WO2019013135A1 - Refrigerant detection sensor and refrigeration device using same - Google Patents

Refrigerant detection sensor and refrigeration device using same Download PDF

Info

Publication number
WO2019013135A1
WO2019013135A1 PCT/JP2018/025756 JP2018025756W WO2019013135A1 WO 2019013135 A1 WO2019013135 A1 WO 2019013135A1 JP 2018025756 W JP2018025756 W JP 2018025756W WO 2019013135 A1 WO2019013135 A1 WO 2019013135A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
filter
internal space
refrigerant
space
Prior art date
Application number
PCT/JP2018/025756
Other languages
French (fr)
Japanese (ja)
Inventor
義照 野内
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201880045662.7A priority Critical patent/CN110869755B/en
Publication of WO2019013135A1 publication Critical patent/WO2019013135A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Definitions

  • the present invention relates to a refrigerant detection sensor and a refrigeration system using the same.
  • the refrigeration system may be equipped with a refrigerant detection sensor.
  • the gas sensor disclosed in Patent Document 1 Japanese Patent Laid-Open No. 2002-257767
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-257767
  • the inside of the casing of the refrigeration apparatus may be partitioned into a plurality of spaces by a partition member or the like.
  • installing a refrigerant detection sensor in each space increases the cost of the refrigeration system.
  • coolant detection sensor is installed only in one part space, the case where a leak of a refrigerant
  • An object of the present invention is to detect refrigerant leakage using a small number of refrigerant detection sensors and to reduce the cost of the refrigeration system.
  • the refrigerant detection sensor detects the presence of flammable refrigerant gas in the first detection target space and the second detection target space.
  • the refrigerant detection sensor includes at least one sensor element, a filter, a sensor cover, and a sensor case. At least one sensor element is configured to detect a refrigerant gas.
  • the filter is arranged in the vicinity of the at least one sensor element.
  • the sensor cover guides the refrigerant gas that has passed through the filter to at least one sensor element.
  • the sensor case has a sensor case interior space facing or including at least one of the filter and the sensor cover.
  • the sensor case is formed with a first opening communicating with the first detection target space and a second opening communicating with the second detection target space.
  • the refrigerant gas present in any of the first detection target space and the second detection target space can reach the sensor element disposed inside the common sensor case. Therefore, the cost of the refrigerant detection sensor can be reduced because at least the number of sensor cases to be prepared is not as large as the number of detection target spaces.
  • coolant detection sensor which concerns on the 2nd viewpoint of this invention is a refrigerant
  • a sensor case has a sensor case partition part which contacts a filter.
  • the sensor case partition part divides the sensor case internal space into a first sensor case internal space communicating with the first opening and a second sensor case internal space communicating with the second opening.
  • the sensor case internal space is partitioned into the first sensor case internal space and the second sensor case internal space by the sensor case partitioning portion. Accordingly, the refrigerant gas is prevented from moving from one of the first opening and the second opening to the other without passing through the sensor element, so that the detection accuracy of the refrigerant gas is improved.
  • the refrigerant detection sensor is the refrigerant detection sensor according to the first aspect, further including a circuit board having a first surface and a second surface opposite to the first surface.
  • the at least one sensor element includes a first sensor element mounted on the first surface and a second sensor element mounted on the second surface.
  • the circuit board divides the sensor case internal space into a first sensor case internal space communicating with the first opening and a second sensor case internal space communicating with the second opening.
  • the first sensor element is disposed in the first sensor case interior space
  • the second sensor element is disposed in the second sensor case interior space.
  • the sensor case internal space is partitioned by the circuit board into the first sensor case internal space and the second sensor case internal space. Therefore, since the structure of the sensor case can be simplified, the cost of the refrigerant detection sensor can be reduced.
  • the refrigerant detection sensor is the refrigerant detection sensor according to the first aspect or the second aspect, wherein the sensor cover has a sensor cover partition part in contact with the filter.
  • the sensor cover partitioning portion divides the sensor cover internal space defined by the sensor cover into a first sensor cover internal space communicating with the first opening and a second sensor cover internal space communicating with the second opening. .
  • the sensor cover internal space is partitioned into the first sensor cover internal space and the second sensor cover internal space by the sensor cover partitioning portion. Accordingly, the refrigerant gas is prevented from moving from one of the first opening and the second opening to the other without passing through the sensor element, so that the detection accuracy of the refrigerant gas is further improved.
  • the refrigerant detection sensor according to a fifth aspect of the present invention is the refrigerant detection sensor according to the fourth aspect, wherein at least one sensor element penetrates the sensor cover partition portion, and the first sensor cover internal space and the second sensor cover It includes one sensor element located in both interior spaces.
  • the same sensor element detects the refrigerant gas present in any of the first sensor cover internal space and the second sensor cover internal space. Therefore, since the number of required sensor elements is small, the cost of the refrigerant detection sensor can be further reduced.
  • the refrigerant detection sensor is the refrigerant detection sensor according to the fourth aspect, wherein at least one sensor element is a first sensor element disposed in the first sensor cover internal space, and a second sensor cover And a second sensor element disposed in the inner space.
  • the sensor elements are respectively disposed in the first sensor cover internal space and the second sensor cover internal space. Therefore, all detection performances of one sensor element can be used for each of the first sensor cover internal space and the second sensor cover internal space, so that the detection accuracy of the refrigerant gas is improved.
  • the refrigerant detection sensor is the refrigerant detection sensor according to any one of the first to sixth aspects, wherein the filter is a first filter and a second filter that is rougher than the first filter. ,including.
  • the first filter is disposed closer to the sensor element as compared to the second filter.
  • the gas outside the refrigerant detection sensor reaches the second filter before passing through the first filter. Therefore, since the movement of solid particles contained in the gas is blocked by the second filter, damage to the first filter is suppressed.
  • the refrigerant detection sensor is the refrigerant detection sensor according to the seventh aspect, wherein the filter has a filter partition part in contact with both the first filter and the second filter.
  • the filter partitioning portion divides the filter internal space defined by the first filter and the second filter into a first filter internal space communicating with the first opening and a second filter internal space communicating with the second opening.
  • the filter internal space is partitioned into the first filter internal space and the second filter internal space by the filter partitioning unit. Accordingly, the refrigerant gas is prevented from moving from one of the first opening and the second opening to the other without passing through the sensor element, so that the detection accuracy of the refrigerant gas is further improved.
  • a refrigeration apparatus uses the flammable refrigerant gas.
  • the refrigeration system includes a refrigerant detection sensor, a housing, and a housing partition.
  • the refrigerant detection sensor according to any one of the first to eighth aspects.
  • the housing has a housing internal space.
  • the case partition part divides the case internal space into a first space and a second space.
  • the first opening of the refrigerant detection sensor communicates with a first space, which is a first detection target space.
  • the second opening of the refrigerant detection sensor communicates with a second space, which is a second detection target space.
  • the refrigerant gas present in either the first space or the second space can reach the sensor element disposed inside the common sensor case. Therefore, the cost of the refrigeration system can be reduced because at least the number of sensor cases to be prepared is not as large as the number of detection target spaces.
  • the refrigerant detection sensor according to the first, third and fifth aspects of the present invention is inexpensive.
  • the refrigerant detection sensor according to the second aspect, the fourth aspect, the sixth aspect, and the eighth aspect of the present invention improves the detection accuracy of the refrigerant gas.
  • the refrigerant detection sensor according to the seventh aspect of the present invention is unlikely to be damaged.
  • the refrigeration system according to the ninth aspect of the present invention is inexpensive.
  • FIG. 6 is a cross-sectional view showing a configuration of a refrigerant detection sensor 30A mounted on the refrigeration system 10. It is a schematic diagram which shows the structure of sensor unit 40A. It is a schematic diagram which shows the structure of sensor unit 40B. It is a schematic diagram which shows the structure of the sensor unit 40C. It is a schematic diagram which shows the structure of filter 45A. It is a schematic diagram which shows the structure of filter 45B. It is a schematic diagram which shows the structure of the filter 45C. It is a schematic diagram which shows the structure of filter 45D. It is sectional drawing which shows an example of a structure of sensor unit 40A.
  • FIG. 1 shows a refrigeration apparatus 10 according to a first embodiment of the present invention.
  • the refrigeration system 10 is configured as an indoor unit of an air conditioner.
  • the refrigeration system 10 includes a housing 11, a housing partition 12, and various components disposed in the housing 11.
  • the housing 11 is provided with an air inlet 17 and an air outlet 18.
  • the housing partition unit 12 partitions the housing internal space into a first space 13a and a second space 12b.
  • the housing partition 12 may be integrally formed with the housing 11 or may be configured separately.
  • the first space 13 a is a heat exchange chamber, and accommodates the heat exchanger 14 and the flow divider 15.
  • the second space 13 b is a machine room and accommodates the fan 16.
  • a pipe connection portion 19 which is a portion to which different refrigerant pipes are connected is further accommodated.
  • the refrigerant detection sensor 30 is included.
  • the refrigerant detection sensor 30 is disposed so as to straddle both the first space 13 a and the second space 13 b.
  • the refrigerant detection sensor 30 has a first opening 32a and a second opening 32b.
  • the first opening 32a is provided on the side of the first space 13a and communicates with the first space 13a.
  • the second opening 32 b is provided on the side of the second space 13 b and communicates with the second space 13 b.
  • FIG. 2 shows an example of the detailed configuration of the coolant detection sensor 30 as a coolant detection sensor 30A.
  • the refrigerant detection sensor 30A includes a sensor case 31, a circuit board 37, and a sensor unit 40.
  • the sensor case 31 is a case made of resin or the like, and accommodates the sensor unit 40 and the circuit board 37.
  • the sensor case 31 has the first opening 32a and the second opening 32b described above.
  • the first opening 32a and the second opening 32b are for taking in the refrigerant gas from the first space 13a and the second space 12b, respectively.
  • Circuit board 37 The circuit board 37 is mounted with a circuit that performs signal processing using the sensor unit 40.
  • the circuit board 37 is mounted on the circuit board support portion 33 of the sensor case 31, and is fixed to the circuit board support portion 33 by screws 38.
  • FIG. 3A shows an example of the configuration of the sensor unit 40 as a sensor unit 40A.
  • the sensor unit 40A includes a sensor cover 41, a sensor element 42, and a filter 45.
  • the sensor cover 41 is provided with an opening, and the filter 45 is disposed in the opening.
  • the filter 45 is schematically depicted as a hatched rectangle.
  • the sensor cover 41 accommodates the sensor element 42.
  • the sensor element 42 changes its resistance value or other physical characteristics according to the concentration of the refrigerant gas in the surroundings.
  • the filter 45 removes foreign matter or moisture contained in the atmosphere, and passes the refrigerant gas to the sensor element 42.
