WO2019013057A1 - 表示装置、表示装置の制御方法、制御プログラム、および電子情報機器 - Google Patents

表示装置、表示装置の制御方法、制御プログラム、および電子情報機器 Download PDF

Info

Publication number
WO2019013057A1
WO2019013057A1 PCT/JP2018/025283 JP2018025283W WO2019013057A1 WO 2019013057 A1 WO2019013057 A1 WO 2019013057A1 JP 2018025283 W JP2018025283 W JP 2018025283W WO 2019013057 A1 WO2019013057 A1 WO 2019013057A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
unit
common voltage
pixel
voltage
Prior art date
Application number
PCT/JP2018/025283
Other languages
English (en)
French (fr)
Inventor
満 千田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2019013057A1 publication Critical patent/WO2019013057A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present invention relates to a display device such as a liquid crystal display device, a control method for the display device, a control program, and an electronic information device such as a smartphone, a tablet or a PC using the same.
  • the present invention relates to a display device and an electronic information device which suppress display defects by adjusting a common voltage (common voltage, counter voltage) applied to an electrode).
  • Liquid crystal display devices are used in electronic information devices such as televisions, smartphones, tablets, PCs, and car navigation systems.
  • a switching unit such as a thin film transistor (hereinafter referred to as TFT: Thin Film Transistor) and a liquid crystal cell having a pixel electrode, a common electrode and a liquid crystal layer interposed are arranged in a matrix. It is done.
  • the pixel electrode is connected to the drain electrode side of the TFT.
  • the common electrode (counter electrode) is an electrode to which a common voltage is applied to all the pixel parts.
  • the common electrode is disposed on the TFT side in a display mode such as IPS (In-Plane Switching) or FFS (Fringe Field Switching).
  • the common electrode is disposed on the side of the substrate opposite to the liquid crystal layer in display modes such as TN (Twisted Nematic) and VA (Vertical Alignment), and the pixel source electrode is a TFT source electrode.
  • Video signal is input from.
  • a driving method is generally used in which the polarity of the applied voltage is alternately inverted to positive polarity and negative polarity for each frame, and the DC voltage component applied to the liquid crystal layer is substantially zero.
  • the voltage (absolute value) of positive polarity and negative polarity applied to the liquid crystal layer is shifted from the substantially equal state to one polarity side.
  • the light transmittances of the liquid crystal layer are made substantially equal, and flicker is minimized.
  • the common voltage adjusted to minimize flicker in this manner is also referred to as an “optimum common voltage (optimum counter voltage)”.
  • the optimum common voltage the light transmittance of the liquid crystal layer becomes equal (the luminance of the image becomes equal) in both cases where the applied voltage is positive or negative, and as a result, the flicker becomes less noticeable .
  • FIG. 4 is data showing an example of the time-dependent change of the optimum common voltage.
  • the data shown in FIG. 4 is obtained based on the measurement results in the test.
  • the optimum common voltage monotonously increases from the initial value V com0 with the display time of the display unit, that is, the time during which the display unit is displaying an image.
  • the liquid crystal display device described in Patent Document 1 calculates a target value of the common voltage based on the display time of the display unit with reference to data indicating the relationship between the display time of the display unit and the optimum common voltage. Then, the common voltage is adjusted so that the common voltage approaches the calculated target value.
  • the inventors depend on not only the display time of the display unit but also the non-display time of the display unit, and (ii) the non-display unit is not It has been found that the optimum common voltage decreases toward the initial value during the display time.
  • the target value of the common voltage is calculated without considering that the optimum common voltage during the display time of the display unit changes during the non-display time of the display unit. ing. Specifically, the target value immediately before the non-display time of the display unit was the same as the target value immediately after the non-display time. Therefore, the calculated target value may deviate from the true optimum common voltage. As a result, display defects such as flicker may occur in the display unit.
  • An aspect of the present invention aims to improve display quality by improving the control method of the optimum common voltage applied to the common electrode.
  • a display device includes a pixel portion, and a display portion taking a display state or a non-display state, and the pixel when the display portion is in the display state.
  • a common voltage control unit for applying a common voltage to the common electrode of the display unit, and the pixel electrode of the pixel unit when the display unit is in the display state, with positive and negative polarities relatively to the common voltage
  • a display device comprising a pixel voltage control unit for alternately applying a pixel voltage, wherein the common voltage control unit and the pixel voltage control unit are connected to the pixel unit when the display unit is in the display state.
  • the common voltage control unit and the pixel voltage control unit control the time during which the display unit is in the non-display state, and The display unit is in the above display state It was based on the time, varying the DC voltage component.
  • a control method of a display device includes a pixel portion, and a display portion taking a display state or a non-display state, and the display portion is in the display state
  • a common voltage control unit that applies a common voltage to the common electrode of the pixel unit, and a pixel electrode of the pixel unit that is relatively positive with respect to the common voltage when the display unit is in the display state
  • a control method of a display device comprising: a pixel voltage control unit for alternately applying a pixel voltage of negative polarity, wherein the display unit is in the display state, and the pixel unit is relative to a common voltage. Fluctuate the DC voltage component based on the time during which the display unit is in the non-display state and the time during which the display unit is in the display state.
  • an electronic information device is an electronic information device equipped with a display device, and the display device includes a pixel portion to display or hide a display state.
  • a display unit and when the display unit is in the display state, the DC voltage component applied to the pixel unit is varied relative to the common voltage, and the display unit is in the non-display state The DC voltage component is varied on the basis of the time when it was and the time when the display unit was in the display state.
  • the display quality of the liquid crystal panel can be improved.
  • FIG. 1 is a block diagram showing a configuration of a liquid crystal display device according to Embodiment 1.
  • 5 is a flowchart showing an operation of the liquid crystal display device according to Embodiment 1.
  • FIG. 6 is a diagram showing an example of control of a common voltage by the liquid crystal display device according to Embodiment 1. It is a figure which shows an example of control of the common voltage by the conventional liquid crystal display device.
  • FIG. 6 is a block diagram showing a configuration of a liquid crystal display device according to Embodiment 2.
  • FIG. 7 is a diagram showing an example of control of a DC voltage component of a pixel voltage by the liquid crystal display device according to Embodiment 2.
  • FIG. 6 is a block diagram showing a configuration of a liquid crystal display device according to Embodiment 3.
  • FIG. 14 is a diagram showing an example of control of direct voltage components of a common voltage and a pixel voltage by the liquid crystal display device according to Embodiment 3.
  • Embodiment 1 Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 3.
  • FIG. 1 is a block diagram showing a schematic configuration of the liquid crystal display device 1 according to the first embodiment.
  • the liquid crystal display device 1 is a display device including a display control unit 10, a display unit 20, a storage unit 30, and a time measurement unit 40.
  • the display control unit 10 controls the display unit 20 in an integrated manner.
  • the display control unit 10 includes a common voltage control unit 12, a video signal processing unit 13, and a drive unit 14.
  • the display control unit 10 changes the direct current voltage component applied relatively to the common voltage to the pixel units constituting the display unit 20 using the common voltage control unit 12 and the drive unit 14.
  • the DC voltage component applied relatively to the common voltage in the pixel unit is the pixel voltage of each pixel unit with respect to the common voltage value that the common voltage control unit 12 applies to the common electrode of each pixel unit.
  • the relative value (voltage difference) of the DC voltage component is shown.
  • the common voltage control unit 12 applies a common voltage to a common electrode of each pixel unit provided in the liquid crystal panel 21 of the display unit 20.
  • the target value of the common voltage is determined at regular time intervals, and the common voltage is adjusted so that the common voltage approaches the target value when the current common voltage value deviates by a predetermined value or more. That is, when the display unit 20 is in the display state, the common voltage control unit 12 changes the common voltage to change the direct current voltage component applied to the pixel unit relative to the common voltage.
  • the common voltage control unit 12 records the history of the common voltage (see FIG. 3) in the storage unit 30. The history of the common voltage includes information on the change with time of the common voltage applied to the common electrode by the common voltage control unit 12.
  • the common voltage control unit 12 changes the common voltage applied to the common electrode of the pixel unit based on the time when the display unit 20 is in the non-display state and the time when the display unit 20 is in the display state. As a result, it is possible to change the DC voltage component applied to the pixel portion relative to the common voltage.
  • the video signal processing unit 13 performs processing such as scaling processing and frequency conversion processing on the video signal supplied to the display control unit 10 from the input terminal of the liquid crystal display device 1 to display the video signal in the display unit 20. Convert to a format suitable for display in.
  • the video signal processing unit 13 outputs the processed video signal to the drive unit 14.
  • the driving unit 14 performs VT correction processing, AC driving processing, and the like on the video signal input from the video signal processing unit 13. Then, the drive unit 14 drives each pixel of the liquid crystal panel 21 with a voltage based on the processed video signal.
  • the driving unit 14 operates as a pixel voltage control unit that alternately applies a positive voltage and a negative voltage relative to the common voltage to the pixel electrodes of the pixel unit.
  • the display unit 20 displays a video based on the video signal input from the display control unit 10.
  • the display unit 20 includes a liquid crystal panel 21 and a light source 22.
  • the liquid crystal panel 21 includes a plurality of pixels (pixel units), and is in a display state or a non-display state.
  • the light source 22 is used as a backlight of the liquid crystal panel 21.
  • the common voltage control unit 12 applies a common voltage to the common electrode of the pixel unit, and the drive unit 14 has pixels with positive and negative polarities relatively to the common voltage. Apply voltage alternately. Further, when the display unit 20 is in the display state, the common voltage control unit 12 and the drive unit 14 can change the DC voltage component applied to the pixel unit relative to the common voltage.
  • the storage unit 30 stores information that the common voltage control unit 12 refers to in order to determine the target value of the common voltage.
  • the storage unit 30 is configured of, for example, a semiconductor memory. As shown in FIG. 1, a history of the common voltage is recorded in the storage unit 30 by the common voltage control unit 12.
  • storage unit 30 shows a first characteristic data indicating the relationship between the display time of display unit 20 and the target value of the common voltage, and the relationship between the non-display time of liquid crystal panel 21 and the target value of the common voltage.
  • the second characteristic data is stored as a look-up table.
  • the display time of the display unit 20 is a time during which the display unit 20 is displaying a certain image (display state), and in the present embodiment, the light source 22 is turned on and then turned off. It is time to Further, the non-display time of the display unit 20 is a time during which the display unit 20 is displaying nothing (non-display state), and in the present embodiment, the light source 22 is turned off and then turned on. It is time to Note that the display state may be a state in which the common voltage control unit 12 applies a common voltage to the common electrode of a plurality of pixels, and the non-display state may be a common electrode of a plurality of pixels The common voltage may not be applied.
  • the time measurement unit 40 includes a timer configured by a non-volatile memory and a counter.
  • the timer of the time measuring unit 40 counts up by one every predetermined time (for example, one minute) by the counter. Then, the time measuring unit 40 stores the count number in the non-volatile memory each time the counter counts up. Further, the time measuring unit 40 notifies the common voltage control unit 12 of the time measured by the counter and the non-volatile memory.
  • FIG. 2 is a sequence diagram showing the flow of the operation of the common voltage control unit 12.
  • FIG. 3 is a diagram showing an example of control of the common voltage by the common voltage control unit 12.
  • t 1 to t 2 is the non-display time described above, that is, the time during which the display unit 20 does not display an image and the light source 22 is turned off.
  • time display described above i.e., the display unit 20 is displaying an image, and the time at which the light source 22 is on.
  • the common voltage control unit 12 applies a preset initial value V com00 of the common voltage to the common electrodes of the plurality of pixels. Further, the common voltage control unit 12, the time t 0 of the light source 22 is lit, and a common voltage V Com00 at that time t 0, as the history of the common voltage, and records in the storage unit 30. After that, while the light source 22 is on, the common voltage control unit 12 adjusts the target value of the common voltage with reference to the first characteristic data stored in the storage unit 30 at predetermined time intervals.
  • the common voltage control unit 12 Adjust the common voltage. Then, at time t 1, the light source 22 is turned off. In this case, the common voltage control unit 12, a time point t 1 where the light source 22 is turned off, and the common voltage V Com01 at that time t 1, as a history of the common voltage, and records in the storage unit 30.
  • a graph shown by a solid line in FIG. 3 corresponds to the first characteristic data described above.
  • the optimum common voltage monotonously increases with time. Therefore, the common voltage V Com01 at time t 1 in which the light source 22 is turned off is greater than the common voltage V Com00 at time t 0 when the light source 22 is turned on.
  • the display time t 1 -t 0 becomes longer, the amount of deviation between the common voltage V com00 and the common voltage V com01 becomes larger.
  • the graph shown by the solid line is non-linear. As the display time t 1 -t 0 becomes longer, the change with time of the common voltage V com01 becomes gentler.
  • the common voltage control unit 12 turns on / off the light source 22 based on information indicating whether the light source 22 is ON / OFF, such as information of luminance or illuminance acquired from the light source 22. It detects that it did (S11).
  • the common voltage control unit 12 calculates the non-display time t 2 -t 1 of the display unit 20 based on the time measured by the timer of the time measurement unit 40 (S12).
  • the common voltage control unit 12 transmits the control signal to turn on the light source 22 from the display control unit 10 to the light source 22 from the time when the control signal to turn off the light source 22 is transmitted from the display control unit 10 to the light source 22
  • the time until the time may be a non-display time of the display unit 20.
  • the common voltage control unit 12 obtains information on the common voltage V com01 at the time t 1 when the light source 22 is turned off (or just before the light source 22 is turned off). Acquire (S13). Further, the common voltage control unit 12 calculates the difference ⁇ V com between the common voltage V com01 and the initial value V com00 .
