WO2019012999A1 - Carbon fiber bundle and method for manufacturing same - Google Patents

Carbon fiber bundle and method for manufacturing same Download PDF

Info

Publication number
WO2019012999A1
WO2019012999A1 PCT/JP2018/024513 JP2018024513W WO2019012999A1 WO 2019012999 A1 WO2019012999 A1 WO 2019012999A1 JP 2018024513 W JP2018024513 W JP 2018024513W WO 2019012999 A1 WO2019012999 A1 WO 2019012999A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber bundle
carbon fiber
density
strength
strand
Prior art date
Application number
PCT/JP2018/024513
Other languages
French (fr)
Japanese (ja)
Inventor
松本直浩
奥田治己
田中文彦
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201880041611.7A priority Critical patent/CN110832127B/en
Priority to JP2018534983A priority patent/JP6460284B1/en
Priority to KR1020197036254A priority patent/KR102603178B1/en
Priority to US16/623,479 priority patent/US20200190705A1/en
Priority to EP18831398.5A priority patent/EP3653768A4/en
Publication of WO2019012999A1 publication Critical patent/WO2019012999A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • D01F9/225Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles from stabilised polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/10Filtering or de-aerating the spinning solution or melt
    • D01D1/106Filtering
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/38Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising unsaturated nitriles as the major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]