  • the physical characteristics of the sensor element 42 are converted into electrical signals by the circuit mounted on the circuit board 37.
  • FIG. 4A shows an example of a specific configuration of the filter 45 as a filter 45A.
  • the filter 45A consists of a layer of filter material 46.
  • the filter material 46 is, for example, a porous ceramic material.
  • the filter material 46 has fine pores.
  • FIG. 5A shows a structure in which the filter 45A of FIG. 4A is mounted in place of the hatched rectangle in the sensor unit 40A of FIG. 3A.
  • the sensor case 31 is formed with a first opening 32a communicating with the first space 13a and a second opening 32b communicating with the second space 13b. Therefore, the refrigerant gas present in any of the first space 13 a and the second space 13 b can reach the sensor element 42 disposed inside the common sensor case 31. Therefore, the cost of the refrigerant detection sensor 30 can be reduced because at least the number of sensor cases 31 to be prepared is not as large as the number of detection target spaces.
  • the refrigeration system 10 includes the refrigerant detection sensor 30 described above. Therefore, the cost of the refrigeration system 10 can be reduced.
  • the refrigerant detection sensor 30 is disposed so as to straddle both the first space 13 a and the second space 13 b partitioned by the housing partition 12.
  • the refrigerant detection sensor 30 may be disposed in the second space 13b in such a manner that the first opening 32a communicates with the first space 13a.
  • the refrigerant detection sensor 30 may be disposed in the first space 13a in such a manner that the second opening 32b communicates with the second space 13b.
  • the sensor unit 40 uses a filter 45A made of the filter material 46 shown in FIG. 4A.
  • a filter 45B shown in FIG. 4B may be used for the sensor unit 40.
  • the filter 45 B has the aforementioned filter material 46 disposed closer to the sensor element 42 and a metal mesh 47 disposed farther from the sensor element 42.
  • the diameter of the mesh or opening of the metal mesh 47 is larger than the diameter of the pores of the filter material 46.
  • the metal mesh 47 helps to remove large diameter foreign particles, and the filter material 46 helps to remove small diameter foreign particles and moisture.
  • FIG. 5D shows a structure in which the filter 45B of FIG. 4B is mounted in place of the hatched rectangle in the sensor unit 40A of FIG. 3A.
  • the gas outside the refrigerant detection sensor 30 reaches the metal mesh 47 before passing through the filter material 46. Therefore, the movement of the solid particles contained in the gas is blocked by the metal mesh 47, and damage to the filter material 46 is suppressed.
  • FIG. 8 shows a refrigerant detection sensor 30B mounted on a refrigeration apparatus 10 according to a second embodiment of the present invention.
  • the refrigerant detection sensor 30B is different from the refrigerant detection sensor 30A mounted on the refrigeration apparatus 10 according to the first embodiment in that the sensor case 31 includes the sensor case partition 34.
  • the sensor case partitioning portion 34 partitions the sensor case internal space into a first sensor case internal space C1 and a second sensor case internal space C2.
  • the sensor case partition 34 may be integrally formed with the sensor case 31 or may be configured separately.
  • the sensor case partition 34 contacts the filter 45.
  • the sensor unit 40 of FIG. 8 has a structure shown in FIG. 5A, that is, in the sensor unit 40A of FIG. 3A, in place of the hatched rectangle, FIG. Filter 45A is mounted.
  • the sensor case internal space is partitioned by the sensor case partitioning part 34 into a first sensor case internal space C1 and a second sensor case internal space C2. Since the refrigerant gas receives resistance due to pressure loss when passing through the filter 45, the refrigerant gas is unlikely to pass from one of the first sensor case inner space C1 and the second sensor case inner space C2 to the other. Therefore, the movement of the refrigerant gas from one of the first opening 32a and the second opening 32b to the other without the sensor element 32 is suppressed, so that the detection accuracy of the refrigerant gas is improved.
  • the sensor unit 40 has the structure shown in FIG. 3A.
  • the sensor unit 40 may have the structure shown in FIG. 3B.
  • the sensor unit 40B shown in FIG. 3B differs from the sensor unit 40A in that it has a sensor cover partition 43 that divides the internal space of the sensor cover 41 into a first sensor cover internal space V1 and a second sensor cover internal space V2. .
  • FIG. 5B shows a structure in which the filter 45A of FIG. 4A is mounted in place of the hatched rectangle in FIG. 3B.
  • the sensor cover internal space is divided by the sensor cover partition portion 43 into the first sensor cover internal space V1 and the second sensor cover internal space V2. Therefore, the movement of the refrigerant gas from one of the first opening 32a and the second opening 32b to the other without the sensor element 32 is suppressed, so that the detection accuracy of the refrigerant gas is further improved.
  • the sensor unit 40 may have the structure shown in FIG. 3C.
  • the sensor unit 40C shown in FIG. 3C differs from the sensor unit 40B in that the sensor element 42a and the sensor element 42b are disposed in the first sensor cover internal space V1 and the second sensor cover internal space V2, respectively.
  • FIG. 5C shows a structure in which the filter 45A of FIG. 4A is mounted instead of the hatched rectangle in FIG. 3C.
  • the sensor elements 42a and 42b are disposed in the first sensor cover internal space V1 and the second sensor cover internal space V2, respectively. Therefore, all detection performances of one sensor element can be used for each of the first sensor cover internal space V1 and the second sensor cover internal space V2, so that the detection accuracy of the refrigerant gas is improved.
  • the sensor unit 40 uses a filter 45A made of the filter material 46 shown in FIG. 4A.
  • a filter 45B shown in FIG. 4B may be used for the sensor unit 40.
  • the filter 45 B has the aforementioned filter material 46 disposed closer to the sensor element 42 and a metal mesh 47 disposed farther from the sensor element 42.
  • the diameter of the mesh or opening of the metal mesh 47 is larger than the diameter of the pores of the filter material 46.
  • the metal mesh 47 helps to remove large diameter foreign particles, and the filter material 46 helps to remove small diameter foreign particles and moisture.
  • FIG. 5D shows a structure in which the filter 45B of FIG. 4B is mounted in place of the hatched rectangle in the sensor unit 40A of FIG. 3A.
  • FIG. 5D may be replaced with the structure shown in FIG. 5E or the structure shown in FIG. 5F.
  • FIG. 5E shows a structure in which the filter 45B of FIG. 4B is mounted instead of the hatched rectangle in the sensor unit 40B of FIG. 3B.
  • FIG. 5F shows a structure in which the filter 45B of FIG. 4B is mounted in place of the hatched rectangle in the sensor unit 40C of FIG. 3C.
  • the gas outside the refrigerant detection sensor 30 reaches the metal mesh 47 before passing through the filter material 46. Therefore, the movement of the solid particles contained in the gas is blocked by the metal mesh 47, and damage to the filter material 46 is suppressed.
  • a filter 45C shown in FIG. 4C may be used instead of the filter 45B shown in FIG. 4B.
  • the filter 45C is different from the filter 45B in that the filter 45C has a filter partition 48.
  • the filter partitioning portion 48 communicates the filter internal space defined by the aforementioned filter material 46 and the metal mesh 47 with the first filter internal space F1 communicating with the first opening 32a and the second opening 32b. Divide into filter internal space F2.
  • FIG. 5G shows a structure in which the filter 45C of FIG. 4C is mounted in place of the hatched rectangle in the sensor unit 40A of FIG. 3A.
  • FIG. 5G shows a structure in which the filter 45C of FIG. 4C is mounted instead of the hatched rectangle in the sensor unit 40B of FIG. 3B.
  • FIG. 5I shows a structure in which the filter 45C of FIG. 4C is mounted in place of the hatched rectangle in the sensor unit 40C of FIG. 3C.
  • the filter internal space is divided by the filter partitioning unit 48 into the first filter internal space F1 and the second filter internal space F2. Therefore, the movement of the refrigerant gas from one of the first opening 32a and the second opening 32b to the other without the sensor element 32 is suppressed, so that the detection accuracy of the refrigerant gas is further improved.
  • a filter 45D shown in FIG. 4D may be used instead of the filter 45C shown in FIG. 4C.
  • the filter 45D is different from the filter 45C in that the filter partition 48 is exposed to the surface of the filter 45.
  • FIG. 5J shows a structure in which the filter 45D of FIG. 4D is mounted in place of the hatched rectangle in the sensor unit 40A of FIG. 3A.
  • FIG. 5J may be replaced with the structure shown in FIG. 5K or the structure shown in FIG. 5L.
  • FIG. 5K shows a structure in which the filter 45D of FIG. 4D is mounted instead of the hatched rectangle in the sensor unit 40B of FIG. 3B.
  • FIG. 5L shows a structure in which the filter 45D of FIG. 4D is mounted in place of the hatched rectangle in the sensor unit 40C of FIG. 3C.
  • the sensor case partition 34 and the filter partition 48 contact each other without the metal mesh 47 interposed therebetween. Therefore, the communication between the first filter internal space F1 and the second filter internal space F2 can be more reliably suppressed, so that the detection accuracy of the refrigerant gas is further improved.
  • FIG. 9 shows a refrigerant detection sensor 30C mounted on a refrigeration apparatus 10 according to a third embodiment of the present invention.
  • the refrigerant detection sensor 30C is different from the refrigerant detection sensor 30B mounted on the refrigeration apparatus 10 according to the second embodiment in that most of the area of the sensor unit 40 is disposed outside the sensor case internal space.
  • the sensor case 31 is provided with a hole 35.
  • the filter 45 of the sensor unit 40 is disposed in this hole.
  • the sensor case internal space faces the filter 45.
  • the sensor case partition 34 contacts the filter 45.
  • the sensor unit 40 may have, for example, the structure shown in any of FIGS. 5A to 5K.
  • FIG. 10 shows a refrigerant detection sensor 30D mounted on a refrigeration apparatus 10 according to a fourth embodiment of the present invention.
  • the refrigerant detection sensor 30D is different from the refrigerant detection sensor 30C mounted on the refrigeration system 10 according to the third embodiment in that a part of the sensor unit 40 is disposed outside the sensor case internal space. That is, the sensor cover 41 is disposed over both the outside and the inside of the sensor case internal space.
  • the sensor unit 40 may have, for example, the structure shown in any of FIGS. 5A to 5K.
  • FIG. 11 shows a refrigerant detection sensor 30E mounted on a refrigeration apparatus 10 according to a fifth embodiment of the present invention.
  • the refrigerant detection sensor 30 ⁇ / b> E differs from the refrigerant detection sensor 30 ⁇ / b> A mounted on the refrigeration apparatus 10 according to the first embodiment in that it includes two sensor units 401 and 402. That is, the sensor unit 401 is mounted on the first surface S1 of the circuit board 37, and the sensor unit 402 is mounted on the second surface S2 opposite to the first surface S1.
  • the sensor unit 401 is provided with a filter 451, and the sensor unit 402 is provided with a filter 452.
  • the circuit board 37 and the circuit board support portion 33 that divides the sensor case internal space into the first sensor case internal space C1 and the second sensor case internal space C2.
  • the first opening 32 a is provided on the side of the first surface S 1 of the circuit board 37.
  • the second opening 32 b is provided on the second surface S 2 side of the circuit board 37.
  • FIG. 5A shows a structure in which the filter 45A of FIG. 4A is mounted in place of the hatched rectangle in the sensor unit 40A of FIG. 3A.
  • FIG. 5A shows a structure in which the filter 45B of FIG. 4B is mounted in place of the hatched rectangle in the sensor unit 40A of FIG. 3A.
  • the sensor units 401 and 402 are respectively disposed in the first sensor case internal space C1 and the second sensor case internal space C2 partitioned by the circuit board 37. Therefore, all detection performances of one sensor element can be used for each of the first sensor case internal space C1 and the second sensor case internal space C2, so that the detection accuracy of the refrigerant gas is improved.
  • Refrigerating apparatus 11 case 12 case partition part 13a 1st space 13b 2nd space 30 refrigerant

Abstract

This refrigerant detection sensor (30) is provided with at least one sensor element (42), a filter (45), a sensor cover (41), and a sensor case (31). The sensor element (42) is configured so as to detect a refrigerant gas. The filter (45) is arranged near the sensor element (42). The sensor cover (41) guides refrigerant gas that has passed through the filter (45) toward the sensor element (42). The sensor case (31) comprises a sensor case interior space that either faces or contains at least one of the filter (45) and the sensor cover (41). A first opening (32a) connected to a first detection space (13a) and a second opening (32b) connected to a second detection space (13b) are formed in the sensor case (31).

Description

冷媒検知センサ、および、それを用いた冷凍装置Refrigerant detection sensor and refrigeration system using the same
 本発明は、冷媒検知センサ、および、それを用いた冷凍装置に関する。 The present invention relates to a refrigerant detection sensor and a refrigeration system using the same.
 冷凍装置から冷媒が漏洩した場合に冷凍装置の運転を停止させるため、冷凍装置には冷媒検知センサが搭載されることがある。特許文献1(特開2002-257767号公報)に開示されるガスセンサは、そのような冷媒検知センサとして利用可能である。 In order to stop the operation of the refrigeration system when the refrigerant leaks from the refrigeration system, the refrigeration system may be equipped with a refrigerant detection sensor. The gas sensor disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2002-257767) can be used as such a refrigerant detection sensor.
 冷凍装置の筐体の内部は、仕切部材などによって複数の空間に仕切られていることがある。しかし、それぞれの空間に冷媒検知センサを設置すると、冷凍装置のコストが上昇する。それとは逆に、一部の空間のみに冷媒検知センサを設置すると、冷媒の漏洩を検知できない場合が生じうる。 The inside of the casing of the refrigeration apparatus may be partitioned into a plurality of spaces by a partition member or the like. However, installing a refrigerant detection sensor in each space increases the cost of the refrigeration system. On the contrary, if a refrigerant | coolant detection sensor is installed only in one part space, the case where a leak of a refrigerant | coolant can not be detected may occur.
 本発明の課題は、少ない数の冷媒検知センサを用いて冷媒の漏洩を検知し、冷凍装置のコストダウンを図ることである。 An object of the present invention is to detect refrigerant leakage using a small number of refrigerant detection sensors and to reduce the cost of the refrigeration system.
 本発明の第1観点に係る冷媒検知センサは、第1検知対象空間および第2検知対象空間における可燃性の冷媒ガスの存在を検知する。冷媒検知センサは、少なくとも1つのセンサ素子と、フィルタと、センサカバーと、センサケースと、を備える。少なくとも1つのセンサ素子は、冷媒ガスを検知するよう構成されている。フィルタは、少なくとも1つのセンサ素子の近傍に配置される。センサカバーは、フィルタを通過した冷媒ガスを少なくとも1つのセンサ素子へ案内する。センサケースは、フィルタおよびセンサカバーの少なくとも一方に面した、または少なくとも一方を包含したセンサケース内部空間を有する。センサケースには、第1検知対象空間に連通する第1開口部と、第2検知対象空間に連通する第2開口部と、が形成されている。 The refrigerant detection sensor according to the first aspect of the present invention detects the presence of flammable refrigerant gas in the first detection target space and the second detection target space. The refrigerant detection sensor includes at least one sensor element, a filter, a sensor cover, and a sensor case. At least one sensor element is configured to detect a refrigerant gas. The filter is arranged in the vicinity of the at least one sensor element. The sensor cover guides the refrigerant gas that has passed through the filter to at least one sensor element. The sensor case has a sensor case interior space facing or including at least one of the filter and the sensor cover. The sensor case is formed with a first opening communicating with the first detection target space and a second opening communicating with the second detection target space.
 この構成によれば、第1検知対象空間および第2検知対象空間のいずれに存在する冷媒ガスも、共通のセンサケースの内部に配置されたセンサ素子へ到達することができる。したがって、少なくとも準備すべきセンサケースの数量は、検知対象空間の数ほどには多くないので、冷媒検知センサのコストが低減できる。 According to this configuration, the refrigerant gas present in any of the first detection target space and the second detection target space can reach the sensor element disposed inside the common sensor case. Therefore, the cost of the refrigerant detection sensor can be reduced because at least the number of sensor cases to be prepared is not as large as the number of detection target spaces.
 本発明の第2観点に係る冷媒検知センサは、第1観点に係る冷媒検知センサにおいて、センサケースが、フィルタに接触するセンサケース仕切部を有する。センサケース仕切部はセンサケース内部空間を、第1開口部に連通する第1センサケース内部空間と、第2開口部に連通する第2センサケース内部空間とに分割する。 The refrigerant | coolant detection sensor which concerns on the 2nd viewpoint of this invention is a refrigerant | coolant detection sensor which concerns on a 1st viewpoint, and a sensor case has a sensor case partition part which contacts a filter. The sensor case partition part divides the sensor case internal space into a first sensor case internal space communicating with the first opening and a second sensor case internal space communicating with the second opening.
 この構成によれば、センサケース内部空間は、センサケース仕切部によって第1センサケース内部空間と第2センサケース内部空間に仕切られる。したがって、冷媒ガスが第1開口部および第2開口部の一方から他方へセンサ素子を介さずに移動することが抑制されるので、冷媒ガスの検知精度が向上する。 According to this configuration, the sensor case internal space is partitioned into the first sensor case internal space and the second sensor case internal space by the sensor case partitioning portion. Accordingly, the refrigerant gas is prevented from moving from one of the first opening and the second opening to the other without passing through the sensor element, so that the detection accuracy of the refrigerant gas is improved.
 本発明の第3観点に係る冷媒検知センサは、第1観点に係る冷媒検知センサにおいて、第1面および前記第1面とは反対の第2面を有する回路基板、をさらに備える。少なくとも1つのセンサ素子は、第1面に実装された第1センサ素子と、第2面に実装された第2センサ素子と、を含む。回路基板はセンサケース内部空間を、第1開口部に連通する第1センサケース内部空間と、第2開口部に連通する第2センサケース内部空間とに分割する。第1センサ素子は第1センサケース内部空間に配置され、第2センサ素子は第2センサケース内部空間に配置される。 The refrigerant detection sensor according to a third aspect of the present invention is the refrigerant detection sensor according to the first aspect, further including a circuit board having a first surface and a second surface opposite to the first surface. The at least one sensor element includes a first sensor element mounted on the first surface and a second sensor element mounted on the second surface. The circuit board divides the sensor case internal space into a first sensor case internal space communicating with the first opening and a second sensor case internal space communicating with the second opening. The first sensor element is disposed in the first sensor case interior space, and the second sensor element is disposed in the second sensor case interior space.
 この構成によれば、センサケース内部空間が、回路基板によって第1センサケース内部空間と第2センサケース内部空間に仕切られる。したがって、センサケースの構造を単純化できるので、冷媒検知センサのコストを低減できる。 According to this configuration, the sensor case internal space is partitioned by the circuit board into the first sensor case internal space and the second sensor case internal space. Therefore, since the structure of the sensor case can be simplified, the cost of the refrigerant detection sensor can be reduced.
 本発明の第4観点に係る冷媒検知センサは、第1観点または第2観点に係る冷媒検知センサにおいて、センサカバーが、フィルタに接触するセンサカバー仕切部を有する。センサカバー仕切部は、センサカバーによって規定されるセンサカバー内部空間を、第1開口部に連通する第1センサカバー内部空間と、第2開口部に連通する第2センサカバー内部空間とに分割する。 The refrigerant detection sensor according to a fourth aspect of the present invention is the refrigerant detection sensor according to the first aspect or the second aspect, wherein the sensor cover has a sensor cover partition part in contact with the filter. The sensor cover partitioning portion divides the sensor cover internal space defined by the sensor cover into a first sensor cover internal space communicating with the first opening and a second sensor cover internal space communicating with the second opening. .
 この構成によれば、センサカバー内部空間は、センサカバー仕切部によって第1センサカバー内部空間と第2センサカバー内部空間に仕切られる。したがって、冷媒ガスが第1開口部および第2開口部の一方から他方へセンサ素子を介さずに移動することが抑制されるので、冷媒ガスの検知精度がより向上する。 According to this configuration, the sensor cover internal space is partitioned into the first sensor cover internal space and the second sensor cover internal space by the sensor cover partitioning portion. Accordingly, the refrigerant gas is prevented from moving from one of the first opening and the second opening to the other without passing through the sensor element, so that the detection accuracy of the refrigerant gas is further improved.
 本発明の第5観点に係る冷媒検知センサは、第4観点に係る冷媒検知センサにおいて、少なくとも1つのセンサ素子が、センサカバー仕切部を貫通して、第1センサカバー内部空間と第2センサカバー内部空間の両方に位置する1つのセンサ素子を含む。 The refrigerant detection sensor according to a fifth aspect of the present invention is the refrigerant detection sensor according to the fourth aspect, wherein at least one sensor element penetrates the sensor cover partition portion, and the first sensor cover internal space and the second sensor cover It includes one sensor element located in both interior spaces.
 この構成によれば、同一のセンサ素子が、第1センサカバー内部空間および第2センサカバー内部空間のいずれに存在する冷媒ガスをも検出する。したがって、必要なセンサ素子の数が少ないので、冷媒検知センサのコストをより低減できる。 According to this configuration, the same sensor element detects the refrigerant gas present in any of the first sensor cover internal space and the second sensor cover internal space. Therefore, since the number of required sensor elements is small, the cost of the refrigerant detection sensor can be further reduced.
 本発明の第6観点に係る冷媒検知センサは、第4観点に係る冷媒検知センサにおいて、少なくとも1つのセンサ素子が、第1センサカバー内部空間に配置された第1センサ素子と、第2センサカバー内部空間に配置された第2センサ素子と、を含む。 The refrigerant detection sensor according to a sixth aspect of the present invention is the refrigerant detection sensor according to the fourth aspect, wherein at least one sensor element is a first sensor element disposed in the first sensor cover internal space, and a second sensor cover And a second sensor element disposed in the inner space.
 この構成によれば、第1センサカバー内部空間および第2センサカバー内部空間に、それぞれセンサ素子が配置される。したがって、第1センサカバー内部空間および第2センサカバー内部空間のそれぞれに対して1個のセンサ素子の検知性能をすべて使用することができるので、冷媒ガスの検知精度が向上する。 According to this configuration, the sensor elements are respectively disposed in the first sensor cover internal space and the second sensor cover internal space. Therefore, all detection performances of one sensor element can be used for each of the first sensor cover internal space and the second sensor cover internal space, so that the detection accuracy of the refrigerant gas is improved.
 本発明の第7観点に係る冷媒検知センサは、第1観点から第6観点のいずれか1つに係る冷媒検知センサにおいて、フィルタが、第1フィルタと、前記第1フィルタより粗い第2フィルタと、を含む。第1フィルタは、第2フィルタと比較してセンサ素子のより近くに配置されている。 The refrigerant detection sensor according to a seventh aspect of the present invention is the refrigerant detection sensor according to any one of the first to sixth aspects, wherein the filter is a first filter and a second filter that is rougher than the first filter. ,including. The first filter is disposed closer to the sensor element as compared to the second filter.
 この構成によれば、冷媒検知センサの外部のガスは第1フィルタを通過する前に第2フィルタに到達する。したがって、ガスに含まれる固体粒子などの移動が第2フィルタによって阻まれるので、第1フィルタの損傷が抑制される。 According to this configuration, the gas outside the refrigerant detection sensor reaches the second filter before passing through the first filter. Therefore, since the movement of solid particles contained in the gas is blocked by the second filter, damage to the first filter is suppressed.
 本発明の第8観点に係る冷媒検知センサは、第7観点に係る冷媒検知センサにおいて、フィルタが、第1フィルタおよび第2フィルタの両方に接触するフィルタ仕切部を有する。フィルタ仕切部は、第1フィルタおよび第2フィルタによって規定されるフィルタ内部空間を、第1開口部に連通する第1フィルタ内部空間と、第2開口部に連通する第2フィルタ内部空間とに分割する。 The refrigerant detection sensor according to an eighth aspect of the present invention is the refrigerant detection sensor according to the seventh aspect, wherein the filter has a filter partition part in contact with both the first filter and the second filter. The filter partitioning portion divides the filter internal space defined by the first filter and the second filter into a first filter internal space communicating with the first opening and a second filter internal space communicating with the second opening. Do.
 この構成によれば、フィルタ内部空間は、フィルタ仕切部によって第1フィルタ内部空間と第2フィルタ内部空間に仕切られる。したがって、冷媒ガスが第1開口部および第2開口部の一方から他方へセンサ素子を介さずに移動することが抑制されるので、冷媒ガスの検知精度がより向上する。 According to this configuration, the filter internal space is partitioned into the first filter internal space and the second filter internal space by the filter partitioning unit. Accordingly, the refrigerant gas is prevented from moving from one of the first opening and the second opening to the other without passing through the sensor element, so that the detection accuracy of the refrigerant gas is further improved.
 本発明の第9観点に係る冷凍装置は、可燃性の前記冷媒ガスを使用する。冷凍装置は、冷媒検知センサと、筐体と、筐体仕切部と、を備える。冷媒検知センサは、第1観点から第8観点のいずれか1つに係るものである。筐体は、筐体内部空間を有する。筐体仕切部は、筐体内部空間を第1空間および第2空間に仕切る。冷媒検知センサの第1開口部は、第1検知対象空間である第1空間に連通する。冷媒検知センサの第2開口部は、第2検知対象空間である第2空間に連通する。 A refrigeration apparatus according to a ninth aspect of the present invention uses the flammable refrigerant gas. The refrigeration system includes a refrigerant detection sensor, a housing, and a housing partition. The refrigerant detection sensor according to any one of the first to eighth aspects. The housing has a housing internal space. The case partition part divides the case internal space into a first space and a second space. The first opening of the refrigerant detection sensor communicates with a first space, which is a first detection target space. The second opening of the refrigerant detection sensor communicates with a second space, which is a second detection target space.
 この構成によれば、第1空間および第2空間のいずれに存在する冷媒ガスも、共通のセンサケースの内部に配置されたセンサ素子へ到達することができる。したがって、少なくとも準備すべきセンサケースの数量は、検知対象空間の数ほどには多くないので、冷凍装置のコストが低減できる。 According to this configuration, the refrigerant gas present in either the first space or the second space can reach the sensor element disposed inside the common sensor case. Therefore, the cost of the refrigeration system can be reduced because at least the number of sensor cases to be prepared is not as large as the number of detection target spaces.
 本発明の第1観点、第3観点、第5観点に係る冷媒検知センサは、コストが安い。 The refrigerant detection sensor according to the first, third and fifth aspects of the present invention is inexpensive.
 本発明の第2観点、第4観点、第6観点、第8観点に係る冷媒検知センサは、冷媒ガスの検知精度が向上する。 The refrigerant detection sensor according to the second aspect, the fourth aspect, the sixth aspect, and the eighth aspect of the present invention improves the detection accuracy of the refrigerant gas.
 本発明の第7観点に係る冷媒検知センサは、損傷しにくい。 The refrigerant detection sensor according to the seventh aspect of the present invention is unlikely to be damaged.
 本発明の第9観点に係る冷凍装置は、コストが安い。 The refrigeration system according to the ninth aspect of the present invention is inexpensive.
本発明の第1実施形態に係る冷凍装置10の構成を示す模式図である。It is a schematic diagram which shows the structure of the freezing apparatus 10 which concerns on 1st Embodiment of this invention. 冷凍装置10に搭載される冷媒検知センサ30Aの構成を示す断面図である。FIG. 6 is a cross-sectional view showing a configuration of a refrigerant detection sensor 30A mounted on the refrigeration system 10. センサユニット40Aの構成を示す模式図である。It is a schematic diagram which shows the structure of sensor unit 40A. センサユニット40Bの構成を示す模式図である。It is a schematic diagram which shows the structure of sensor unit 40B. センサユニット40Cの構成を示す模式図である。It is a schematic diagram which shows the structure of the sensor unit 40C. フィルタ45Aの構成を示す模式図である。It is a schematic diagram which shows the structure of filter 45A. フィルタ45Bの構成を示す模式図である。It is a schematic diagram which shows the structure of filter 45B. フィルタ45Cの構成を示す模式図である。It is a schematic diagram which shows the structure of the filter 45C. フィルタ45Dの構成を示す模式図である。It is a schematic diagram which shows the structure of filter 45D. センサユニット40Aの構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of sensor unit 40A. センサユニット40Bの構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of sensor unit 40B. センサユニット40Cの構成の一例を示す断面図である。It is a sectional view showing an example of composition of sensor unit 40C. センサユニット40Aの構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of sensor unit 40A. センサユニット40Bの構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of sensor unit 40B. センサユニット40Cの構成の一例を示す断面図である。It is a sectional view showing an example of composition of sensor unit 40C. センサユニット40Aの構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of sensor unit 40A. センサユニット40Bの構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of sensor unit 40B. センサユニット40Cの構成の一例を示す断面図である。It is a sectional view showing an example of composition of sensor unit 40C. センサユニット40Aの構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of sensor unit 40A. センサユニット40Bの構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of sensor unit 40B. センサユニット40Cの構成の一例を示す断面図である。It is a sectional view showing an example of composition of sensor unit 40C. 本発明の第1実施形態の変形例1Aに係る冷凍装置10’の構成を示す模式図である。It is a schematic diagram which shows the structure of freezing apparatus 10 'which concerns on the modification 1A of 1st Embodiment of this invention. 本発明の第1実施形態の変形例1Bに係る冷凍装置10”の構成を示す模式図である。It is a schematic diagram which shows the structure of freezing apparatus 10 '' based on the modification 1B of 1st Embodiment of this invention. 本発明の第2実施形態に係る冷凍装置10に搭載される冷媒検知センサ30Bの構成を示す断面図である。It is sectional drawing which shows the structure of the refrigerant | coolant detection sensor 30B mounted in the freezing apparatus 10 which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る冷凍装置10に搭載される冷媒検知センサ30Cの構成を示す断面図である。It is sectional drawing which shows the structure of the refrigerant | coolant detection sensor 30C mounted in the freezing apparatus 10 which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る冷凍装置10に搭載される冷媒検知センサ30Dの構成を示す断面図である。It is sectional drawing which shows the structure of refrigerant | coolant detection sensor 30D mounted in the freezing apparatus 10 which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る冷凍装置10に搭載される冷媒検知センサ30Eの構成を示す断面図である。It is sectional drawing which shows the structure of the refrigerant | coolant detection sensor 30E mounted in the freezing apparatus 10 which concerns on 5th Embodiment of this invention.
 <第1実施形態>
 (1)全体構成
 図1は、本発明の第1実施形態に係る冷凍装置10を示す。冷凍装置10は、空気調和機の室内機として構成されている。冷凍装置10は、筐体11と、筐体仕切部12と、筐体11の中に配置される各種構成部品を有する。筐体11には、空気の吸込口17および吹出口18が設けられている。筐体仕切部12は、筐体内部空間を、第1空間13aおよび第2空間12bに仕切っている。筐体仕切部12は筐体11と一体成形されていてもよいし、別体として構成されていてもよい。第1空間13aは熱交換室であり、熱交換器14および分流器15を収容している。第2空間13bは機械室であり、ファン16を収容している。第2空間13bには、異なる冷媒配管が接続される箇所である配管接続部19がさらに収容されている。
First Embodiment
(1) Overall Configuration FIG. 1 shows a refrigeration apparatus 10 according to a first embodiment of the present invention. The refrigeration system 10 is configured as an indoor unit of an air conditioner. The refrigeration system 10 includes a housing 11, a housing partition 12, and various components disposed in the housing 11. The housing 11 is provided with an air inlet 17 and an air outlet 18. The housing partition unit 12 partitions the housing internal space into a first space 13a and a second space 12b. The housing partition 12 may be integrally formed with the housing 11 or may be configured separately. The first space 13 a is a heat exchange chamber, and accommodates the heat exchanger 14 and the flow divider 15. The second space 13 b is a machine room and accommodates the fan 16. In the second space 13b, a pipe connection portion 19 which is a portion to which different refrigerant pipes are connected is further accommodated.
 各種構成部品の中には、冷媒検知センサ30が含まれる。冷媒検知センサ30は、第1空間13aと第2空間13bの両方にまたがるように配置されている。冷媒検知センサ30は、第1開口部32aおよび第2開口部32bを有する。第1開口部32aは第1空間13aの側に設けられ、第1空間13aと連通する。第2開口部32bは第2空間13bの側に設けられ、第2空間13bと連通する。 Among various components, the refrigerant detection sensor 30 is included. The refrigerant detection sensor 30 is disposed so as to straddle both the first space 13 a and the second space 13 b. The refrigerant detection sensor 30 has a first opening 32a and a second opening 32b. The first opening 32a is provided on the side of the first space 13a and communicates with the first space 13a. The second opening 32 b is provided on the side of the second space 13 b and communicates with the second space 13 b.
 (2)詳細構成
 図2は、冷媒検知センサ30の詳細構成の一例を冷媒検知センサ30Aとして示している。冷媒検知センサ30Aは、センサケース31、回路基板37、センサユニット40を有する。
(2) Detailed Configuration FIG. 2 shows an example of the detailed configuration of the coolant detection sensor 30 as a coolant detection sensor 30A. The refrigerant detection sensor 30A includes a sensor case 31, a circuit board 37, and a sensor unit 40.
 (2-1)センサケース31
 センサケース31は樹脂などからなるケースであり、センサユニット40および回路基板37を収容する。センサケース31は、前述の第1開口部32aおよび第2開口部32bを有している。第1開口部32aおよび第2開口部32bは、それぞれ、第1空間13aおよび第2空間12bから冷媒ガスを取り込むためのものである。
(2-1) Sensor case 31
The sensor case 31 is a case made of resin or the like, and accommodates the sensor unit 40 and the circuit board 37. The sensor case 31 has the first opening 32a and the second opening 32b described above. The first opening 32a and the second opening 32b are for taking in the refrigerant gas from the first space 13a and the second space 12b, respectively.
 (2-2)回路基板37
 回路基板37には、センサユニット40を用いた信号処理を行う回路が搭載されている。回路基板37は、センサケース31の回路基板支持部33に載置されており、かつ、ネジ38によって回路基板支持部33に固定されている。
(2-2) Circuit board 37
The circuit board 37 is mounted with a circuit that performs signal processing using the sensor unit 40. The circuit board 37 is mounted on the circuit board support portion 33 of the sensor case 31, and is fixed to the circuit board support portion 33 by screws 38.
 (2-3)センサユニット40
 図3Aは、センサユニット40の構成の一例をセンサユニット40Aとして示している。センサユニット40Aは、センサカバー41、センサ素子42、フィルタ45を有する。センサカバー41には開口が設けられており、その開口にフィルタ45が配置されている。本図において、フィルタ45はハッチングを付した長方形として模式的に描かれている。センサカバー41はセンサ素子42を収容している。センサ素子42は、周囲の冷媒ガス濃度に応じて抵抗値あるいはその他の物理特性が変化する。フィルタ45は、大気中に含まれる異物または水分などを取り除き、冷媒ガスをセンサ素子42の方へ通過させる。センサ素子42の物理特性は、回路基板37に搭載された回路によって電気信号に変換される。
(2-3) Sensor unit 40
FIG. 3A shows an example of the configuration of the sensor unit 40 as a sensor unit 40A. The sensor unit 40A includes a sensor cover 41, a sensor element 42, and a filter 45. The sensor cover 41 is provided with an opening, and the filter 45 is disposed in the opening. In the figure, the filter 45 is schematically depicted as a hatched rectangle. The sensor cover 41 accommodates the sensor element 42. The sensor element 42 changes its resistance value or other physical characteristics according to the concentration of the refrigerant gas in the surroundings. The filter 45 removes foreign matter or moisture contained in the atmosphere, and passes the refrigerant gas to the sensor element 42. The physical characteristics of the sensor element 42 are converted into electrical signals by the circuit mounted on the circuit board 37.
 図4Aはフィルタ45の具体的な構成の一例をフィルタ45Aとして示している。フィルタ45Aは、フィルタ材料46の層からなる。フィルタ材料46は例えば多孔質のセラミック材料である。フィルタ材料46は、微細な孔を有している。 FIG. 4A shows an example of a specific configuration of the filter 45 as a filter 45A. The filter 45A consists of a layer of filter material 46. The filter material 46 is, for example, a porous ceramic material. The filter material 46 has fine pores.
 センサユニット40の構造は、具体的には図5Aに示される。図5Aには、図3Aのセンサユニット40Aにおいて、ハッチングを付した長方形に代えて図4Aのフィルタ45Aが搭載された構造が示されている。 The structure of the sensor unit 40 is specifically shown in FIG. 5A. 5A shows a structure in which the filter 45A of FIG. 4A is mounted in place of the hatched rectangle in the sensor unit 40A of FIG. 3A.
 (3)冷凍装置10の動作
 図1に示す冷凍装置10の動作中には、第2空間13bに配置されているファン16は吸込口17から空気を吸いこんで、その空気を第1空間13aへ送る。その後、空気は熱交換器14を横切るときに冷媒と熱交換を行う。熱交換器14によって調和された空気は吹出口18から吹き出される。この動作のため、空気調和動作中には、第1空間13aでは概して第2空間13bよりも圧力が高い。空気調和動作の停止中には、第1空間13aと第2空間13bの圧力差は実質的に生じない。
(3) Operation of Refrigerating Apparatus 10 During the operation of the refrigerating apparatus 10 shown in FIG. 1, the fan 16 disposed in the second space 13 b sucks in air from the suction port 17 and the air is absorbed by the first space 13 a. Send to Thereafter, the air exchanges heat with the refrigerant as it traverses the heat exchanger 14. The air conditioned by the heat exchanger 14 is blown out from the outlet 18. Due to this operation, during the air conditioning operation, the pressure in the first space 13a is generally higher than that in the second space 13b. While the air conditioning operation is stopped, substantially no pressure difference occurs between the first space 13a and the second space 13b.
 (4)特徴
 (4-1)
 センサケース31には、第1空間13aに連通する第1開口部32aと、第2空間13bに連通する第2開口部32bと、が形成されている。したがって、第1空間13aおよび第2空間13bのいずれに存在する冷媒ガスも、共通のセンサケース31の内部に配置されたセンサ素子42へ到達することができる。したがって、少なくとも準備すべきセンサケース31の数量は、検知対象空間の数ほどには多くないので、冷媒検知センサ30のコストが低減できる。
(4) Characteristics (4-1)