  • the common voltage control unit 12 refers to the second characteristic data stored in the storage unit 30, that is, data (see FIG. 1) indicating the relationship between the non-display time and the optimum common voltage. Then, the common voltage control unit 12 sets the target value of the common voltage at the time point t 2 based on the non-display time t 2 -t 1 calculated above, the difference ⁇ V com of the common voltage, and the second characteristic data. Calculate V com02 (S14). In the example shown in FIG. 3, as the non-display time t 2 -t 1 of the display unit 20 is longer, the target value V com02 of the common voltage is smaller.
  • the common voltage control unit 12 applies the common voltage Vcom02 determined as the target value to the common electrodes of the plurality of pixels. If the value of the settable common voltage is discrete, for example, in 10 mV steps, the common voltage control unit 12 sets a value closest to the target value as the common voltage V com02 .
  • the common voltage control unit 12 during the display period t 1 -t 0, if it was to adjust the common voltage, at time t 2, the non-display time t 2 -t 1 and the second characteristic data Based on the difference ⁇ V com between the common voltage V com02 (the value to be calculated) and the target value V com01 of the common voltage at time t1 is calculated. Then, the common voltage control unit 12, based on the calculated difference [Delta] V com, calculates the target value V Com02 common voltage at time t 2.
  • the common voltage control unit 12 when the common voltage control unit 12 does not adjust the common voltage during the display time t 1 -t 0 , the common voltage control unit 12 performs the display based on the display time t 1 -t 0 and the first characteristic data at time t 2 .
  • the difference ⁇ V com1 between the common voltage V com01 (the ideal common voltage at time t 1 ) and the initial value V com00 is calculated.
  • the difference ⁇ V com2 between the common voltage V com02 (value to be calculated) and the common voltage V com01 is calculated.
  • the common voltage control unit 12 based on the calculated difference [Delta] V com1 and difference [Delta] V com2, calculates the target value V Com02 common voltage at time t 2. That is, the common voltage control unit 12 calculates the target value V com02 of the common voltage based on both the display time t 1 -t 0 and the non-display time t 2 -t 1 .
  • the common voltage control unit 12 includes a time t 2 the light source 22 is turned on, and a common voltage V Com02 at the time t 2, as the history of the common voltage, and records in the storage unit 30.
  • a graph indicated by a broken line in FIG. 3 corresponds to the second characteristic data described above.
  • the optimum common voltage monotonously decreases with time. Therefore, the target value V Com02 common voltage at time t 2 when the light source 22 is lit, smaller than the common voltage V Com01 at time t 1 in which the light source 22 is turned off.
  • the common voltage V com02 decreases and approaches the initial value V com00 of the optimum common voltage.
  • the common voltage V com02 does not necessarily decrease until it matches the initial value V com00 .
  • a first characteristic data storage unit 30 stores, that is, the display time of the display unit 20 Reference is made to a look-up table or database showing the relationship with the optimum common voltage. Then, the target value of the common voltage is redetermined based on the referred information. Then, the common voltage control unit 12 adjusts the common voltage applied to each pixel of the liquid crystal panel 21 based on the redetermined target value of the common voltage (S15).
  • the common voltage control unit 12 may perform simulation of the time-dependent change of the optimal common voltage, and calculate the optimal common voltage based on the result.
  • the common voltage control unit 12 may calculate the optimum common voltage in accordance with an approximate expression created in advance.
  • the common voltage control unit 12 based on the brightness or illuminance information obtained from the light source 22, detects that the light source 22 is turned off (S16).
  • the common voltage control unit 12 detects that the light source 22 is turned off based on a control signal corresponding to the turning off of the light source 22 or a command issued from a light source control unit (not shown) that controls the light source. May be Alternatively, the common voltage control unit 12 may detect that the light source 22 is turned off based on the voltage or current applied to the light source 22.
  • the common voltage control unit 12 records information of the common voltage V com03 at time t 3 at which the light source 22 is turned off (or immediately before the light source 22 is turned off) in the storage unit 30 as a history of common voltages (S17) . Thereafter, when the light source 22 is turned on again, the sequence returns to S11.
  • the reason why the optimum common voltage changes during the non-display time t 2 -t 1 is that the charges, ions and charged particles accumulated at the interface of the liquid crystal and the alignment film during the display time t 1 -t 0 It is considered that the non-display time t 2 -t 1 is to diffuse again.
  • the common voltage target value V Com02 Decide.
  • the optimal common voltage basically approaches the initial value V com00 as the non-display time of the display unit 20 increases.
  • the target value V Com02 common voltage than the common voltage V Com01 at time t 1 in which the light source 22 is turned off approach the initial value V com00.
  • the display quality of the liquid crystal panel 21 can be improved.
  • FIG. 5 is a block diagram showing a schematic configuration of the liquid crystal display device 1 according to the second embodiment.
  • the basic configuration of the liquid crystal display device 1 according to the present embodiment is the same as that of the first embodiment, but the common voltage applied by the common voltage control unit 12 is a constant value.
  • the driving unit 14 controls the DC voltage component of the pixel voltage of each pixel unit to control the DC voltage component applied to the pixel unit relative to the common voltage.
  • the common voltage control unit 12 applies the common voltage to the common electrode of each pixel unit provided in the liquid crystal panel 21 of the display unit 20 in the same manner as the first embodiment but the common voltage to be applied is constant. The point is different.
  • the driving unit 14 is the same as that of the first embodiment in that each pixel of the liquid crystal panel 21 is driven by a voltage based on the processed video signal.
  • the drive unit 14 is a relative value of the DC voltage component of the pixel voltage of each pixel unit with respect to the common voltage value that the common voltage control unit 12 applies to the common electrode of each pixel unit every fixed time (voltage difference Determine the target value for). That is, the drive unit 14 adjusts the DC voltage component of the pixel voltage of each pixel unit so that the relative value of the DC voltage component of the pixel voltage of each pixel unit with respect to the common voltage value approaches the target value.
  • the drive unit 14 changes the DC offset component of the pixel voltage to change the DC voltage component applied to the pixel unit relative to the common voltage. Vary. Furthermore, the drive unit 14 fluctuates the DC offset component of the pixel voltage based on the time during which the display unit 20 is in the non-display state and the time during which the display unit 20 is in the display state.
  • the drive unit 14 records the history of the relative value of the DC offset component of the pixel voltage in the storage unit 30.
  • the history of the relative value of the DC offset component of the pixel voltage includes the information of the change with time of the relative value of the DC offset component of the pixel voltage applied to each pixel unit by the drive unit 14. A specific method of determining the target value for the relative value of the DC voltage component of the pixel voltage of each pixel unit to the common voltage value will be described later.
  • the basic configuration of the storage unit 30 is the same as that of the first embodiment, but the drive unit 14 refers to the target value for the relative value of the DC voltage component of the pixel voltage of each pixel unit to the common voltage value. Differs in that it stores the information to be
  • the storage unit 30 is configured of, for example, a semiconductor memory. As shown in FIG. 5, in the storage unit 30, the history of the DC offset component of the pixel voltage is recorded by the drive unit 14. In addition, the storage unit 30 stores, as a lookup table, first characteristic data indicating the relationship between the display time of the display unit 20 and the target value of the DC offset component of the pixel voltage of each pixel unit relative to the common voltage value. doing. Storage unit 30 further looks up second characteristic data indicating the relationship between the non-display time of liquid crystal panel 21 and the target value of the relative value of the DC voltage component of the pixel voltage of each pixel to the common voltage value. I remember as.
  • FIG. 6 is a diagram showing an example of control of the DC voltage component of the pixel voltage by the drive unit 14.
  • the each t 0 ⁇ t 3 shows the same contents as each of t 0 ⁇ t 3 in FIG.
  • FIG. 6 is an optimal offset voltage value (optimum voltage value) adjusted so as to minimize flicker with respect to the voltage difference of the DC voltage component of the pixel voltage of each pixel unit with respect to the common voltage of a fixed value.
  • the driving unit 14 includes a time t 0 when the light source 22 is turned on, certain common relative value of the DC voltage component of the pixel voltage of each pixel unit for voltage and (voltage difference) V pix00, DC voltage of the pixel voltage
  • the history of the component is recorded in the storage unit 30.
  • the drive unit 14 refers to the first characteristic data stored in the storage unit 30 at predetermined time intervals to check the pixel voltage of each pixel unit with respect to the common voltage value. Adjust the target value for the relative value (voltage difference) of the DC voltage component.
  • the drive unit 14 calculates the relative value of the DC voltage component of the pixel voltage of each pixel unit to the current common voltage value according to the first characteristic data during the display time t 1 -t 0 during which the light source 22 is lit.
  • the DC voltage component of the pixel voltage of each pixel unit is adjusted.
  • the light source 22 is turned off.
  • the drive unit 14, the time t 1 to the light source 22 is turned off, the relative value of the DC voltage component of the pixel voltage of the pixel units for a given common voltage (voltage difference) and V Pix01, DC pixel voltage
  • the history of the voltage component is recorded in the storage unit 30.
  • the drive unit 14 sets the second characteristic data stored in the storage unit 30, that is, a target value for the relative value (voltage difference) of the DC voltage component of the pixel voltage of each pixel unit with respect to the non-display time and the common voltage value. Refer to the data showing the relationship with. Then, the driving unit 14 determines the pixel voltage of each pixel unit with respect to the common voltage value at time t 2 based on the non-display time calculated above, the difference between the DC voltage components of the pixel voltage, and the second characteristic data.
  • the target value of the relative value (voltage difference) V pix02 of the DC voltage component of The drive unit 14 applies a DC voltage component of the pixel voltage of each pixel unit to the plurality of pixels so as to satisfy the relative value of the voltage difference determined as the target value.
  • a first characteristic data storage unit 30 stores, in other words, the display of the display unit 20
  • a look-up table or database showing the relationship between the time and the target value for the relative value of the DC voltage component of the pixel voltage of each pixel section to the common voltage value is referred to.
  • the target value for the relative value (voltage difference) of the DC voltage component of the pixel voltage of each pixel unit to the common voltage value is redetermined.
  • the drive unit 14 adjusts the DC offset component of the pixel voltage applied to each pixel of the liquid crystal panel 21 based on the redetermined target value.
  • the liquid crystal display device 1 exhibits the same operation and effect as the first embodiment in which the common voltage is changed by changing the DC voltage component of each pixel unit with respect to the constant common voltage. That is, display defects such as flicker can be suppressed, and display quality can be improved.
  • FIG. 7 is a block diagram showing a schematic configuration of the liquid crystal display device 1 according to the third embodiment.
  • the basic configuration of the liquid crystal display device 1 according to the present embodiment is the same as that of the second embodiment, but the configuration is partially different.
  • the liquid crystal display device 1 according to the present embodiment changes the common voltage applied by the common voltage control unit 12 in the same manner as in the first embodiment.
  • the drive unit 14 fluctuates the DC offset component of the pixel voltage.
  • the DC voltage component applied to the pixel portion relative to the common voltage is varied.
  • the common voltage control unit 12 fluctuates the common voltage based on the time when the display unit 20 is in the non-display state and the time when the display state is;
  • the drive unit 14 fluctuates the DC voltage component of the pixel voltage. This differs in that the DC voltage component applied to the pixel portion relative to the common voltage is varied.
  • the common voltage control unit 12 has the same configuration as that of the first embodiment. That is, a common voltage is applied to the common electrode of each pixel unit provided in the liquid crystal panel 21 of the display unit 20.
  • the target value of the common voltage is determined at regular time intervals, and the common voltage is adjusted so that the common voltage approaches the target value when the current common voltage value deviates by a predetermined value or more.
  • the drive unit 14 has the same configuration as that of the second embodiment. That is, each pixel of the liquid crystal panel 21 is driven by a voltage based on the processed video signal. In addition, a target value for the relative value (voltage difference) of the DC voltage component of the pixel voltage of each pixel unit with respect to the common voltage value is determined every fixed time. The DC voltage component of the pixel voltage of each pixel unit is adjusted such that the relative value of the DC voltage component of the pixel voltage of each pixel unit with respect to the common voltage value approaches the target value.
  • the storage unit 30 is configured to include both of the configurations shown in the first and second embodiments. That is, the information referred to by the common voltage control unit 12 for determining the target value of the common voltage, and the drive unit 14 determine the target value for the relative value of the DC voltage component of the pixel voltage of each pixel unit to the common voltage value. Store information to refer to.
  • FIG. 8 is a diagram showing an example of control by the common voltage control unit 12 and the drive unit 14.
  • FIG. 8 shows the same contents as each of t 0 ⁇ t 3 in FIG. 3 and FIG. Further, FIG. 8 shows optimum voltage values adjusted so as to minimize flicker with respect to the voltage difference of the DC voltage component of the pixel voltage of each pixel unit with respect to the common voltage.
  • the light source 22 is turned on.
  • the common voltage control unit 12 and the drive unit 14 give an initial value V dif00 to the plurality of pixels for the voltage difference between the common voltage applied to the common electrode of each pixel and the DC component of the pixel voltage.
  • the common voltage control unit 12, the time t 0 of the light source 22 is lit, and a common voltage at the time t 0, as the history of the common voltage, and records in the storage unit 30.
  • the drive unit 14 sets the time point t 0 and the relative value (voltage difference) of the DC voltage component of the pixel voltage of each pixel unit to the common voltage at that time point 0 as the history of the DC voltage component of the pixel voltage
  • the data is recorded in the storage unit 30.
  • the common voltage control unit 12 and the drive unit 14 store the first characteristic data on the display time and the common voltage and the display time stored in the storage unit 30 every predetermined time. And first characteristic data relating to the relative value of the DC voltage component of the pixel voltage of each pixel unit with respect to the common voltage value. Then, in order to satisfy the voltage difference V dif 01 between the common voltage applied to the common electrode of the pixel and the DC component of the pixel voltage, the DC voltage component of the pixel voltage of each pixel section with respect to the target value and common voltage value of the common voltage Adjust the target value to the relative value.