Definitions

  • the present invention relates to a carbon fiber bundle and a method for producing the same.
  • Carbon fiber bundles are widely used as reinforcing fibers for composite materials, and there is a strong demand for higher performance.
  • to improve mechanical properties such as resin impregnated strand strength of carbon fiber bundle and resin impregnated strand elastic modulus (hereinafter simply referred to as strand strength and strand elastic modulus) in a well-balanced manner Is required.
  • the polyacrylonitrile carbon fiber bundle is a process of heat treating a carbon fiber precursor fiber bundle in an oxidizing atmosphere at 200 to 300 ° C. (flameproofing step) and then heat treating it in an inert atmosphere of 1000 ° C.
  • carbonization yield is about half. It is necessary to increase the yield of carbon fiber bundles with equivalent production energy from the viewpoint of reducing the production energy per production amount, that is, the environmental load.
  • Patent Documents 1-5 Many techniques have been proposed for the purpose of improving the strand strength or carbonization yield of carbon fiber bundles by optimizing flame resistance conditions.
  • Patent Document 1 examination which makes heat quantity (J * h / g) given by carrying out high temperature processing in a flame-proof process as small as possible, and improves the strand intensity
  • Patent Document 2 setting the temperature for oxidation to a high temperature according to the amount of oxygen added in the middle of the process for flame-proofing, in Patent 3, heat and cool the carbon fiber precursor fiber bundle so as to prevent thermal runaway.
  • the flameproofing be made as high temperature as possible by repeating.
  • Patent Documents 4 and 5 the carbon fiber precursor fiber bundle is heated in an oxidizing atmosphere at the initial stage of flame resistance, and then brought into contact with a high temperature heating roller at 250 to 300 ° C. An attempt was made to raise the carbonization yield by raising the
  • Patent Documents 6 and 7 propose carbon fiber bundles with high knot strength, which reflect mechanical properties other than in the fiber axial direction and exhibit sufficient mechanical properties in quasi-isotropic materials.
  • Patent Document 8 when obtaining a flameproofed fiber bundle of a specific density in order to satisfy a high carbonization yield, a flameproofed fiber bundle of a specific density by heat treatment at a high temperature in the latter half with an appropriate temperature profile in the flameproofing step.
  • a carbon fiber bundle has been proposed which has a well-balanced expression of high carbonization yield and excellent strand strength and strand modulus, and simultaneously satisfies excellent knot strength.
  • Patent Document 9 defects in the surface of a carbon fiber are reduced to obtain a carbon fiber bundle of high strand strength by densifying a carbon fiber precursor fiber bundle, reducing dust in the manufacturing process and removing defects by electrolytic treatment. It has been proposed.
  • Patent Document 8 Although the strand strength and the knot strength are enhanced by performing the second half high-temperature heat treatment with an appropriate temperature profile in the flameproofing process, the control of defects affecting these characteristics is not sufficient and improvement is There was room.
  • Patent Document 9 although defects on the surface of the carbon fiber can be effectively removed by electrolytic treatment, strong electrolytic treatment is required to remove the defects, and a long electrolytic treatment tank is required. There was a problem that it was difficult to carry out industrially. In addition, there is also a problem that a fragile layer which may lead to a decrease in composite physical properties due to strong electrolytic treatment is formed on the surface of the carbon fiber.
  • the characteristics of defects in the fractured surface recovered when the single fiber tensile test is performed with a test length of 50 mm are specified, but the test length that affects the strand strength and the tensile strength of the composite material is 10 mm Because of their shortness, there is also an essential problem that merely specifying the characteristics of defects found in the test length of 50 mm does not necessarily result in carbon fiber bundles that enhance the tensile strength of the composite material.
  • the present invention provides a method for producing a carbon fiber bundle having well-balanced strand strength and strand elasticity and excellent knot strength without losing productivity.
  • the purpose is
  • the method for producing a carbon fiber bundle of the present invention comprises a spinning solution in which a polyacrylonitrile copolymer is dissolved in a solvent, filtration accuracy B ( ⁇ m) and filter medium weight D (g / m) 2 ) using the filter medium having the above 2 ) and filtering the spinning solution under the condition that the filtration rate A (cm / hour) satisfies the following formulas (1) to (3), and spinning the filtered spinning solution
  • the obtained carbon fiber precursor fiber bundle was heat treated to a density 1.32 ⁇ 1.35g / cm 3 in an oxidizing atmosphere, an oxidizing atmosphere to a density 1.46 ⁇ 1.50g / cm 3
  • the carbon fiber bundle of the present invention has a strand elastic modulus of 240 to 280 GPa, a strand strength of 5.8 GPa or more, a knot strength K [MPa] of -88d + 1390 ⁇ K (d: average single fiber diameter [ ⁇ m]),
  • a single fiber tensile test is performed with an average single fiber diameter in the range of 6.5 to 8.0 ⁇ m and a test length of 10 mm, the probability that a defect with a size of 50 nm or more exists on the recovered fractured surface is 35 % Or less of carbon fiber bundles.
  • the method of the present invention when obtaining a flameproofed fiber bundle, it is possible to obtain a flameproofed fiber bundle of a specific density by heat treatment with an appropriate temperature profile in the flameproofing step, whereby strand strength and knots are obtained. Since the defects governing strength are controlled to a very low degree, it is possible to produce a carbon fiber bundle having well-balanced strength of strands and strand elasticity and excellent knot strength without losing productivity. Moreover, according to the carbon fiber bundle of the present invention, the carbon fiber bundle satisfies the productivity at the time of producing the composite material.
  • FIG. 1 is a scanning electron microscope (SEM) image of a fractured surface of carbon fiber. Radial streaks that converge to one point are identified.
  • FIG. 2 is an enlarged image of the vicinity of the break starting point of FIG. Deposit-like defects are identified.
  • FIG. 3 is an enlarged image of another fracture surface near the fracture origin. A dent-like defect is identified.
  • FIG. 4 is an enlarged image of another fracture surface near the fracture origin. No noticeable morphological features above 50 nm are identified.
  • the carbon fiber bundle of the present invention has a strand strength of 5.8 GPa or more, preferably 6.0 GPa or more.
  • the composite material exhibits good tensile strength when the composite material is manufactured using the carbon fiber bundle.
  • the strand strength of the carbon fiber bundle is preferably as high as possible, but even if the strand strength is 7.0 GPa or less, sufficient tensile strength of the composite material can be obtained.
  • the strand strength can be determined by the method described in the strand tension test of the carbon fiber bundle described later.
  • the strand strength can be controlled by using the method for producing a carbon fiber bundle of the present invention described later.
  • the carbon fiber bundle of the present invention has a strand elastic modulus of 240 to 280 GPa, preferably 245 to 275 GPa, and more preferably 250 to 270 GPa. If the strand elastic modulus is 240 to 280 GPa, it is preferable because the balance between the strand elastic modulus and the strand strength is excellent. In particular, by controlling the strand elastic modulus to 250 to 270 GPa, it is easy to obtain a carbon fiber bundle with excellent strand strength.
  • the strand elastic modulus can be determined by the method described in the strand tension test of the carbon fiber bundle described later. At this time, the strain range is set to 0.1 to 0.6%.
  • the strand elastic modulus of the carbon fiber bundle mainly applies tension to the fiber bundle in any heat treatment process in the manufacturing process of the carbon fiber bundle, improves the internal / external structural difference which is the structural distribution in the single fiber, or It can control by changing carbonization temperature.
  • a knot strength is preferably 700 MPa or more, preferably 740 MPa or more, obtained by forming a knot portion at the midpoint of the carbon fiber bundle and conducting a bundle tension test. More preferably, the pressure is 770 MPa or more.
  • the knot strength can be determined by the method described in the knot strength of the carbon fiber bundle described later.
  • the knot strength is an index reflecting the mechanical properties of the fiber bundle other than the fiber axial direction.
  • the carbon fiber bundle preferably has a number of filaments of 10,000 to 60,000. If the number of filaments is 10,000 or more, a composite material can be produced with high productivity. If the number of filaments is 60,000 or less, it is possible to suppress the generation of fluff during the production of the composite material, and the traveling speed of the fiber bundle can be increased, so that the productivity is likely to be increased.
  • the carbon fiber bundle preferably has a probability that a defect of 50 nm or more exists on the recovered fractured surface when the single fiber tensile test is performed with a test length of 10 mm, preferably 35% or less, more preferably 30% or less More preferably, it is 25% or less. It is known that tensile failure of carbon fibers starts from defects. Various types of defects such as voids, scratches on the fiber surface, dents, deposits, or adhesion marks left after single fibers are adhered and separated by heat of heat treatment exist as defects that become the fracture starting point of carbon fibers In the present invention, all of these are not particularly distinguished, but the morphological features that become the fracture origin observable by scanning electron microscope (SEM) observation are collectively referred to as "defect".
  • SEM scanning electron microscope
  • the carbon fiber bundle can be obtained if the probability that a defect with a size of 50 nm or more exists in the recovered fractured surface is 35% or less. It was found that the strand strength of the The important thing here is to set the trial length to 10 mm.
  • the probability, the strand strength, and the composite material can be examined also by examining the probability of the presence of a defect of a certain size or more. The inventors of the present invention have found that they do not necessarily correlate with tensile strength.
  • test length governing the strand strength and the tensile strength of the composite material (generally referred to as the effective test length) is shorter than 10 mm.
  • the strand strength of the carbon fiber bundle and the composite material can be obtained by setting the probability that a defect with a size of 50 nm or more is 35% or less on the recovered fractured surface. Defects affecting tensile strength are effectively reduced, resulting in high levels of strand strength, and tensile strength of the composite.
  • the average single fiber diameter is 6.5 to 8.0 ⁇ m, preferably 6.7 to 8.0 ⁇ m, more preferably 7.0 to 8.0 ⁇ m, and 7.3 to 8. 0 ⁇ m is more preferable, and 7.5 to 8.0 ⁇ m is the most preferable.
  • the smaller the average single fiber diameter the smaller the internal / external structural difference tends to decrease.
  • insufficient impregnation may occur due to the high matrix resin viscosity, which may lower the tensile strength of the composite material.
  • the average single fiber diameter is 6.5 to 8.0 ⁇ m, it is preferable because the insufficient impregnation of the matrix resin hardly occurs and the expression of high carbonization yield and strand strength becomes stable.
  • the average single fiber diameter can be calculated from the mass and density per unit length of carbon fiber bundle and the number of filaments.
  • the average single fiber diameter of the carbon fiber bundle is to increase the carbonization yield in the carbonization step by increasing the average single fiber diameter of the carbon fiber precursor fiber bundle, or by controlling the flameproof conditions, and the draw ratio of precarbonization. Can be enhanced by lowering
  • the carbon fiber bundle preferably has an average surface roughness Ra of 1.8 nm or less on the surface of a single fiber measured by an atomic force microscope (AFM). Details of the measurement method will be described later.
  • the average surface roughness of the carbon fiber precursor fiber bundle is substantially maintained in the carbon fiber bundle.
  • the average surface roughness is preferably 1.0 to 1.8 nm, and more preferably 1.6 nm or less. When the average surface roughness exceeds 1.8 nm, the stress concentration point at tension may easily occur, and the strand strength may decrease.
  • the average surface roughness is preferably as low as possible, but when it is less than 1.0 nm, the effect is often saturated.
  • the average surface roughness of the carbon fiber bundle can be controlled by appropriately controlling the spinning conditions of the carbon fiber precursor fiber bundle (spinning method or coagulation bath condition) or reducing the surface defect of the carbon fiber bundle.
  • the carbon fiber bundle preferably has an area ratio (hereinafter referred to as an outer layer ratio) within the cross section of the blackened thickness of the outer peripheral portion of the cross section perpendicular to the fiber axial direction of the carbon fiber single fiber is preferably 90 area% or more It is preferably 90 to 95 area%, more preferably 90 to 93 area%.
  • the outer layer ratio is an area ratio obtained by dividing the area occupied by the blackened thickness seen in the outer peripheral part when the cross section perpendicular to the fiber axial direction of the carbon fiber single fiber is observed with an optical microscope %).
  • the surface layer stress concentration can be suppressed as the outer layer ratio becomes higher, so high strand strength can be expressed.
  • the outer layer ratio is low, it is difficult to develop high carbonization yield and high strand strength.
  • the outer layer ratio is 90 area% or more, the ratio of the stress bearing portion in the outer peripheral portion is sufficiently large, so that the stress concentration in the surface layer is suppressed.
  • the outer layer ratio exceeds 95% by area, the stress concentration suppressing effect on the surface layer is saturated, but the stranding strength may be lowered due to the temperature for temperature stabilization being deviated from the optimum temperature.
  • the blackening thickness can be measured by embedding a carbon fiber bundle in a resin, polishing a cross section perpendicular to the fiber axis direction, and observing the cross section with an optical microscope. Details will be described later.
  • the method for producing a carbon fiber bundle of the present invention is a strand by subjecting the latter half to a high temperature heat treatment with an appropriate temperature profile in a flameproofing step to make the flameproofed fiber bundle a specific density. It has been found that carbon fiber bundles are obtained in which the defects governing strength and knot strength are controlled very little and high carbonization yield and excellent strand strength and knot strength are obtained.
  • the preferred embodiments of the present invention will be described in detail below.
  • the carbon fiber precursor fiber bundle can be obtained by spinning a spinning solution in which a polyacrylonitrile copolymer is dissolved in a solvent. At this time, by filtering the spinning solution under specific conditions, foreign substances in the spinning solution are effectively removed, and then the filtered spinning solution is spun to obtain a carbon fiber precursor fiber bundle, which is obtained.
  • the carbon fiber precursor fiber bundle can be subjected to at least a flameproofing step, a precarbonization step and a carbonization step to obtain a carbon fiber bundle of high strand strength with few defects.
  • a polyacrylonitrile copolymer it is preferable to use the polyacrylonitrile copolymer which used the other monomer in addition to the acrylonitrile which is a main component.
  • the polyacrylonitrile copolymer preferably contains 90 to 100% by mass of acrylonitrile and less than 10% by mass of a copolymerizable monomer.
  • the polyacrylonitrile copolymer preferably contains a copolymer component such as itaconic acid, acrylamide, or methacrylic acid, from the viewpoint of improving the spinning process stability and efficiently performing the flame resistance treatment.
  • the method for producing the polyacrylonitrile copolymer can be selected from among known polymerization methods.
  • the spinning solution dissolves the polyacrylonitrile copolymer described above in a solvent in which polyacrylonitrile is soluble such as dimethylsulfoxide, dimethylformamide, dimethylacetamide or an aqueous solution of nitric acid, zinc chloride and sodium rhodanate It is
  • the filter device Prior to spinning the spinning solution as described above, it is preferable to pass the spinning solution through a filter device to remove the polymer raw material and impurities mixed in each step.
  • the filter device means a facility for filtering out foreign matter present in the spinning solution, an inflow path for introducing the spinning solution into the filter device, and a filter medium for filtering the spinning solution. And an outlet for guiding the filtered spinning solution out of the filter device, and a container for containing them.
  • the filter medium is a means for filtering the spinning solution contained in the filter device.
  • a leaf disc type filter As a form of a filter medium, a leaf disc type filter, a candle type filter, a pleated candle type filter, etc. are used. In contrast to candle filters and pleated candle filters whose filter media have a certain curvature, leaf disc filters can be used almost flatly, so that the pore size distribution is less likely to spread and the washability is easily maintained. Is preferred.
  • the filter medium is a member having a direct role in removing foreign matter present in the spinning solution.
  • the filter medium is required to have a defined open pore diameter with narrow variation, and additionally, chemical stability, heat resistance and pressure resistance to the substance to be treated are required.
  • a filter material a wire mesh produced by weaving metal fibers, a glass non-woven fabric, a filter material made of a sintered metal fiber structure, and the like are preferably used.
  • the material of the filter medium is not particularly limited as long as it is inert in the spinning solution and there is no eluted component in the solvent, but metal is more preferable from the viewpoint of durability and cost.
  • the metal fiber manufacturing method is a so-called convergent fiber manufacturing method in which a large number of wire rods are put together as a bundle and wire diameter is reduced, and then each wire is separated to reduce the wire diameter, coil cutting method, chatter vibration cutting method, etc. Can be mentioned.
  • the filter medium is a wire mesh
  • the metal fibers need to be single fibers instead of fiber bundles, and therefore, they are manufactured by a method such as repeated drawing and heat treatment.
  • the filtration accuracy is the particle diameter (diameter) of spherical particles capable of collecting 95% or more while passing through the filter medium.
  • the filtration accuracy can be measured by the method of JIS standard (JIS-B 8356-8: 2002). The fact that the filtration accuracy is low is synonymous with the fact that the filtration accuracy is high. Further, as the thickness of the filter increases, foreign substances in the spinning solution can be more easily removed, but the pressure loss in the filter medium increases, and the stability of the production process decreases.
  • the filtration accuracy of the filter medium used for the filtration of the spinning solution is B ( ⁇ m) and the basis weight of the filter medium is D (g / m 2 )
  • the filtration rate A (cm)
  • the filtered spinning solution is filtered after the spinning solution is filtered under the condition that the relation between the filtration accuracy B ( ⁇ m) and the filter material surface weight D (g / m 2 ) satisfies the following formulas (1) to (3)
  • the solution is spun to obtain carbon fiber precursor fiber bundles.
  • D-600 / ( ⁇ x ⁇ ) 0 0 (1) ⁇ 1-1 / (1 + exp (7-A)) (2)
  • 1-1 / (1 + exp ( ⁇ 0.23 ⁇ B)) (3).
  • the filter basis weight D (g / m 2 ) refers to the total basis weight of the filter medium excluding the mesh layer which may be laminated for the purpose of protecting the filter medium.
  • the filter material basis weight D can be calculated by measuring the mass of the filter material cut into an arbitrary area and dividing the mass by the area.
  • the filter material basis weight D the higher the foreign matter trapping rate, and the smaller the size, the easier it is for foreign matter to slip through without passing through. Therefore, when the effect of the filter material basis weight D on the improvement of the quality of the carbon fiber precursor fiber bundle and the clogging suppression of the filter is measured while changing the filtration rate A and the filtration accuracy B, in any filtration rate and filtration accuracy It was confirmed that there is a minimum basis weight of the filter material (hereinafter referred to as the minimum basis weight of the filter material) capable of achieving both the improvement of the quality of the carbon fiber precursor fiber bundle and the suppression of clogging of the filter.
  • the minimum basis weight of the filter material capable of achieving both the improvement of the quality of the carbon fiber precursor fiber bundle and the suppression of clogging of the filter.
  • the lowest filter material weight can be expressed using the product ⁇ ⁇ ⁇ of mutually independent parameters ⁇ and ⁇ as shown in the second term on the left side of Formula (1).
  • is defined as a function of the filtration rate A represented by the equation (2)
  • is defined as a function of the filtration accuracy B represented by the equation (3).
  • the minimum filter material weight is smaller, and as ⁇ ⁇ ⁇ is smaller, the minimum filter material weight is larger.
  • increases and the minimum filter material basis weight decreases.
  • fills following formula (4) as an example of the manufacturing method which obtains a carbon fiber bundle.
  • a method of producing a carbon fiber precursor fiber bundle suitable for obtaining a carbon fiber bundle will be described.
  • the method for producing a carbon fiber precursor fiber bundle comprises a spinning step of discharging a spinning solution from a spinneret into a coagulating bath and spinning by a wet-wet spinning method, and a water washing step of washing the fibers obtained in the spinning step in a water bath
  • the coagulation bath preferably contains a coagulation promoting component and a solvent used as a solvent for the spinning solution.
  • a coagulation promoting component those which do not dissolve the polyacrylonitrile copolymer and are compatible with the solvent used for the spinning solution can be used.
  • water it is preferable to use water as a coagulation promoting component.
  • the water bath temperature in the water washing step is preferably 30 to 98 ° C., and water washing is preferably performed using a water washing bath comprising a plurality of stages.
  • the draw ratio in the water-bath drawing step is preferably 2 to 6 times.
  • an oil agent made of silicone or the like to the fiber bundle for the purpose of preventing adhesion between single fibers.
  • a silicone oil it is preferable to use a modified silicone, and it is preferable to use one containing an amino-modified silicone having high heat resistance.
  • a well-known method can be utilized for a drying heat treatment process.
  • the drying temperature is 100 to 200 ° C., for example.
  • the steam drawing step is further carried out to obtain a carbon fiber precursor fiber bundle more suitably used for the production of a carbon fiber bundle.
  • the steam drawing step it is preferable to draw 2 to 6 times in pressurized steam.
  • the average fineness of single fibers contained in the carbon fiber precursor fiber bundle thus obtained is preferably 0.7 to 1.5 dtex, and more preferably 0.9 to 1.2 dtex.
  • the single fiber fineness By setting the single fiber fineness to 0.7 dtex or more, the occurrence of fiber bundle breakage due to accumulation of single fiber breakage due to contact with a roller or a guide is suppressed, and the spinning process, flameproofing process, pre-carbonizing process and carbonization process Process stability of each process can be maintained. Further, by setting the single fiber fineness to 1.5 dtex or less, the outer layer ratio in each single fiber after the instabilization step is reduced, and the process stability in the subsequent carbonization step, the strand strength and the strand of the obtained carbon fiber bundle Elastic modulus can be improved.
  • the discharge amount of the spinning solution may be adjusted in the spinning process of discharging the spinning solution from the spinneret and spinning.
  • the resulting carbon fiber precursor fiber bundle is usually a continuous fiber.
  • the number of filaments per fiber bundle is preferably 10,000 to 60,000.
  • the carbon fiber precursor fiber bundle is heat-treated in an oxidizing atmosphere to a density of 1.32 to 1.35 g / cm 3, and then the density is 1.46 to 1.50 g / cm.
  • Heat treatment is performed at 275 ° C. or more and 295 ° C. or less in an oxidizing atmosphere until it reaches cm 3 . That is, after the carbon fiber precursor fiber bundle is heat-treated to a predetermined density in the first half of the flameproofing process, heat treatment is performed at a high temperature of 275 ° C or more and 295 ° C or less in the second half of the flameproofing process.
  • the oxidizing atmosphere is an atmosphere containing 10% by mass or more of known oxidizing substances such as oxygen and nitrogen dioxide, and an air atmosphere is preferable in terms of simplicity.
  • the density of the flameproofed fiber bundle is generally used as an index indicating the progress of the flameproofing reaction. Since the heat resistance is high when the density is 1.32 g / cm 3 or more, it is difficult to be decomposed when heat-treated at a high temperature, and the strand strength of the obtained carbon fiber bundle is improved. Moreover, since the heat processing time in high temperature can be ensured long in the following process as it is 1.35 g / cm ⁇ 3 > or less, the strand strength of a carbon fiber bundle can be improved. In the flameproofing process, in order to make it possible to switch the process temperature as described above when the density of the flameproofed fiber bundle is defined, the fiber bundle between the first half and the second half of the flameproofing process is collected and the density Should be measured.
  • the density of the flameproofed fiber bundle can be adjusted by raising the temperature or prolonging the flameproofing time in the first half of the flameproofing step.
  • the carbon fiber precursor fiber bundle is heat-treated under an oxidizing atmosphere, preferably at 210 ° C. or more and less than 245 ° C., more preferably 220 ° C. or more and less than 245 ° C., still more preferably 225 ° C. or more and less than 240 ° C.
  • an oxidizing atmosphere preferably at 210 ° C. or more and less than 245 ° C., more preferably 220 ° C. or more and less than 245 ° C., still more preferably 225 ° C. or more and less than 240 ° C.
  • the heat treatment stabilizes the chemical structure of the single fiber in the process of flameproofing, and the difference in internal and external structure of the single fiber deteriorates even if the subsequent heat treatment is at high temperature.
  • the strand strength is often improved because it disappears.
  • the density is 1.24 g / cm 3 or less, the total amount and time of heat treatment including the subsequent heat treatment are reduced, which often becomes superior in terms of strand strength and productivity.
  • the temperature it is preferable that the temperature is 210 ° C. or more because the difference between the internal and external structures can be sufficiently suppressed.
  • the single fiber diameter of the carbon fiber precursor fiber bundle is preferably a flameproof initial temperature sufficiently low to suppress the difference between internal and external structures, which is often preferred because the strand strength is high.
  • the heat treatment is performed until the density of the above-described fiber bundle is 1.22 to 1.24 g / cm 3 , and the heat treatment is performed in an oxidizing atmosphere to obtain a density of 1.32 to 1.35 g / cm 3 , Preferably, a flameproofed fiber bundle of 1.33 to 1.34 g / cm 3 is obtained.
  • the heat treatment step is preferably performed at 245 ° C. or more and less than 275 ° C., more preferably 250 ° C. or more and less than 270 ° C. in an oxidizing atmosphere.
  • the heat treatment further stabilizes the chemical structure of single fibers in the process of flameproofing, and the difference in internal and external structure does not deteriorate even if the temperature of the subsequent heat treatment is higher. Often improve.
  • the density is 1.35 g / cm 3 or less, the total amount and time of heat treatment including the subsequent heat treatment decrease, and the strand strength and productivity become superior.
  • the heat treatment temperature is 245 ° C. or more, the total heat treatment amount and time decrease, and the strand strength and productivity often become superior.
  • the difference in internal and external structure can be suppressed even if heat treatment is performed on the flameproof fiber bundle having a density of 1.22 to 1.24 g / cm 3 , and high strand strength is often expressed.
  • heat treatment is performed at a temperature of 275 ° C. or more and 295 ° C. or less, preferably 280 ° C. or more and 290 ° C. or less under an oxidizing atmosphere to obtain a flame-resistant fiber bundle with a density of 1.46 to 1.50 g / cm 3 .
  • the heat treatment temperature is 275 ° C. or higher, the amount of heat applied when increasing the density can be reduced, whereby the strand strength is improved.
  • the heat treatment temperature is 295 ° C. or less, the flameproofing reaction can be advanced without decomposing the structure of the single fiber, and the strand strength can be maintained.
  • thermometer such as a thermocouple may be inserted into the heat treatment furnace of the flameproofing step to measure the temperature in the furnace.
  • the simple average temperature is calculated.
  • the final density of the fiber bundle is 1.46 to 1.50 g / cm 3 , preferably 1.46 to 1.49 g / cm 3 , and more preferably 1.47 to 1 It is .49 g / cm 3 . Since the density of the flame-stabilized fiber bundle correlates with the carbonization yield, the higher the density, the better from the viewpoint of reducing the production energy. When the density is 1.46 g / cm 3 or more, the carbonization yield can be sufficiently increased. When the density is 1.50 g / cm 3 or less, the effect of enhancing the carbonization yield is not saturated, which is effective from the viewpoint of productivity. In order to complete the heat treatment at the specified density, it is sufficient to adjust the temperature and time for stabilization.
  • the tension (flame-resistant tension) applied to the fiber bundle for fiberization is It is preferably 1.6 to 4.0 mN / dtex, more preferably 2.5 to 4.0 mN / dtex, and still more preferably 3.0 to 4.0 mN / dtex.
  • the flameproofing tension is a value obtained by dividing the tension (mN) measured on the flameproofing furnace outlet side by the as-dried fineness (dtex) of the carbon fiber precursor fiber bundle.
  • the tension When the tension is 1.6 mN / dtex or more, the orientation of the carbon fiber bundle is sufficiently enhanced, and the strand strength is often improved. If the tension is 4.0 mN / dtex or less, the grade deterioration due to fluff tends to be small.
  • the strand strength of the carbon fiber bundle tends to decrease.
  • the density of the flameproofed fiber bundle is increased by performing the second half high temperature heat treatment with an appropriate temperature profile in the flameproofing step, the internal / external structural difference of single fiber is largely suppressed. And, since the structure is stabilized, both high carbonization yield and high strand strength can be achieved.
  • a method for producing a carbon fiber bundle may be basically followed except for the above-mentioned flameproofing step, but in the method for producing a carbon fiber bundle of the present invention, pre-carbonization is carried out following the above-mentioned spinning process and flameproofing step. It is preferred to carry out the process.
  • the flame-resistant fiber obtained by the above-mentioned flame-resistance step is heat-treated in an inert atmosphere at a maximum temperature of 500 to 1000 ° C. to a density of 1.5 to 1.8 g / cm 3 It is preferable to obtain a pre-carbonized fiber bundle.
  • a carbonization step is performed.
  • the carbonization step it is preferable to obtain a carbon fiber bundle by heat-treating the pre-carbonized fiber bundle in an inert atmosphere at a maximum temperature of 1200 to 1800 ° C., preferably 1200 to 1600 ° C. If the maximum temperature is 1200 ° C. or higher, the nitrogen content in the carbon fiber bundle decreases and strand strength is stably developed. If the maximum temperature is at most 1800 ° C., a satisfactory carbonization yield can be obtained.
  • the carbon fiber bundle obtained as described above is preferably subjected to an oxidation treatment to introduce an oxygen-containing functional group in order to improve the adhesion to the matrix resin.
  • an oxidation treatment method gas phase oxidation, liquid phase oxidation, liquid phase electrolytic oxidation and the like are used. From the viewpoint of high productivity and uniform processing, liquid-phase electrolytic oxidation is preferably used.
  • the method of liquid phase electrolytic oxidation is not particularly specified, and may be carried out by a known method.
  • a sizing treatment can also be performed to give the obtained carbon fiber bundle a focusing property.
  • a sizing agent having good compatibility with the matrix resin can be appropriately selected according to the type of matrix resin used for the composite material.
  • the strand strength and strand elastic modulus of the carbon fiber bundle are determined according to the following procedure according to the resin impregnated strand test method of JIS-R-7608 (2004). Ten resin-impregnated strands of the carbon fiber bundle are measured, and the average value is taken as the strand strength. Strain is assessed using an extensometer. The strain range is evaluated at 0.1 to 0.6%.
  • ⁇ Outer layer ratio of carbon fiber single fiber> A carbon fiber bundle to be measured is embedded in a resin, a cross section perpendicular to the fiber axial direction is polished, and the cross section is observed at a total magnification of 1000 times with a 100 ⁇ objective lens of an optical microscope. The blackening thickness of the outer peripheral portion is measured from the cross-sectional microscope image of the polished surface. Analysis is performed using image analysis software Image J. First, black and white area division is performed by binarization in a single fiber cross-sectional image. For the luminance distribution in a single fiber cross section, the average value of the distribution is set as a threshold to perform binarization.
  • the shortest distance from one point of the surface layer to the black-to-white lined area is measured in the fiber diameter direction. This is measured with respect to five points in the circumference of the same single fiber, and the average value is calculated as the blackened thickness at that level. Also, the outer layer ratio is calculated from the area ratio (%) of the blackened thickness portion to the entire cross section perpendicular to the fiber axial direction of the carbon fiber single fiber. The same evaluation is performed on 30 single fibers in the carbon fiber bundle, and the average value is used.
  • ⁇ Nodular strength of carbon fiber bundle> A 25 mm long grip is attached to each end of a 150 mm long carbon fiber bundle to make a test body. At the time of preparing the test body, a load of 9.0 ⁇ 10 ⁇ 5 N / dtex is applied to align the carbon fiber bundles. A knot is made at the midpoint of the test body, and a bundle tension test is performed with a crosshead speed at tension of 100 mm / min. The measurement is performed on a total of 12 fiber bundles, and the average value of 10 fibers obtained by dividing the two values of the maximum value and the minimum value is used as a measurement value. As the knot strength, a value obtained by dividing the maximum load value obtained in the bundle tension test by the average cross-sectional value of the carbon fiber bundle is used.
  • a single fiber tensile test of carbon fiber single fiber is carried out according to JIS R7606 (2000), and a sample of carbon fiber single fiber after fracture including a fractured surface (hereinafter simply referred to as "fractured surface") is recovered.
  • the number of single fibers used in the test is one set of 50. If 30 or more sets of fracture surfaces on both sides can not be recovered, one more set of 50 single fiber single-filament tensile tests is carried out to break both sides. Collect 30 or more cross sections.
  • the strain rate in the tensile test is 0.4 mm / min.
  • the trace of fracture progressed radially from the fracture origin (i) remains as a radial streak, so that the streaks present in the SEM observation image are traced and converged to a single point
  • the specified part is identified as the break origin (i). If the streaks can not be recognized, or the streaks can be recognized but dirt is attached near the fracture origin (i) and it is difficult to observe them, even if they are present on either of the fracture surfaces on both sides, the fracture Cross sections are excluded from the group evaluation. The fracture surface reduced by exclusion is replenished as appropriate, and finally 30 sets of fracture surfaces are observed.
  • the fracture origin (i) is examined whether there are any morphological features.
  • morphological features such as dents and deposits, marks that the fiber surface is partially peeled off, scratches, and adhesion marks.
  • the morphological features that become the fracture origin observable by SEM are collectively called "defect".
  • the length measured along the circumferential direction of the fiber that is, the one having a size of 50 nm or more, is uniformly classified into "a fracture surface where a defect having a size of 50 nm or more exists" in the present invention regardless of the difference in appearance.
  • the test length in the single fiber tensile test is 10 mm, and a special test jig designed to be able to be carried out in water is used using a commercially available cyanoacrylate-based instant adhesive for fixing carbon fibers to a test strip backing. It carried out by A & D Tensilon "RTC-1210A". In addition, a scanning electron microscope (SEM) "S-4800" manufactured by Hitachi High-Technologies Corporation was used to observe the recovered fractured surface.
  • SEM scanning electron microscope
  • Probe Silicon cantilever (OLYMPUS, OMCL-AC160TS-W2) Measurement mode: Tapping mode scanning speed: 1.0 Hz Scanning range: 600 nm x 600 nm Resolution: 512 pixels x 512 pixels Measurement environment: Room temperature, in the atmosphere.
  • a three-dimensional surface shape image is measured under the above conditions for one single fiber, and the obtained measurement image takes into consideration the curvature of the fiber cross section, and the attached software (NanoScope Analysis) causes the data of device origin to swell.
  • “Median 8 processing” which is a filter processing to replace the value at the center of the matrix from the median value of Z data in a 3 ⁇ 3 matrix, and a cubic surface by the least squares method from all image data
  • surface roughness analysis is performed using attached software to calculate an average surface roughness.
  • the average surface roughness (Ra) is a three-dimensional extension of center line roughness Ra defined in JIS B 0601 (2001) so that it can be applied to surface measurement, from the reference surface to the designated surface It is defined as the value obtained by averaging the absolute value of the deviation of.
  • Ra center line roughness
  • ⁇ Number of fluffs of carbon fiber bundle The grade of the carbon fiber bundle which affects the productivity at the time of manufacture of a composite material is evaluated by the method of counting the number of fluff directly by the following method. According to visual observation of the carbon fiber bundle during traveling at a traveling speed of 1.5 m / min and a draw ratio of 1 time, the number of broken single fibers protruding 5 mm or more from the surface of the carbon fiber bundle is counted at a length of 20 m of the carbon fiber bundle And evaluate the number of feathers per 1 m (lines / m).
  • Example 1 A copolymer consisting of 99% by mass of acrylonitrile and 1% by mass of itaconic acid was polymerized by a solution polymerization method using dimethyl sulfoxide as a solvent to produce a polyacrylonitrile copolymer to obtain a spinning solution.
  • the spinning solution was flowed into the filter device and filtered.
  • the filter medium used was a metal sintered filter with a filtration accuracy B of 1 ⁇ m, a filter medium thickness C of 800 ⁇ m, and a filter basis weight D of 2500 g / m 2 , and filtration was performed under the filtering conditions of a filtration rate A of 3 cm / hour.
  • the filtered spinning solution was once discharged from the spinneret into air and spun by a dry-wet spinning method introduced into a coagulation bath consisting of an aqueous solution of 35% dimethyl sulfoxide controlled to 3 ° C.
  • the spun fiber bundle was washed with water at 30 to 98 ° C., and subjected to a water bath draw of 3.5 times.
  • an amino-modified silicone-based silicone oil was applied to the fiber bundle after the water-bath drawing, and drying was performed using a roller heated to a temperature of 160 ° C. to obtain a fiber bundle of 12000 single fibers.
  • the fiber bundle was stretched 3.7 times in pressurized steam to make the total draw ratio of yarn production 13 times.
  • the fluid discharge pressure is subjected to an entangling process with air at 0.35 MPa to obtain a carbon fiber precursor fiber bundle having a single fiber fineness of 1.1 dtex and 12000 single fibers.
  • the carbon fiber precursor fiber bundle was heat-treated in an air atmosphere oven at a draw ratio of 1.0 to obtain a flameproofed fiber bundle.
  • the obtained flame-resistant fiber bundle was subjected to pre-carbonization treatment at a draw ratio of 0.95 times in a nitrogen atmosphere at a temperature of 300 to 800 ° C. to obtain a pre-carbonized fiber bundle.
  • the obtained pre-carbonized fiber bundle was carbonized at a maximum temperature of 1350 ° C. in a nitrogen atmosphere.
  • the obtained carbon fiber bundle was subjected to surface treatment and sizing agent application treatment to obtain a final carbon fiber bundle. At this time, the number of fluffs of the carbon fiber bundle was less than 0.1 / m, almost no fluff was observed, and the grade was good.
  • the strand strength, strand elasticity modulus, outer layer ratio of carbon fiber single fiber, and average single fiber diameter of the carbon fiber bundle obtained in Table 2 are shown.
  • Example 2 Carbon fiber precursor fiber bundles and carbon fibers and carbon fibers are similar to Example 1 except that the filter medium is changed to a metal sintered filter with a filtration accuracy B of 9 ⁇ m, a filter medium thickness C of 3200 ⁇ m, and a filter medium weight D of 6400 g / m 2. I got a fiber bundle.
  • Example 3 In the filtration conditions, a carbon fiber precursor fiber bundle and a carbon fiber bundle were obtained in the same manner as in Example 1 except that the filtration rate A was changed to 6 cm / hour.
  • Examples 4 and 5 A carbon fiber precursor fiber and a carbon fiber bundle were obtained in the same manner as in Example 3 except that the draw ratio during preliminary carbonization was 1.05 in Example 4 and 1.10 in Example 5.
  • Example 1 A carbon fiber precursor fiber bundle and a carbon fiber bundle were obtained in the same manner as in Example 2 except that the filter medium was changed to a metal sintered filter having a filter medium thickness C of 1600 ⁇ m and a filter medium basis weight D of 3200 g / m 2 .
  • the number of fluffs of the carbon fiber bundle was 0.2 / m, and the quality was deteriorated.
  • Comparative example 2 A carbon fiber precursor fiber bundle and a carbon fiber bundle were obtained in the same manner as in Comparative Example 1 except that the filtration rate A was changed to 6 cm / hour under the filtration conditions.
  • Example 6 A carbon fiber bundle was obtained in the same manner as in Example 1 except that condition 2 in Table 1 was used as the flameproofing condition. The outer layer ratio of carbon fiber was 97%, and the strand strength was reduced as compared with Example 1.
  • Example 7 A carbon fiber bundle was obtained in the same manner as in Example 1 except that condition 3 in Table 1 was used as the flameproofing condition. The outer layer ratio of carbon fiber was 85%, and the strand strength was reduced as compared with Example 1.
  • the present invention can obtain a flame-resistant fiber bundle of a specific density by heat treatment with an appropriate temperature profile in the flame-proofing step, and thereby the number of defects governing strand strength and knot strength is controlled very little.
  • a carbon fiber bundle can be produced without loss of productivity, while exhibiting well-balanced expression of strand strength and strand elastic modulus and high knot strength.
  • the carbon fiber bundle of the present invention satisfies the productivity at the time of producing the composite material. Taking advantage of such characteristics, the carbon fiber bundle obtained in the present invention is suitably used for general industrial applications such as aircraft, automobiles, marine members, sports applications such as golf shafts and fishing rods, and pressure vessels.

Abstract

The present invention is a carbon fiber bundle that satisfies a prescribed strand modulus of elasticity, a prescribed strand strength, a prescribed node strength, and a prescribed average single fiber diameter and has a prescribed probability of the presence of defects with a size of 50 nm or greater in recovered rupture cross-sections when single fiber tension tests are carried out for test lengths of 10 mm, wherein the carbon fiber bundle is suitably obtained by using a filter medium having a prescribed filtration precision and filter medium mesh to filter, under a prescribed filtration rate, a spinning solution in which a polyacrylonitrile copolymer is dissolved in a solvent, then spinning the filtered spinning solution to obtain a carbon fiber precursor fiber bundle, heat treating the carbon fiber precursor fiber bundle obtained to a prescribed density using a suitable temperature profile in an oxidizing atmosphere to obtain a fire resistant fiber bundle, and subsequently heat treating the fire resistant fiber bundle at a prescribed temperature in an inert atmosphere. The purpose of the present invention is to provide a carbon fiber bundle that exhibits superior strand strength and strand modulus of elasticity with excellent balance and which has superior node strength and a method for manufacturing the same.

Description

炭素繊維束およびその製造方法Carbon fiber bundle and method for producing the same
 本発明は、炭素繊維束、およびその製造方法に関するものである。 The present invention relates to a carbon fiber bundle and a method for producing the same.
 炭素繊維束は、複合材料の強化繊維として用途が拡がり、更なる高性能化が強く求められている。特に、圧力容器などの部材を軽量化するため、炭素繊維束の樹脂含浸ストランド強度、および樹脂含浸ストランド弾性率(以下、単にストランド強度、およびストランド弾性率と表記)といった力学特性をバランス良く高めることが求められている。それと同時に、炭素繊維束の製造における環境負荷を低減することが必要である。一般的に、ポリアクリロニトリル系炭素繊維束は、炭素繊維前駆体繊維束を200~300℃の酸化性雰囲気下で熱処理(耐炎化工程)した後、1000℃以上の不活性雰囲気下で熱処理する工程(炭素化工程)を経て得られる。その際にポリアクリロニトリルに含まれる炭素、窒素および水素原子が熱分解により脱離するため、炭素繊維束の収率(以下、炭化収率ともいう)は半分ほどになっている。同等の製造エネルギーで炭素繊維束の収率を高めることが、生産量あたりの製造エネルギー、すなわち、環境負荷を低減する観点から必要となっている。 Carbon fiber bundles are widely used as reinforcing fibers for composite materials, and there is a strong demand for higher performance. In particular, in order to reduce the weight of members such as pressure vessels, to improve mechanical properties such as resin impregnated strand strength of carbon fiber bundle and resin impregnated strand elastic modulus (hereinafter simply referred to as strand strength and strand elastic modulus) in a well-balanced manner Is required. At the same time, it is necessary to reduce the environmental burden in the production of carbon fiber bundles. In general, the polyacrylonitrile carbon fiber bundle is a process of heat treating a carbon fiber precursor fiber bundle in an oxidizing atmosphere at 200 to 300 ° C. (flameproofing step) and then heat treating it in an inert atmosphere of 1000 ° C. or more It can be obtained through the (carbonization step). At that time, carbon, nitrogen and hydrogen atoms contained in polyacrylonitrile are eliminated by thermal decomposition, so the carbon fiber bundle yield (hereinafter also referred to as carbonization yield) is about half. It is necessary to increase the yield of carbon fiber bundles with equivalent production energy from the viewpoint of reducing the production energy per production amount, that is, the environmental load.
 そのために、これまで耐炎化条件の適正化による炭素繊維束のストランド強度向上あるいは炭化収率向上を目的とした技術が多く提案されてきた(特許文献1-5)。 Therefore, many techniques have been proposed for the purpose of improving the strand strength or carbonization yield of carbon fiber bundles by optimizing flame resistance conditions (Patent Documents 1-5).
 特許文献1では、耐炎化工程において高温処理することで与える熱量(J・h/g)をなるべく小さくして炭素繊維束のストランド強度を向上させる検討がなされている。特許文献2では、耐炎化工程の途中過程で付加した酸素量に応じて耐炎化温度を高い温度に設定すること、特許文献3では、炭素繊維前駆体繊維束が熱暴走しないように加熱と冷却を繰り返すことでなるべく高温で耐炎化することが、耐炎化工程の短時間化のために提案された。また、特許文献4、5では耐炎化初期において炭素繊維前駆体繊維束を酸化性雰囲気で加熱した後、250~300℃の高温加熱ローラーに接触させることで、短時間で耐炎化繊維束の密度を上昇させて炭化収率を高める試みが提案された。 In patent document 1, examination which makes heat quantity (J * h / g) given by carrying out high temperature processing in a flame-proof process as small as possible, and improves the strand intensity | strength of a carbon fiber bundle is made | formed. In Patent Document 2, setting the temperature for oxidation to a high temperature according to the amount of oxygen added in the middle of the process for flame-proofing, in Patent 3, heat and cool the carbon fiber precursor fiber bundle so as to prevent thermal runaway. In order to shorten the flameproofing process, it has been proposed that the flameproofing be made as high temperature as possible by repeating. Further, in Patent Documents 4 and 5, the carbon fiber precursor fiber bundle is heated in an oxidizing atmosphere at the initial stage of flame resistance, and then brought into contact with a high temperature heating roller at 250 to 300 ° C. An attempt was made to raise the carbonization yield by raising the
 特許文献6、7では、繊維軸方向以外の機械的性質を反映させ、疑似等方材料において十分な機械的性質を発現させる、結節強度の高い炭素繊維束が提案されている。 Patent Documents 6 and 7 propose carbon fiber bundles with high knot strength, which reflect mechanical properties other than in the fiber axial direction and exhibit sufficient mechanical properties in quasi-isotropic materials.
 特許文献8では、高い炭化収率を満足させるために特定の密度の耐炎化繊維束を得る際に、耐炎化工程で適切な温度プロフィールで後半高温熱処理することにより特定の密度の耐炎化繊維束を得ることができるため、高い炭化収率と優れたストランド強度およびストランド弾性率をバランス良く発現し、さらに優れた結節強度を同時に満足した炭素繊維束が提案されている。 In Patent Document 8, when obtaining a flameproofed fiber bundle of a specific density in order to satisfy a high carbonization yield, a flameproofed fiber bundle of a specific density by heat treatment at a high temperature in the latter half with an appropriate temperature profile in the flameproofing step. A carbon fiber bundle has been proposed which has a well-balanced expression of high carbonization yield and excellent strand strength and strand modulus, and simultaneously satisfies excellent knot strength.
 一方、炭素繊維は脆性材料であり、わずかな表面欠陥、内在欠陥がストランド強度低下を引き起こすため、欠陥の生成に関しては、繊細な注意が払われてきた。例えば、特許文献9では、炭素繊維前駆体繊維束の緻密化、製造プロセス中の粉塵低減ならびに電解処理による欠陥の除去によって、炭素繊維表面の欠陥を低減して高いストランド強度の炭素繊維束を得ることが提案されている。 On the other hand, since carbon fiber is a brittle material and slight surface defects and internal defects cause strand strength reduction, delicate attention has been paid to the generation of defects. For example, in Patent Document 9, defects in the surface of a carbon fiber are reduced to obtain a carbon fiber bundle of high strand strength by densifying a carbon fiber precursor fiber bundle, reducing dust in the manufacturing process and removing defects by electrolytic treatment. It has been proposed.
特開2012-82541号公報JP 2012-82541 A 特開昭58-163729号公報JP-A-58-163729 特開平6-294020号公報Japanese Patent Application Laid-Open No. 6-294020 特開2013-23778号公報JP 2013-23778 A 特開2014-74242号公報JP 2014-74242 A 国際公開第2013/157613号International Publication No. 2013/157613 特開2015-096664号公報JP, 2015-096664, A 特開2017-66580号公報JP 2017-66580 A 特公平8-6210号公報Japanese Examined Patent Publication 8-6210
 しかしながら、特許文献1の提案では、耐炎化工程で与える熱量の積算値を小さくしようとしているため、ストランド強度と炭化収率の両立には十分ではなかった。また、特許文献2、3の提案では、耐炎化温度を高温化して耐炎化時間を短時間化しているために、求めるストランド強度を満足できるような耐炎化温度制御を実施してなく、内外構造差による表層への応力集中抑制が課題であった。また、特許文献4、5の提案では、耐炎化工程後半において高温短時間で熱処理するために伝熱効率の高い加熱ローラーを用いて高温で熱処理しているが、高温での熱処理時間が短すぎることやローラー通過時の単繊維間融着による欠陥生成により十分なストランド強度を得られていなかった。特許文献6の提案は、主に耐炎化工程の調整によって、単繊維径が大きくても結節強度を高められると述べているものの、耐炎化時の単繊維内の構造分布により効果は限定的であり、結節強度のレベルが不十分であった。特許文献7の提案は、炭素繊維束の表面処理やサイジング剤を主に調整することで結節強度を高められると述べているものの、単繊維径が低いものに限定されており、単繊維径が低い場合に製造工程中で単繊維の破断張力が低下するため、繊維破断により製造工程の品位が低下する問題がある。特許文献8の提案は、耐炎化工程で適切な温度プロフィールで後半高温熱処理することによりストランド強度、および結節強度が高められているが、これら特性に影響する欠陥の制御が十分でなく、改善の余地があるものであった。特許文献9では電解処理によって炭素繊維表面の欠陥を効果的に除去することができているものの、欠陥を除去するには強い電解処理が必要であり、長大な電解処理槽が必要となるため、工業的に実施しにくいという問題があった。また、強い電解処理によってコンポジット物性低下に繋がりうる脆弱層が炭素繊維表面に形成されてしまうという問題もあった。さらに欠陥として、試長を50mmとして単繊維引張試験を行った際に回収された破断面における欠陥の特徴について規定しているが、ストランド強度や複合材料の引張強度に影響する試長は10mmよりも短いため、試長50mmにおいて見られる欠陥の特徴を規定しただけでは必ずしも複合材料の引張強度を高める炭素繊維束とはならないといった本質的な問題もあった。 However, in the proposal of patent document 1, since it is going to make small the integral value of the calorie | heat amount given at a flameproofing process, it was not enough for coexistence of strand strength and a carbonization yield. Further, in the proposals of Patent Documents 2 and 3, since the temperature for making the temperature is increased to shorten the time for making the temperature shorter, the temperature control for making the temperature sufficient to satisfy the required strand strength is not performed. Stress concentration control to the surface layer by the difference was a subject. In the proposals of Patent Documents 4 and 5, heat treatment is performed at a high temperature using a heating roller having a high heat transfer efficiency in order to perform heat treatment at a high temperature in a short time in the second half of the flameproofing process. Sufficient strand strength has not been obtained due to the formation of defects due to fusion between single fibers when passing through rollers and rollers. Although the proposal of Patent Document 6 states that the knot strength can be enhanced even by a large single fiber diameter mainly by adjusting the step of making the flame resistant, the effect is limited due to the structural distribution within the single fiber at the time of making it hard. And the level of knot strength was insufficient. Although the proposal of Patent Document 7 states that the knot strength can be enhanced by mainly adjusting the surface treatment of the carbon fiber bundle and the sizing agent, the single fiber diameter is limited and the single fiber diameter is limited. If it is low, the breaking tension of the single fiber in the manufacturing process is reduced, so there is a problem that the quality of the manufacturing process is reduced due to the fiber breakage. In the proposal of Patent Document 8, although the strand strength and the knot strength are enhanced by performing the second half high-temperature heat treatment with an appropriate temperature profile in the flameproofing process, the control of defects affecting these characteristics is not sufficient and improvement is There was room. In Patent Document 9, although defects on the surface of the carbon fiber can be effectively removed by electrolytic treatment, strong electrolytic treatment is required to remove the defects, and a long electrolytic treatment tank is required. There was a problem that it was difficult to carry out industrially. In addition, there is also a problem that a fragile layer which may lead to a decrease in composite physical properties due to strong electrolytic treatment is formed on the surface of the carbon fiber. Furthermore, as defects, the characteristics of defects in the fractured surface recovered when the single fiber tensile test is performed with a test length of 50 mm are specified, but the test length that affects the strand strength and the tensile strength of the composite material is 10 mm Because of their shortness, there is also an essential problem that merely specifying the characteristics of defects found in the test length of 50 mm does not necessarily result in carbon fiber bundles that enhance the tensile strength of the composite material.
 本発明は、上述した先行技術における課題を解決すべく、ストランド強度およびストランド弾性率をバランス良く発現し、かつ優れた結節強度を有する炭素繊維束を生産性を損なうことなく製造する方法を提供することを目的とする。 In order to solve the problems in the prior art described above, the present invention provides a method for producing a carbon fiber bundle having well-balanced strand strength and strand elasticity and excellent knot strength without losing productivity. The purpose is
 上記の目的を達成するために、本発明の炭素繊維束の製造方法は、ポリアクリロニトリル共重合体が溶媒に溶解されてなる紡糸溶液を、濾過精度B(μm)と濾材目付D(g/m)を有するフィルター濾材を用い、濾過速度A(cm/時間)が下記式(1)~(3)を満足する条件で、紡糸溶液を濾過した後、該濾過された紡糸溶液を紡糸して炭素繊維前駆体繊維束を得て、
 D - 600/(α×β) ≧ 0 ・・・(1)
 α = 1-1/(1+exp(7-A)) ・・・(2)
 β = 1-1/(1+exp(-0.23×B)) ・・・(3)
得られた炭素繊維前駆体繊維束を酸化性雰囲気下で密度1.32~1.35g/cmになるまで熱処理した後、密度1.46~1.50g/cmになるまで酸化性雰囲気下275℃以上295℃以下で熱処理をして耐炎化繊維束を得た後、該耐炎化繊維束を不活性雰囲気下1200~1800℃で熱処理する、炭素繊維束の製造方法である。
In order to achieve the above object, the method for producing a carbon fiber bundle of the present invention comprises a spinning solution in which a polyacrylonitrile copolymer is dissolved in a solvent, filtration accuracy B (μm) and filter medium weight D (g / m) 2 ) using the filter medium having the above 2 ) and filtering the spinning solution under the condition that the filtration rate A (cm / hour) satisfies the following formulas (1) to (3), and spinning the filtered spinning solution Obtain a carbon fiber precursor fiber bundle,
D-600 / (α x β) 0 0 (1)
α = 1-1 / (1 + exp (7-A)) (2)
β = 1−1 / (1 + exp (−0.23 × B)) (3)
The obtained carbon fiber precursor fiber bundle was heat treated to a density 1.32 ~ 1.35g / cm 3 in an oxidizing atmosphere, an oxidizing atmosphere to a density 1.46 ~ 1.50g / cm 3 This is a method for producing a carbon fiber bundle, wherein heat treatment is carried out at 275 ° C. or more and 295 ° C. or less to obtain a flame-resistant fiber bundle, and then the flame-resistant fiber bundle is heat-treated at 1200 to 1800 ° C. in an inert atmosphere.
 また、本発明の炭素繊維束は、ストランド弾性率が240~280GPa、ストランド強度が5.8GPa以上、結節強度K[MPa]が-88d+1390≦K(d:平均単繊維径[μm])、および平均単繊維径が6.5~8.0μmの範囲であり、かつ試長を10mmとして単繊維引張試験を実施した際に、回収した破断面に大きさ50nm以上の欠陥が存在する確率が35%以下の炭素繊維束である。 The carbon fiber bundle of the present invention has a strand elastic modulus of 240 to 280 GPa, a strand strength of 5.8 GPa or more, a knot strength K [MPa] of -88d + 1390 ≦ K (d: average single fiber diameter [μm]), When a single fiber tensile test is performed with an average single fiber diameter in the range of 6.5 to 8.0 μm and a test length of 10 mm, the probability that a defect with a size of 50 nm or more exists on the recovered fractured surface is 35 % Or less of carbon fiber bundles.
 本発明の方法によれば、耐炎化繊維束を得る際に、耐炎化工程において適切な温度プロフィールで熱処理することにより特定の密度の耐炎化繊維束を得ることができ、これによりストランド強度および結節強度を支配する欠陥が極めて少なく制御されているため、ストランド強度およびストランド弾性率をバランス良く発現し、優れた結節強度を有する炭素繊維束を生産性を損なうことなく製造することができる。また、本発明の炭素繊維束によれば、複合材料製造時の生産性を満足する炭素繊維束となる。 According to the method of the present invention, when obtaining a flameproofed fiber bundle, it is possible to obtain a flameproofed fiber bundle of a specific density by heat treatment with an appropriate temperature profile in the flameproofing step, whereby strand strength and knots are obtained. Since the defects governing strength are controlled to a very low degree, it is possible to produce a carbon fiber bundle having well-balanced strength of strands and strand elasticity and excellent knot strength without losing productivity. Moreover, according to the carbon fiber bundle of the present invention, the carbon fiber bundle satisfies the productivity at the time of producing the composite material.
図1は炭素繊維の破断面の走査電子顕微鏡(SEM)像である。一点に収束する放射状の条痕が確認される。FIG. 1 is a scanning electron microscope (SEM) image of a fractured surface of carbon fiber. Radial streaks that converge to one point are identified. 図2は図1の破断起点近傍の拡大像である。付着物状の欠陥が確認される。FIG. 2 is an enlarged image of the vicinity of the break starting point of FIG. Deposit-like defects are identified. 図3は別の破断面の破断起点近傍の拡大像である。凹み状の欠陥が確認される。FIG. 3 is an enlarged image of another fracture surface near the fracture origin. A dent-like defect is identified. 図4は別の破断面の破断起点近傍の拡大像である。50nm以上の目立った形態的特徴は確認されない。FIG. 4 is an enlarged image of another fracture surface near the fracture origin. No noticeable morphological features above 50 nm are identified.
 本発明の炭素繊維束は、ストランド強度が5.8GPa以上であり、好ましくは6.0GPa以上である。ストランド強度が5.8GPa以上であれば、炭素繊維束を用いて複合材料を製造した際に、複合材料が良好な引張強度を発現する。炭素繊維束のストランド強度は高いほど好ましいが、ストランド強度が7.0GPa以下でも、十分な複合材料の引張強度が得られる。ストランド強度は、後述する炭素繊維束のストランド引張試験に記載の方法により求めることができる。なお、かかるストランド強度は、後述する本発明の炭素繊維束の製造方法を用いることにより制御することができる。 The carbon fiber bundle of the present invention has a strand strength of 5.8 GPa or more, preferably 6.0 GPa or more. When the strand strength is 5.8 GPa or more, the composite material exhibits good tensile strength when the composite material is manufactured using the carbon fiber bundle. The strand strength of the carbon fiber bundle is preferably as high as possible, but even if the strand strength is 7.0 GPa or less, sufficient tensile strength of the composite material can be obtained. The strand strength can be determined by the method described in the strand tension test of the carbon fiber bundle described later. The strand strength can be controlled by using the method for producing a carbon fiber bundle of the present invention described later.
 本発明の炭素繊維束は、ストランド弾性率が240~280GPaであり、好ましくは245~275GPaであり、より好ましくは250~270GPaである。ストランド弾性率が240~280GPaであれば、ストランド弾性率とストランド強度のバランスに優れるために好ましい。特に、ストランド弾性率を250~270GPaに制御することで、ストランド強度の優れた炭素繊維束が得られやすい。ストランド弾性率は、後述する炭素繊維束のストランド引張試験に記載の方法により求めることができる。このとき、歪み範囲を0.1~0.6%とする。炭素繊維束のストランド弾性率は、主に炭素繊維束の製造工程におけるいずれかの熱処理過程で繊維束に張力を付与すること、単繊維内の構造分布である内外構造差を改善すること、または炭素化温度を変えることにより制御できる。 The carbon fiber bundle of the present invention has a strand elastic modulus of 240 to 280 GPa, preferably 245 to 275 GPa, and more preferably 250 to 270 GPa. If the strand elastic modulus is 240 to 280 GPa, it is preferable because the balance between the strand elastic modulus and the strand strength is excellent. In particular, by controlling the strand elastic modulus to 250 to 270 GPa, it is easy to obtain a carbon fiber bundle with excellent strand strength. The strand elastic modulus can be determined by the method described in the strand tension test of the carbon fiber bundle described later. At this time, the strain range is set to 0.1 to 0.6%. The strand elastic modulus of the carbon fiber bundle mainly applies tension to the fiber bundle in any heat treatment process in the manufacturing process of the carbon fiber bundle, improves the internal / external structural difference which is the structural distribution in the single fiber, or It can control by changing carbonization temperature.
 また、本発明の炭素繊維束は、炭素繊維束の中点部分に結節部を形成して束引張試験を行って得られる結節強度Kが700MPa以上であることが好ましく、740MPa以上であることがより好ましく、770MPa以上であることがさらに好ましい。結節強度は後述する炭素繊維束の結節強度に記載の方法により求めることができる。結節強度は、繊維軸方向以外の繊維束の機械的性質を反映する指標となるものである。複合材料を製造する際、炭素繊維束には曲げ方向の力が負荷される。複合材料を効率良く製造しようとフィラメント数を高めると、毛羽が発生するため複合材料の製造時に繊維束の走行速度を高めにくいが、結節強度が700MPa以上であれば繊維束の走行速度が高い条件でも品位良く複合材料を得ることができる。炭素繊維束の結節強度を高めるには、後述する本発明の炭素繊維束の製造方法において、特に耐炎化工程および予備炭素化工程における構造パラメーターを好ましい範囲内に納めるように制御すると良い。さらに炭素繊維表面の欠陥を低減することでも結節強度を高められる。 Further, in the carbon fiber bundle of the present invention, a knot strength is preferably 700 MPa or more, preferably 740 MPa or more, obtained by forming a knot portion at the midpoint of the carbon fiber bundle and conducting a bundle tension test. More preferably, the pressure is 770 MPa or more. The knot strength can be determined by the method described in the knot strength of the carbon fiber bundle described later. The knot strength is an index reflecting the mechanical properties of the fiber bundle other than the fiber axial direction. When producing the composite material, the carbon fiber bundle is loaded with a force in the bending direction. If the number of filaments is increased to efficiently produce the composite material, it is difficult to increase the running speed of the fiber bundle at the time of producing the composite material because fluff is generated, but if the knot strength is 700 MPa or more, the condition that the running speed of the fiber bundle is high However, composite materials can be obtained with high quality. In order to increase the knot strength of the carbon fiber bundle, in the method for producing a carbon fiber bundle of the present invention described later, in particular, it is preferable to control the structural parameters in the flameproofing step and the precarbonization step within a preferable range. Furthermore, reducing the defects on the surface of the carbon fiber can also increase the knot strength.
 炭素繊維束は、フィラメント数が10,000~60,000本であることが好ましい。フィラメント数が10,000本以上であれば、生産性よく複合材料が製造できる。フィラメント数が60,000以下であれば複合材料製造時の毛羽発生を抑制でき、繊維束の走行速度を高められるため生産性が高まりやすい。 The carbon fiber bundle preferably has a number of filaments of 10,000 to 60,000. If the number of filaments is 10,000 or more, a composite material can be produced with high productivity. If the number of filaments is 60,000 or less, it is possible to suppress the generation of fluff during the production of the composite material, and the traveling speed of the fiber bundle can be increased, so that the productivity is likely to be increased.
 また、炭素繊維束は、結節強度K[MPa](=N/mm)が-88d+1390≦K(ここで、dは平均単繊維径[μm])を満たす。-88d+1410≦Kの関係式を満たすことが好ましい。かかる関係式は平均単繊維径の割に結節強度が高いことを示している。結節強度Kが-88d+1390≦Kを満たす場合には、フィラメントワインディング成形工程の際、ガイドあるいはローラーとの擦過による毛羽が生じやすい平均単繊維径の大きい炭素繊維束でも、毛羽の生成を抑制し繊維束の走行速度を高めて成形することが可能である。かかる関係式を満たすには、後述する本発明の製法により平均単繊維径にあわせて適切に耐炎化条件を設定すると良い。 The carbon fiber bundle has a knot strength K [MPa] (= N / mm 2 ) satisfying -88d + 1390 390 K (where d is an average single fiber diameter [μm]). It is preferable that the relational expression of −88d + 1410 ≦ K be satisfied. This relational expression indicates that the knot strength is high relative to the average single fiber diameter. When the knot strength K satisfies -88d + 1390 、 K, even in the case of a carbon fiber bundle having a large average single fiber diameter which is likely to be fuzzed by rubbing with a guide or a roller during the filament winding forming process, fuzz generation is suppressed It is possible to increase the traveling speed of the bundle for shaping. In order to satisfy such a relational expression, it is preferable to set flameproofing conditions appropriately according to the average single fiber diameter by the manufacturing method of the present invention described later.
 炭素繊維束は、試長を10mmとして単繊維引張試験を実施した際に、回収した破断面に大きさ50nm以上の欠陥が存在する確率が好ましくは35%以下であり、より好ましくは30%以下であり、さらに好ましくは25%以下である。炭素繊維の引張破壊は欠陥を起点として開始することが知られている。炭素繊維の破断起点となる欠陥としては、ボイド、繊維表面の傷、凹み、付着物、あるいは単繊維同士が熱処理の熱で接着して剥がれたあとに残る接着痕など様々なタイプが存在することが知られているが、本発明ではこれら全てを特に区別することなく、走査電子顕微鏡(SEM)観察によって観察可能な破断起点となる形態的特徴のことをまとめて「欠陥」と総称する。本発明者らが検討した結果、試長を10mmとして単繊維引張試験を実施した際に、回収した破断面に大きさ50nm以上の欠陥が存在する確率を35%以下とすれば、炭素繊維束のストランド強度が大きく高まることを見いだした。ここで重要なことは試長を10mmとすることである。より長い試長、例えば試長を50mmとして単繊維引張試験を実施した場合において、上記と同様にある大きさ以上の欠陥の存在する確率を調べても、該確率と、ストランド強度および複合材料の引張強度とは必ずしも相関しないことが本発明者らの検討の結果分かった。試長を10mmとすることが有効な理由としては、ストランド強度および複合材料の引張強度を支配する試長(一般に有効試長と呼称される)は10mmよりも短いためであると考えられる。試長を10mmとして単繊維引張試験を実施した際に、回収した破断面に大きさ50nm以上の欠陥が存在する確率を35%以下とすることにより、炭素繊維束のストランド強度、および複合材料の引張強度に影響する欠陥が効果的に低減されており、その結果ストランド強度、および複合材料の引張強度が高いレベルのものとなる。「試長を10mmとして単繊維引張試験を実施した際に、回収した破断面に大きさが50nm以上の欠陥が存在する確率」は、紡糸溶液の濾過条件である、濾過速度や濾過精度、および濾材目付を後述する方法に従って制御し、紡糸溶液中の異物を効果的に取り除くことで減少する。 The carbon fiber bundle preferably has a probability that a defect of 50 nm or more exists on the recovered fractured surface when the single fiber tensile test is performed with a test length of 10 mm, preferably 35% or less, more preferably 30% or less More preferably, it is 25% or less. It is known that tensile failure of carbon fibers starts from defects. Various types of defects such as voids, scratches on the fiber surface, dents, deposits, or adhesion marks left after single fibers are adhered and separated by heat of heat treatment exist as defects that become the fracture starting point of carbon fibers In the present invention, all of these are not particularly distinguished, but the morphological features that become the fracture origin observable by scanning electron microscope (SEM) observation are collectively referred to as "defect". As a result of investigations by the present inventors, when a single fiber tensile test is performed with a test length of 10 mm, the carbon fiber bundle can be obtained if the probability that a defect with a size of 50 nm or more exists in the recovered fractured surface is 35% or less. It was found that the strand strength of the The important thing here is to set the trial length to 10 mm. When a single fiber tensile test is performed with a longer test length, for example, a test length of 50 mm, the probability, the strand strength, and the composite material can be examined also by examining the probability of the presence of a defect of a certain size or more. The inventors of the present invention have found that they do not necessarily correlate with tensile strength. The reason why it is effective to set the test length to 10 mm is considered to be that the test length governing the strand strength and the tensile strength of the composite material (generally referred to as the effective test length) is shorter than 10 mm. When the single fiber tensile test is performed with a test length of 10 mm, the strand strength of the carbon fiber bundle and the composite material can be obtained by setting the probability that a defect with a size of 50 nm or more is 35% or less on the recovered fractured surface. Defects affecting tensile strength are effectively reduced, resulting in high levels of strand strength, and tensile strength of the composite. “Probability that a defect with a size of 50 nm or more exists in the recovered fractured surface when the single fiber tensile test is performed with a test length of 10 mm” is the filtration speed and the filtration accuracy, which are the filtration conditions of the spinning solution, The filter material basis weight is controlled in accordance with the method described later, and is reduced by effectively removing foreign substances in the spinning solution.
 本発明の炭素繊維束において、平均単繊維径は6.5~8.0μmであり、6.7~8.0μmが好ましく、7.0~8.0μmがより好ましく、7.3~8.0μmがさらに好ましく、7.5~8.0μmが最も好ましい。平均単繊維径は小さいほど内外構造差が減少傾向となるが、複合材料を作製する場合に高いマトリックス樹脂粘度により含浸不足を生じて複合材料の引張強度低下する場合がある。平均単繊維径が6.5~8.0μmの場合、マトリックス樹脂の含浸不足が生じにくいことや、高い炭化収率とストランド強度の発現が安定的となることから好ましい。平均単繊維径は、炭素繊維束の単位長さ当たりの質量と密度およびフィラメント数から計算できる。炭素繊維束の平均単繊維径は、炭素繊維前駆体繊維束の平均単繊維径を高めることや、耐炎化条件の制御により炭素化工程における炭化収率を高めること、また予備炭素化の延伸倍率を下げることで高められる。 In the carbon fiber bundle of the present invention, the average single fiber diameter is 6.5 to 8.0 μm, preferably 6.7 to 8.0 μm, more preferably 7.0 to 8.0 μm, and 7.3 to 8. 0 μm is more preferable, and 7.5 to 8.0 μm is the most preferable. The smaller the average single fiber diameter, the smaller the internal / external structural difference tends to decrease. However, when preparing a composite material, insufficient impregnation may occur due to the high matrix resin viscosity, which may lower the tensile strength of the composite material. When the average single fiber diameter is 6.5 to 8.0 μm, it is preferable because the insufficient impregnation of the matrix resin hardly occurs and the expression of high carbonization yield and strand strength becomes stable. The average single fiber diameter can be calculated from the mass and density per unit length of carbon fiber bundle and the number of filaments. The average single fiber diameter of the carbon fiber bundle is to increase the carbonization yield in the carbonization step by increasing the average single fiber diameter of the carbon fiber precursor fiber bundle, or by controlling the flameproof conditions, and the draw ratio of precarbonization. Can be enhanced by lowering
 炭素繊維束は、原子間力顕微鏡(AFM)により測定される単繊維表面の平均面粗さRaが1.8nm以下であることが好ましい。測定法の詳細は後述する。炭素繊維前駆体繊維束の平均面粗さが炭素繊維束においてもほぼ維持される。平均面粗さは、1.0~1.8nmであることが好ましく、1.6nm以下であることがさらに好ましい。平均面粗さが1.8nmを超えると、引張時の応力集中点となりやすくストランド強度が低下する場合がある。平均面粗さは、低ければ低いほど好ましいが、1.0nm未満となるとほぼ効果が飽和することが多い。炭素繊維束の平均面粗さは、炭素繊維前駆体繊維束の製糸条件を適切に制御する(紡糸法や凝固浴条件)ことや、炭素繊維束の表面欠陥を低減することで制御できる。 The carbon fiber bundle preferably has an average surface roughness Ra of 1.8 nm or less on the surface of a single fiber measured by an atomic force microscope (AFM). Details of the measurement method will be described later. The average surface roughness of the carbon fiber precursor fiber bundle is substantially maintained in the carbon fiber bundle. The average surface roughness is preferably 1.0 to 1.8 nm, and more preferably 1.6 nm or less. When the average surface roughness exceeds 1.8 nm, the stress concentration point at tension may easily occur, and the strand strength may decrease. The average surface roughness is preferably as low as possible, but when it is less than 1.0 nm, the effect is often saturated. The average surface roughness of the carbon fiber bundle can be controlled by appropriately controlling the spinning conditions of the carbon fiber precursor fiber bundle (spinning method or coagulation bath condition) or reducing the surface defect of the carbon fiber bundle.
 炭素繊維束は、炭素繊維単繊維の繊維軸方向に垂直な断面の外周部の黒化厚みの断面内の面積割合(以下、外層比率と記す。)が好ましくは90面積%以上であり、より好ましくは90~95面積%であり、さらに好ましくは90~93面積%である。ここで、外層比率とは炭素繊維単繊維の繊維軸方向と垂直な横断面を光学顕微鏡で観察した際に外周部に見られる黒化厚みの占める面積を、断面積全体で割った面積比率(%)である。炭素繊維単繊維の黒化厚みより内部は結晶部分の配向度が低く、ストランド弾性率が低い領域であるため、外層比率が高くなるほど、表層応力集中が抑制できるので高いストランド強度を発現できる。外層比率が低いと、高い炭化収率および高いストランド強度を発現しにくい。外層比率が90面積%以上であると外周部の応力負担部分の割合が十分に多いため、表層における応力集中は抑制される。外層比率が95面積%を超えると表層への応力集中抑制効果が飽和する反面、耐炎化温度が最適な温度から外れることによって、ストランド強度が低下する場合がある。黒化厚みは炭素繊維束を樹脂中に包埋し、繊維軸方向と垂直な横断面を研磨し、該断面を光学顕微鏡により観察することにより、測定可能である。詳細は後述する。 The carbon fiber bundle preferably has an area ratio (hereinafter referred to as an outer layer ratio) within the cross section of the blackened thickness of the outer peripheral portion of the cross section perpendicular to the fiber axial direction of the carbon fiber single fiber is preferably 90 area% or more It is preferably 90 to 95 area%, more preferably 90 to 93 area%. Here, the outer layer ratio is an area ratio obtained by dividing the area occupied by the blackened thickness seen in the outer peripheral part when the cross section perpendicular to the fiber axial direction of the carbon fiber single fiber is observed with an optical microscope %). Since the orientation of the crystal part is lower in the interior than the blackened thickness of the carbon fiber single fiber and the strand elastic modulus is low, the surface layer stress concentration can be suppressed as the outer layer ratio becomes higher, so high strand strength can be expressed. When the outer layer ratio is low, it is difficult to develop high carbonization yield and high strand strength. When the outer layer ratio is 90 area% or more, the ratio of the stress bearing portion in the outer peripheral portion is sufficiently large, so that the stress concentration in the surface layer is suppressed. When the outer layer ratio exceeds 95% by area, the stress concentration suppressing effect on the surface layer is saturated, but the stranding strength may be lowered due to the temperature for temperature stabilization being deviated from the optimum temperature. The blackening thickness can be measured by embedding a carbon fiber bundle in a resin, polishing a cross section perpendicular to the fiber axis direction, and observing the cross section with an optical microscope. Details will be described later.
 本発明の炭素繊維束の製造方法は、本発明の課題を解決するために、耐炎化工程において適切な温度プロフィールで後半高温熱処理して、耐炎化繊維束を特定の密度とすることにより、ストランド強度および結節強度を支配する欠陥が極めて少なく制御され、高い炭化収率と優れたストランド強度および結節強度を発現する炭素繊維束が得られることを見出したものである。この発明を実施するために好適な形態に関して以下に詳述する。 In order to solve the problems of the present invention, the method for producing a carbon fiber bundle of the present invention is a strand by subjecting the latter half to a high temperature heat treatment with an appropriate temperature profile in a flameproofing step to make the flameproofed fiber bundle a specific density. It has been found that carbon fiber bundles are obtained in which the defects governing strength and knot strength are controlled very little and high carbonization yield and excellent strand strength and knot strength are obtained. The preferred embodiments of the present invention will be described in detail below.
 炭素繊維前駆体繊維束は、ポリアクリロニトリル共重合体が溶媒に溶解されてなる紡糸溶液を紡糸して得ることができる。この際、特定条件で紡糸溶液の濾過を行うことにより、紡糸溶液中の異物を効果的に除去した後、該濾過された紡糸溶液を紡糸して炭素繊維前駆体繊維束を得て、得られた炭素繊維前駆体繊維束を少なくとも耐炎化工程、予備炭素化工程および炭素化工程を経て、欠陥の少ない高いストランド強度の炭素繊維束を得ることができる。ポリアクリロニトリル共重合体としては、主成分であるアクリロニトリルに加えて他の単量体を用いたポリアクリロニトリル共重合体を用いることが好ましい。具体的に、ポリアクリロニトリル共重合体は、アクリロニトリルを90~100質量%、共重合可能な単量体を10質量%未満、含有することが好ましい。 The carbon fiber precursor fiber bundle can be obtained by spinning a spinning solution in which a polyacrylonitrile copolymer is dissolved in a solvent. At this time, by filtering the spinning solution under specific conditions, foreign substances in the spinning solution are effectively removed, and then the filtered spinning solution is spun to obtain a carbon fiber precursor fiber bundle, which is obtained. The carbon fiber precursor fiber bundle can be subjected to at least a flameproofing step, a precarbonization step and a carbonization step to obtain a carbon fiber bundle of high strand strength with few defects. As a polyacrylonitrile copolymer, it is preferable to use the polyacrylonitrile copolymer which used the other monomer in addition to the acrylonitrile which is a main component. Specifically, the polyacrylonitrile copolymer preferably contains 90 to 100% by mass of acrylonitrile and less than 10% by mass of a copolymerizable monomer.
 製糸プロセス安定性向上の観点および、耐炎化処理を効率よく行う観点等から、ポリアクリロニトリル共重合体は、イタコン酸、アクリルアミド、メタクリル酸などの共重合成分を含むことが好ましい。 The polyacrylonitrile copolymer preferably contains a copolymer component such as itaconic acid, acrylamide, or methacrylic acid, from the viewpoint of improving the spinning process stability and efficiently performing the flame resistance treatment.
 ポリアクリロニトリル共重合体の製造方法としては、公知の重合方法の中から選択することができる。炭素繊維前駆体繊維束の製造において、紡糸溶液は、前記したポリアクリロニトリル共重合体を、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミドあるいは硝酸・塩化亜鉛・ロダンソーダ水溶液などのポリアクリロニトリルが可溶な溶媒に溶解したものである。 The method for producing the polyacrylonitrile copolymer can be selected from among known polymerization methods. In the production of a carbon fiber precursor fiber bundle, the spinning solution dissolves the polyacrylonitrile copolymer described above in a solvent in which polyacrylonitrile is soluble such as dimethylsulfoxide, dimethylformamide, dimethylacetamide or an aqueous solution of nitric acid, zinc chloride and sodium rhodanate It is
 上記したような紡糸溶液を紡糸するに先立ち、紡糸溶液をフィルター装置に通し、重合体原料および各工程において混入した不純物を除去することが好ましい。ここで、フィルター装置とは、紡糸溶液中に存在する異物を濾過して除去する設備を意味し、紡糸溶液をフィルター装置内に導くための流入路と、紡糸溶液を濾過するためのフィルター濾材と、濾過された紡糸溶液をフィルター装置外に導くための流出路と、これらを収納するための容器とより構成される。ここで、フィルター濾材とは、フィルター装置内に収納される紡糸溶液の濾過手段である。 Prior to spinning the spinning solution as described above, it is preferable to pass the spinning solution through a filter device to remove the polymer raw material and impurities mixed in each step. Here, the filter device means a facility for filtering out foreign matter present in the spinning solution, an inflow path for introducing the spinning solution into the filter device, and a filter medium for filtering the spinning solution. And an outlet for guiding the filtered spinning solution out of the filter device, and a container for containing them. Here, the filter medium is a means for filtering the spinning solution contained in the filter device.
 フィルター濾材の形態としては、リーフディスク型フィルター、キャンドル型フィルター、プリーツキャンドル型フィルターなどが用いられる。フィルター濾材が一定の曲率を持つキャンドル型フィルターおよびプリーツキャンドル型フィルターに対し、リーフディスク型フィルターはフィルター濾材をほぼ平面状に使用できるため、開孔径分布が広がりにくく、洗浄性も維持し易いという利点があり、好ましい。 As a form of a filter medium, a leaf disc type filter, a candle type filter, a pleated candle type filter, etc. are used. In contrast to candle filters and pleated candle filters whose filter media have a certain curvature, leaf disc filters can be used almost flatly, so that the pore size distribution is less likely to spread and the washability is easily maintained. Is preferred.
 フィルター濾材は、紡糸溶液中に存在する異物を除去するための直接的役割を担う部材である。フィルター濾材には、定められた開孔径を狭いばらつきで保有することが求められ、加えて、被処理物質に対する化学的安定性、耐熱性および耐圧性が要求される。このようなフィルター濾材としては、金属繊維を織って作製した金網や、ガラス不織布、焼結金属繊維組織よりなるフィルター濾材などが好ましく使用される。フィルター濾材の材質としては、紡糸溶液に不活性であり、かつ溶媒への溶出成分がなければ特に限定されるものではないが、耐久性や価格の観点から金属がより好ましい。具体的な金属としては、ステンレス鋼(SUS304、SUS304L、SUS316、SUS316L等)、インコネル(登録商標)、ハステロイ(登録商標)の他、ニッケル、チタン、コバルトベースの種々合金が選択される。金属繊維の製造方法は、多数本の線材を束としてまとめて線引き細径化した後、各線を分離して線材を細径化するいわゆる集束繊維製造方法や、コイル切削法、ビビリ振動切削法などが挙げられる。フィルター濾材が金網の場合には、金属繊維が繊維束ではなく、単繊維である必要があるため、伸線と熱処理を繰り返す方法などによって製造される。 The filter medium is a member having a direct role in removing foreign matter present in the spinning solution. The filter medium is required to have a defined open pore diameter with narrow variation, and additionally, chemical stability, heat resistance and pressure resistance to the substance to be treated are required. As such a filter material, a wire mesh produced by weaving metal fibers, a glass non-woven fabric, a filter material made of a sintered metal fiber structure, and the like are preferably used. The material of the filter medium is not particularly limited as long as it is inert in the spinning solution and there is no eluted component in the solvent, but metal is more preferable from the viewpoint of durability and cost. As specific metals, in addition to stainless steel (SUS304, SUS304L, SUS316, SUS316L, etc.), Inconel (registered trademark), Hastelloy (registered trademark), various alloys based on nickel, titanium, and cobalt are selected. The metal fiber manufacturing method is a so-called convergent fiber manufacturing method in which a large number of wire rods are put together as a bundle and wire diameter is reduced, and then each wire is separated to reduce the wire diameter, coil cutting method, chatter vibration cutting method, etc. Can be mentioned. When the filter medium is a wire mesh, the metal fibers need to be single fibers instead of fiber bundles, and therefore, they are manufactured by a method such as repeated drawing and heat treatment.
 紡糸溶液の濾過に際して、フィルター濾材の目開きが小さいほど紡糸溶液中の異物を除去し易くなるが、フィルター濾材の目詰まりが起こり易くなる。本発明において、異物の除去性能は「濾過精度」を用いる。ここで、濾過精度(μm)とはフィルター濾材を通過する間に95%以上を捕集することができる球粒子の粒子径(直径)である。濾過精度は、JIS規格の方法(JIS-B8356-8:2002)により測定できる。濾過精度が小さい、ということと濾過精度が高いということは同義である。また、フィルター厚みが厚くなるほど紡糸溶液中の異物を除去し易くなるが、フィルター濾材での圧力損失が大きくなり、製造プロセスの安定性が低下する。これまで、上記のような傾向は知られていたが、フィルター濾材ごとに最適な濾過条件が異なっており、紡糸溶液の濾過について一般化できる知見は得られていなかった。そのため、フィルター濾材の変更時には、濾過条件の最適化に膨大な時間とコストが必要となっていた。 In the filtration of the spinning solution, the smaller the opening of the filter medium is, the easier it is to remove foreign substances in the spinning solution, but the clogging of the filter medium tends to occur. In the present invention, the foreign matter removal performance uses “filtration accuracy”. Here, the filtration accuracy (μm) is the particle diameter (diameter) of spherical particles capable of collecting 95% or more while passing through the filter medium. The filtration accuracy can be measured by the method of JIS standard (JIS-B 8356-8: 2002). The fact that the filtration accuracy is low is synonymous with the fact that the filtration accuracy is high. Further, as the thickness of the filter increases, foreign substances in the spinning solution can be more easily removed, but the pressure loss in the filter medium increases, and the stability of the production process decreases. So far, although the tendency as described above has been known, optimum filtration conditions are different for each filter medium, and a knowledge that can be generalized for filtration of a spinning solution has not been obtained. Therefore, at the time of the change of the filter medium, a great deal of time and cost are required to optimize the filtration conditions.
 本発明の炭素繊維束の製造方法においては、紡糸溶液の濾過に使用するフィルター濾材の濾過精度をB(μm)、濾材目付をD(g/m)とした場合に、濾過速度A(cm/時間)と濾過精度B(μm)および濾材目付D(g/m)の関係が下記式(1)~(3)を満足する条件で、紡糸溶液を濾過した後、該濾過された紡糸溶液を紡糸して炭素繊維前駆体繊維束を得る。
D - 600/(α×β) ≧ 0 ・・・(1)
α = 1-1/(1+exp(7-A)) ・・・(2)
β = 1-1/(1+exp(-0.23×B)) ・・・(3)。
In the method for producing a carbon fiber bundle of the present invention, when the filtration accuracy of the filter medium used for the filtration of the spinning solution is B (μm) and the basis weight of the filter medium is D (g / m 2 ), the filtration rate A (cm) The filtered spinning solution is filtered after the spinning solution is filtered under the condition that the relation between the filtration accuracy B (μm) and the filter material surface weight D (g / m 2 ) satisfies the following formulas (1) to (3) The solution is spun to obtain carbon fiber precursor fiber bundles.
D-600 / (α x β) 0 0 (1)
α = 1-1 / (1 + exp (7-A)) (2)
β = 1-1 / (1 + exp (−0.23 × B)) (3).
 ここで、濾材目付D(g/m)とはフィルター濾材本体を保護する目的で積層されていることがあるメッシュ層を除く、フィルター濾材本体の総目付のことである。濾材目付Dは、任意の面積に切り出したフィルター濾材の質量を測定し、この質量を面積で割ることにより算出することができる。 Here, the filter basis weight D (g / m 2 ) refers to the total basis weight of the filter medium excluding the mesh layer which may be laminated for the purpose of protecting the filter medium. The filter material basis weight D can be calculated by measuring the mass of the filter material cut into an arbitrary area and dividing the mass by the area.
 濾材目付Dが大きいほど異物の捕捉率が高まり、逆に小さいほど異物が捕捉しきれずにすり抜けやすくなる。そこで、濾材目付Dが炭素繊維前駆体繊維束の品質の向上とフィルターの目詰まり抑制に与える影響を、濾過速度Aおよび濾過精度Bを変更しながら測定したところ、任意の濾過速度および濾過精度において炭素繊維前駆体繊維束の品質の向上とフィルターの目詰まり抑制を両立可能な最低の濾材目付(以下、最低濾材目付と記載)が存在することが確認された。本実験結果によると、該最低濾材目付は式(1)の左辺第2項に示すように互いに独立な媒介変数αおよびβの積α×βを用いて表すことができる。ここで、αは式(2)で示される濾過速度Aの関数として、βは式(3)で示される濾過精度Bの関数として定義される。かかるα×βが大きいほど最低濾材目付は小さく、α×βが小さいほど最低濾材目付は大きくなる。個別の変数の影響としては、濾過速度Aが大きいほどαは小さくなり、最低濾材目付は大きくなる。濾過速度Aが小さいほどαは大きくなり、最低濾材目付は小さくなる。また、同様に、濾過精度Bが大きいほどβは小さくなり、最低濾材目付は大きくなる。濾過精度Bが小さいほどβは大きくなり、最低濾材目付小さくなる。式(1)~(3)を満足する条件で濾過を行うことで、炭素繊維前駆体繊維束の品質の向上とフィルターの目詰まり抑制が両立できる。このメカニズムについては必ずしも明らかではないが、次のように考えられる。すなわち、濾過精度が小さいほど異物がフィルター濾材中の流路に引っかかりやすく、効果的に異物を捕捉することができる反面、フィルターが目詰まりしやすくなる。しかし、濾過速度が小さい場合は、圧損によるフィルター濾材中における異物の変形ならびに広がりが抑制されるため、フィルター濾材中の流路が目詰まりしにくくなるものと考えられる。 The larger the filter material basis weight D, the higher the foreign matter trapping rate, and the smaller the size, the easier it is for foreign matter to slip through without passing through. Therefore, when the effect of the filter material basis weight D on the improvement of the quality of the carbon fiber precursor fiber bundle and the clogging suppression of the filter is measured while changing the filtration rate A and the filtration accuracy B, in any filtration rate and filtration accuracy It was confirmed that there is a minimum basis weight of the filter material (hereinafter referred to as the minimum basis weight of the filter material) capable of achieving both the improvement of the quality of the carbon fiber precursor fiber bundle and the suppression of clogging of the filter. According to the present experimental results, the lowest filter material weight can be expressed using the product α × β of mutually independent parameters α and β as shown in the second term on the left side of Formula (1). Here, α is defined as a function of the filtration rate A represented by the equation (2), and β is defined as a function of the filtration accuracy B represented by the equation (3). As the value of α × β is larger, the minimum filter material weight is smaller, and as α × β is smaller, the minimum filter material weight is larger. As the influence of individual variables, the larger the filtration rate A, the smaller α, and the lower the basis weight of the filter medium. As the filtration rate A decreases, α increases and the minimum filter material basis weight decreases. Similarly, as the filtration accuracy B is larger, β is smaller and the minimum filter material weight is larger. As the filtration accuracy B is smaller, β is larger and the minimum coating weight is smaller. By performing the filtration under the conditions satisfying the formulas (1) to (3), it is possible to simultaneously improve the quality of the carbon fiber precursor fiber bundle and suppress the clogging of the filter. Although this mechanism is not necessarily clear, it is considered as follows. That is, as the filtration accuracy is smaller, the foreign matter is more likely to be caught in the flow path in the filter medium, and the foreign matter can be effectively captured, but the filter tends to be clogged. However, when the filtration rate is low, deformation and spreading of foreign matter in the filter medium due to pressure loss are suppressed, so it is considered that the flow path in the filter medium is less likely to be clogged.
 また、炭素繊維束を得る製造方法の一例として、濾過精度B(μm)が下記式(4)を満たすフィルター濾材を用いることが好ましい。
B≧3 ・・・(4)。
Moreover, it is preferable to use the filter medium which filtration accuracy B (micrometer) satisfy | fills following formula (4) as an example of the manufacturing method which obtains a carbon fiber bundle.
B ≧ 3 (4).
 濾過精度Bが3以上である場合、フィルターの目詰まり抑制をより効果的にすることができる。この現象の理由は必ずしも明らかではないが、濾過精度Bの値が大きいほど濾過圧力が低くなり易く、異物の変形度合いが小さくなるため、フィルター目詰まり抑制効果が現れ易くなると考えられる。 When the filtration accuracy B is 3 or more, clogging of the filter can be suppressed more effectively. The reason for this phenomenon is not necessarily clear, but as the value of the filtration accuracy B is large, the filtration pressure tends to be low, and the degree of deformation of the foreign matter is small, so it is considered that the filter clogging suppression effect tends to appear.
 次に、炭素繊維束を得るのに好適な炭素繊維前駆体繊維束の製造方法について述べる。炭素繊維前駆体繊維束を製造するに当たり、乾湿式紡糸法を用い、単繊維表面の平均面粗さの小さい炭素繊維前駆体繊維を得ることが好ましい。炭素繊維前駆体繊維束の製造方法は、乾湿式紡糸法により紡糸口金から紡糸溶液を凝固浴に吐出させ紡糸する紡糸工程と、該紡糸工程で得られた繊維を水浴中で洗浄する水洗工程と、該水洗工程で得られた繊維を水浴中で延伸する水浴延伸工程と、該水浴延伸工程で得られた繊維を乾燥熱処理する乾燥熱処理工程を含み、必要に応じて、該乾燥熱処理工程で得られた繊維をスチーム延伸するスチーム延伸工程を含んでもよい。 Next, a method of producing a carbon fiber precursor fiber bundle suitable for obtaining a carbon fiber bundle will be described. In producing a carbon fiber precursor fiber bundle, it is preferable to obtain a carbon fiber precursor fiber having a small average surface roughness on a single fiber surface by using a dry-wet spinning method. The method for producing a carbon fiber precursor fiber bundle comprises a spinning step of discharging a spinning solution from a spinneret into a coagulating bath and spinning by a wet-wet spinning method, and a water washing step of washing the fibers obtained in the spinning step in a water bath A water bath drawing process of drawing the fibers obtained in the water washing process in a water bath, and a drying heat treatment process of subjecting the fibers obtained in the water bath drawing process to dry heat treatment; It may include a steam drawing step of steam drawing the fibers.
 炭素繊維前駆体繊維束の製造において、前記凝固浴には、凝固促進成分および紡糸溶液の溶媒として用いた溶媒を含ませることが好ましい。凝固促進成分としては、ポリアクリロニトリル共重合体を溶解せず、かつ紡糸溶液に用いる溶媒と相溶性があるものを使用することができる。具体的には、凝固促進成分として水を使用することが好ましい。 In the production of the carbon fiber precursor fiber bundle, the coagulation bath preferably contains a coagulation promoting component and a solvent used as a solvent for the spinning solution. As the coagulation promoting component, those which do not dissolve the polyacrylonitrile copolymer and are compatible with the solvent used for the spinning solution can be used. Specifically, it is preferable to use water as a coagulation promoting component.
 炭素繊維前駆体繊維束の製造において、水洗工程における水浴温度は30~98℃が好ましく、複数段からなる水洗浴を用いて水洗することが好ましい。 In the production of the carbon fiber precursor fiber bundle, the water bath temperature in the water washing step is preferably 30 to 98 ° C., and water washing is preferably performed using a water washing bath comprising a plurality of stages.
 また、水浴延伸工程における延伸倍率は、2~6倍であることが好ましい。 Further, the draw ratio in the water-bath drawing step is preferably 2 to 6 times.
 水浴延伸工程の後、単繊維同士の接着を防止する目的から、繊維束にシリコーン等からなる油剤を付与することが好ましい。かかるシリコーン油剤は、変性されたシリコーンを用いることが好ましく、耐熱性の高いアミノ変性シリコーンを含有するものを用いることが好ましい。 After the water-bath drawing process, it is preferable to apply an oil agent made of silicone or the like to the fiber bundle for the purpose of preventing adhesion between single fibers. As such a silicone oil, it is preferable to use a modified silicone, and it is preferable to use one containing an amino-modified silicone having high heat resistance.
 乾燥熱処理工程は、公知の方法を利用することができる。例えば、乾燥温度は100~200℃が例示される。 A well-known method can be utilized for a drying heat treatment process. For example, the drying temperature is 100 to 200 ° C., for example.
 前記した水洗工程、水浴延伸工程、油剤付与工程、乾燥熱処理工程の後、さらにスチーム延伸工程を行うことにより、炭素繊維束の製造に、より好適に用いられる炭素繊維前駆体繊維束が得られる。スチーム延伸工程としては、加圧スチーム中において、2~6倍延伸することが好ましい。 After the above-described water washing step, water bath drawing step, oiling step, and drying heat treatment step, the steam drawing step is further carried out to obtain a carbon fiber precursor fiber bundle more suitably used for the production of a carbon fiber bundle. In the steam drawing step, it is preferable to draw 2 to 6 times in pressurized steam.
 このようにして得られた炭素繊維前駆繊維束が含む単繊維の平均繊度は、0.7~1.5dtexであることが好ましく、0.9~1.2dtexであることがより好ましい。単繊維繊度を0.7dtex以上とすることで、ローラーやガイドとの接触による単繊維破断の蓄積による繊維束破断の発生を抑え、製糸工程、耐炎化工程、前炭素化工程および炭素化工程の各工程のプロセス安定性を維持することができる。また、単繊維繊度を1.5dtex以下とすることで、耐炎化工程後の各単繊維における外層比率を小さくし、続く炭素化工程でのプロセス安定性や得られる炭素繊維束のストランド強度およびストランド弾性率を向上させることができる。得られる炭素繊維前駆体繊維束の単繊維繊度を調節するには紡糸口金から紡糸溶液を吐出させ紡糸する製糸工程において紡糸溶液の吐出量を調整すればよい。 The average fineness of single fibers contained in the carbon fiber precursor fiber bundle thus obtained is preferably 0.7 to 1.5 dtex, and more preferably 0.9 to 1.2 dtex. By setting the single fiber fineness to 0.7 dtex or more, the occurrence of fiber bundle breakage due to accumulation of single fiber breakage due to contact with a roller or a guide is suppressed, and the spinning process, flameproofing process, pre-carbonizing process and carbonization process Process stability of each process can be maintained. Further, by setting the single fiber fineness to 1.5 dtex or less, the outer layer ratio in each single fiber after the instabilization step is reduced, and the process stability in the subsequent carbonization step, the strand strength and the strand of the obtained carbon fiber bundle Elastic modulus can be improved. In order to adjust the single fiber fineness of the obtained carbon fiber precursor fiber bundle, the discharge amount of the spinning solution may be adjusted in the spinning process of discharging the spinning solution from the spinneret and spinning.
 得られる炭素繊維前駆体繊維束は、通常、連続繊維である。また、その1繊維束あたりのフィラメント数は、好ましくは10,000~60,000本である。 The resulting carbon fiber precursor fiber bundle is usually a continuous fiber. The number of filaments per fiber bundle is preferably 10,000 to 60,000.
 本発明の炭素繊維束の製造方法は、炭素繊維前駆体繊維束を酸化性雰囲気下で密度1.32~1.35g/cmになるまで熱処理した後、密度1.46~1.50g/cmになるまで酸化性雰囲気下275℃以上295℃以下で熱処理する。すなわち、耐炎化工程の前半において、炭素繊維前駆体繊維束を所定の密度になるまで熱処理した後に、耐炎化工程の後半において275℃以上295℃以下の高温で熱処理する。 In the method for producing a carbon fiber bundle of the present invention, the carbon fiber precursor fiber bundle is heat-treated in an oxidizing atmosphere to a density of 1.32 to 1.35 g / cm 3, and then the density is 1.46 to 1.50 g / cm. Heat treatment is performed at 275 ° C. or more and 295 ° C. or less in an oxidizing atmosphere until it reaches cm 3 . That is, after the carbon fiber precursor fiber bundle is heat-treated to a predetermined density in the first half of the flameproofing process, heat treatment is performed at a high temperature of 275 ° C or more and 295 ° C or less in the second half of the flameproofing process.
 ここで、酸化性雰囲気とは、酸素、二酸化窒素などの公知の酸化性物質を10質量%以上含む雰囲気のことであり、簡便性から空気雰囲気が好ましい。 Here, the oxidizing atmosphere is an atmosphere containing 10% by mass or more of known oxidizing substances such as oxygen and nitrogen dioxide, and an air atmosphere is preferable in terms of simplicity.
 耐炎化繊維束の密度は耐炎化反応の進行度合いを示す指標として一般的に用いられている。かかる密度が1.32g/cm以上であると、耐熱性の高い構造となっているため、高温で熱処理する際に分解しにくく、得られる炭素繊維束のストランド強度が向上する。また、1.35g/cm以下であると、続く工程において高温での熱処理時間を長く確保できるため、炭素繊維束のストランド強度を向上させることができる。耐炎化工程において、耐炎化繊維束が規定した密度の時点で工程温度を上記のように切り替えることを可能にするためには、耐炎化工程の前半と後半の間の繊維束を採取して密度を測定すれば良い。密度の測定方法は後述する。例えば、測定した耐炎化繊維束の密度が規定より低かった場合、耐炎化工程の前半において、温度を高める、または耐炎化時間を長くすることで耐炎化繊維束の密度を調整できる。 The density of the flameproofed fiber bundle is generally used as an index indicating the progress of the flameproofing reaction. Since the heat resistance is high when the density is 1.32 g / cm 3 or more, it is difficult to be decomposed when heat-treated at a high temperature, and the strand strength of the obtained carbon fiber bundle is improved. Moreover, since the heat processing time in high temperature can be ensured long in the following process as it is 1.35 g / cm < 3 > or less, the strand strength of a carbon fiber bundle can be improved. In the flameproofing process, in order to make it possible to switch the process temperature as described above when the density of the flameproofed fiber bundle is defined, the fiber bundle between the first half and the second half of the flameproofing process is collected and the density Should be measured. The method of measuring the density will be described later. For example, when the measured density of the flameproofed fiber bundle is lower than the specified value, the density of the flameproofed fiber bundle can be adjusted by raising the temperature or prolonging the flameproofing time in the first half of the flameproofing step.
 耐炎化工程においては、まず炭素繊維前駆体繊維束を酸化性雰囲気下で、好ましくは210℃以上245℃未満、より好ましくは220℃以上245℃未満、さらに好ましくは225℃以上240℃未満で熱処理することにより、密度が好ましくは1.22~1.24g/cm、より好ましくは密度が1.23~1.24g/cmの耐炎化繊維束を得る。耐炎化繊維束の密度が1.22g/cm以上であると、熱処理により耐炎化過程における単繊維の化学構造が安定化し、続く熱処理が高温であっても単繊維の内外構造差が悪化しなくなるためにストランド強度が向上することが多い。また、密度が1.24g/cm以下であると続く熱処理を含めた総熱処理量・時間が減り、ストランド強度・生産性の面で優位となることが多い。温度に関して、210℃以上であると内外構造差が十分に抑制できるので好ましい。温度が、245℃未満であると炭素繊維前駆体繊維束の単繊維径に関しては内外構造差が抑制されるのに十分低い耐炎化初期温度であるのでストランド強度が高くなることが多いので好ましい。 In the flameproofing process, first, the carbon fiber precursor fiber bundle is heat-treated under an oxidizing atmosphere, preferably at 210 ° C. or more and less than 245 ° C., more preferably 220 ° C. or more and less than 245 ° C., still more preferably 225 ° C. or more and less than 240 ° C. As a result, a flame-resistant fiber bundle having a density of preferably 1.22 to 1.24 g / cm 3 , more preferably a density of 1.23 to 1.24 g / cm 3 is obtained. If the density of the flameproofed fiber bundle is 1.22 g / cm 3 or more, the heat treatment stabilizes the chemical structure of the single fiber in the process of flameproofing, and the difference in internal and external structure of the single fiber deteriorates even if the subsequent heat treatment is at high temperature. The strand strength is often improved because it disappears. In addition, when the density is 1.24 g / cm 3 or less, the total amount and time of heat treatment including the subsequent heat treatment are reduced, which often becomes superior in terms of strand strength and productivity. With regard to the temperature, it is preferable that the temperature is 210 ° C. or more because the difference between the internal and external structures can be sufficiently suppressed. When the temperature is less than 245 ° C., the single fiber diameter of the carbon fiber precursor fiber bundle is preferably a flameproof initial temperature sufficiently low to suppress the difference between internal and external structures, which is often preferred because the strand strength is high.
 前記の耐炎化繊維束の密度が1.22~1.24g/cmになるまで熱処理した後、酸化性雰囲気下で熱処理することにより、密度が1.32~1.35g/cm、より好ましくは1.33~1.34g/cmの耐炎化繊維束を得る。この熱処理工程は、酸化性雰囲気下で好ましくは245℃以上275℃未満、より好ましくは250℃以上270℃未満で行う。密度が1.32g/cm以上であると、熱処理により耐炎化過程における単繊維の化学構造がさらに安定化され、続く熱処理がより高温であっても内外構造差が悪化しなくなるためにストランド強度が向上することが多い。また、密度が1.35g/cm以下であると、続く熱処理を含めた総熱処理量・時間が減り、ストランド強度および生産性が優位となる。熱処理温度が245℃以上であると総熱処理量・時間が減り、ストランド強度および生産性が優位となることが多い。熱処理温度が275℃未満であると密度を1.22~1.24g/cmにした耐炎化繊維束を熱処理しても内外構造差が抑制でき、高いストランド強度が発現することが多い。 The heat treatment is performed until the density of the above-described fiber bundle is 1.22 to 1.24 g / cm 3 , and the heat treatment is performed in an oxidizing atmosphere to obtain a density of 1.32 to 1.35 g / cm 3 , Preferably, a flameproofed fiber bundle of 1.33 to 1.34 g / cm 3 is obtained. The heat treatment step is preferably performed at 245 ° C. or more and less than 275 ° C., more preferably 250 ° C. or more and less than 270 ° C. in an oxidizing atmosphere. When the density is 1.32 g / cm 3 or more, the heat treatment further stabilizes the chemical structure of single fibers in the process of flameproofing, and the difference in internal and external structure does not deteriorate even if the temperature of the subsequent heat treatment is higher. Often improve. In addition, if the density is 1.35 g / cm 3 or less, the total amount and time of heat treatment including the subsequent heat treatment decrease, and the strand strength and productivity become superior. When the heat treatment temperature is 245 ° C. or more, the total heat treatment amount and time decrease, and the strand strength and productivity often become superior. If the heat treatment temperature is less than 275 ° C., the difference in internal and external structure can be suppressed even if heat treatment is performed on the flameproof fiber bundle having a density of 1.22 to 1.24 g / cm 3 , and high strand strength is often expressed.
 続いて酸化性雰囲気下、温度は275℃以上295℃以下、好ましくは280℃以上290℃以下で熱処理することにより、密度1.46~1.50g/cmの耐炎化繊維束を得る。熱処理温度が275℃以上であると、密度を上げる際に加える熱量を小さくできることでストランド強度が向上する。熱処理温度が295℃以下であると、単繊維の構造を分解させることなく耐炎化反応を進めさせられ、ストランド強度を維持できる。熱処理温度を計測するには耐炎化工程の熱処理炉に熱電対などの温度計を挿入して炉内温度を測定すればよい。炉内温度を数点測定した際に温度ムラ、温度分布があった際は単純平均温度を算出する。 Subsequently, heat treatment is performed at a temperature of 275 ° C. or more and 295 ° C. or less, preferably 280 ° C. or more and 290 ° C. or less under an oxidizing atmosphere to obtain a flame-resistant fiber bundle with a density of 1.46 to 1.50 g / cm 3 . When the heat treatment temperature is 275 ° C. or higher, the amount of heat applied when increasing the density can be reduced, whereby the strand strength is improved. When the heat treatment temperature is 295 ° C. or less, the flameproofing reaction can be advanced without decomposing the structure of the single fiber, and the strand strength can be maintained. In order to measure the heat treatment temperature, a thermometer such as a thermocouple may be inserted into the heat treatment furnace of the flameproofing step to measure the temperature in the furnace. When the temperature in the furnace is measured at several points, if there is temperature unevenness or temperature distribution, the simple average temperature is calculated.
 本発明において、最終的な耐炎化繊維束の密度は1.46~1.50g/cmであり、好ましくは1.46~1.49g/cmであり、さらに好ましくは1.47~1.49g/cmである。耐炎化繊維束の密度と炭化収率が相関するため、製造エネルギー低減の観点からは、密度が高いほど良い。かかる密度が1.46g/cm以上であると炭化収率を十分に高めることができる。密度が、1.50g/cm以下であると炭化収率を高める効果が飽和しないため、生産性の観点から効果的である。規定した密度で熱処理を完了させるためには、耐炎化温度と時間を調整すれば良い。 In the present invention, the final density of the fiber bundle is 1.46 to 1.50 g / cm 3 , preferably 1.46 to 1.49 g / cm 3 , and more preferably 1.47 to 1 It is .49 g / cm 3 . Since the density of the flame-stabilized fiber bundle correlates with the carbonization yield, the higher the density, the better from the viewpoint of reducing the production energy. When the density is 1.46 g / cm 3 or more, the carbonization yield can be sufficiently increased. When the density is 1.50 g / cm 3 or less, the effect of enhancing the carbonization yield is not saturated, which is effective from the viewpoint of productivity. In order to complete the heat treatment at the specified density, it is sufficient to adjust the temperature and time for stabilization.
 前記耐炎化繊維束の密度が1.46~1.50g/cmなるまで酸化性雰囲気下275℃以上295℃以下で熱処理する工程において、耐炎化繊維束にかかる張力(耐炎化張力)は、好ましくは1.6~4.0mN/dtexであり、より好ましくは2.5~4.0mN/dtexであり、さらに好ましくは3.0~4.0mN/dtexである。耐炎化張力は、耐炎化炉出側で測定した張力(mN)を炭素繊維前駆体繊維束の絶乾時の繊度(dtex)で割った値で示す。該張力が1.6mN/dtex以上であると炭素繊維束の配向を十分に高められストランド強度が向上することが多い。該張力が4.0mN/dtex以下であると毛羽による品位低下が小さい傾向がある。 In the step of heat treatment at 275 ° C. or more and 295 ° C. or less in an oxidizing atmosphere until the density of the above-mentioned fiber bundle for stabilization is 1.46 to 1.50 g / cm 3 , the tension (flame-resistant tension) applied to the fiber bundle for fiberization is It is preferably 1.6 to 4.0 mN / dtex, more preferably 2.5 to 4.0 mN / dtex, and still more preferably 3.0 to 4.0 mN / dtex. The flameproofing tension is a value obtained by dividing the tension (mN) measured on the flameproofing furnace outlet side by the as-dried fineness (dtex) of the carbon fiber precursor fiber bundle. When the tension is 1.6 mN / dtex or more, the orientation of the carbon fiber bundle is sufficiently enhanced, and the strand strength is often improved. If the tension is 4.0 mN / dtex or less, the grade deterioration due to fluff tends to be small.
 一般的に高い炭化収率を得るために耐炎化繊維束の密度を増加させると、炭素繊維束のストランド強度は低下する傾向にある。本発明の炭素繊維束の製造方法においては、耐炎化工程において適切な温度プロフィールで後半高温熱処理することにより、耐炎化繊維束の密度を高めても、単繊維の内外構造差が大きく抑制され、かつ、構造が安定化するため、高い炭化収率と高いストランド強度を両立できる。 Generally, when the density of the flame-resistant fiber bundle is increased to obtain a high carbonization yield, the strand strength of the carbon fiber bundle tends to decrease. In the method for producing a carbon fiber bundle of the present invention, even if the density of the flameproofed fiber bundle is increased by performing the second half high temperature heat treatment with an appropriate temperature profile in the flameproofing step, the internal / external structural difference of single fiber is largely suppressed. And, since the structure is stabilized, both high carbonization yield and high strand strength can be achieved.
 前記耐炎化工程以外は、基本的に公知の炭素繊維束の製造方法に従えば良いが、本発明の炭素繊維束の製造方法においては、前記製糸工程と耐炎化工程に引き続いて、予備炭素化工程を行うことが好ましい。予備炭素化工程においては、前記耐炎化工程により得られた耐炎化繊維を、不活性雰囲気中、最高温度500~1000℃において、密度が1.5~1.8g/cmになるまで熱処理することにより、予備炭素化繊維束を得ることが好ましい。 Basically, a method for producing a carbon fiber bundle may be basically followed except for the above-mentioned flameproofing step, but in the method for producing a carbon fiber bundle of the present invention, pre-carbonization is carried out following the above-mentioned spinning process and flameproofing step. It is preferred to carry out the process. In the pre-carbonization step, the flame-resistant fiber obtained by the above-mentioned flame-resistance step is heat-treated in an inert atmosphere at a maximum temperature of 500 to 1000 ° C. to a density of 1.5 to 1.8 g / cm 3 It is preferable to obtain a pre-carbonized fiber bundle.
 前記予備炭素化に引き続いて、炭素化工程を行う。炭素化工程において、予備炭素化繊維束を不活性雰囲気中、最高温度1200~1800℃、好ましくは1200~1600℃において熱処理することにより、炭素繊維束を得ることが好ましい。かかる最高温度は、1200℃以上であれば、炭素繊維束中の窒素含有量が減少し、ストランド強度が安定的に発現する。かかる最高温度が1800℃以下であれば、満足できる炭化収率が得られる。 Following the pre-carbonization, a carbonization step is performed. In the carbonization step, it is preferable to obtain a carbon fiber bundle by heat-treating the pre-carbonized fiber bundle in an inert atmosphere at a maximum temperature of 1200 to 1800 ° C., preferably 1200 to 1600 ° C. If the maximum temperature is 1200 ° C. or higher, the nitrogen content in the carbon fiber bundle decreases and strand strength is stably developed. If the maximum temperature is at most 1800 ° C., a satisfactory carbonization yield can be obtained.
 以上のようにして得られた炭素繊維束は、マトリックス樹脂との接着性を向上させるために、酸化処理が施され、酸素含有官能基が導入されることが好ましい。酸化処理方法としては、気相酸化、液相酸化および液相電解酸化などが用いられる。生産性が高く、均一処理ができるという観点から、液相電解酸化が好ましく用いられる。液相電解酸化の方法については特に指定はなく、公知の方法で行えばよい。 The carbon fiber bundle obtained as described above is preferably subjected to an oxidation treatment to introduce an oxygen-containing functional group in order to improve the adhesion to the matrix resin. As the oxidation treatment method, gas phase oxidation, liquid phase oxidation, liquid phase electrolytic oxidation and the like are used. From the viewpoint of high productivity and uniform processing, liquid-phase electrolytic oxidation is preferably used. The method of liquid phase electrolytic oxidation is not particularly specified, and may be carried out by a known method.
 かかる電解処理の後、得られた炭素繊維束に集束性を付与するため、サイジング処理をすることもできる。サイジング剤には、複合材料に使用されるマトリックス樹脂の種類に応じて、マトリックス樹脂との相溶性の良いサイジング剤を適宜選択することができる。 After the electrolytic treatment, a sizing treatment can also be performed to give the obtained carbon fiber bundle a focusing property. As the sizing agent, a sizing agent having good compatibility with the matrix resin can be appropriately selected according to the type of matrix resin used for the composite material.
 本明細書に記載の各種物性値の測定方法は以下の通りである。 The measuring methods of various physical property values described in the present specification are as follows.
 <炭素繊維束のストランド強度とストランド弾性率>
 炭素繊維束のストランド強度とストランド弾性率は、JIS-R-7608(2004)の樹脂含浸ストランド試験法に準拠し、次の手順に従い求める。炭素繊維束の樹脂含浸ストランド10本を測定し、その平均値をストランド強度とする。歪みは伸び計を用いて評価する。歪み範囲は0.1~0.6%で評価する。なお、樹脂処方としては、“セロキサイド(登録商標)”2021P(ダイセル化学工業社製)/3フッ化ホウ素モノエチルアミン(東京化成工業(株)製)/アセトン=100/3/4(質量部)を用い、硬化条件としては、常圧、温度125℃、時間30分を用いて実施した。
<Strand Strength and Elastic Modulus of Carbon Fiber Bundle>
The strand strength and strand elastic modulus of the carbon fiber bundle are determined according to the following procedure according to the resin impregnated strand test method of JIS-R-7608 (2004). Ten resin-impregnated strands of the carbon fiber bundle are measured, and the average value is taken as the strand strength. Strain is assessed using an extensometer. The strain range is evaluated at 0.1 to 0.6%. In addition, as resin prescription, "CELLOXIDE (registered trademark)" 2021 P (made by Daicel Chemical Industries, Ltd.) / 3 / boron fluoride mono ethylamine (made by Tokyo Chemical Industry Co., Ltd.) / acetone = 100/3/4 (mass part) The curing conditions were as follows: normal pressure, temperature 125 ° C., time 30 minutes.
 <密度測定>
 1.0~3.0gの耐炎化繊維束を採取し、120℃で2時間絶乾する。次に絶乾質量A(g)を測定した後、エタノールに含浸させ十分脱泡してから、エタノール溶媒浴中の繊維質量B(g)を測定し、密度=(A×ρ)/(A-B)により密度を求める。ρは測定温度でのエタノールの比重である。
<Density measurement>
Collect 1.0 to 3.0 g of the flameproofed fiber bundle, and dry at 120 ° C. for 2 hours. Next, after measuring the absolute dry mass A (g), after impregnating with ethanol and sufficiently degassing, measure the fiber mass B (g) in the ethanol solvent bath, density = (A x rho) / (A Find the density by -B). ρ is the specific gravity of ethanol at the measurement temperature.
 <炭素繊維単繊維の外層比率>
 測定を行う炭素繊維束を樹脂中に包埋し、繊維軸方向と垂直な横断面を研磨し、該断面を光学顕微鏡の100倍の対物レンズを用い合計1000倍の倍率で観察する。研磨面の断面顕微鏡画像から外周部の黒化厚みを測定する。解析は画像解析ソフトウェアImage Jを用いて行う。まず、単繊維断面像において、黒と白の領域分割を二値化によって行う。単繊維断面内の輝度分布に対し、分布の平均値を閾値として設定し、二値化を行う。得られた二値化像において、繊維直径の方向に対し、表層の一点から、黒から白への線入り領域までの最短距離を測定する。これを同一単繊維の周内5点に対して測定し、平均値をその水準における黒化厚みとして算出する。また、炭素繊維単繊維の繊維軸方向に垂直な断面全体に対する黒化厚み部分の面積比率(%)から外層比率を算出する。炭素繊維束内の30本の単繊維において同様の評価を行い、その平均値を用いる。
<Outer layer ratio of carbon fiber single fiber>
A carbon fiber bundle to be measured is embedded in a resin, a cross section perpendicular to the fiber axial direction is polished, and the cross section is observed at a total magnification of 1000 times with a 100 × objective lens of an optical microscope. The blackening thickness of the outer peripheral portion is measured from the cross-sectional microscope image of the polished surface. Analysis is performed using image analysis software Image J. First, black and white area division is performed by binarization in a single fiber cross-sectional image. For the luminance distribution in a single fiber cross section, the average value of the distribution is set as a threshold to perform binarization. In the obtained binarized image, the shortest distance from one point of the surface layer to the black-to-white lined area is measured in the fiber diameter direction. This is measured with respect to five points in the circumference of the same single fiber, and the average value is calculated as the blackened thickness at that level. Also, the outer layer ratio is calculated from the area ratio (%) of the blackened thickness portion to the entire cross section perpendicular to the fiber axial direction of the carbon fiber single fiber. The same evaluation is performed on 30 single fibers in the carbon fiber bundle, and the average value is used.
 <炭素繊維束の平均単繊維径>
 測定する多数本の炭素フィラメントからなる炭素繊維束について、単位長さ当たりの質量A(g/m)および密度B(g/cm)を求める。測定する炭素繊維束のフィラメント数をCとし、炭素繊維の平均単繊維径(μm)を、下記式で算出を行う。
炭素繊維の平均単繊維径(μm)
 =((A/B/C)/π)(1/2)×2×10
<Average single fiber diameter of carbon fiber bundle>
The mass A f (g / m) and the density B f (g / cm 3 ) per unit length are determined for a carbon fiber bundle consisting of a large number of carbon filaments to be measured. Assuming that the number of filaments of the carbon fiber bundle to be measured is C f , the average single fiber diameter (μm) of the carbon fiber is calculated by the following equation.
Average single fiber diameter (μm) of carbon fiber
= (( Af / Bf / Cf ) /?) (1/2) x 2 x 10 < 3 >.
 <炭素繊維束の結節強度>
 長さ150mmの炭素繊維束の両端に長さ25mmの把持部を取り付けて試験体とする。試験体作製の際、9.0×10-5N/dtexの荷重をかけて炭素繊維束の引き揃えを行う。試験体の中点部分に結び目を1カ所作製し、引張時のクロスヘッド速度を100mm/分として束引張試験を行う。測定は計12本の繊維束に対して行い、最大値、最小値の2つの値を除した10本の平均値を測定値として用いる。結節強度には、束引張試験で得られた最大荷重値を、炭素繊維束の平均断面積値で除した値を用いる。
<Nodular strength of carbon fiber bundle>
A 25 mm long grip is attached to each end of a 150 mm long carbon fiber bundle to make a test body. At the time of preparing the test body, a load of 9.0 × 10 −5 N / dtex is applied to align the carbon fiber bundles. A knot is made at the midpoint of the test body, and a bundle tension test is performed with a crosshead speed at tension of 100 mm / min. The measurement is performed on a total of 12 fiber bundles, and the average value of 10 fibers obtained by dividing the two values of the maximum value and the minimum value is used as a measurement value. As the knot strength, a value obtained by dividing the maximum load value obtained in the bundle tension test by the average cross-sectional value of the carbon fiber bundle is used.
 <大きさ50nm以上の欠陥が存在する確率>
 JIS R7606(2000年)に準じて炭素繊維単繊維の単繊維引張試験を実施し、破断面を含む破断後の炭素繊維単繊維のサンプル(以下、単に「破断面」と呼ぶ)を回収する。試験に供する単繊維本数は50本を1セットとするが、両側の破断面が30組以上回収できなかった場合は、さらに50本からなる1セットの単繊維引張試験を実施し、両側の破断面を30組以上回収する。なお、引張試験の際の歪速度は0.4mm/分とする。
<Probability that a defect with a size of 50 nm or more exists>
A single fiber tensile test of carbon fiber single fiber is carried out according to JIS R7606 (2000), and a sample of carbon fiber single fiber after fracture including a fractured surface (hereinafter simply referred to as "fractured surface") is recovered. The number of single fibers used in the test is one set of 50. If 30 or more sets of fracture surfaces on both sides can not be recovered, one more set of 50 single fiber single-filament tensile tests is carried out to break both sides. Collect 30 or more cross sections. The strain rate in the tensile test is 0.4 mm / min.
 前記のように回収した破断面の組から、30組を無作為に選んで、走査電子顕微鏡(SEM)観察を行う。観察前に導電性付与のための蒸着処理は行わず、加速電圧は1keV、倍率は2万5千~5万倍として観察する。また、微小な欠陥の有無を判別しやすくするために、破断起点が手前を向くようステージを回転させ、ステージを30°傾斜させることで破断起点を斜め上方から観察する(図1~4を参照)。 From the set of fractured surfaces collected as described above, 30 sets are randomly selected to perform scanning electron microscope (SEM) observation. Before the observation, a deposition process for conductivity is not performed, and the acceleration voltage is 1 keV and the magnification is 25,000 to 50,000. In addition, in order to make it easy to determine the presence or absence of a minute defect, rotate the stage so that the fracture start point faces you and tilt the stage by 30 °, and observe the fracture start from diagonally above (see Figs. 1 to 4). ).
 炭素繊維の引張破壊による一次破断面には、破断起点(i)から放射状に破壊が進展した痕跡が、放射状の条痕として残るため、SEM観察像に存在する条痕を辿っていき一点に収束する部分が破断起点(i)と特定する。条痕が認識できないものや、条痕は認識できたが破断起点(i)付近に汚れが付着しており観察が難しいものが、両側の破断面のいずれか一方にでも存在した場合、かかる破断面は組ごと評価から除外する。除外することで減った破断面は適宜補充し、最終的に30組の破断面が観察されるようにする。 In the primary fractured surface of carbon fiber due to tensile fracture, the trace of fracture progressed radially from the fracture origin (i) remains as a radial streak, so that the streaks present in the SEM observation image are traced and converged to a single point The specified part is identified as the break origin (i). If the streaks can not be recognized, or the streaks can be recognized but dirt is attached near the fracture origin (i) and it is difficult to observe them, even if they are present on either of the fracture surfaces on both sides, the fracture Cross sections are excluded from the group evaluation. The fracture surface reduced by exclusion is replenished as appropriate, and finally 30 sets of fracture surfaces are observed.
 破断起点(i)が特定できたら、そこに何らかの形態的特徴が見られるか調べる。形態的特徴としては凹みや付着物、繊維表面が一部剥離したような跡、傷、接着痕、など様々なタイプが存在する。SEMによって観察可能な破断起点となる形態的特徴のことをまとめて「欠陥」と総称する。繊維の円周方向に沿って測定した長さ、つまり大きさが50nm以上のものは外観の違いによらず一律に本発明における“大きさ50nm以上の欠陥が存在する破断面”に分類する。これを両側の破断面に対して行い、いずれか一方でも“大きさ50nm以上の欠陥が存在する破断面”に分類された場合、その組は“大きさ50nm以上の欠陥が存在する破断面”とする。これをSEM観察した30組の破断面全てに対して行い、“大きさ50nm以上の欠陥が存在する破断面”の総数を、SEM観察した破断面の組の総数である30で割って100を掛けることで、“大きさ50nm以上の欠陥が存在する確率(%)”を算出する。 If the fracture origin (i) can be identified, it is examined whether there are any morphological features. There are various types of morphological features, such as dents and deposits, marks that the fiber surface is partially peeled off, scratches, and adhesion marks. The morphological features that become the fracture origin observable by SEM are collectively called "defect". The length measured along the circumferential direction of the fiber, that is, the one having a size of 50 nm or more, is uniformly classified into "a fracture surface where a defect having a size of 50 nm or more exists" in the present invention regardless of the difference in appearance. If this is performed on the fracture surfaces on both sides and one of them is classified as "fracture surface with defects of 50 nm or more in size", the set is "fracture surface with defects of 50 nm or more in size" I assume. This is performed on all the 30 sets of SEM-observed fractured surfaces, and the total number of “fractured surfaces where defects of 50 nm or more exist” is divided by 30 which is the total number of fractured-surfaces observed in SEM. By multiplying, "probability (%) that a defect with a size of 50 nm or more exists" is calculated.
 なお、単繊維引張試験における試長は10mmとし、試験片台紙への炭素繊維の固定には市販のシアノアクリレート系の瞬間接着剤を用い、水中で実施できるように設計した特別な試験冶具を用いて、A&D社製テンシロン「RTC-1210A」により実施した。また、回収した破断面の観察には日立ハイテクノロジーズ社製の走査電子顕微鏡(SEM)「S-4800」を用いた。 The test length in the single fiber tensile test is 10 mm, and a special test jig designed to be able to be carried out in water is used using a commercially available cyanoacrylate-based instant adhesive for fixing carbon fibers to a test strip backing. It carried out by A & D Tensilon "RTC-1210A". In addition, a scanning electron microscope (SEM) "S-4800" manufactured by Hitachi High-Technologies Corporation was used to observe the recovered fractured surface.
 <平均面粗さ>
 評価すべき炭素繊維単繊維を10本試料台にのせ、エポキシ樹脂で固定したものをサンプルとし、原子間力顕微鏡(実施例においては、ブルカーAXS製、NanoScopeV Dimension Icon)を用いて評価する。また、実施例においては、下記条件にて3次元表面形状像を得る。
探針:シリコンカンチレバー(オリンパス製、OMCL-AC160TS-W2)
測定モード:タッピングモード
走査速度:1.0Hz
走査範囲:600nm×600nm
分解能:512ピクセル×512ピクセル
測定環境:室温、大気中。
<Average surface roughness>
Ten carbon fiber single fibers to be evaluated are placed on a sample base, fixed with an epoxy resin as a sample, and evaluated using an atomic force microscope (in the example, NanoScope V Dimension Icon manufactured by Bruker AXS). In the embodiment, a three-dimensional surface shape image is obtained under the following conditions.
Probe: Silicon cantilever (OLYMPUS, OMCL-AC160TS-W2)
Measurement mode: Tapping mode scanning speed: 1.0 Hz
Scanning range: 600 nm x 600 nm
Resolution: 512 pixels x 512 pixels Measurement environment: Room temperature, in the atmosphere.
 単繊維1本に対して、上記条件で3次元表面形状像を測定し、得られた測定画像は、繊維断面の曲率を考慮し、付属のソフトウェア(NanoScope Analysis)により、装置起因のデータのうねりを除去する「フラット処理」、3×3のマトリックスにおいてZデータの中央値から、マトリックス中央の値を置き換えるフィルター処理である「メディアン8処理」、および、全画像データから最小二乗法により3次曲面を求めてフィッティングし、面内の傾きを補正する「三次元傾き補正」を用いて画像処理を行った後、付属のソフトウェアにより表面粗さ解析を行い、平均面粗さを算出する。ここで、平均面粗さ(Ra)とは、JIS B0601(2001年)で定義されている中心線粗さRaを面測定に対し適用できるよう三次元に拡張したもので基準面から指定面までの偏差の絶対値を平均した値と定義される。測定は、異なる単繊維10本をランダムにサンプリングし、単繊維1本につき、各1回ずつ、計10回行い、その平均値を測定値とする。 A three-dimensional surface shape image is measured under the above conditions for one single fiber, and the obtained measurement image takes into consideration the curvature of the fiber cross section, and the attached software (NanoScope Analysis) causes the data of device origin to swell. “Flat processing” to eliminate the “Fan processing”, “Median 8 processing” which is a filter processing to replace the value at the center of the matrix from the median value of Z data in a 3 × 3 matrix, and a cubic surface by the least squares method from all image data After performing image processing using “three-dimensional inclination correction” to obtain, fit, and correct in-plane inclination, surface roughness analysis is performed using attached software to calculate an average surface roughness. Here, the average surface roughness (Ra) is a three-dimensional extension of center line roughness Ra defined in JIS B 0601 (2001) so that it can be applied to surface measurement, from the reference surface to the designated surface It is defined as the value obtained by averaging the absolute value of the deviation of. In the measurement, ten different single fibers are randomly sampled, and one measurement is carried out ten times in total for one single fiber, and the average value is taken as a measurement value.
 <炭素繊維束の毛羽本数>
 複合材料の製造時の生産性に影響する炭素繊維束の品位は以下の方法により毛羽本数を直接カウントする方法で評価する。走行速度1.5m/分、延伸倍率1倍で走行中の炭素繊維束の目視観察により、炭素繊維束の表面から5mm以上飛び出した破断単繊維の本数を、炭素繊維束の長さ20mにおいてカウントし、1mあたりの毛羽本数(本/m)を評価する。
<Number of fluffs of carbon fiber bundle>
The grade of the carbon fiber bundle which affects the productivity at the time of manufacture of a composite material is evaluated by the method of counting the number of fluff directly by the following method. According to visual observation of the carbon fiber bundle during traveling at a traveling speed of 1.5 m / min and a draw ratio of 1 time, the number of broken single fibers protruding 5 mm or more from the surface of the carbon fiber bundle is counted at a length of 20 m of the carbon fiber bundle And evaluate the number of feathers per 1 m (lines / m).
 (実施例1)
 アクリロニトリル99質量%とイタコン酸1質量%からなる共重合体を、ジメチルスルホキシドを溶媒として溶液重合法により重合させ、ポリアクリロニトリル共重合体を製造し紡糸溶液を得た。紡糸溶液をフィルター装置に流入させ、濾過を行った。使用したフィルター濾材は、濾過精度Bが1μm、濾材厚みCが800μm、濾材目付Dが2500g/mの金属焼結フィルターであり、濾過速度Aが3cm/時間の濾過条件で濾過した。濾過された紡糸溶液を、紡糸口金から一旦空気中に吐出し、3℃にコントロールした35%ジメチルスルホキシドの水溶液からなる凝固浴に導入する乾湿式紡糸法により紡糸した。紡糸された繊維束を30~98℃で水洗し、その際3.5倍の水浴延伸を行った。続いて、この水浴延伸後の繊維束に対して、アミノ変性シリコーン系シリコーン油剤を付与し、160℃の温度に加熱したローラーを用いて乾燥を行い、単繊維本数12000本の繊維束とした。この繊維束を、加圧スチーム中で3.7倍延伸することにより、製糸全延伸倍率を13倍とした。その後、繊維束に2mN/dtexの張力をかけながら、流体吐出圧力を0.35MPaとした空気により交絡処理を行って、単繊維繊度1.1dtex、単繊維本数12000本の炭素繊維前駆体繊維束を得た。次に、表1の条件1に記載の耐炎化条件を用いて、延伸倍率1.0倍で空気雰囲気のオーブン中で炭素繊維前駆体繊維束を熱処理し耐炎化繊維束を得た。
Example 1
A copolymer consisting of 99% by mass of acrylonitrile and 1% by mass of itaconic acid was polymerized by a solution polymerization method using dimethyl sulfoxide as a solvent to produce a polyacrylonitrile copolymer to obtain a spinning solution. The spinning solution was flowed into the filter device and filtered. The filter medium used was a metal sintered filter with a filtration accuracy B of 1 μm, a filter medium thickness C of 800 μm, and a filter basis weight D of 2500 g / m 2 , and filtration was performed under the filtering conditions of a filtration rate A of 3 cm / hour. The filtered spinning solution was once discharged from the spinneret into air and spun by a dry-wet spinning method introduced into a coagulation bath consisting of an aqueous solution of 35% dimethyl sulfoxide controlled to 3 ° C. The spun fiber bundle was washed with water at 30 to 98 ° C., and subjected to a water bath draw of 3.5 times. Subsequently, an amino-modified silicone-based silicone oil was applied to the fiber bundle after the water-bath drawing, and drying was performed using a roller heated to a temperature of 160 ° C. to obtain a fiber bundle of 12000 single fibers. The fiber bundle was stretched 3.7 times in pressurized steam to make the total draw ratio of yarn production 13 times. Thereafter, while applying a tension of 2 mN / dtex to the fiber bundle, the fluid discharge pressure is subjected to an entangling process with air at 0.35 MPa to obtain a carbon fiber precursor fiber bundle having a single fiber fineness of 1.1 dtex and 12000 single fibers. I got Next, using the flameproofing conditions described in condition 1 in Table 1, the carbon fiber precursor fiber bundle was heat-treated in an air atmosphere oven at a draw ratio of 1.0 to obtain a flameproofed fiber bundle.
 得られた耐炎化繊維束を、温度300~800℃の窒素雰囲気中において延伸倍率0.95倍で予備炭素化処理を行い、予備炭素化繊維束を得た。得られた予備炭素化繊維束を、窒素雰囲気中において、最高温度1350℃で炭素化処理を行った。得られた炭素繊維束に、表面処理およびサイジング剤塗布処理を行って最終的な炭素繊維束とした。この際の炭素繊維束の毛羽本数は0.1本/m未満であり、ほとんど毛羽は確認されず品位は良好であった。 The obtained flame-resistant fiber bundle was subjected to pre-carbonization treatment at a draw ratio of 0.95 times in a nitrogen atmosphere at a temperature of 300 to 800 ° C. to obtain a pre-carbonized fiber bundle. The obtained pre-carbonized fiber bundle was carbonized at a maximum temperature of 1350 ° C. in a nitrogen atmosphere. The obtained carbon fiber bundle was subjected to surface treatment and sizing agent application treatment to obtain a final carbon fiber bundle. At this time, the number of fluffs of the carbon fiber bundle was less than 0.1 / m, almost no fluff was observed, and the grade was good.
 表2に得られた炭素繊維束のストランド強度、ストランド弾性率、炭素繊維単繊維の外層比率、および平均単繊維径を示す。 The strand strength, strand elasticity modulus, outer layer ratio of carbon fiber single fiber, and average single fiber diameter of the carbon fiber bundle obtained in Table 2 are shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (実施例2)
 フィルター濾材を、濾過精度Bが9μm、濾材厚みCが3200μm、濾材目付Dが6400g/mの金属焼結フィルターに変更した他は、実施例1と同様にして炭素繊維前駆体繊維束および炭素繊維束を得た。
(Example 2)
Carbon fiber precursor fiber bundles and carbon fibers and carbon fibers are similar to Example 1 except that the filter medium is changed to a metal sintered filter with a filtration accuracy B of 9 μm, a filter medium thickness C of 3200 μm, and a filter medium weight D of 6400 g / m 2. I got a fiber bundle.
 (実施例3)
 濾過条件において、濾過速度Aを6cm/時間に変更した他は、実施例1と同様にして炭素繊維前駆体繊維束および炭素繊維束を得た。
(Example 3)
In the filtration conditions, a carbon fiber precursor fiber bundle and a carbon fiber bundle were obtained in the same manner as in Example 1 except that the filtration rate A was changed to 6 cm / hour.
 (実施例4、5)
 予備炭素化時の延伸倍率を実施例4では1.05倍、実施例5では1.10倍とした以外は、実施例3と同様にして炭素繊維前駆体繊維および炭素繊維束を得た。
(Examples 4 and 5)
A carbon fiber precursor fiber and a carbon fiber bundle were obtained in the same manner as in Example 3 except that the draw ratio during preliminary carbonization was 1.05 in Example 4 and 1.10 in Example 5.
 (比較例1)
 フィルター濾材を、濾材厚みCが1600μm、濾材目付Dが3200g/mの金属焼結フィルターに変更した他は、実施例2と同様にして炭素繊維前駆体繊維束および炭素繊維束を得た。炭素繊維束の毛羽本数は0.2本/mであり、品位が悪化した。
(Comparative example 1)
A carbon fiber precursor fiber bundle and a carbon fiber bundle were obtained in the same manner as in Example 2 except that the filter medium was changed to a metal sintered filter having a filter medium thickness C of 1600 μm and a filter medium basis weight D of 3200 g / m 2 . The number of fluffs of the carbon fiber bundle was 0.2 / m, and the quality was deteriorated.
 (比較例2)
 濾過条件において、濾過速度Aを6cm/時間に変更した他は、比較例1と同様にして炭素繊維前駆体繊維束および炭素繊維束を得た。
(Comparative example 2)
A carbon fiber precursor fiber bundle and a carbon fiber bundle were obtained in the same manner as in Comparative Example 1 except that the filtration rate A was changed to 6 cm / hour under the filtration conditions.
 (比較例3)
 濾過条件において、濾過速度Aを6cm/時間に変更した他は、実施例2と同様にして炭素繊維前駆体繊維束および炭素繊維束を得た。
(Comparative example 3)
In the filtration conditions, carbon fiber precursor fiber bundles and carbon fiber bundles were obtained in the same manner as in Example 2 except that the filtration rate A was changed to 6 cm / hour.
 (比較例4)
 濾過条件において、濾過速度Aを8cm/時間に変更した他は、実施例3と同様にして炭素繊維前駆体繊維束および炭素繊維束を得た。
(Comparative example 4)
In the filtration conditions, a carbon fiber precursor fiber bundle and a carbon fiber bundle were obtained in the same manner as in Example 3 except that the filtration rate A was changed to 8 cm / hour.
 (比較例5)
 濾過条件において、濾過速度Aを12cm/時間に変更した他は、実施例3と同様にして炭素繊維前駆体繊維束および炭素繊維束を得た。
(Comparative example 5)
In the filtration conditions, carbon fiber precursor fiber bundles and carbon fiber bundles were obtained in the same manner as in Example 3 except that the filtration rate A was changed to 12 cm / hour.
 (実施例6)
 耐炎化条件として、表1の条件2を用いた以外は、実施例1と同様にして炭素繊維束を得た。炭素繊維の外層比率が97%となり、実施例1と比較するとストランド強度が低下した。
(Example 6)
A carbon fiber bundle was obtained in the same manner as in Example 1 except that condition 2 in Table 1 was used as the flameproofing condition. The outer layer ratio of carbon fiber was 97%, and the strand strength was reduced as compared with Example 1.
 (実施例7)
 耐炎化条件として、表1の条件3を用いた以外は、実施例1と同様にして炭素繊維束を得た。炭素繊維の外層比率が85%となり、実施例1と比較するとストランド強度が低下した。
(Example 7)
A carbon fiber bundle was obtained in the same manner as in Example 1 except that condition 3 in Table 1 was used as the flameproofing condition. The outer layer ratio of carbon fiber was 85%, and the strand strength was reduced as compared with Example 1.
 本発明は、耐炎化工程において適切な温度プロフィールで熱処理することにより特定の密度の耐炎化繊維束を得ることができ、これによりストランド強度および結節強度を支配する欠陥が極めて少なく制御されているため、ストランド強度およびストランド弾性率をバランス良く発現するとともに、高い結節強度を発現する炭素繊維束を生産性を損なうことなく製造することができる。また、本発明の炭素繊維束によれば、複合材料製造時の生産性を満足する炭素繊維束となる。本発明で得られる炭素繊維束は、かかる特徴を活かし、航空機・自動車・船舶部材や、ゴルフシャフトや釣竿等のスポーツ用途および圧力容器などの一般産業用途に好適に用いられる。 The present invention can obtain a flame-resistant fiber bundle of a specific density by heat treatment with an appropriate temperature profile in the flame-proofing step, and thereby the number of defects governing strand strength and knot strength is controlled very little. A carbon fiber bundle can be produced without loss of productivity, while exhibiting well-balanced expression of strand strength and strand elastic modulus and high knot strength. Moreover, according to the carbon fiber bundle of the present invention, the carbon fiber bundle satisfies the productivity at the time of producing the composite material. Taking advantage of such characteristics, the carbon fiber bundle obtained in the present invention is suitably used for general industrial applications such as aircraft, automobiles, marine members, sports applications such as golf shafts and fishing rods, and pressure vessels.
(i) 破断起点 (I) Fracture origin

Claims (7)

  1. ポリアクリロニトリル共重合体が溶媒に溶解されてなる紡糸溶液を、濾過精度B(μm)と濾材目付D(g/m)を有するフィルター濾材を用い、濾過速度A(cm/時間)が下記式(1)~(3)を満足する条件で濾過した後、該濾過された紡糸溶液を紡糸して炭素繊維前駆体繊維束を得て、
     D - 600/(α×β) ≧ 0 ・・・(1)
     α = 1-1/(1+exp(7-A)) ・・・(2)
     β = 1-1/(1+exp(-0.23×B)) ・・・(3)
    得られた炭素繊維前駆体繊維束を酸化性雰囲気下で密度1.32~1.35g/cmになるまで熱処理した後、密度1.46~1.50g/cmになるまで酸化性雰囲気下275℃以上295℃以下で熱処理をして耐炎化繊維束を得た後、該耐炎化繊維束を不活性雰囲気下1200~1800℃で熱処理する、炭素繊維束の製造方法。
    Using a filter medium having a filtration accuracy B (μm) and a filter basis weight D (g / m 2 ), a spinning solution in which a polyacrylonitrile copolymer is dissolved in a solvent, the filtration rate A (cm / hour) After filtering under conditions satisfying (1) to (3), the filtered spinning solution is spun to obtain a carbon fiber precursor fiber bundle,
    D-600 / (α x β) 0 0 (1)
    α = 1-1 / (1 + exp (7-A)) (2)
    β = 1−1 / (1 + exp (−0.23 × B)) (3)
    The obtained carbon fiber precursor fiber bundle was heat treated to a density 1.32 ~ 1.35g / cm 3 in an oxidizing atmosphere, an oxidizing atmosphere to a density 1.46 ~ 1.50g / cm 3 A method for producing a carbon fiber bundle, wherein heat treatment is performed at 275 ° C. or more and 295 ° C. or less to obtain a flame-resistant fiber bundle, and then the flame-resistant fiber bundle is heat-treated at 1200 to 1800 ° C. in an inert atmosphere.
  2. 前記密度1.46~1.50g/cmになるまで酸化性雰囲気下275℃以上295℃以下で熱処理する際の耐炎化繊維束の張力が1.6~4.0mN/dtexである、請求項1に記載の炭素繊維束の製造方法。 The tension of the flame-resistant fiber bundle is 1.6 to 4.0 mN / dtex when heat-treated at 275 ° C. or more and 295 ° C. or less in an oxidizing atmosphere until the density reaches 1.46 to 1.50 g / cm 3. The manufacturing method of the carbon fiber bundle of claim 1.
  3. 前記炭素繊維前駆体繊維束を、酸化性雰囲気下で密度1.22~1.24g/cmになるまで210℃以上245℃未満で熱処理した後、前記酸化性雰囲気下で密度1.32~1.35g/cmになるまで熱処理する工程に供し、かつ、前記密度1.32~1.35g/cmになるまで行われる熱処理工程を245℃以上275℃未満で行う、請求項1または2に記載の炭素繊維束の製造方法。 The carbon fiber precursor fiber bundle is heat-treated at a temperature of 210 ° C. or more and less than 245 ° C. to reach a density of 1.22 to 1.24 g / cm 3 in an oxidizing atmosphere, and then a density of 1.32 to subjected to heat treating to a 1.35 g / cm 3, and the density performs 1.32 ~ 1.35 g / cm to until 3 a heat treatment step performed at less than 275 ° C. 245 ° C. or higher, according to claim 1 or The manufacturing method of the carbon fiber bundle as described in 2.
  4. ストランド弾性率が240~280GPa、ストランド強度が5.8GPa以上、結節強度K[MPa]が-88d+1390≦K(d:平均単繊維径[μm])、平均単繊維径が6.5~8.0μmを満たし、かつ試長を10mmとして単繊維引張試験を実施した際に、回収した破断面に大きさ50nm以上の欠陥が存在する確率が35%以下の炭素繊維束。 Strand elastic modulus is 240 to 280 GPa, strand strength is 5.8 GPa or more, knot strength K [MPa] is -88d + 1390 390 K (d: average single fiber diameter [μm]), average single fiber diameter is 6.5 to 8. A carbon fiber bundle having a probability that a defect with a size of 50 nm or more is present in the recovered fractured surface at 35% or less when a single fiber tensile test is performed with a sample length of 10 mm while satisfying 0 μm.
  5. 結節強度Kが770MPa以上である、請求項4に記載の炭素繊維束。 The carbon fiber bundle according to claim 4, wherein the knot strength K is 770 MPa or more.
  6. 平均面粗さRaが1.0~1.8nmである、請求項4または5に記載の炭素繊維束。 The carbon fiber bundle according to claim 4 or 5, wherein the average surface roughness Ra is 1.0 to 1.8 nm.
  7. 炭素繊維単繊維の外層比率が90面積%以上である、請求項4~6のいずれかに記載の炭素繊維束。 The carbon fiber bundle according to any one of claims 4 to 6, wherein an outer layer ratio of carbon fiber single fiber is 90 area% or more.
PCT/JP2018/024513 2017-07-10 2018-06-28 Carbon fiber bundle and method for manufacturing same WO2019012999A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880041611.7A CN110832127B (en) 2017-07-10 2018-06-28 Carbon fiber bundle and method for producing same
JP2018534983A JP6460284B1 (en) 2017-07-10 2018-06-28 Carbon fiber bundle and method for producing the same
KR1020197036254A KR102603178B1 (en) 2017-07-10 2018-06-28 Carbon fiber bundle and its manufacturing method
US16/623,479 US20200190705A1 (en) 2017-07-10 2018-06-28 Carbon fiber bundle and method of manufacturing same
EP18831398.5A EP3653768A4 (en) 2017-07-10 2018-06-28 Carbon fiber bundle and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-134359 2017-07-10
JP2017134359 2017-07-10

Publications (1)

Publication Number Publication Date
WO2019012999A1 true WO2019012999A1 (en) 2019-01-17

Family

ID=65002559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024513 WO2019012999A1 (en) 2017-07-10 2018-06-28 Carbon fiber bundle and method for manufacturing same

Country Status (7)

Country Link
US (1) US20200190705A1 (en)
EP (1) EP3653768A4 (en)
JP (1) JP6460284B1 (en)
KR (1) KR102603178B1 (en)
CN (1) CN110832127B (en)
TW (1) TW201908553A (en)
WO (1) WO2019012999A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113402278A (en) * 2021-06-10 2021-09-17 福建立亚新材有限公司 Preparation method of ceramic fiber for high-temperature test

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210139092A (en) 2020-05-13 2021-11-22 현대모비스 주식회사 Seat air bag apparatus for vehicle
CN114457449B (en) * 2020-11-10 2024-01-30 中国石油化工股份有限公司 High-performance polyacrylonitrile precursor fiber, and preparation method and application thereof

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163729U (en) 1982-04-27 1983-10-31 株式会社小松製作所 Piston motor shaft brake device
JPH06294020A (en) 1993-04-05 1994-10-21 Asahi Chem Ind Co Ltd Production of carbon fiber
JPH086210B2 (en) 1988-05-30 1996-01-24 東レ株式会社 High-strength and high-modulus carbon fiber and method for producing the same
JP2004027396A (en) * 2002-06-24 2004-01-29 Toray Ind Inc Method for producing acrylic precursor for carbon fiber
JP2009209487A (en) * 2008-03-05 2009-09-17 Toray Ind Inc Method for producing carbon fiber precursor fiber
JP2009235662A (en) * 2008-03-05 2009-10-15 Toray Ind Inc Method for producing carbon fiber precursor fiber
JP2009249798A (en) * 2008-04-11 2009-10-29 Toray Ind Inc Method for producing carbon fiber precursor fiber
JP2012082541A (en) 2010-10-08 2012-04-26 Toray Ind Inc Method for producing carbon fiber
JP2013023778A (en) 2011-07-19 2013-02-04 Mitsubishi Rayon Co Ltd Method for manufacturing carbon fiber bundle
WO2013157613A1 (en) 2012-04-18 2013-10-24 三菱レイヨン株式会社 Carbon fiber bundle and method of producing carbon fiber bundle
JP2014074242A (en) 2012-10-03 2014-04-24 Mitsubishi Rayon Co Ltd Production method of carbon fiber bundle
JP2015071844A (en) * 2013-10-04 2015-04-16 三菱レイヨン株式会社 Production method of carbon fiber precursor acrylonitrile-based fiber
JP2015096664A (en) 2014-12-15 2015-05-21 三菱レイヨン株式会社 Carbon fiber bundle
JP2017066580A (en) 2015-09-29 2017-04-06 東レ株式会社 Carbon fiber bundle and manufacturing method therefor
WO2018003836A1 (en) * 2016-06-30 2018-01-04 東レ株式会社 Carbon fiber bundle and method for manufacturing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163729A (en) 1982-03-16 1983-09-28 Toray Ind Inc Multi-stage preoxidation of acrylic yarn bundle
KR20130023778A (en) 2011-08-30 2013-03-08 강원대학교산학협력단 Anti-cancer composition which comprising chlorophylls from isolated green tea
US9500429B2 (en) 2012-12-07 2016-11-22 The Otis Patent Trust Unified bolt and bolt carrier cleaning tool
EP2935452B1 (en) 2012-12-19 2018-10-10 Dow Global Technologies LLC Elastomer-based polymeric compositions having amorphous silica fillers
CN107001096A (en) 2014-10-07 2017-08-01 康宁股份有限公司 The glassware and its production method of stress distribution with determination

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163729U (en) 1982-04-27 1983-10-31 株式会社小松製作所 Piston motor shaft brake device
JPH086210B2 (en) 1988-05-30 1996-01-24 東レ株式会社 High-strength and high-modulus carbon fiber and method for producing the same
JPH06294020A (en) 1993-04-05 1994-10-21 Asahi Chem Ind Co Ltd Production of carbon fiber
JP2004027396A (en) * 2002-06-24 2004-01-29 Toray Ind Inc Method for producing acrylic precursor for carbon fiber
JP2009209487A (en) * 2008-03-05 2009-09-17 Toray Ind Inc Method for producing carbon fiber precursor fiber
JP2009235662A (en) * 2008-03-05 2009-10-15 Toray Ind Inc Method for producing carbon fiber precursor fiber
JP2009249798A (en) * 2008-04-11 2009-10-29 Toray Ind Inc Method for producing carbon fiber precursor fiber
JP2012082541A (en) 2010-10-08 2012-04-26 Toray Ind Inc Method for producing carbon fiber
JP2013023778A (en) 2011-07-19 2013-02-04 Mitsubishi Rayon Co Ltd Method for manufacturing carbon fiber bundle
WO2013157613A1 (en) 2012-04-18 2013-10-24 三菱レイヨン株式会社 Carbon fiber bundle and method of producing carbon fiber bundle
JP2014074242A (en) 2012-10-03 2014-04-24 Mitsubishi Rayon Co Ltd Production method of carbon fiber bundle
JP2015071844A (en) * 2013-10-04 2015-04-16 三菱レイヨン株式会社 Production method of carbon fiber precursor acrylonitrile-based fiber
JP2015096664A (en) 2014-12-15 2015-05-21 三菱レイヨン株式会社 Carbon fiber bundle
JP2017066580A (en) 2015-09-29 2017-04-06 東レ株式会社 Carbon fiber bundle and manufacturing method therefor
WO2018003836A1 (en) * 2016-06-30 2018-01-04 東レ株式会社 Carbon fiber bundle and method for manufacturing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3653768A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113402278A (en) * 2021-06-10 2021-09-17 福建立亚新材有限公司 Preparation method of ceramic fiber for high-temperature test

Also Published As

Publication number Publication date
CN110832127B (en) 2022-06-14
KR20200028334A (en) 2020-03-16
JP6460284B1 (en) 2019-01-30
US20200190705A1 (en) 2020-06-18
KR102603178B1 (en) 2023-11-16
JPWO2019012999A1 (en) 2019-07-11
EP3653768A4 (en) 2021-03-31
EP3653768A1 (en) 2020-05-20
TW201908553A (en) 2019-03-01
CN110832127A (en) 2020-02-21

Similar Documents

Publication Publication Date Title
JP5264150B2 (en) Carbon fiber strand and method for producing the same
WO2019012999A1 (en) Carbon fiber bundle and method for manufacturing same
JP6888260B2 (en) Carbon fiber bundle and its manufacturing method
JP5708896B1 (en) Carbon fiber bundle and flameproof fiber bundle
JP6338023B2 (en) Carbon fiber bundle and method for producing the same
JP2018178344A (en) Polyacrylonitrile-based flame-resistant fiber bundle and production method thereof, and production method of carbon fiber bundle
JP6064409B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JP7322327B2 (en) Carbon fiber bundle and its manufacturing method
WO2023008273A1 (en) Carbon fiber bundle and production method for same
JP2018076612A (en) Carbon fiber precursor fiber bundle and production method for carbon fiber bundle
JP2016128623A (en) Carbon fiber excellent in mechanical property appearance
JP6881090B2 (en) Carbon fiber bundle
JPS58220821A (en) Acrylic carbon fiber bundle with high strength and elongation and its production
WO2023140212A1 (en) Carbon fiber bundle
US20240133081A1 (en) Carbon fiber bundle and production method for same
JP4754855B2 (en) Method for producing flame-resistant fiber, method for producing carbon fiber
JP2018141251A (en) Carbon fiber bundle and method for producing the same
JP2023017173A (en) Carbon fiber bundle and method for producing the same
JP2020128614A (en) Carbon fiber bundle and method for producing the same
JP2020153051A (en) Carbon fiber bundle and production method thereof
JP2012188767A (en) Carbon fiber precursor acrylic fiber bundle, method for manufacturing the same, and method for manufacturing carbon fiber bundle

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018534983

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018831398

Country of ref document: EP

Effective date: 20200210