The sensor case 31 is formed with a first opening 32a communicating with the first space 13a and a second opening 32b communicating with the second space 13b. Therefore, the refrigerant gas present in any of the first space 13 a and the second space 13 b can reach the sensor element 42 disposed inside the common sensor case 31. Therefore, the cost of the refrigerant detection sensor 30 can be reduced because at least the number of sensor cases 31 to be prepared is not as large as the number of detection target spaces.
 (4-2)
 冷凍装置10は、上述の冷媒検知センサ30を有する。したがって、冷凍装置10のコストが低減できる。
(4-2)
The refrigeration system 10 includes the refrigerant detection sensor 30 described above. Therefore, the cost of the refrigeration system 10 can be reduced.
 (5)変形例
 以下に本実施形態の変形例を示す。なお、複数の変形例を適宜組み合わせてもよい。
(5) Modification A modification of this embodiment is shown below. A plurality of modifications may be combined as appropriate.
 (5-1)変形例1A
 図1に示す上述の実施形態では、冷媒検知センサ30は、筐体仕切部12によって仕切られた第1空間13aおよび第2空間13bの両方にまたがるように配置されている。これに代えて、図6に示すように、冷媒検知センサ30は、第1開口部32aが第1空間13aに連通するような態様で、第2空間13bに配置されていてもよい。あるいは、冷媒検知センサ30は、第2開口部32bが第2空間13bに連通するような態様で、第1空間13aに配置されていてもよい。
(5-1) Modification 1A
In the above-described embodiment shown in FIG. 1, the refrigerant detection sensor 30 is disposed so as to straddle both the first space 13 a and the second space 13 b partitioned by the housing partition 12. Instead of this, as shown in FIG. 6, the refrigerant detection sensor 30 may be disposed in the second space 13b in such a manner that the first opening 32a communicates with the first space 13a. Alternatively, the refrigerant detection sensor 30 may be disposed in the first space 13a in such a manner that the second opening 32b communicates with the second space 13b.
 この構成によれば、冷凍装置10の各種構成部品の配置上の制約がある場合に、その制約に柔軟に対応した設計を行いやすい。 According to this configuration, in the case where there is a restriction on the arrangement of the various components of the refrigeration apparatus 10, it is easy to design in accordance with the restriction flexibly.
 (5-2)変形例1B
 図1に示す上述の実施形態では、第1空間には熱交換器14、および分流器15が収容されており、第2空間には、ファン16および配管接続部19が収容されている。これに代えて、第1空間13aおよび第2空間13bは、構成部品の別の組合せをそれぞれ収容してもよい。例えば、図7に示すように、第1空間13aには熱交換器14、分流器15、およびファン16が収容されており、第2空間13bには配管接続部19が収容されていてもよい。空気調和動作中には、第1空間13aと第2空間13bの間に圧力差が生じることがある。空気調和動作の停止中には、第1空間13aと第2空間13bの圧力差は実質的に生じない。
(5-2) Modified Example 1B
In the above-described embodiment shown in FIG. 1, the heat exchanger 14 and the flow divider 15 are accommodated in the first space, and the fan 16 and the pipe connection 19 are accommodated in the second space. Alternatively, the first space 13a and the second space 13b may each receive another combination of components. For example, as shown in FIG. 7, the heat exchanger 14, the flow divider 15, and the fan 16 may be accommodated in the first space 13a, and the pipe connection portion 19 may be accommodated in the second space 13b. . During the air conditioning operation, a pressure difference may occur between the first space 13a and the second space 13b. While the air conditioning operation is stopped, substantially no pressure difference occurs between the first space 13a and the second space 13b.
 この構成によっても、冷凍装置10および冷媒検知センサ30のコストが低減できる。 Also by this configuration, the costs of the refrigeration system 10 and the refrigerant detection sensor 30 can be reduced.
 (5-3)変形例1C
 上述の実施形態では、センサユニット40には、図4Aに示すフィルタ材料46からなるフィルタ45Aが用いられる。これに代えて、センサユニット40には、図4Bに示すフィルタ45Bが用いられてもよい。フィルタ45Bは、センサ素子42に近い側に配置された前述のフィルタ材料46と、センサ素子42から遠い側に配置された金属メッシュ47とを有する。金属メッシュ47の網目すなわち開口の直径は、フィルタ材料46の孔の直径よりも大きい。金属メッシュ47は大きな直径の異物を取り除くのに役立ち、フィルタ材料46は小さな直径の異物や水分を取り除くのに役立つ。
(5-3) Modified Example 1C
In the embodiment described above, the sensor unit 40 uses a filter 45A made of the filter material 46 shown in FIG. 4A. Instead of this, for the sensor unit 40, a filter 45B shown in FIG. 4B may be used. The filter 45 B has the aforementioned filter material 46 disposed closer to the sensor element 42 and a metal mesh 47 disposed farther from the sensor element 42. The diameter of the mesh or opening of the metal mesh 47 is larger than the diameter of the pores of the filter material 46. The metal mesh 47 helps to remove large diameter foreign particles, and the filter material 46 helps to remove small diameter foreign particles and moisture.
 本変形例で用いられるセンサユニット40の構造は、具体的には図5Dに示される。図5Dには、図3Aのセンサユニット40Aにおいて、ハッチングを付した長方形に代えて図4Bのフィルタ45Bが搭載された構造が示されている。 The structure of the sensor unit 40 used in this modification is specifically shown in FIG. 5D. FIG. 5D shows a structure in which the filter 45B of FIG. 4B is mounted in place of the hatched rectangle in the sensor unit 40A of FIG. 3A.
 この構成によれば、冷媒検知センサ30の外部のガスはフィルタ材料46を通過する前に金属メッシュ47に到達する。したがって、ガスに含まれる固体粒子などの移動が金属メッシュ47によって阻まれるので、フィルタ材料46の損傷が抑制される。 According to this configuration, the gas outside the refrigerant detection sensor 30 reaches the metal mesh 47 before passing through the filter material 46. Therefore, the movement of the solid particles contained in the gas is blocked by the metal mesh 47, and damage to the filter material 46 is suppressed.
 <第2実施形態>
 (1)構成
 図8は、本発明の第2実施形態に係る冷凍装置10に搭載される冷媒検知センサ30Bを示す。冷媒検知センサ30Bは、センサケース31がセンサケース仕切部34を有する点において、第1実施形態に係る冷凍装置10に搭載される冷媒検知センサ30Aとは異なる。
Second Embodiment
(1) Configuration FIG. 8 shows a refrigerant detection sensor 30B mounted on a refrigeration apparatus 10 according to a second embodiment of the present invention. The refrigerant detection sensor 30B is different from the refrigerant detection sensor 30A mounted on the refrigeration apparatus 10 according to the first embodiment in that the sensor case 31 includes the sensor case partition 34.
 センサケース仕切部34は、センサケース内部空間を、第1センサケース内部空間C1および第2センサケース内部空間C2に仕切っている。センサケース仕切部34はセンサケース31と一体成形されていてもよいし、別体として構成されていてもよい。センサケース仕切部34は、フィルタ45に接触する。 The sensor case partitioning portion 34 partitions the sensor case internal space into a first sensor case internal space C1 and a second sensor case internal space C2. The sensor case partition 34 may be integrally formed with the sensor case 31 or may be configured separately. The sensor case partition 34 contacts the filter 45.
 (2)センサユニット40の構成
 図8のセンサユニット40は、具体的には図5Aに示す構造を有し、すなわちは、図3Aのセンサユニット40Aにおいて、ハッチングを付した長方形に代えて図4Aのフィルタ45Aが搭載されたものである。
(2) Configuration of Sensor Unit 40 Specifically, the sensor unit 40 of FIG. 8 has a structure shown in FIG. 5A, that is, in the sensor unit 40A of FIG. 3A, in place of the hatched rectangle, FIG. Filter 45A is mounted.
 (3)特徴
 センサケース内部空間は、センサケース仕切部34によって第1センサケース内部空間C1と第2センサケース内部空間C2に仕切られる。冷媒ガスがフィルタ45を通過する際に圧力損失による抵抗を受けるので、冷媒ガスは第1センサケース内部空間C1と第2センサケース内部空間C2の一方から他方へ通り抜けにくい。したがって、冷媒ガスが第1開口部32aおよび第2開口部32bの一方から他方へセンサ素子32を介さずに移動することが抑制されるので、冷媒ガスの検知精度が向上する。
(3) Features The sensor case internal space is partitioned by the sensor case partitioning part 34 into a first sensor case internal space C1 and a second sensor case internal space C2. Since the refrigerant gas receives resistance due to pressure loss when passing through the filter 45, the refrigerant gas is unlikely to pass from one of the first sensor case inner space C1 and the second sensor case inner space C2 to the other. Therefore, the movement of the refrigerant gas from one of the first opening 32a and the second opening 32b to the other without the sensor element 32 is suppressed, so that the detection accuracy of the refrigerant gas is improved.
 (4)変形例
 (4-1)変形例2A
 上述の実施形態では、センサユニット40は、図3Aに示す構造を有している。これに代えて、センサユニット40は、図3Bに示す構造を有していてもよい。図3Bに示すセンサユニット40Bは、センサカバー41の内部空間を、第1センサカバー内部空間V1と第2センサカバー内部空間V2に仕切るセンサカバー仕切部43を有する点において、センサユニット40Aとは異なる。
(4) Modification (4-1) Modification 2A
In the above embodiment, the sensor unit 40 has the structure shown in FIG. 3A. Alternatively, the sensor unit 40 may have the structure shown in FIG. 3B. The sensor unit 40B shown in FIG. 3B differs from the sensor unit 40A in that it has a sensor cover partition 43 that divides the internal space of the sensor cover 41 into a first sensor cover internal space V1 and a second sensor cover internal space V2. .
 本変形例で用いられるセンサユニット40Bの構造は、具体的には図5Bに示される。図5Bには、図3Bにおいて、ハッチングを付した長方形に代えて図4Aのフィルタ45Aが搭載された構造が示されている。 The structure of the sensor unit 40B used in this modification is specifically shown in FIG. 5B. FIG. 5B shows a structure in which the filter 45A of FIG. 4A is mounted in place of the hatched rectangle in FIG. 3B.
 この構成によれば、センサカバー内部空間は、センサカバー仕切部43によって第1センサカバー内部空間V1と第2センサカバー内部空間V2に分割される。したがって、冷媒ガスが第1開口部32aおよび第2開口部32bの一方から他方へセンサ素子32を介さずに移動することが抑制されるので、冷媒ガスの検知精度がより向上する。 According to this configuration, the sensor cover internal space is divided by the sensor cover partition portion 43 into the first sensor cover internal space V1 and the second sensor cover internal space V2. Therefore, the movement of the refrigerant gas from one of the first opening 32a and the second opening 32b to the other without the sensor element 32 is suppressed, so that the detection accuracy of the refrigerant gas is further improved.
 (4-2)変形例2B
 あるいは、センサユニット40は、図3Cに示す構造を有していてもよい。図3Cに示すセンサユニット40Cは、第1センサカバー内部空間V1と第2センサカバー内部空間V2に、それぞれ、センサ素子42aおよびセンサ素子42bが配置される点において、センサユニット40Bとは異なる。
(4-2) Modification 2B
Alternatively, the sensor unit 40 may have the structure shown in FIG. 3C. The sensor unit 40C shown in FIG. 3C differs from the sensor unit 40B in that the sensor element 42a and the sensor element 42b are disposed in the first sensor cover internal space V1 and the second sensor cover internal space V2, respectively.
 本変形例で用いられるセンサユニット40Cの構造は、具体的には図5Cに示される。図5Cには、図3Cにおいて、ハッチングを付した長方形に代えて図4Aのフィルタ45Aが搭載された構造が示されている。 The structure of the sensor unit 40C used in this modification is specifically shown in FIG. 5C. FIG. 5C shows a structure in which the filter 45A of FIG. 4A is mounted instead of the hatched rectangle in FIG. 3C.
 この構成によれば、第1センサカバー内部空間V1および第2センサカバー内部空間V2に、それぞれセンサ素子42a、42bが配置される。したがって、第1センサカバー内部空間V1および第2センサカバー内部空間V2のそれぞれに対して1個のセンサ素子の検知性能をすべて使用することができるので、冷媒ガスの検知精度が向上する。 According to this configuration, the sensor elements 42a and 42b are disposed in the first sensor cover internal space V1 and the second sensor cover internal space V2, respectively. Therefore, all detection performances of one sensor element can be used for each of the first sensor cover internal space V1 and the second sensor cover internal space V2, so that the detection accuracy of the refrigerant gas is improved.
 (4-3)変形例2C
 上述の実施形態では、センサユニット40には、図4Aに示すフィルタ材料46からなるフィルタ45Aが用いられる。これに代えて、センサユニット40には、図4Bに示すフィルタ45Bが用いられてもよい。フィルタ45Bは、センサ素子42に近い側に配置された前述のフィルタ材料46と、センサ素子42から遠い側に配置された金属メッシュ47とを有する。金属メッシュ47の網目すなわち開口の直径は、フィルタ材料46の孔の直径よりも大きい。金属メッシュ47は大きな直径の異物を取り除くのに役立ち、フィルタ材料46は小さな直径の異物や水分を取り除くのに役立つ。
(4-3) Modification 2C
In the embodiment described above, the sensor unit 40 uses a filter 45A made of the filter material 46 shown in FIG. 4A. Instead of this, for the sensor unit 40, a filter 45B shown in FIG. 4B may be used. The filter 45 B has the aforementioned filter material 46 disposed closer to the sensor element 42 and a metal mesh 47 disposed farther from the sensor element 42. The diameter of the mesh or opening of the metal mesh 47 is larger than the diameter of the pores of the filter material 46. The metal mesh 47 helps to remove large diameter foreign particles, and the filter material 46 helps to remove small diameter foreign particles and moisture.
 本変形例で用いられるセンサユニット40の構造は、具体的には図5Dに示される。図5Dには、図3Aのセンサユニット40Aにおいて、ハッチングを付した長方形に代えて図4Bのフィルタ45Bが搭載された構造が示されている。 The structure of the sensor unit 40 used in this modification is specifically shown in FIG. 5D. FIG. 5D shows a structure in which the filter 45B of FIG. 4B is mounted in place of the hatched rectangle in the sensor unit 40A of FIG. 3A.
 あるいは、図5Dの構造に変えて、図5Eに示す構造、もしくは図5Fに示す構造を有してもよい。図5Eには、図3Bのセンサユニット40Bにおいて、ハッチングを付した長方形に代えて図4Bのフィルタ45Bが搭載された構造が示されている。図5Fには、図3Cのセンサユニット40Cにおいて、ハッチングを付した長方形に代えて図4Bのフィルタ45Bが搭載された構造が示されている。 Alternatively, the structure shown in FIG. 5D may be replaced with the structure shown in FIG. 5E or the structure shown in FIG. 5F. FIG. 5E shows a structure in which the filter 45B of FIG. 4B is mounted instead of the hatched rectangle in the sensor unit 40B of FIG. 3B. FIG. 5F shows a structure in which the filter 45B of FIG. 4B is mounted in place of the hatched rectangle in the sensor unit 40C of FIG. 3C.
 この構成によれば、冷媒検知センサ30の外部のガスはフィルタ材料46を通過する前に金属メッシュ47に到達する。したがって、ガスに含まれる固体粒子などの移動が金属メッシュ47によって阻まれるので、フィルタ材料46の損傷が抑制される。 According to this configuration, the gas outside the refrigerant detection sensor 30 reaches the metal mesh 47 before passing through the filter material 46. Therefore, the movement of the solid particles contained in the gas is blocked by the metal mesh 47, and damage to the filter material 46 is suppressed.
 (4-4)変形例2D
 あるいは、センサユニット40には、図4Bに示すフィルタ45Bに代えて、図4Cに示すフィルタ45Cが用いられてもよい。フィルタ45Cは、フィルタ仕切部48を有する点において、フィルタ45Bとは異なる。フィルタ仕切部48は、前述のフィルタ材料46および金属メッシュ47によって規定されるフィルタ内部空間を、第1開口部32aに連通する第1フィルタ内部空間F1と、第2開口部32bに連通する第2フィルタ内部空間F2とに仕切る。
(4-4) Modified Example 2D
Alternatively, for the sensor unit 40, a filter 45C shown in FIG. 4C may be used instead of the filter 45B shown in FIG. 4B. The filter 45C is different from the filter 45B in that the filter 45C has a filter partition 48. The filter partitioning portion 48 communicates the filter internal space defined by the aforementioned filter material 46 and the metal mesh 47 with the first filter internal space F1 communicating with the first opening 32a and the second opening 32b. Divide into filter internal space F2.
 本変形例で用いられるセンサユニット40の構造は、具体的には図5Gに示される。図5Gには、図3Aのセンサユニット40Aにおいて、ハッチングを付した長方形に代えて図4Cのフィルタ45Cが搭載された構造が示されている。 The structure of the sensor unit 40 used in this modification is specifically shown in FIG. 5G. FIG. 5G shows a structure in which the filter 45C of FIG. 4C is mounted in place of the hatched rectangle in the sensor unit 40A of FIG. 3A.
 あるいは、図5Gの構造に変えて、図5Hに示す構造、もしくは図5Iに示す構造を有してもよい。図5Hには、図3Bのセンサユニット40Bにおいて、ハッチングを付した長方形に代えて図4Cのフィルタ45Cが搭載された構造が示されている。図5Iには、図3Cのセンサユニット40Cにおいて、ハッチングを付した長方形に代えて図4Cのフィルタ45Cが搭載された構造が示されている。 Alternatively, the structure shown in FIG. 5G may be changed to the structure shown in FIG. 5H or the structure shown in FIG. 5I. FIG. 5H shows a structure in which the filter 45C of FIG. 4C is mounted instead of the hatched rectangle in the sensor unit 40B of FIG. 3B. FIG. 5I shows a structure in which the filter 45C of FIG. 4C is mounted in place of the hatched rectangle in the sensor unit 40C of FIG. 3C.
 この構成によれば、フィルタ内部空間は、フィルタ仕切部48によって第1フィルタ内部空間F1と第2フィルタ内部空間F2に分割される。したがって、冷媒ガスが第1開口部32aおよび第2開口部32bの一方から他方へセンサ素子32を介さずに移動することが抑制されるので、冷媒ガスの検知精度がより向上する。 According to this configuration, the filter internal space is divided by the filter partitioning unit 48 into the first filter internal space F1 and the second filter internal space F2. Therefore, the movement of the refrigerant gas from one of the first opening 32a and the second opening 32b to the other without the sensor element 32 is suppressed, so that the detection accuracy of the refrigerant gas is further improved.
 (4-5)変形例2E
 あるいは、センサユニット40には、図4Cに示すフィルタ45Cに代えて、図4Dに示すフィルタ45Dが用いられてもよい。フィルタ45Dは、フィルタ仕切部48がフィルタ45の表面にまで露出している点において、フィルタ45Cとは異なる。
(4-5) Modification 2E
Alternatively, for the sensor unit 40, a filter 45D shown in FIG. 4D may be used instead of the filter 45C shown in FIG. 4C. The filter 45D is different from the filter 45C in that the filter partition 48 is exposed to the surface of the filter 45.
 本変形例で用いられるセンサユニット40の構造は、具体的には図5Jに示される。図5Jには、図3Aのセンサユニット40Aにおいて、ハッチングを付した長方形に代えて図4Dのフィルタ45Dが搭載された構造が示されている。 The structure of the sensor unit 40 used in this modification is specifically shown in FIG. 5J. FIG. 5J shows a structure in which the filter 45D of FIG. 4D is mounted in place of the hatched rectangle in the sensor unit 40A of FIG. 3A.
 あるいは、図5Jの構造に変えて、図5Kに示す構造、もしくは図5Lに示す構造を有してもよい。図5Kには、図3Bのセンサユニット40Bにおいて、ハッチングを付した長方形に代えて図4Dのフィルタ45Dが搭載された構造が示されている。図5Lには、図3Cのセンサユニット40Cにおいて、ハッチングを付した長方形に代えて図4Dのフィルタ45Dが搭載された構造が示されている。 Alternatively, the structure shown in FIG. 5J may be replaced with the structure shown in FIG. 5K or the structure shown in FIG. 5L. FIG. 5K shows a structure in which the filter 45D of FIG. 4D is mounted instead of the hatched rectangle in the sensor unit 40B of FIG. 3B. FIG. 5L shows a structure in which the filter 45D of FIG. 4D is mounted in place of the hatched rectangle in the sensor unit 40C of FIG. 3C.
 この構成によれば、センサケース仕切部34とフィルタ仕切部48とが、金属メッシュ47を介さずに接触する。したがって、第1フィルタ内部空間F1と第2フィルタ内部空間F2の間の連通をより確実に抑えられるので、冷媒ガスの検知精度がより向上する。 According to this configuration, the sensor case partition 34 and the filter partition 48 contact each other without the metal mesh 47 interposed therebetween. Therefore, the communication between the first filter internal space F1 and the second filter internal space F2 can be more reliably suppressed, so that the detection accuracy of the refrigerant gas is further improved.
 (4-6)その他
 第1実施形態の各種変形例を、本実施形態に適用してもよい。
(4-6) Others Various modifications of the first embodiment may be applied to the present embodiment.
 <第3実施形態>
 (1)構成
 図9は、本発明の第3実施形態に係る冷凍装置10に搭載される冷媒検知センサ30Cを示す。冷媒検知センサ30Cは、センサユニット40のほとんどの領域がセンサケース内部空間の外側に配置されている点において、第2実施形態に係る冷凍装置10に搭載される冷媒検知センサ30Bとは異なる。
Third Embodiment
(1) Configuration FIG. 9 shows a refrigerant detection sensor 30C mounted on a refrigeration apparatus 10 according to a third embodiment of the present invention. The refrigerant detection sensor 30C is different from the refrigerant detection sensor 30B mounted on the refrigeration apparatus 10 according to the second embodiment in that most of the area of the sensor unit 40 is disposed outside the sensor case internal space.
 センサケース31には穴35が設けられている。この穴にセンサユニット40のフィルタ45が配置されている。センサケース内部空間は、フィルタ45に面している。センサケース仕切部34は、フィルタ45に接触する。 The sensor case 31 is provided with a hole 35. The filter 45 of the sensor unit 40 is disposed in this hole. The sensor case internal space faces the filter 45. The sensor case partition 34 contacts the filter 45.
 (2)センサユニット40の構成
 第2実施形態およびその変形例と同様、センサユニット40は、例えば、図5A~図5Kのいずれかに示す構造を有していてよい。
(2) Configuration of Sensor Unit 40 As in the second embodiment and the modification thereof, the sensor unit 40 may have, for example, the structure shown in any of FIGS. 5A to 5K.
 (3)特徴
 この構成によれば、回路基板37をセンサケース31の中に設置する必要がない。したがって、冷媒検知センサ30Cの組み立てが容易である。
(3) Features According to this configuration, it is not necessary to install the circuit board 37 in the sensor case 31. Therefore, the assembly of the refrigerant detection sensor 30C is easy.
 <第4実施形態>
 (1)構成
 図10は、本発明の第4実施形態に係る冷凍装置10に搭載される冷媒検知センサ30Dを示す。冷媒検知センサ30Dは、センサユニット40の一部の領域がセンサケース内部空間の外側に配置されている点において、第3実施形態に係る冷凍装置10に搭載される冷媒検知センサ30Cとは異なる。すなわち、センサカバー41はセンサケース内部空間の外側および内側の両方にわたり配置されている。
Fourth Embodiment
(1) Configuration FIG. 10 shows a refrigerant detection sensor 30D mounted on a refrigeration apparatus 10 according to a fourth embodiment of the present invention. The refrigerant detection sensor 30D is different from the refrigerant detection sensor 30C mounted on the refrigeration system 10 according to the third embodiment in that a part of the sensor unit 40 is disposed outside the sensor case internal space. That is, the sensor cover 41 is disposed over both the outside and the inside of the sensor case internal space.
 (2)センサユニット40の構成
 第2実施形態およびその変形例と同様、センサユニット40は、例えば、図5A~図5Kのいずれかに示す構造を有していてよい。
(2) Configuration of Sensor Unit 40 As in the second embodiment and the modification thereof, the sensor unit 40 may have, for example, the structure shown in any of FIGS. 5A to 5K.
 (3)特徴
 この構成によれば、回路基板37をセンサケース31の中に設置する必要がない。したがって、冷媒検知センサ30Cの組み立てが容易である。また、第3実施形態に係る冷媒検知センサ30Cと比較して、センサケース31とセンサユニット40の設置強度がより確保される。
(3) Features According to this configuration, it is not necessary to install the circuit board 37 in the sensor case 31. Therefore, the assembly of the refrigerant detection sensor 30C is easy. Moreover, compared with the refrigerant | coolant detection sensor 30C which concerns on 3rd Embodiment, the installation intensity | strength of sensor case 31 and the sensor unit 40 is ensured more.
 <第5実施形態>
 (1)構成
 図11は、本発明の第5実施形態に係る冷凍装置10に搭載される冷媒検知センサ30Eを示す。冷媒検知センサ30Eは、2つのセンサユニット401、402を有する点において、第1実施形態に係る冷凍装置10に搭載される冷媒検知センサ30Aとは異なる。すなわち、回路基板37の第1面S1にセンサユニット401が実装されており、第1面S1とは反対の第2面S2にセンサユニット402が実装されている。センサユニット401にはフィルタ451が設けられており、センサユニット402にはフィルタ452が設けられている。
Fifth Embodiment
(1) Configuration FIG. 11 shows a refrigerant detection sensor 30E mounted on a refrigeration apparatus 10 according to a fifth embodiment of the present invention. The refrigerant detection sensor 30 </ b> E differs from the refrigerant detection sensor 30 </ b> A mounted on the refrigeration apparatus 10 according to the first embodiment in that it includes two sensor units 401 and 402. That is, the sensor unit 401 is mounted on the first surface S1 of the circuit board 37, and the sensor unit 402 is mounted on the second surface S2 opposite to the first surface S1. The sensor unit 401 is provided with a filter 451, and the sensor unit 402 is provided with a filter 452.
 センサケース内部空間を第1センサケース内部空間C1および第2センサケース内部空間C2に仕切っているのは、回路基板37と回路基板支持部33である。第1開口部32aは、回路基板37の第1面S1の側に設けられている。第2開口部32bは、回路基板37の第2面S2の側に設けられている。 It is the circuit board 37 and the circuit board support portion 33 that divides the sensor case internal space into the first sensor case internal space C1 and the second sensor case internal space C2. The first opening 32 a is provided on the side of the first surface S 1 of the circuit board 37. The second opening 32 b is provided on the second surface S 2 side of the circuit board 37.
 (2)センサユニット40の構成
 図11のセンサユニット40の構造は、具体的には図5Aに示される。図5Aには、図3Aのセンサユニット40Aにおいて、ハッチングを付した長方形に代えて図4Aのフィルタ45Aが搭載された構造が示されている。
(2) Configuration of Sensor Unit 40 The structure of the sensor unit 40 of FIG. 11 is specifically shown in FIG. 5A. 5A shows a structure in which the filter 45A of FIG. 4A is mounted in place of the hatched rectangle in the sensor unit 40A of FIG. 3A.
 あるいは、図5Aの構造に変えて、図5Dに示す構造を有してもよい。図5Dには、図3Aのセンサユニット40Aにおいて、ハッチングを付した長方形に代えて図4Bのフィルタ45Bが搭載された構造が示されている。 Alternatively, the structure shown in FIG. 5A may be changed to have the structure shown in FIG. 5D. FIG. 5D shows a structure in which the filter 45B of FIG. 4B is mounted in place of the hatched rectangle in the sensor unit 40A of FIG. 3A.
 (3)特徴
 この構成によれば、回路基板37によって仕切られた第1センサケース内部空間C1および第2センサケース内部空間C2に、それぞれセンサユニット401、402素子が配置される。したがって、第1センサケース内部空間C1および第2センサケース内部空間C2のそれぞれに対して1個のセンサ素子の検知性能をすべて使用することができるので、冷媒ガスの検知精度が向上する。
(3) Characteristics According to this configuration, the sensor units 401 and 402 are respectively disposed in the first sensor case internal space C1 and the second sensor case internal space C2 partitioned by the circuit board 37. Therefore, all detection performances of one sensor element can be used for each of the first sensor case internal space C1 and the second sensor case internal space C2, so that the detection accuracy of the refrigerant gas is improved.
   10   冷凍装置
   11   筐体
   12   筐体仕切部
   13a  第1空間
   13b  第2空間
   30   冷媒検知センサ
   31   センサケース
   32a  第1開口部
   32b  第2開口部
   34   センサケース仕切部
   37   回路基板
   40   センサユニット
   41   センサカバー
   42   センサ素子
   43   センサカバー仕切部
   45   フィルタ
   C1   第1センサケース内部空間
   C2   第2センサケース内部空間
   F1   第1フィルタ内部空間
   F2   第2フィルタ内部空間
   V1   第1センサカバー内部空間
   V2   第2センサカバー内部空間
DESCRIPTION OF SYMBOLS 10 Refrigerating apparatus 11 case 12 case partition part 13a 1st space 13b 2nd space 30 refrigerant | coolant detection sensor 31 sensor case 32a 1st opening part 32b 2nd opening part 34 sensor case partition part 37 circuit board 40 sensor unit 41 sensor cover 42 sensor element 43 sensor cover partition 45 filter C1 first sensor case internal space C2 second sensor case internal space F1 first filter internal space F2 second filter internal space V1 first sensor cover internal space V2 second sensor cover internal space
特開2002-257767号公報JP 2002-257767 A

Claims (9)

  1.  第1検知対象空間(13a)および第2検知対象空間(13b)における可燃性の冷媒ガスの存在を検知する冷媒検知センサ(30)であって、
     前記冷媒ガスを検知するよう構成された少なくとも1つのセンサ素子(42)と、
     前記少なくとも1つのセンサ素子の近傍に配置されたフィルタ(45)と、
     前記フィルタを通過した前記冷媒ガスを前記少なくとも1つのセンサ素子へ案内するセンサカバー(41)と、
     前記フィルタおよび前記センサカバーの少なくとも一方に面した、または前記少なくとも一方を包含したセンサケース内部空間を有するセンサケース(31)と、
    を備え、
     前記センサケースには、前記第1検知対象空間に連通する第1開口部(32a)と、前記第2検知対象空間に連通する第2開口部(32b)と、が形成されている、
    冷媒検知センサ(30、30A、30B、30C、30D、30E)。
    A refrigerant detection sensor (30) for detecting the presence of flammable refrigerant gas in the first detection target space (13a) and the second detection target space (13b), wherein
    At least one sensor element (42) configured to detect the refrigerant gas;
    A filter (45) arranged in the vicinity of the at least one sensor element;
    A sensor cover (41) for guiding the refrigerant gas having passed through the filter to the at least one sensor element;
    A sensor case (31) having a sensor case internal space facing or including at least one of the filter and the sensor cover;
    Equipped with
    The sensor case is formed with a first opening (32a) communicating with the first detection target space, and a second opening (32b) communicating with the second detection target space.
    Refrigerant detection sensors (30, 30A, 30B, 30C, 30D, 30E).
  2.  前記センサケースは、前記フィルタに接触するセンサケース仕切部(34)を有し、
     前記センサケース仕切部は前記センサケース内部空間を、前記第1開口部に連通する第1センサケース内部空間(C1)と、前記第2開口部に連通する第2センサケース内部空間(C2)とに仕切る、
    請求項1に記載の冷媒検知センサ(30B、30C、30D)。
    The sensor case has a sensor case partition (34) in contact with the filter,
    The sensor case partitioning portion includes a first sensor case internal space (C1) communicating the sensor case internal space with the first opening, and a second sensor case internal space (C2) communicating with the second opening. Divide into
    The refrigerant | coolant detection sensor (30B, 30C, 30D) of Claim 1.
  3.  第1面(S1)および前記第1面とは反対の第2面(S2)を有する回路基板(37)、
    をさらに備え、
     前記少なくとも1つのセンサ素子は、前記第1面に実装された第1センサ素子(42a)と、前記第2面に実装された第2センサ素子(42b)と、を含み、
     前記回路基板は前記センサケース内部空間を、前記第1開口部に連通する第1センサケース内部空間(C1)と、前記第2開口部に連通する第2センサケース内部空間(C2)とに仕切り、
     前記第1センサ素子は前記第1センサケース内部空間に配置され、前記第2センサ素子は前記第2センサケース内部空間に配置される、
    請求項1に記載の冷媒検知センサ(30E)。
    A circuit board (37) having a first surface (S1) and a second surface (S2) opposite to the first surface,
    And further
    The at least one sensor element includes a first sensor element (42a) mounted on the first surface and a second sensor element (42b) mounted on the second surface,
    The circuit board divides the sensor case internal space into a first sensor case internal space (C1) communicating with the first opening and a second sensor case internal space (C2) communicating with the second opening. ,
    The first sensor element is disposed in the first sensor case internal space, and the second sensor element is disposed in the second sensor case internal space.
    The refrigerant detection sensor (30E) according to claim 1.
  4.  前記センサカバーは、前記フィルタに接触するセンサカバー仕切部(43)を有し、
     前記センサカバー仕切部は、前記センサカバーによって規定されるセンサカバー内部空間を、前記第1開口部に連通する第1センサカバー内部空間(V1)と、前記第2開口部に連通する第2センサカバー内部空間(V2)とに仕切る、
    請求項1または2に記載の冷媒検知センサ(30、30A、30B、30C、30D)。
    The sensor cover has a sensor cover partition (43) in contact with the filter,
    The sensor cover partitioning portion communicates a sensor cover internal space defined by the sensor cover with a first sensor cover internal space (V1) communicating with the first opening and a second sensor communicating with the second opening Divide into the cover internal space (V2),
    The refrigerant | coolant detection sensor (30, 30A, 30B, 30C, 30D) of Claim 1 or 2.
  5.  前記少なくとも1つのセンサ素子は、前記センサカバー仕切部を貫通して、前記第1センサカバー内部空間と前記第2センサカバー内部空間の両方に位置する1つのセンサ素子を含む、
    請求項4に記載の冷媒検知センサ。
    The at least one sensor element includes one sensor element which penetrates the sensor cover partition and is located in both the first sensor cover internal space and the second sensor cover internal space.
    The refrigerant | coolant detection sensor of Claim 4.
  6.  前記少なくとも1つのセンサ素子は、前記第1センサカバー内部空間に配置された第1センサ素子(42a)と、前記第2センサカバー内部空間に配置された第2センサ素子(42b)と、を含む、
    請求項4に記載の冷媒検知センサ。
    The at least one sensor element includes a first sensor element (42a) disposed in the first sensor cover internal space, and a second sensor element (42b) disposed in the second sensor cover internal space. ,
    The refrigerant | coolant detection sensor of Claim 4.
  7.  前記フィルタは、第1フィルタ(46)と、前記第1フィルタより粗い第2フィルタ(47)と、を含み、前記第1フィルタは、前記第2フィルタと比較して前記センサ素子のより近くに配置されている、
    請求項1から6のいずれか1つに記載の冷媒検知センサ。
    The filter comprises a first filter (46) and a second filter (47) coarser than the first filter, the first filter being closer to the sensor element as compared to the second filter Are arranged,
    The refrigerant detection sensor according to any one of claims 1 to 6.
  8.  前記フィルタは、前記第1フィルタおよび前記第2フィルタの両方に接触するフィルタ仕切部(48)を有し、
     前記フィルタ仕切部は、前記第1フィルタおよび前記第2フィルタによって規定されるフィルタ内部空間を、前記第1開口部に連通する第1フィルタ内部空間(F1)と、前記第2開口部に連通する第2フィルタ内部空間(F2)とに仕切る、
    請求項7に記載の冷媒検知センサ。
    The filter has a filter partition (48) in contact with both the first filter and the second filter,
    The filter partition unit communicates the filter internal space defined by the first filter and the second filter with the first filter internal space (F1) communicating with the first opening and the second opening. Divide into the second filter internal space (F2),
    The refrigerant detection sensor according to claim 7.
  9.  請求項1から8のいずれか1つに記載の前記冷媒検知センサと、
     筐体内部空間を有する筐体(11)と、
     前記筐体内部空間を第1空間(13a)および第2空間(13b)に仕切る筐体仕切部(12)と、
    を備える、可燃性の前記冷媒ガスを使用する冷凍装置(10)であって、
     前記冷媒検知センサの前記第1開口部は、前記第1検知対象空間である前記第1空間に連通し、
     前記冷媒検知センサの前記第2開口部は、前記第2検知対象空間である前記第2空間に連通する、
    冷凍装置(10)。
    The refrigerant detection sensor according to any one of claims 1 to 8.
    A housing (11) having a housing internal space;
    A case partition section (12) for dividing the case internal space into a first space (13a) and a second space (13b);
    A refrigeration system (10) using the flammable refrigerant gas, comprising:
    The first opening of the refrigerant detection sensor communicates with the first space, which is the first detection target space,
    The second opening of the refrigerant detection sensor communicates with the second space, which is the second detection target space.
    Refrigeration system (10).
PCT/JP2018/025756 2017-07-12 2018-07-06 Refrigerant detection sensor and refrigeration device using same WO2019013135A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880045662.7A CN110869755B (en) 2017-07-12 2018-07-06 Refrigerant detection sensor and refrigeration device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-136383 2017-07-12
JP2017136383A JP6834820B2 (en) 2017-07-12 2017-07-12 Refrigerant detection sensor and refrigeration equipment using it

Publications (1)

Publication Number Publication Date
WO2019013135A1 true WO2019013135A1 (en) 2019-01-17

Family

ID=65002407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025756 WO2019013135A1 (en) 2017-07-12 2018-07-06 Refrigerant detection sensor and refrigeration device using same

Country Status (3)

Country Link
JP (1) JP6834820B2 (en)
CN (1) CN110869755B (en)
WO (1) WO2019013135A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11662109B2 (en) 2019-06-05 2023-05-30 Carrier Corporation Enclosure for gas detector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021127987A (en) * 2020-01-07 2021-09-02 パナソニックIpマネジメント株式会社 Indoor unit
US11326797B2 (en) * 2020-04-14 2022-05-10 Haier Us Appliance Solutions, Inc. Gas sensing system for an air conditioner unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879631A (en) * 1996-04-30 1999-03-09 Manning System, Inc. Gas detection system and method
JP2001093039A (en) * 1999-09-22 2001-04-06 Sanden Corp Automatic vending machine
WO2015029094A1 (en) * 2013-08-25 2015-03-05 Masuda Keiji Leak detecting structure for flammable refrigerant
JP2016090108A (en) * 2014-10-31 2016-05-23 ダイキン工業株式会社 Air conditioner
WO2017109847A1 (en) * 2015-12-22 2017-06-29 三菱電機株式会社 Air conditioner

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882660U (en) * 1981-11-30 1983-06-04 トヨタ自動車株式会社 Oxygen sensor protective cover
JPH0327576U (en) * 1989-07-25 1991-03-19
JP3568060B2 (en) * 1995-03-16 2004-09-22 フィガロ技研株式会社 Gas sensor
JP4596664B2 (en) * 2001-03-02 2010-12-08 大阪瓦斯株式会社 Gas sensor
JP2009198154A (en) * 2007-10-23 2009-09-03 Daikin Ind Ltd Fluid sensor, refrigerant leakage detection device, refrigeration device, and refrigerant leakage detection method
KR20110008888U (en) * 2010-03-12 2011-09-20 박장로 Checking device for piping
JP6375639B2 (en) * 2014-02-21 2018-08-22 ダイキン工業株式会社 Air conditioner
CN204008591U (en) * 2014-04-23 2014-12-10 珠海格力电器股份有限公司 Refrigerant concentration pick-up unit and there is its air-conditioning
JP6565271B2 (en) * 2015-03-31 2019-08-28 ダイキン工業株式会社 Refrigeration unit heat source unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879631A (en) * 1996-04-30 1999-03-09 Manning System, Inc. Gas detection system and method
JP2001093039A (en) * 1999-09-22 2001-04-06 Sanden Corp Automatic vending machine
WO2015029094A1 (en) * 2013-08-25 2015-03-05 Masuda Keiji Leak detecting structure for flammable refrigerant
JP2016090108A (en) * 2014-10-31 2016-05-23 ダイキン工業株式会社 Air conditioner
WO2017109847A1 (en) * 2015-12-22 2017-06-29 三菱電機株式会社 Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11662109B2 (en) 2019-06-05 2023-05-30 Carrier Corporation Enclosure for gas detector

Also Published As

Publication number Publication date
CN110869755B (en) 2021-03-12
CN110869755A (en) 2020-03-06
JP2019019998A (en) 2019-02-07
JP6834820B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
WO2019013135A1 (en) Refrigerant detection sensor and refrigeration device using same
CN110637197B (en) Indoor unit of air conditioner with refrigerant detection sensor
JP4886617B2 (en) Cooling system
JP6529685B1 (en) Air conditioner
WO2019162993A1 (en) Indoor unit for air conditioner and air conditioner comprising same indoor unit
WO2019030796A1 (en) Indoor unit of air conditioning apparatus, air conditioning apparatus, and method for installing indoor unit of air conditioning apparatus
EP2949934B1 (en) Compressor sound-insulating structure and air conditioner provided with compressor having the same
JP2009144955A (en) Outdoor unit of air conditioner
JP2020134126A (en) Indoor unit
JP4722555B2 (en) Centrifugal blower
CN114731086B (en) Motor, motor assembly and air conditioner
US9889454B2 (en) Fluid discharge device
CN111033039A (en) Compressor cover, outdoor unit of air conditioner, and air conditioner
JP2019132820A (en) Anechoic chamber
JP6653455B1 (en) Indoor unit
CN110523232B (en) Gas discharge device with silencing function and silencing method
JP6958127B2 (en) Indoor unit of air conditioner
WO2019198176A1 (en) Indoor unit for air conditioning device
CN205279498U (en) Oil air balance device and use its compressor system thereof
WO2019234902A1 (en) Air-conditioning-device indoor unit and air conditioning device
CN210464825U (en) Gas circuit integrated module device of helium mass spectrometer leak detector
WO2021157071A1 (en) Soundproof cover for compressors, outdoor unit for air conditioners, and air conditioner
JPS62225413A (en) Device for detecting air temperature inside car chamber for automobile air conditioner
KR102421494B1 (en) Guide case and dehumidifier having the same
CN212299210U (en) Outdoor unit and air conditioner provided with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831689

Country of ref document: EP

Kind code of ref document: A1