  • the common voltage control unit 12 sets the target value for the current common voltage value according to the first characteristic data on the display time and the common voltage during the display time t 1 -t 0 during which the light source 22 is lit. If the voltage V.sub.2 deviates by a predetermined value or more, the common voltage is adjusted. Furthermore, the drive unit 14 calculates the relative value of the DC voltage component of the pixel voltage of each pixel unit to the current common voltage value according to the first characteristic data during the display time t 1 -t 0 during which the light source 22 is lit. When (voltage difference) deviates from the target value by a fixed value or more, the DC voltage component of the pixel voltage of each pixel unit is adjusted.
  • the light source 22 is turned off.
  • the common voltage control unit 12 a time point t 1 where the light source 22 is turned off, and a common voltage at the time t 1, as a history of the common voltage, and records in the storage unit 30.
  • the driving unit 14 includes a time t 1 that light source 22 is turned off, the relative value of the DC voltage component of the pixel voltage of the pixel units for a given common voltage and a (voltage difference) of the DC voltage component of the pixel voltage As the history, it is recorded in the storage unit 30.
  • the common voltage control unit 12 refers to the second characteristic data on the non-display time and the common voltage stored in the storage unit 30. Then, the non-display time t 2 -t 1 calculated above, the target value V dif 02 of the voltage difference between the common voltage applied to the common electrode of the pixel and the DC component of the pixel voltage, and the second characteristic data. Based on the target value of the common voltage at time t 2 is calculated. Further, the drive unit 14 refers to second characteristic data on the relative value (voltage difference) of the DC voltage component of the pixel voltage of each pixel unit with respect to the non-display time stored in the storage unit 30 and the common voltage value.
  • the display control unit 10 stores The first characteristic data on the relative value of the DC voltage component of the pixel voltage of each pixel unit to the time and the common voltage value is referred to. Then, in order to satisfy the voltage difference V dif 03 between the common voltage applied to the common electrode of the pixel and the DC component of the pixel voltage, the DC voltage component of the pixel voltage of each pixel section with respect to the target value and common voltage value of the common voltage is Redetermine the target value for the relative value.
  • the common voltage control unit 12 adjusts the common voltage to be applied to each pixel of the liquid crystal panel 21 based on the redetermined target value of the common voltage, and the drive unit 14 adjusts the common value based on the redetermined target value.
  • the DC voltage component of the pixel voltage applied to each pixel of the liquid crystal panel 21 is adjusted.
  • the liquid crystal display device 1 fluctuates the common voltage and the DC voltage component of each pixel unit with respect to the common voltage.
  • the same effects as those of the first embodiment in which only the common voltage is varied and the second embodiment in which only the DC voltage component of each pixel unit is varied are exhibited. That is, display defects such as flicker can be suppressed, and display quality can be improved.
  • the optimal common voltage for each pixel voltage or the variation of the optimal common voltage is different, the variation of the entire display unit 20 is controlled by the variation of the common voltage, and the variation for each gray level is a direct current of the pixel voltage It controls by the fluctuation of ingredient.
  • Embodiment 4 It will be as follows if other embodiment of this invention is described. In addition, about the member which has the same function as the member demonstrated in the said embodiment for convenience of explanation, the same code
  • the liquid crystal display device 1 has a display mode in which the display control unit 10 drives the display unit 20 at a frame frequency of 30 Hz or less. According to the above configuration, the power consumption of the liquid crystal display device 1 can be reduced as compared with a configuration using a frame frequency of 60 Hz or 120 Hz.
  • a display mode of the liquid crystal display device 1 TN (Twisted Nematic), VA (Vertical Alignment), IPS (In-Plain Switching), FFS (Fringe Field Switching) mode or the like can be applied. With any of the configurations, it is possible to reduce the power consumption of the liquid crystal display device 1 while improving the display defect such as the flicker of the display unit 20.
  • the display control unit 10 of the liquid crystal display device 1 drives the display unit 20 to pause. That is, it is desirable that the frame period includes a frame period including a refresh period in which the screen of the display unit 20 is refreshed and a pause period which is the same as or longer than the refresh period. Also, it is desirable that the idle period be an integral multiple of the refresh period. According to the above configuration, the power consumption of the liquid crystal display device 1 can be further reduced. The above configuration is applicable when the frame frequency is about 30 Hz to 0.1 Hz.
  • the conventional liquid crystal display device when the frame frequency is lowered from 60 Hz or 120 Hz, which has been widely used up to this point, to 30 Hz, flicker is clearly visible.
  • the DC voltage component applied relatively to the common voltage to the pixel unit approaches the optimal value. By adjusting to, it is possible to suppress display defects such as flicker. Therefore, even when the display unit 20 is driven at a frame frequency of 30 Hz or less, for example, 20 Hz, 15 Hz, etc., it is possible to suppress noticeable flicker.
  • switching of the pixel portion is performed via a thin film transistor (TFT) or the like.
  • TFT thin film transistor
  • Amorphous silicon, polycrystalline silicon, a metal oxide semiconductor or the like can be used as a semiconductor for controlling the transistor.
  • a semiconductor with a small leakage current when the transistor is off is desirable.
  • a semiconductor having a large on-state current is desirable. Examples of such a semiconductor include, but not limited to, InGaZnO or the like which is composed of indium (In), gallium (Ga), zinc (Zn), and oxygen (O).
  • liquid crystal As a material of the liquid crystal, either a negative liquid crystal with negative dielectric anisotropy or a positive liquid crystal with positive dielectric anisotropy can be used.
  • any of an inorganic alignment film and an organic alignment film can be applied.
  • a rubbing alignment film, a photo alignment film, etc. can be used.
  • the alignment film may have a single layer structure or a structure of two or more layers including an upper layer and a lower layer.
  • the upper layer may mainly control the alignment
  • the lower layer may mainly control the electrical characteristics and mechanical strength.
  • the photoalignment film one having a cinnamate group, one having an azobenzene, one having a cyclobutane ring, or the like is applicable.
  • the insulating layer is Layers or inorganic layers are available.
  • the organic layer polyimide or the like can be used, and as the inorganic layer, a silicon nitride film, a silicon oxide film, a silicon oxynitride film, or the like can be used.
  • the insulating layer may have a laminated structure of a plurality of materials.
  • the liquid crystal display device 1 may be mounted on an electronic information device such as a television, a smartphone, a tablet, a PC, and a car navigation.
  • the display control unit 10 including the common voltage control unit 12 may be in the liquid crystal display device 1 as described above in the electronic information device, or may be outside the liquid crystal display device 1.
  • the control block (in particular, the display control unit 10) of the liquid crystal display device 1 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or by using a CPU (Central Processing Unit). It may be realized by software.
  • the liquid crystal display device 1 is a CPU that executes instructions of a program that is software that realizes each function, and a ROM (Read Only Memory) in which the program and various data are readably recorded by a computer (or CPU).
  • a storage device (these are referred to as “recording media”), a RAM (Random Access Memory) for developing the program, and the like are provided.
  • the object of the present invention is achieved by the computer (or CPU) reading the program from the recording medium and executing the program.
  • a “non-transitory tangible medium”, for example, a tape, a disk, a card, a semiconductor memory, a programmable logic circuit or the like can be used.
  • the program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
  • any transmission medium communication network, broadcast wave, etc.
  • one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
  • a display device (liquid crystal display device 1) according to aspect 1 of the present invention includes a pixel portion, and a display portion (20) in a display state or a non-display state, and the pixel when the display portion is in the display state.
  • a pixel voltage control unit (drive unit 14) for alternately applying a pixel voltage of negative polarity, wherein the common voltage control unit and the pixel voltage control unit are configured to display the display state in the display state.
  • the DC voltage component applied to the pixel unit relative to the common voltage is varied, and the common voltage control unit and the pixel voltage control unit are configured to control the display unit in the non-display state. And the above display unit Based on the a time the display state, a configuration for varying the DC voltage component.
  • the time during which the display unit is in the non-display state is a DC voltage component applied to the pixel unit relative to the common voltage. It is varied based on Therefore, the DC voltage component applied relatively to the common voltage to the pixel unit becomes closer to the optimum voltage value, as compared with the configuration in which the time during which the display unit is in the non-display state is not taken into consideration.
  • the optimal voltage value is a DC voltage component applied relatively to the common voltage to the pixel portion when the occurrence of display defects such as flicker can be minimized. Further, display quality can be improved by applying a DC voltage component close to the optimal DC voltage component to the pixel portion.
  • the common voltage control section (12) determines the time during which the display section (20) is in the non-display state; The common voltage may be varied based on the time during which the display unit is in the display state.
  • the common voltage control unit (12) makes the common voltage constant, and the pixel voltage control unit (drive unit 14)
  • the direct current voltage component of the pixel voltage may be varied based on the time during which the display unit (20) is in the non-display state and the time during which the display unit is in the display state.
  • the common voltage is fixed, and based on the display time and the non-display time, the DC component of the source voltage that alternately applies positive and negative polarities relative to the common voltage is varied.
  • the DC component of the source voltage that alternately applies positive and negative polarities relative to the common voltage is varied.
  • the time during which the display unit (20) is in the non-display state and the display portion is in the display state in the above-mentioned aspect 1 (I) The common voltage control unit (12) varies the common voltage based on time, and (ii) the pixel voltage control unit (drive unit 14) varies the DC voltage component of the pixel voltage It may be
  • the DC voltage component applied relative to the common voltage is changed in the pixel unit by changing both the common voltage and the DC voltage component of the pixel voltage, and flicker or the like is generated. To improve the display quality.
  • the display state is a state in which at least the light source of the display unit (20) is on;
  • the non-display state may be a state in which at least the light source of the display unit is turned off.
  • the display state and the non-display state of the display unit can be determined based on whether or not the light source of the display unit is on.
  • the common voltage control section (12) is (i) while the display section (20) is in the display state.
  • the common voltage applied to the common electrode is determined and adjusted based on the time in the display state, and (ii) the display state is the display state when the display portion changes from the non-display state to the display state.
  • the common voltage applied to the common electrode may be determined based on the common voltage at that time and the time during which the display unit is in the non-display state.
  • the common voltage close to the optimum common electrode can be determined as the common voltage to be applied to the common electrode based on the conditions (i) and (ii).
  • the common voltage control unit (12) is (i) while the display portion (20) is in the display state. (Ii) the time during which the display unit is in the non-display state when the display unit changes from the non-display state to the display state without adjusting the common voltage applied to the common electrode;
  • the common voltage to be applied to the common electrode may be determined based on the time when the display state was previously.
  • the configuration of the seventh aspect is the same as the sixth aspect in that the common voltage close to the optimum common electrode is determined as the common voltage to be applied to the common electrode based on the conditions (i) and (ii). is there.
  • the configuration of the seventh aspect is different from the configuration of the sixth aspect in that the common voltage applied to the common electrode is not adjusted while the display section is in the display state.
  • the common voltage control section In the display device (liquid crystal display device 1) according to aspect 8 of the present invention, in the above aspect 6 or 7, when the display section (20) changes from the non-display state to the display state, the common voltage control section The common voltage applied to the common electrode by (12) may be different from the common voltage applied to the common electrode immediately before the display unit enters the non-display state.
  • the configuration in which the change in the optimum common voltage is not considered while the display unit is in the non-display state, that is, applied to the common electrode when the display unit changes from the non-display state to the display state A common voltage closer to the optimum common voltage as a common voltage applied to the common electrode as compared to a configuration in which the common voltage is the same as the common voltage applied to the common electrode immediately before the display unit is turned off It can be decided.
  • the display device (liquid crystal display device 1) according to aspect 9 of the present invention may be configured to have a mode for driving the display section (20) at a frame frequency of 30 Hz or less in any of the above aspects 1 to 8.
  • the display device can be reduced as compared to a configuration in which the display unit is driven at a frame frequency of 60 Hz or 120 Hz.
  • the display unit is driven at a frame frequency of 30 Hz or less, display defects such as flicker are less noticeable because the above-described effect of improving the display quality can be obtained.
  • the frame frequency for driving the display unit at a frequency of 30 Hz or less, particularly 20 Hz or less, the effects of the present invention become higher due to the relationship between human visibility and voltage holding of liquid crystal.
  • a control method of a display device includes a display unit (20) including a pixel unit and taking a display state or a non-display state, and the display unit is in the display state
  • a control method of a display device comprising a pixel voltage control unit (drive unit 14) for alternately applying positive and negative pixel voltages, wherein the display unit is in the display state, and the pixel unit is provided.
  • the DC voltage component applied relative to the common voltage is varied, and further, based on the time during which the display unit is in the non-display state and the time during which the display unit is in the display state. To fluctuate the DC voltage component. According to the above configuration, the same effect as that of the display device according to the above aspect 1 can be obtained.
  • the display device may be realized by a computer.
  • the display device is realized by the computer by operating the computer as each unit (software element) included in the display device.
  • a control program of a display device and a computer readable recording medium recording the same also fall within the scope of the present invention.
  • An electronic information device equipped with the display device (liquid crystal display device 1) according to each aspect of the present invention also falls within the scope of the present invention.

Abstract

共通電極に印加する共通電圧の計算方法を改善することによって、表示品質を改善する。共通電圧制御部(12)は、表示部(20)が非表示状態であった時間、および、表示部(20)が表示状態であった時間に基づいて、表示部が備えた画素部の共通電極に実質的に印加される共通電圧(直流電圧成分)を変動させる。

Description

表示装置、表示装置の制御方法、制御プログラム、および電子情報機器
 本発明は、液晶表示装置などの表示装置、表示装置の制御方法、制御プログラム、およびこれを用いたスマートフォン、タブレット、PCなどの電子情報機器に関し、特に、画素部の共通電極(コモン電極、対向電極)に印加する共通電圧(コモン電圧、対向電圧)を調整することによって、表示不良を抑制する表示装置、電子情報機器に関する。
 液晶表示装置は、テレビ、スマートフォン、タブレット、PC、カーナビゲーション等の電子情報機器に利用されている。従来の液晶表示装置は、薄膜トランジスタ(以下、TFT:Thin Film Transistor)などのスイッチング手段と、画素電極と共通電極と液晶層が挟持された液晶セルによって構成された複数の画素部がマトリクス状に配列されている。画素電極はTFTのドレイン電極側に接続されている。共通電極(対向電極)は、すべての画素部に共通な電圧が印加される電極である。共通電極は、IPS(In-Plane Switching),FFS(Fringe Field Switching)などの表示モードにおいてはTFT側に配置される。また、共通電極は、TN(Twisted Nematic)、VA(Vertical Alignment)などの表示モードにおいては液晶層を介して対向して配置された基板側に配置され、画素電極に対してはTFTのソース電極から映像信号が入力される。
 液晶表示装置において、直流電圧(DC電圧)で駆動し続けると、電荷が蓄積したり、液晶層(液晶材料)、電極等に化学反応(例えば、酸化還元反応)が生じたりして、表示特性が劣化する。そのため、印加電圧の極性を1フレーム毎に正極性及び負極性に交互に反転させ、液晶層に印加される直流電圧成分をほぼゼロとする駆動方法が一般的に用いられる。しかしながら、液晶層(液晶分子)の応答特性が印加電圧の極性(正極性及び負極性)によって異なる場合、液晶層に印加する正極性及び負極性の電圧の絶対値を互いに等しくしても、これらの電圧に対する液晶層の光透過率は等しくならない。その結果、画像の輝度が異なり、1フレーム毎に生じる明暗の差によるフリッカが発生する。これに対して、各フレームにおける液晶層の光透過率が等しくなるように、正極性及び負極性の電圧(絶対値)を調整したり、共通電極に印加される電圧(以下、共通電圧(対向電圧)とも言う。)を調整したりする。こうすることで、液晶層に印加する正極性及び負極性の電圧(絶対値)を、互いに実質的に等しい状態から一方の極性側にシフトさせる。これにより、液晶層の光透過率が概ね等しくなるようにし、フリッカを最小化させる。このようにフリッカを最小化させるように調整された共通電圧は、「最適共通電圧(最適対向電圧)」とも呼ばれる。最適共通電圧によれば、印加電圧が正極性である場合及び負極性である場合の両方において、液晶層の光透過率が等しくなり(画像の輝度が等しくなり)、その結果、フリッカが目立たなくなる。
 この最適共通電圧は、一般的に、経時変化することが知られている。図4は、最適共通電圧の経時変化の一例を示すデータである。図4に示すデータは、試験における測定結果に基づいて得られる。図4に示すデータにおいては、最適共通電圧は、初期値Vcom0から、表示部の表示時間、つまり、表示部が映像を表示していた時間とともに単調に増大している。
 特許文献1に記載の液晶表示装置は、表示部の表示時間と最適共通電圧との関係を示すデータを参照して、表示部の表示時間に基づいて、共通電圧の目標値を計算する。そして、共通電圧が計算した目標値に近づくように、共通電圧を調整する。
日本国公開特許公報「特開2008-139586号(2008年6月19日公開)」
 発明者らは、鋭意検討を重ねた結果、(i)最適共通電圧は、表示部の表示時間だけでなく、表示部の非表示時間にも依存すること、また、(ii)表示部の非表示時間の経過中、最適共通電圧は、初期値に近づくように低下することを発見した。一方、特許文献1に記載の液晶表示装置は、表示部の表示時間中における最適共通電圧が、表示部の非表示時間中に変化することを考慮せずに、共通電圧の目標値を計算している。具体的には、表示部の非表示時間の直前における目標値と、非表示時間の直後における目標値が同じであった。そのため、計算された目標値が、本当の最適共通電圧からずれる可能性がある。その結果、表示部には、フリッカなどの表示不良が生じる場合があった。
 本発明の一態様は、共通電極に印加する最適共通電圧の制御方法を改善することによって、表示品質を改善することを目的とする。
 上記の課題を解決するために、本発明の一態様に係る表示装置は、画素部を備え、表示状態または非表示状態をとる表示部と、上記表示部が上記表示状態であるとき、上記画素部の共通電極に共通電圧を印加する共通電圧制御部と、上記表示部が上記表示状態であるとき、上記画素部の画素電極に、上記共通電圧に対して相対的に正極性と負極性の画素電圧を交互に印加する画素電圧制御部と、を備えた表示装置であって、上記共通電圧制御部および上記画素電圧制御部は、上記表示部が上記表示状態であるとき、上記画素部に、共通電圧に対して相対的に印加される直流電圧成分を変動させ、さらに、上記共通電圧制御部および上記画素電圧制御部は、上記表示部が上記非表示状態であった時間、および、上記表示部が上記表示状態であった時間に基づいて、上記直流電圧成分を変動させる。
 上記の課題を解決するために、本発明の一態様に係る表示装置の制御方法は、画素部を備え、表示状態または非表示状態をとる表示部と、上記表示部が上記表示状態であるとき、上記画素部の共通電極に共通電圧を印加する共通電圧制御部と、上記表示部が上記表示状態であるとき、上記画素部の画素電極に、上記共通電圧に対して相対的に正極性と負極性の画素電圧を交互に印加する画素電圧制御部と、を備えた表示装置の制御方法であって、上記表示部が上記表示状態であるとき、上記画素部に、共通電圧に対して相対的に印加される直流電圧成分を変動させ、さらに、上記表示部が上記非表示状態であった時間、および、上記表示部が上記表示状態であった時間に基づいて、上記直流電圧成分を変動させる。
 上記の課題を解決するために、本発明の一態様に係る電子情報機器は、表示装置を搭載した電子情報機器であって、上記表示装置は、画素部を備えて表示状態または非表示状態をとる表示部を備え、上記表示部が上記表示状態であるとき、上記画素部に、共通電圧に対して相対的に印加される直流電圧成分を変動させ、さらに、上記表示部が上記非表示状態であった時間、および、上記表示部が上記表示状態であった時間に基づいて、上記直流電圧成分を変動させる。
 本発明の一態様によれば、液晶パネルの表示品質を改善することができる。
実施形態1に係る液晶表示装置の構成を示すブロック図である。 実施形態1に係る液晶表示装置の動作を示すフローチャートである。 実施形態1に係る液晶表示装置による共通電圧の制御の一例を示す図である。 従来の液晶表示装置による共通電圧の制御の一例を示す図である。 実施形態2に係る液晶表示装置の構成を示すブロック図である。 実施形態2に係る液晶表示装置による画素電圧の直流電圧成分の制御の一例を示す図である。 実施形態3に係る液晶表示装置の構成を示すブロック図である。 実施形態3に係る液晶表示装置による共通電圧および画素電圧の直流電圧成分の制御の一例を示す図である。
 〔実施形態1〕
 以下、本発明の実施の形態について、図1~図3を用いて詳細に説明する。
 (液晶表示装置1の構成)
 図1は、実施形態1に係る液晶表示装置1の概略的な構成を示すブロック図である。図1に示すように、液晶表示装置1は、表示制御部10、表示部20、記憶部30、および時間計測部40を備えている表示装置である。
 表示制御部10は、表示部20を統合的に制御する。図1に示すように、表示制御部10は、共通電圧制御部12、映像信号処理部13、および駆動部14を含む。表示制御部10は、共通電圧制御部12および駆動部14を用いて、表示部20を構成する画素部に、共通電圧に対して相対的に印加される直流電圧成分を変動させる。ここで、画素部に、共通電圧に対して相対的に印加される直流電圧成分とは、共通電圧制御部12が各画素部の共通電極に印加する共通電圧値に対する各画素部の画素電圧の直流電圧成分の相対値(電圧差)を示している。
 共通電圧制御部12は、表示部20の液晶パネル21が備えた各画素部の共通電極に対して、共通電圧を印加する。また、一定時間ごとに、共通電圧の目標値を決定し、現状の共通電圧値に対して、一定値以上ずれる場合には、共通電圧が目標値に近づくように、共通電圧を調整する。すなわち、共通電圧制御部12は、表示部20が表示状態であるとき、共通電圧を変動させることによって、画素部に、共通電圧に対して相対的に印加される直流電圧成分を変動させる。共通電圧制御部12は、共通電圧の履歴(図3参照)を記憶部30に記録する。共通電圧の履歴は、共通電圧制御部12が共通電極に印加した共通電圧の経時変化の情報を含む。なお、共通電圧の目標値の具体的な決定方法については後述する。さらに、共通電圧制御部12は、表示部20が非表示状態であった時間、および当該表示部20が表示状態であった時間に基づいて画素部の共通電極に印加する共通電圧を変動させる。これにより、画素部に、共通電圧に対して相対的に印加される直流電圧成分を変動させることができる。
 映像信号処理部13は、液晶表示装置1の入力端子から表示制御部10へ供給される映像信号に対し、スケーリング処理や周波数変換処理などの処理を実行することによって、映像信号を、表示部20で表示するのに適した形式に変換する。映像信号処理部13は、処理した映像信号を、駆動部14に出力する。駆動部14は、映像信号処理部13から入力される映像信号に対して、V-T補正処理や交流駆動処理等を行う。そして、駆動部14は、処理した映像信号に基づいて、液晶パネル21の各画素を電圧で駆動する。駆動部14は、画素部の画素電極に、共通電圧に対して、相対的に正極性と負極性の電圧を交互に印加する画素電圧制御部として動作する。
 表示部20は、表示制御部10から入力される映像信号に基づく映像を表示する。表示部20は、液晶パネル21と光源22とを備えている。液晶パネル21は、複数の画素(画素部)を備えており、表示状態または非表示状態をとる。光源22は、液晶パネル21のバックライトとして使用される。
 表示部20が表示状態であるとき、共通電圧制御部12は、画素部の共通電極に共通電圧を印加し、駆動部14は、当該共通電圧に対して相対的に正極性と負極性の画素電圧を交互に印加する。また、表示部20が表示状態であるとき、共通電圧制御部12および駆動部14は、画素部に、共通電圧に対して相対的に印加される直流電圧成分を変動させることができる。
 記憶部30は、共通電圧制御部12が共通電圧の目標値を決定するために参照する情報を記憶する。記憶部30は、例えば、半導体メモリによって構成されている。図1に示すように、記憶部30には、共通電圧制御部12によって、共通電圧の履歴が記録されている。また、記憶部30は、表示部20の表示時間と共通電圧の目標値との関係を示す第1の特性データ、および、液晶パネル21の非表示時間と共通電圧の目標値との関係を示す第2の特性データを、ルックアップテーブルとして記憶している。
 ここで、表示部20の表示時間とは、表示部20が何らかの映像を表示している状態(表示状態)である時間のことであり、本実施形態では、光源22が点灯してから消灯するまでの時間である。また、表示部20の非表示時間とは、表示部20が何も表示していない状態(非表示状態)である時間のことであり、本実施形態では、光源22が消灯してから点灯するまでの時間である。なお、表示状態は、共通電圧制御部12が複数の画素の共通電極に共通電圧を印加している状態であってもよく、非表示状態は、共通電圧制御部12が複数の画素の共通電極に共通電圧を印加していない状態であってもよい。
 時間計測部40は、不揮発性メモリおよびカウンタによって構成されたタイマを備えている。時間計測部40のタイマは、カウンタによって、所定時間(例えば、1分)ごとに、1ずつカウントアップする。そして、時間計測部40は、カウンタがカウントアップするごとに、カウント数を不揮発性メモリに記憶する。また、時間計測部40は、カウンタおよび不揮発性メモリによって計測した時間を、共通電圧制御部12に通知する。
 (共通電圧の制御方法)
 図2および図3を参照して、表示制御部10の共通電圧制御部12が共通電圧を制御する方法を説明する。図2は、共通電圧制御部12の動作の流れを示すシーケンス図である。図3は、共通電圧制御部12による共通電圧の制御の一例を示す図である。図3において、tからtまでは、前述した非表示時間、つまり、表示部20が映像を表示しておらず、かつ、光源22が消灯している時間である。一方、tからtまで、および、tからtまでは、前述した表示時間、つまり、表示部20が映像を表示しており、かつ、光源22が点灯している時間である。
 図3に示すように、時点tにおいて、光源22が点灯される。このとき、共通電圧制御部12は、複数の画素の共通電極に対して、予め設定された共通電圧の初期値Vcom00を印加する。また、共通電圧制御部12は、光源22が点灯された時点tと、その時点tにおける共通電圧Vcom00とを、共通電圧の履歴として、記憶部30に記録する。その後、光源22が点灯している間、所定時間ごとに、共通電圧制御部12は、記憶部30が記憶している第1の特性データを参照して、共通電圧の目標値を調整する。すなわち、共通電圧制御部12は、光源22が点灯している表示時間t-t中、第1の特性データにしたがって、現状の共通電圧値に対して、目標値が一定値以上ずれる場合には、共通電圧を調整する。その後、時点tにおいて、光源22が消灯される。このとき、共通電圧制御部12は、光源22が消灯された時点tと、その時点tにおける共通電圧Vcom01とを、共通電圧の履歴として、記憶部30に記録する。
 図3に実線で示すグラフが、前述した第1の特性データに対応する。実線で示すグラフにおいては、最適共通電圧は時間とともに単調に増加する。そのため、光源22が消灯した時点tにおける共通電圧Vcom01は、光源22が点灯した時点tにおける共通電圧Vcom00よりも大きい。表示時間t-tが長くなるほど、共通電圧Vcom00と共通電圧Vcom01との間のズレ量は、より大きくなってゆく。しかしながら、実線で示すグラフは非線形である。表示時間t-tが長くなるほど、共通電圧Vcom01の経時変化は緩やかになる。
 図3に示すように、時点tにおいて、光源22が再度点灯される。図2に示すように、共通電圧制御部12は、光源22から取得する輝度または照度の情報など、光源22がON/OFFのどちらであるかを示す情報に基づいて、光源22が点灯/消灯したことを検出する(S11)。共通電圧制御部12は、時間計測部40のタイマが計測している時間に基づいて、表示部20の非表示時間t-tを計算する(S12)。あるいは、共通電圧制御部12は、光源22をOFFする制御信号が表示制御部10から光源22へ送信された時刻から、光源22をONする制御信号が表示制御部10から光源22へ送信された時刻までを、表示部20の非表示時間としてもよい。
 共通電圧制御部12は、次に、記憶部30に記録されている共通電圧の履歴から、光源22が消灯した時点t(あるいは、光源22が消灯する直前)における共通電圧Vcom01の情報を取得する(S13)。また、共通電圧制御部12は、共通電圧Vcom01と初期値Vcom00との差分ΔVcomを計算する。
 次に、共通電圧制御部12は、記憶部30が記憶する第2の特性データ、つまり、非表示時間と最適共通電圧との関係を示すデータ(図1参照)を参照する。そして、共通電圧制御部12は、先に計算した非表示時間t-tと、共通電圧の差分ΔVcomと、第2の特性データとに基づいて、時点tにおける共通電圧の目標値Vcom02を計算する(S14)。図3に示す例においては、表示部20の非表示時間t-tが長くなるほど、共通電圧の目標値Vcom02は小さくなる。共通電圧制御部12は、複数の画素の共通電極に対して、目標値として決定した共通電圧Vcom02を印加する。設定可能な共通電圧の値が例えば10mVステップなど、離散的である場合には、共通電圧制御部12は、目標値に最も近い値を共通電圧Vcom02として設定する。
 このように、共通電圧制御部12は、表示時間t-t中に、共通電圧を調整していた場合、時点tにおいて、非表示時間t-tおよび第2の特性データに基づいて、共通電圧Vcom02(計算しようとする値)と、時点t1における共通電圧の目標値Vcom01との差分ΔVcomを計算する。そして、共通電圧制御部12は、計算した差分ΔVcomに基づいて、時点tにおける共通電圧の目標値Vcom02を計算する。一方、共通電圧制御部12は、表示時間t-t中に、共通電圧を調整していなかった場合、時点tにおいて、表示時間t-tおよび第1の特性データに基づいて、共通電圧Vcom01(時点tにおける理想的な共通電圧)と初期値Vcom00との差分ΔVcom1を計算する。さらに、非表示時間t-tおよび第2の特性データに基づいて、共通電圧Vcom02(計算しようとする値)と共通電圧Vcom01との差分ΔVcom2を計算する。そして、共通電圧制御部12は、計算した差分ΔVcom1および差分ΔVcom2に基づいて、時点tにおける共通電圧の目標値Vcom02を計算する。すなわち、共通電圧制御部12は、表示時間t-tおよび非表示時間t-tの両方に基づいて、共通電圧の目標値Vcom02を計算する。
 共通電圧制御部12は、光源22が点灯した時点tと、その時点tにおける共通電圧Vcom02とを、共通電圧の履歴として、記憶部30に記録する。
 図3に破線で示すグラフが、前述した第2の特性データに対応する。図3に破線で示すグラフにおいて、最適共通電圧は時間とともに単調に減少する。そのため、光源22が点灯した時点tにおける共通電圧の目標値Vcom02は、光源22が消灯した時点tにおける共通電圧Vcom01よりも小さい。非表示時間t-tが長くなるほど、共通電圧Vcom02は、減少して、最適共通電圧の初期値Vcom00に近づいてゆく。ただし、共通電圧Vcom02は、初期値Vcom00に一致するまで減少するとは限らない。
 光源22が点灯している時点tから時点tまでの間、所定時間ごとに、表示制御部10は、記憶部30が記憶する第1の特性データ、つまり、表示部20の表示時間と最適共通電圧との関係を示すルックアップテーブルあるいはデータベースを参照する。そして、参照した情報に基づいて共通電圧の目標値を再決定する。そして、共通電圧制御部12は、再決定した共通電圧の目標値に基づいて、液晶パネル21の各画素に印加する共通電圧を調整する(S15)。
 あるいは、共通電圧制御部12は、最適共通電圧の経時変化のシミュレーションを実行し、その結果に基づいて、最適共通電圧を計算してもよい。あるいは、共通電圧制御部12は、予め作成した近似式にしたがって、最適共通電圧を計算してもよい。
 その後、時点tにおいて、共通電圧制御部12は、光源22から取得する輝度または照度の情報に基づいて、光源22が消灯されたことを検出する(S16)。あるいは、共通電圧制御部12は、光源を制御する光源制御部(図示せず)から発せられる、光源22の消灯に相当する制御信号、または命令に基づいて、光源22が消灯したことを検出してもよい。あるいは、共通電圧制御部12は、光源22に印加される電圧や、電流に基づいて、光源22が消灯したことを検出してもよい。共通電圧制御部12は、光源22が消灯された時点t(あるいは、光源22が消灯する直前)における共通電圧Vcom03の情報を、共通電圧の履歴として、記憶部30に記録する(S17)。その後、光源22が再び点灯した場合、シーケンスはS11に戻る。
 ここで、非表示時間t-t中に、最適共通電圧が変化する理由は、表示時間t-t中に液晶と配向膜の界面などに蓄積した電荷、イオン、帯電粒子が、非表示時間t-t中に、再び拡散するためであると考えられる。実施形態1の構成によれば、光源22が点灯した時点tにおいて、表示部20の非表示時間t-t中における最適共通電圧の変化を考慮して、共通電圧の目標値Vcom02を決定する。表示部20の非表示時間が長くなるほど、最適共通電圧は、基本的に、初期値Vcom00に近づく。図3に示すように、共通電圧の目標値Vcom02は、光源22が消灯した時点tにおける共通電圧Vcom01よりも、初期値Vcom00に近づく。その結果として、液晶パネル21の表示品質を改善することができる。
 〔実施形態2〕
 以下、本発明の実施の形態について、図5および図6を用いて詳細に説明する。なお、説明の便宜上、前記実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 (液晶表示装置1の構成)
 図5は、実施形態2に係る液晶表示装置1の概略的な構成を示すブロック図である。本実施形態に係る液晶表示装置1は、基本的な構成は前記実施形態1と同一であるが、共通電圧制御部12が印加する共通電圧は一定値である。さらに、駆動部14が各画素部の画素電圧の直流電圧成分を制御することで、画素部に、共通電圧に対して相対的に印加される直流電圧成分を制御する点が異なっている。
 共通電圧制御部12は、表示部20の液晶パネル21が備えた各画素部の共通電極に対して、共通電圧を印加する点は前記実施形態1と同一であるが、印加する共通電圧は一定である点が異なっている。
 駆動部14は、処理した映像信号に基づいて、液晶パネル21の各画素を電圧で駆動する点は前記実施形態1と同一である。本実施形態において、駆動部14は、一定時間ごとに、共通電圧制御部12が各画素部の共通電極に印加する共通電圧値に対する各画素部の画素電圧の直流電圧成分の相対値(電圧差)に対する目標値を決定する。すなわち、駆動部14は、共通電圧値に対する各画素部の画素電圧の直流電圧成分の相対値が目標値に近づくように、各画素部の画素電圧の直流電圧成分を調整する。具体的には、駆動部14は、表示部20が表示状態であるとき、画素電圧の直流オフセット成分を変動させることによって、画素部に、共通電圧に対して相対的に印加される直流電圧成分を変動させる。さらに、駆動部14は、表示部20が非表示状態であった時間、および表示状態であった時間に基づいて、画素電圧の直流オフセット成分を変動させる。駆動部14は、画素電圧の直流オフセット成分の相対値の履歴を記憶部30に記録する。画素電圧の直流オフセット成分の相対値の履歴は、駆動部14が各画素部に印加した画素電圧の直流オフセット成分の相対値の経時変化の情報を含む。なお、共通電圧値に対する各画素部の画素電圧の直流電圧成分の相対値に対する目標値の具体的な決定方法については後述する。
 記憶部30は、基本的な構成は前記実施形態1と同一であるが、駆動部14が共通電圧値に対する各画素部の画素電圧の直流電圧成分の相対値に対する目標値を決定するために参照する情報を記憶する点が異なっている。記憶部30は、例えば、半導体メモリによって構成されている。図5に示すように、記憶部30には、駆動部14によって、画素電圧の直流オフセット成分の履歴が記録されている。また、記憶部30は、表示部20の表示時間と共通電圧値に対する各画素部の画素電圧の直流オフセット成分の相対値に対する目標値との関係を示す第1の特性データをルックアップテーブルとして記憶している。記憶部30は、さらに、液晶パネル21の非表示時間と共通電圧値に対する各画素部の画素電圧の直流電圧成分の相対値に対する目標値との関係を示す第2の特性データを、ルックアップテーブルとして記憶している。
 (画素電圧の直流電圧成分の制御方法)
 図6を参照して、表示制御部10の駆動部14が画素電圧の直流電圧成分を制御する方法を説明する。図6は、駆動部14による画素電圧の直流電圧成分の制御の一例を示す図である。なお、図6において、t~tのそれぞれは、図3におけるt~tのそれぞれと同一の内容を示している。また、図6は、一定値の共通電圧に対する各画素部の画素電圧の直流電圧成分の電圧差について、フリッカを最小化させるように調整された最適なオフセット電圧値(最適電圧値)である。
 ある時点tにおいて、光源22が点灯される。このとき、共通電圧制御部12は、複数の画素の共通電極に対して、一定の共通電圧を印加する。また、駆動部14は、光源22が点灯された時点tと、一定の共通電圧に対する各画素部の画素電圧の直流電圧成分の相対値(電圧差)Vpix00とを、画素電圧の直流電圧成分の履歴として、記憶部30に記録する。その後、光源22が点灯している間、所定時間ごとに、駆動部14は、記憶部30が記憶している第1の特性データを参照して、共通電圧値に対する各画素部の画素電圧の直流電圧成分の相対値(電圧差)に対する目標値を調整する。すなわち、駆動部14は、光源22が点灯している表示時間t-t中、第1の特性データにしたがって、現状の共通電圧値に対する各画素部の画素電圧の直流電圧成分の相対値(電圧差)が、目標値から一定値以上ずれる場合には、各画素部の画素電圧の直流電圧成分を調整する。その後、時点tにおいて、光源22が消灯される。このとき、駆動部14は、光源22が消灯された時点tと、一定の共通電圧に対する各画素部の画素電圧の直流電圧成分の相対値(電圧差)Vpix01とを、画素電圧の直流電圧成分の履歴として、記憶部30に記録する。
 次に、駆動部14は、記憶部30が記憶する第2の特性データ、つまり、非表示時間と共通電圧値に対する各画素部の画素電圧の直流電圧成分の相対値(電圧差)に対する目標値との関係を示すデータを参照する。そして、駆動部14は、先に計算した非表示時間と、画素電圧の直流電圧成分の差分と、第2の特性データとに基づいて、時点tにおける共通電圧値に対する各画素部の画素電圧の直流電圧成分の相対値(電圧差)Vpix02における目標値を計算する。駆動部14は、複数の画素に対して、目標値として決定した電圧差の相対値を満たすように各画素部の画素電圧の直流電圧成分を印加する。
 そして、光源22が点灯している時点tから時点tまでの間、所定時間ごとに、表示制御部10は、記憶部30が記憶する第1の特性データ、つまり、表示部20の表示時間と共通電圧値に対する各画素部の画素電圧の直流電圧成分の相対値に対する目標値との関係を示すルックアップテーブルあるいはデータベースを参照する。そして、共通電圧値に対する各画素部の画素電圧の直流電圧成分の相対値(電圧差)に対する目標値を再決定する。そして、駆動部14は、再決定した目標値に基づいて、液晶パネル21の各画素に印加する画素電圧の直流オフセット成分を調整する。
 上記の構成によって、液晶表示装置1は、一定の共通電圧に対する各画素部の直流電圧成分を変動させることにより、共通電圧を変動させる前記実施形態1と同様の作用効果を奏する。すなわち、フリッカなどの表示不良を抑制し、表示品質を改善することができる。
 〔実施形態3〕
 以下、本発明の実施の形態について、図7および図8を用いて詳細に説明する。なお、説明の便宜上、前記実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 (液晶表示装置1の構成)
 図7は、実施形態3に係る液晶表示装置1の概略的な構成を示すブロック図である。本実施形態に係る液晶表示装置1は、基本的な構成は前記実施形態2と同一であるが、一部構成が異なっている。本実施形態に係る液晶表示装置1は、表示部20が表示状態であるとき、前記実施形態1と同様にして共通電圧制御部12が印加する共通電圧を変動させ、さらに前記実施形態2と同様にして駆動部14が画素電圧の直流オフセット成分を変動させる。これにより、画素部に、共通電圧に対して相対的に印加される直流電圧成分を変動させる構成である。さらに、液晶表示装置1は、表示部20が非表示状態であった時間、および表示状態であった時間に基づいて、(i)共通電圧制御部12が共通電圧を変動させるとともに、(ii)駆動部14が画素電圧の直流電圧成分を変動させる。これにより、画素部に、共通電圧に対して相対的に印加される直流電圧成分を変動させる点が異なっている。
 共通電圧制御部12は、前記実施形態1と同一の構成である。すなわち、表示部20の液晶パネル21が備えた各画素部の共通電極に対して、共通電圧を印加する。また、一定時間ごとに、共通電圧の目標値を決定し、現状の共通電圧値に対して、一定値以上ずれる場合には、共通電圧が目標値に近づくように、共通電圧を調整する。
 駆動部14は、前記実施形態2と同一の構成である。すなわち、処理した映像信号に基づいて、液晶パネル21の各画素を電圧で駆動する。また、一定時間ごとに共通電圧値に対する各画素部の画素電圧の直流電圧成分の相対値(電圧差)に対する目標値を決定する。共通電圧値に対する各画素部の画素電圧の直流電圧成分の相対値が目標値に近づくように、各画素部の画素電圧の直流電圧成分を調整する。
 記憶部30は、前記実施形態1および2にて示した構成を両方備えている構成である。すなわち、共通電圧制御部12が共通電圧の目標値を決定するために参照する情報、および駆動部14が共通電圧値に対する各画素部の画素電圧の直流電圧成分の相対値に対する目標値を決定するために参照する情報を記憶する。
 (画素電圧の直流電圧成分の制御方法)
 図8を参照して、表示制御部10の共通電圧制御部12が共通電圧を制御し、かつ駆動部14が画素電圧の直流電圧成分を制御する方法を説明する。図8は、共通電圧制御部12および駆動部14による制御の一例を示す図である。なお、図8において、t~tのそれぞれは、図3および図6におけるt~tのそれぞれと同一の内容を示している。また、図8は、共通電圧に対する各画素部の画素電圧の直流電圧成分の電圧差について、フリッカを最小化させるように調整された最適電圧値である。
 ある時点tにおいて、光源22が点灯される。このとき、共通電圧制御部12および駆動部14は、複数の画素に対して、各画素の共通電極に印加される共通電圧と画素電圧の直流成分との電圧差について、初期値Vdif00を与える。また、共通電圧制御部12は、光源22が点灯された時点tと、その時点tにおける共通電圧とを、共通電圧の履歴として、記憶部30に記録する。さらに、駆動部14は、時点tと、その時点tにおける共通電圧に対する各画素部の画素電圧の直流電圧成分の相対値(電圧差)とを、画素電圧の直流電圧成分の履歴として、記憶部30に記録する。
 その後、光源22が点灯している間、所定時間ごとに、共通電圧制御部12および駆動部14は、記憶部30が記憶している、表示時間と共通電圧に関する第1の特性データおよび表示時間と共通電圧値に対する各画素部の画素電圧の直流電圧成分の相対値に関する第1の特性データとを参照する。そして、画素の共通電極に印加される共通電圧と画素電圧の直流成分との電圧差Vdif01を満たすように、共通電圧の目標値および共通電圧値に対する各画素部の画素電圧の直流電圧成分の相対値に対する目標値を調整する。すなわち、共通電圧制御部12は、光源22が点灯している表示時間t-t中、表示時間と共通電圧に関する第1の特性データにしたがって、現状の共通電圧値に対して、目標値が一定値以上ずれる場合には、共通電圧を調整する。さらに、駆動部14は、光源22が点灯している表示時間t-t中、第1の特性データにしたがって、現状の共通電圧値に対する各画素部の画素電圧の直流電圧成分の相対値(電圧差)が、目標値から一定値以上ずれる場合には、各画素部の画素電圧の直流電圧成分を調整する。その後、時点tにおいて、光源22が消灯される。このとき、共通電圧制御部12は、光源22が消灯された時点tと、その時点tにおける共通電圧とを、共通電圧の履歴として、記憶部30に記録する。また、駆動部14は、光源22が消灯された時点tと、一定の共通電圧に対する各画素部の画素電圧の直流電圧成分の相対値(電圧差)とを、画素電圧の直流電圧成分の履歴として、記憶部30に記録する。
 次に、共通電圧制御部12は、記憶部30が記憶する非表示時間と共通電圧に関する第2の特性データを参照する。そして、先に計算した非表示時間t-tと、画素の共通電極に印加される共通電圧と画素電圧の直流成分との電圧差の目標値Vdif02と、第2の特性データとに基づいて、時点tにおける共通電圧の目標値を計算する。また、駆動部14は、記憶部30が記憶する非表示時間と共通電圧値に対する各画素部の画素電圧の直流電圧成分の相対値(電圧差)に関する第2の特性データを参照する。そして、先に計算した非表示時間t-tと、画素の共通電極に印加される共通電圧と画素電圧の直流成分との電圧差の目標値Vdif02と、第2の特性データとに基づいて、時点tにおける共通電圧値に対する各画素部の画素電圧の直流電圧成分の相対値(電圧差)に対する目標値を計算する。
 そして、光源22が点灯している時点tから時点tまでの間、所定時間ごとに、表示制御部10は、記憶部30が記憶する表示時間と共通電圧に関する第1の特性データおよび表示時間と共通電圧値に対する各画素部の画素電圧の直流電圧成分の相対値に関する第1の特性データを参照する。そして、画素の共通電極に印加される共通電圧と画素電圧の直流成分との電圧差Vdif03を満たすように、共通電圧の目標値および共通電圧値に対する各画素部の画素電圧の直流電圧成分の相対値に対する目標値を再決定する。そして、共通電圧制御部12は、再決定した共通電圧の目標値に基づいて、液晶パネル21の各画素に印加する共通電圧を調整し、駆動部14は、再決定した目標値に基づいて、液晶パネル21の各画素に印加する画素電圧の直流電圧成分を調整する。
 上記の構成によって、液晶表示装置1は、共通電圧および当該共通電圧に対する各画素部の直流電圧成分を変動させる。これにより、共通電圧のみを変動させる前記実施形態1、および各画素部の直流電圧成分のみを変動させる前記実施形態2と同様の作用効果を奏する。すなわち、フリッカなどの表示不良を抑制し、表示品質を改善することができる。例えば、画素電圧ごとの最適な共通電圧、または最適な共通電圧の変動の仕方が異なる場合は、表示部20全体の変動は共通電圧の変動によって制御し、階調ごとの変動は画素電圧の直流成分の変動によって制御する。
 〔実施形態4〕
 本発明の他の実施形態について説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 実施形態4に係る液晶表示装置1は、表示制御部10が30Hz以下のフレーム周波数で表示部20を駆動する表示モードを有する。上記の構成によれば、60Hzまたは120Hzのフレーム周波数を使用する構成と比較して、液晶表示装置1の消費電力を削減することができる。なお、液晶表示装置1の表示モードとして、TN(Twisted Nematic)、VA(Vertical Alignment)、IPS(In-Plain Switching)、またはFFS(FringeField Switching)モードなどを適用可能である。いずれの構成であっても、表示部20のフリッカ等の表示不良を改善しながら、液晶表示装置1の消費電力を低下することができる。
 実施形態4に係る液晶表示装置1の表示制御部10は、表示部20を休止駆動することが望ましい。すなわち、フレーム期間は、表示部20の画面のリフレッシュを行うリフレッシュ期間と、前記リフレッシュ期間と同じ、もしくはリフレッシュ期間よりも長い休止期間とで構成されるフレーム期間を含むことが望ましい。また、休止期間は、リフレッシュ期間の整数倍であることが望ましい。上記の構成によれば、液晶表示装置1の消費電力をより低下することができる。フレーム周波数が30Hz~0.1Hz程度である場合に、上記の構成を適用可能である。
 従来の液晶表示装置では、フレーム周波数を、これまで広く用いられてきた60Hzまたは120Hzから30Hzに低下させた場合、フリッカが顕著に視認される。一方、実施形態4に係る液晶表示装置1は、前記実施形態1~3で説明したように、画素部に、共通電圧に対して相対的に印加される直流電圧成分を、最適値に近づけるように調整することによって、フリッカ等の表示不良を抑制することができる。そのため、30Hz以下のフレーム周波数、たとえば、20Hz、15Hzなどで表示部20を駆動した場合であっても、フリッカが顕著に視認されることを抑制することができる。
 〔実施形態5〕
 本発明の他の実施形態について説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 実施形態5では、前記実施形態1で説明した液晶パネル21(図1参照)に適用可能な構成を説明する。
 液晶パネル21では、画素部のスイッチングは薄膜トランジスタ(TFT:Thin Film Transistor)等を介して行われる。上記トランジスタを制御する半導体として、非晶質シリコン、多結晶シリコン、金属酸化物半導体等が使用可能である。しかしながら、低消費電力の実現という観点からは、トランジスタオフ時のリーク電流が小さい半導体が望ましい。また、高速動作が可能という観点からは、オン電流が大きい半導体が望ましい。そのような半導体として、例えば、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、および酸素(O)で構成されるInGaZnO等があげられるが、これに限定されるものではない。
 液晶の材料としては、誘電率異方性が負のネガ型液晶、誘電率異方性が正のポジ型液晶のいずれも利用することが可能である。
 配向膜としては、無機配向膜、有機配向膜いずれも適用可能である。また、ラビング配向膜、光配向膜などが利用可能である。また、配向膜は、単層構造であってもよいし、上層及び下層を含む2層以上の構造であってもよい。配向膜が2層以上の構造である場合、上層が主に配向を制御し、下層が主に電気特性や機械的な強度を制御してもよい。光配向膜としては、シンナメート基を有するもの、アゾベンゼンを有するもの、シクロブタン環を有するものなどの適用が可能である。
 液晶表示装置1がIPS(In-Plain Switching)またはFFS(Fringe Field Switching)などの横電界方式であり、かつ、画素電極と共通電極との間に絶縁層がある場合、絶縁層としては、有機層または無機層を利用可能である。有機層としては、ポリイミドなどが利用可能であり、無機層としては、シリコン窒化膜、シリコン酸化膜、およびシリコン酸窒化膜等が利用可能である。絶縁層は、複数の材料による積層構造であってもよい。
 なお、液晶表示装置1は、テレビ、スマートフォン、タブレット、PC、カーナビゲーション等の電子情報機器に搭載されていてもよい。このとき、共通電圧制御部12を含む表示制御部10は、電子情報機器において、上述のように液晶表示装置1内にあってもよいし、液晶表示装置1外にあってもよい。
 〔実施形態6〕
 (ソフトウェアによる実現例)
 液晶表示装置1の制御ブロック(特に表示制御部10)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
 後者の場合、液晶表示装置1は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
 〔まとめ〕
 本発明の態様1に係る表示装置(液晶表示装置1)は、画素部を備え、表示状態または非表示状態をとる表示部(20)と、上記表示部が上記表示状態であるとき、上記画素部の共通電極に共通電圧を印加する共通電圧制御部(12)と、上記表示部が上記表示状態であるとき、上記画素部の画素電極に、上記共通電圧に対して相対的に正極性と負極性の画素電圧を交互に印加する画素電圧制御部(駆動部14)と、を備えた表示装置であって、上記共通電圧制御部および上記画素電圧制御部は、上記表示部が上記表示状態であるとき、上記画素部に、共通電圧に対して相対的に印加される直流電圧成分を変動させ、さらに、上記共通電圧制御部および上記画素電圧制御部は、上記表示部が上記非表示状態であった時間、および、上記表示部が上記表示状態であった時間に基づいて、上記直流電圧成分を変動させる構成である。
 上記の構成によれば、表示部が非表示状態から表示状態に変化したとき、画素部に共通電圧に対して相対的に印加される直流電圧成分が、表示部が非表示状態であった時間に基づいて変動される。したがって、表示部が非表示状態であった時間を考慮していない構成と比較して、画素部に共通電圧に対して相対的に印加される直流電圧成分が、最適な電圧値により近くなる。ここで、最適な電圧値とは、フリッカ等の表示不良が発生することを最も抑制することができるときの画素部に、共通電圧に対して相対的に印加される直流電圧成分である。また、最適な直流電圧成分に近い直流電圧成分を画素部に印加することによって、表示品質を改善することができる。
 本発明の態様2に係る表示装置(液晶表示装置1)は、上記態様1において、上記共通電圧制御部(12)は、上記表示部(20)が上記非表示状態であった時間、および、上記表示部が上記表示状態であった時間に基づいて、上記共通電圧を変動させる構成としてもよい。
 上記の構成によれば、共通電圧を変動させることによって、画素部に共通電圧に対して相対的に印加される直流電圧成分を変動させることができる。
 本発明の態様3に係る表示装置(液晶表示装置1)は、上記態様1において、上記共通電圧制御部(12)は、上記共通電圧を一定とし、上記画素電圧制御部(駆動部14)は、上記表示部(20)が上記非表示状態であった時間、および、上記表示部が上記表示状態であった時間に基づいて、上記画素電圧の直流電圧成分を変動させる構成としてもよい。
 上記の構成によれば、共通電圧を一定とし、表示時間と非表示時間に基づいて、共通電圧に対して相対的に正極性と負極性を交互に印加するソース電圧の直流成分を変動させることにより、フリッカ等の発生を抑制し、表示品質を改善することができる。
 本発明の態様4に係る表示装置(液晶表示装置1)は、上記態様1において、上記表示部(20)が上記非表示状態であった時間、および、上記表示部が上記表示状態であった時間に基づいて、(i)上記共通電圧制御部(12)が上記共通電圧を変動させるとともに、(ii)上記画素電圧制御部(駆動部14)が上記画素電圧の直流電圧成分を変動させる構成としてもよい。
 上記の構成によれば、共通電圧と画素電圧の直流電圧成分の両方を変動させることによって、画素部に、共通電圧に対して相対的に印加される直流電圧成分を変動させ、フリッカ等の発生を抑制し、表示品質を改善することができる。
 本発明の態様5に係る表示装置(液晶表示装置1)は、上記態様1~4のいずれかにおいて、上記表示状態は、少なくとも上記表示部(20)の光源が点灯している状態であり、上記非表示状態は、少なくとも上記表示部の光源が消灯している状態である構成としてもよい。
 上記の構成によれば、表示部の光源が点灯しているか否かに基づいて、表示部の表示状態と非表示状態とを判別することができる。
 本発明の態様6に係る表示装置(液晶表示装置1)は、上記態様2において、上記共通電圧制御部(12)は、(i)上記表示部(20)が上記表示状態である間、上記表示状態であった時間に基づいて、上記共通電極に印加する共通電圧を決定および調整し、(ii)上記表示部が上記非表示状態から上記表示状態に変化したとき、上記表示状態であったときの上記共通電圧と、上記表示部が上記非表示状態であった時間とに基づいて、上記共通電極に印加する共通電圧を決定する構成としてもよい。
 非表示時間中に、最適共通電圧が変化する理由は、表示時間中に液晶と配向膜の界面などに蓄積した電荷、イオン、帯電粒子が、非表示時間中に、再び拡散するためであると考えられる。上記(i)および上記(ii)の条件は、この考え方に基づいている。したがって、上記の構成によれば、上記(i)および上記(ii)の条件に基づいて、最適共通電極に近い共通電圧を、共通電極に印加する共通電圧として決定することができる。
 本発明の態様7に係る表示装置(液晶表示装置1)は、上記態様2において、上記共通電圧制御部(12)は、(i)上記表示部(20)が上記表示状態である間、上記共通電極に印加する共通電圧を調整せず、(ii)上記表示部が上記非表示状態から上記表示状態に変化したとき、上記表示部が上記非表示状態であった時間、および、上記表示部が前に上記表示状態であった時間に基づいて、上記共通電極に印加する共通電圧を決定する構成としてもよい。
 上記態様7の構成は、上記(i)および上記(ii)の条件に基づいて、最適共通電極に近い共通電圧を、共通電極に印加する共通電圧として決定する点では、上記態様6と共通である。一方、上記態様7の構成は、表示部が表示状態である間、共通電極に印加する共通電圧を調整しない点で、上記態様6の構成とは異なる。
 本発明の態様8に係る表示装置(液晶表示装置1)は、上記態様6または7において、上記表示部(20)が上記非表示状態から上記表示状態に変化したときに、上記共通電圧制御部(12)が上記共通電極に印加する共通電圧は、上記表示部が上記非表示状態になる直前に上記共通電極に印加されていた共通電圧と異なる構成としてもよい。
 上記の構成によれば、表示部が非表示状態であった間における最適共通電圧の変化を考慮しない構成、つまり、表示部が非表示状態から表示状態に変化したときに共通電極に印加される共通電圧が、表示部が非表示状態になる直前に共通電極に印加されていた共通電圧と同じである構成と比較して、最適共通電圧により近い共通電圧を、共通電極に印加する共通電圧として決定することができる。
 本発明の態様9に係る表示装置(液晶表示装置1)は、上記態様1~8のいずれかにおいて、上記表示部(20)を30Hz以下のフレーム周波数で駆動するモードを有する構成としてもよい。
 上記の構成によれば、表示部を60Hzまたは120Hzのフレーム周波数で駆動する構成と比較して、表示装置の消費電力を低下することができる。また、表示部を30Hz以下のフレーム周波数で駆動した場合であっても、前述した表示品質を改善する効果を得られるために、フリッカ等の表示不良が目立ちにくい。表示部を駆動させるフレーム周波数については、30Hz以下、特に20Hz以下の周波数では、人間の視感度、および液晶の電圧保持の関係から、本発明の効果がより高くなる。
 本発明の態様10に係る表示装置(液晶表示装置1)の制御方法は、画素部を備え、表示状態または非表示状態をとる表示部(20)と、上記表示部が上記表示状態であるとき、上記画素部の共通電極に共通電圧を印加する共通電圧制御部(12)と、上記表示部が上記表示状態であるとき、上記画素部の画素電極に、上記共通電圧に対して相対的に正極性と負極性の画素電圧を交互に印加する画素電圧制御部(駆動部14)と、を備えた表示装置の制御方法であって、上記表示部が上記表示状態であるとき、上記画素部に、共通電圧に対して相対的に印加される直流電圧成分を変動させ、さらに、上記表示部が上記非表示状態であった時間、および、上記表示部が上記表示状態であった時間に基づいて、上記直流電圧成分を変動させる。上記の構成によれば、上記態様1に係る表示装置と同様の効果を奏する。
 本発明の各態様に係る表示装置は、コンピュータによって実現してもよく、この場合には、コンピュータを上記表示装置が備える各部(ソフトウェア要素)として動作させることにより上記表示装置をコンピュータにて実現させる表示装置の制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。
 本発明の各態様に係る表示装置(液晶表示装置1)を搭載した電子情報機器も、本発明の範疇に入る。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
  1 液晶表示装置
 12 共通電圧制御部
 14 駆動部(画素電圧制御部)
 20 表示部
 21 液晶パネル
 22 光源
 30 記憶部

Claims (12)

  1.  画素部を備え、表示状態または非表示状態をとる表示部と、
     上記表示部が上記表示状態であるとき、上記画素部の共通電極に共通電圧を印加する共通電圧制御部と、
     上記表示部が上記表示状態であるとき、上記画素部の画素電極に、上記共通電圧に対して相対的に正極性と負極性の画素電圧を交互に印加する画素電圧制御部と、を備えた表示装置であって、
     上記共通電圧制御部および上記画素電圧制御部は、上記表示部が上記表示状態であるとき、上記画素部に、共通電圧に対して相対的に印加される直流電圧成分を制御し、
     さらに、上記共通電圧制御部および上記画素電圧制御部の少なくとも一方は、上記表示部が上記非表示状態であった時間、および、上記表示部が上記表示状態であった時間に基づいて、上記直流電圧成分を変動させることを特徴とする表示装置。
  2.  上記共通電圧制御部は、上記表示部が上記非表示状態であった時間、および、上記表示部が上記表示状態であった時間に基づいて、上記共通電圧を変動させることを特徴とする請求項1に記載の表示装置。
  3.  上記共通電圧制御部は、上記共通電圧を一定とし、
     上記画素電圧制御部は、上記表示部が上記非表示状態であった時間、および、上記表示部が上記表示状態であった時間に基づいて、上記画素電圧の直流電圧成分を変動させることを特徴とする請求項1に記載の表示装置。
  4.  上記表示部が上記非表示状態であった時間、および、上記表示部が上記表示状態であった時間に基づいて、(i)上記共通電圧制御部が上記共通電圧を変動させるとともに、(ii)上記画素電圧制御部が上記画素電圧の直流電圧成分を変動させることを特徴とする請求項1に記載の表示装置。
  5.  上記表示状態は、少なくとも上記表示部の光源が点灯している状態であり、
     上記非表示状態は、少なくとも上記表示部の光源が消灯している状態であることを特徴とする請求項1~4のいずれか1項に記載の表示装置。
  6.  上記共通電圧制御部は、(i)上記表示部が上記表示状態である間、上記表示状態であった時間に基づいて、上記共通電極に印加する共通電圧を決定および調整し、(ii)上記表示部が上記非表示状態から上記表示状態に変化したとき、上記表示状態であったときの上記共通電圧と、上記表示部が上記非表示状態であった時間とに基づいて、上記共通電極に印加する共通電圧を決定することを特徴とする請求項2に記載の表示装置。
  7.  上記共通電圧制御部は、(i)上記表示部が上記表示状態である間、上記共通電極に印加する共通電圧を調整せず、(ii)上記表示部が上記非表示状態から上記表示状態に変化したとき、上記表示部が上記非表示状態であった時間、および、上記表示部が前に上記表示状態であった時間に基づいて、上記共通電極に印加する共通電圧を決定することを特徴とする請求項2に記載の表示装置。
  8.  上記表示部が上記非表示状態から上記表示状態に変化したときに、上記共通電圧制御部が上記共通電極に印加する共通電圧は、上記表示部が上記非表示状態になる直前に上記共通電極に印加されていた共通電圧と異なることを特徴とする請求項6または7に記載の表示装置。
  9.  上記表示部を30Hz以下のフレーム周波数で駆動するモードを有することを特徴とする請求項1~8のいずれか1項に記載の表示装置。
  10.  画素部を備え、表示状態または非表示状態をとる表示部と、
     上記表示部が上記表示状態であるとき、上記画素部の共通電極に共通電圧を印加する共通電圧制御部と、
     上記表示部が上記表示状態であるとき、上記画素部の画素電極に、上記共通電圧に対して相対的に正極性と負極性の画素電圧を交互に印加する画素電圧制御部と、を備えた表示装置の制御方法であって、
     上記表示部が上記表示状態であるとき、上記画素部に、共通電圧に対して相対的に印加される直流電圧成分を変動させ、
     さらに、上記表示部が上記非表示状態であった時間、および、上記表示部が上記表示状態であった時間に基づいて、上記直流電圧成分を変動させることを特徴とする表示装置の制御方法。
  11.  請求項1に記載の表示装置としてコンピュータを機能させるための制御プログラムであって、上記共通電圧制御部および上記画素電圧制御部としてコンピュータを機能させるための制御プログラム。
  12.  表示装置を搭載した電子情報機器であって、
     上記表示装置は、画素部を備えて表示状態または非表示状態をとる表示部を備え、
     上記表示部が上記表示状態であるとき、上記画素部に、共通電圧に対して相対的に印加される直流電圧成分を変動させ、
     さらに、上記表示部が上記非表示状態であった時間、および、上記表示部が上記表示状態であった時間に基づいて、上記直流電圧成分を変動させることを特徴とする電子情報機器。
PCT/JP2018/025283 2017-07-10 2018-07-03 表示装置、表示装置の制御方法、制御プログラム、および電子情報機器 WO2019013057A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-134756 2017-07-10
JP2017134756 2017-07-10

Publications (1)

Publication Number Publication Date
WO2019013057A1 true WO2019013057A1 (ja) 2019-01-17

Family

ID=65001628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025283 WO2019013057A1 (ja) 2017-07-10 2018-07-03 表示装置、表示装置の制御方法、制御プログラム、および電子情報機器

Country Status (1)

Country Link
WO (1) WO2019013057A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001507815A (ja) * 1996-12-31 2001-06-12 ハネウエル・インコーポレーテッド 液晶表示装置用の共通電極電圧駆動回路
JP2002311905A (ja) * 2001-04-13 2002-10-25 Matsushita Electric Ind Co Ltd 液晶表示装置及びこれを用いた画像表示応用装置
US20060097969A1 (en) * 2004-11-10 2006-05-11 Himax Technologies, Inc. Data driving system and display having adjustable common voltage
US20070024560A1 (en) * 2005-08-01 2007-02-01 Samsung Electronics Co., Ltd. Liquid Crystal Display Device and Driving Method Thereof
JP2007206676A (ja) * 2006-01-06 2007-08-16 Canon Inc 液晶表示装置
JP2008070701A (ja) * 2006-09-15 2008-03-27 Sharp Corp 液晶表示装置
US20090243987A1 (en) * 2008-03-28 2009-10-01 Innolux Display Corp. Liquid crystal display device having look up table for adjusting common voltages and driving method thereof
JP2010277011A (ja) * 2009-06-01 2010-12-09 Sharp Corp 液晶表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001507815A (ja) * 1996-12-31 2001-06-12 ハネウエル・インコーポレーテッド 液晶表示装置用の共通電極電圧駆動回路
JP2002311905A (ja) * 2001-04-13 2002-10-25 Matsushita Electric Ind Co Ltd 液晶表示装置及びこれを用いた画像表示応用装置
US20060097969A1 (en) * 2004-11-10 2006-05-11 Himax Technologies, Inc. Data driving system and display having adjustable common voltage
US20070024560A1 (en) * 2005-08-01 2007-02-01 Samsung Electronics Co., Ltd. Liquid Crystal Display Device and Driving Method Thereof
JP2007206676A (ja) * 2006-01-06 2007-08-16 Canon Inc 液晶表示装置
JP2008070701A (ja) * 2006-09-15 2008-03-27 Sharp Corp 液晶表示装置
US20090243987A1 (en) * 2008-03-28 2009-10-01 Innolux Display Corp. Liquid crystal display device having look up table for adjusting common voltages and driving method thereof
JP2010277011A (ja) * 2009-06-01 2010-12-09 Sharp Corp 液晶表示装置

Similar Documents

Publication Publication Date Title
US10453378B2 (en) Regulating method and regulating apparatus for a driving voltage of a display module
US8305319B2 (en) Liquid crystal display device having look up table for adjusting common voltages and driving method thereof
US9959823B2 (en) Liquid crystal display device and method of driving the same
JP6334114B2 (ja) 表示装置
KR101657023B1 (ko) 표시 장치 및 그 구동 방법
WO2015163255A1 (ja) 液晶表示装置
KR20090046200A (ko) 액정디스플레이의 눈부심 방지 장치 및 방법
US9530384B2 (en) Display device that compensates for changes in driving frequency and drive method thereof
US9881566B2 (en) Display device, electronic apparatus, and control method for display device
US9183800B2 (en) Liquid crystal device and the driven method thereof
CN110349548B (zh) 显示装置
JP2014238498A (ja) 液晶表示装置及びその駆動方法
US20040196243A1 (en) Method of driving liquid crystal display device
US20160035322A1 (en) Liquid crystal display device and driving method thereof
WO2019013057A1 (ja) 表示装置、表示装置の制御方法、制御プログラム、および電子情報機器
US8115896B2 (en) Liquid crystal display and driving method thereof
JP2008070701A (ja) 液晶表示装置
JP4413730B2 (ja) 液晶表示装置及びその駆動方法
JP2019184638A (ja) 液晶表示装置および電子機器
JP2008216363A (ja) 液晶表示装置の駆動装置
JP6572027B2 (ja) 表示装置
JP5026189B2 (ja) 液晶表示装置
US11735135B2 (en) Screen flicker performance manager
TWI556218B (zh) 畫素及其驅動方法
JP2015215516A (ja) 液晶表示装置およびその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP