皓耘科技有限公司 视频图像处理方法、装置、系统、电子设备及存储介质
CN113794842B (zh) * 2021-11-16 2022-02-08 广东皓耘科技有限公司 视频图像处理方法、装置、系统、电子设备及存储介质
CN116616817A (zh) * 2023-07-21 2023-08-22 深圳华声医疗技术股份有限公司 超声心率检测方法、装置、超声设备及存储介质
CN116616817B (zh) * 2023-07-21 2023-10-03 深圳华声医疗技术股份有限公司 超声心率检测方法、装置、超声设备及存储介质

Similar Documents

Publication Publication Date Title
WO2019013217A1 (ja) 補正装置、撮像装置、補正装置の制御方法、および制御プログラム
US9288392B2 (en) Image capturing device capable of blending images and image processing method for blending images thereof
JP5398156B2 (ja) ホワイトバランス制御装置およびその制御方法並びに撮像装置
JP5980294B2 (ja) データ処理装置、撮像装置、およびデータ処理方法
US8767085B2 (en) Image processing methods and apparatuses to obtain a narrow depth-of-field image
JP5756099B2 (ja) 撮像装置、画像処理装置、画像処理方法、および画像処理プログラム
JP5744614B2 (ja) 画像処理装置、画像処理方法、および、画像処理プログラム
US20110279693A1 (en) Image capturing apparatus and camera shake correction method, and computer-readable medium
US20120008005A1 (en) Image processing apparatus, image processing method, and computer-readable recording medium having image processing program recorded thereon
JP5612017B2 (ja) カメラの手ぶれ低減システム
JP2013031174A (ja) 多重露出フュージョン基盤でゴーストブラーを除去したhdr映像生成装置及び方法
WO2020029679A1 (zh) 控制方法、装置、成像设备、电子设备及可读存储介质
WO2019124289A1 (ja) 装置、制御方法および記憶媒体
US20120002842A1 (en) Device and method for detecting movement of object
US9007471B2 (en) Digital photographing apparatus, method for controlling the same, and computer-readable medium
US8625929B2 (en) Image processing apparatus and storage medium
EP3179716B1 (en) Image processing method, computer storage medium, device, and terminal
US8780235B2 (en) Image processing method
EP3605450B1 (en) Image processing apparatus, image pickup apparatus, control method of image processing apparatus, and computer-program
JP2015154334A (ja) 撮像装置、その制御方法、および制御プログラム
JP6730423B2 (ja) 画像処理装置、画像処理方法および画像処理プログラム
WO2019013214A1 (ja) 補正装置、撮像装置、補正装置の制御方法、および制御プログラム
JP6245847B2 (ja) 画像処理装置および画像処理方法
CN110689502B (zh) 一种图像处理方法及相关装置
JP5520863B2 (ja) 画像信号処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP