WO2019012929A1 - Composite wiring board and probe card - Google Patents

Composite wiring board and probe card Download PDF

Info

Publication number
WO2019012929A1
WO2019012929A1 PCT/JP2018/023379 JP2018023379W WO2019012929A1 WO 2019012929 A1 WO2019012929 A1 WO 2019012929A1 JP 2018023379 W JP2018023379 W JP 2018023379W WO 2019012929 A1 WO2019012929 A1 WO 2019012929A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring board
glass
multilayer wiring
ceramic
composite
Prior art date
Application number
PCT/JP2018/023379
Other languages
French (fr)
Japanese (ja)
Inventor
哲雄 金森
川上 弘倫
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2019012929A1 publication Critical patent/WO2019012929A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a composite wiring board and a probe card.
  • Patent Document 1 describes a laminated wiring board that can be used as a probe card.
  • the substrate described in Patent Document 1 is a substrate including a ceramic laminate and a resin laminate in which a plurality of resin layers are laminated.
  • a resin layer formed of a thin film such as polyimide capable of forming a fine electrode pattern it is common.
  • the laminated wiring substrate described in Patent Document 1 also includes ceramic layers and resins It is a composite substrate of layers.
  • Patent Document 1 In order to eliminate this peeling, the first interlayer connection conductor exposed at the interface between the ceramic laminate and the resin laminate, and the second interlayer connection directly connected to the upper end surface of the first interlayer connection conductor It defines the positional relationship of the conductors. Then, by defining this positional relationship, the contact area between the ceramic laminate and the resin laminate is increased, and the adhesion strength between the ceramic laminate and the resin laminate is increased.
  • the laminated wiring substrate described in Patent Document 1 is also a composite substrate of a ceramic layer and a resin layer, it has not reached a fundamental solution to the problem of peeling between the ceramic layer and the resin layer. .
  • the present invention provides a composite wiring board capable of preventing peeling between a ceramic layer and a fine wiring layer provided on the ceramic layer, and the above composite wiring board It aims at providing a probe card provided with.
  • the composite wiring board of the present invention comprises a ceramic multilayer wiring board including internal wiring and a plurality of low temperature sintered ceramic layers, and a glass multilayer including a plurality of glass insulating layers including an internal wiring laminated on the ceramic multilayer wiring board. And a wiring board, wherein the thickness of the ceramic multilayer wiring board is thicker than the thickness of the glass multilayer wiring board.
  • the composite wiring board of the present invention has a structure in which a thin glass multilayer wiring board is laminated on a thick ceramic multilayer wiring board.
  • the glass multilayer wiring board includes internal wiring, and this internal wiring can be made fine wiring. Therefore, when the composite wiring board is used as a probe card, the wiring matched with the terminal interval of the semiconductor element to be inspected and can do.
  • the glass which comprises a glass insulating layer in the composite wiring board of this invention is excellent in adhesiveness with the low temperature sintering ceramic material which comprises a ceramic multilayer board
  • the glass and the low temperature sintered ceramic material are co-fired in the manufacturing process, the glass can be melted into the low temperature sintered ceramic material, and the glass and the low temperature sintered ceramic material can be melt bonded. Therefore, peeling of the glass insulating layer and the low temperature sintered ceramic layer can be reliably prevented.
  • the difference in average thermal expansion coefficient at 30 ° C. to 900 ° C. between the ceramic multilayer wiring board and the glass multilayer wiring board is preferably 10 ppm ⁇ K ⁇ 1 or less.
  • the low temperature sintered ceramic material constituting the ceramic multilayer wiring board and the glass constituting the glass multilayer wiring board are both inorganic materials, and their thermal expansion coefficients are close to each other.
  • the thermal expansion coefficient of the resin is considerably larger than the thermal expansion coefficient of the ceramic, it is difficult to make such a close thermal expansion coefficient relationship.
  • the thermal expansion coefficient of the ceramic multilayer wiring board is determined as the thermal expansion coefficient of the low temperature sintered ceramic material which is the material of the low temperature sintered ceramic layer constituting the ceramic multilayer wiring board.
  • the thermal expansion coefficient of the glass multilayer wiring board is determined as the thermal expansion coefficient of glass which is a material of the glass insulating layer constituting the glass multilayer wiring board.
  • the glass insulating layer is a fired body of a photosensitive glass paste containing an inorganic component including glass, a sintering aid, and a ceramic aggregate, and a photosensitive organic component.
  • the glass component after firing is 65 wt% or more and 85 wt% or less Si in terms of SiO 2 , B 15 wt% or more and 20 wt% or less in terms of B 2 O 3 , and 1 wt% or more and 5 wt% in terms of K 2 O
  • the metal oxide crystals after firing contain alumina, magnesia, spinel, silica, forsterite, steatite, and zirconia containing the following K and Al of 0.1 wt% or more and 2.0 wt% or less in terms of Al 2 O 3 : And at least one selected from the group consisting of: the content ratio of the glass component after the baking is 50 wt% or more and 70 wt% or less; It is preferable chromatic ratio is
  • the glass insulating layer is a fired body of photosensitive glass paste means that the insulating layer has been subjected to the step of forming internal wiring in the photosensitive glass paste by photolithography. Since fine wiring can be formed by using photolithography, when using a composite wiring board as a probe card, it is particularly suitable for wiring in accordance with the terminal interval of a semiconductor element to be inspected.
  • the internal wiring of the glass multilayer wiring board is preferably a fired body of a photosensitive wiring conductor paste.
  • a photosensitive wiring conductor paste when forming an interlayer connection conductor for connecting the layers of the glass insulating layer, a via hole having a rectangular (non-tapered) cross-sectional shape is formed. I can make it go. If the cross-sectional shape of the interlayer connection conductor is rectangular, good characteristics can be obtained when the coil is formed.
  • the internal wiring of the glass multilayer wiring board is preferably a fired body of photosensitive silver paste.
  • the film thickness can be easily increased as compared with the thin film method (for example, sputter plating), and therefore, the wiring resistance can be reduced.
  • the thickness of the ceramic multilayer wiring board is preferably 1 mm or more and 8 mm or less.
  • the thickness of the ceramic multilayer wiring board is in the above range, a composite wiring board having sufficient strength is obtained.
  • the thickness per one layer of the low-temperature sintered ceramic layer is preferably 20 ⁇ m or more and 150 ⁇ m or less. It is preferable that the thickness per one layer of the low-temperature sintered ceramic layer is in the above-mentioned range because it conforms to the size of the internal wiring on the ceramic multilayer wiring board side which is not a fine wiring.
  • the thickness of the glass multilayer wiring board is preferably 10 ⁇ m or more and 200 ⁇ m or less.
  • the thickness per one layer of the glass insulating layer is preferably 5 ⁇ m or more and 50 ⁇ m or less. It is preferable that the thickness per one layer of the glass insulating layer is in the above-mentioned range because it conforms to the dimension of the internal wiring on the glass multilayer wiring board side which is a fine wiring.
  • the thickness of the glass multilayer wiring board including a plurality of such thin glass insulating layers is in the above range.
  • the low temperature sintered ceramic layer is the glass in the crystalline phase. It is preferable that the number is larger than that of the insulating layer, and the number of the glass insulating layer is more than that of the low temperature sintered ceramic layer in the amorphous phase.
  • the low-temperature sintered ceramic layer and the glass insulating layer both consist of inorganic materials, and their constituent elements are often similar, but the low-temperature sintered ceramic layer has many crystalline phases and the glass insulating layer has many amorphous phases. It is possible to distinguish in the point.
  • the low-temperature sintered ceramic layer contains a large amount of crystal phase
  • the flexural strength of the ceramic multilayer wiring board is improved.
  • the glass insulating layer contains a large amount of amorphous phase
  • thin film formation becomes easy. This is because the baking at a low temperature facilitates the softening flow of the glass and promotes the densification.
  • the determination of whether each layer contains a crystalline phase and an amorphous phase can be performed by determining the presence or absence of a crystalline phase peak with an X-ray diffractometer.
  • the probe card of the present invention is characterized by comprising the composite wiring board of the present invention.
  • the composite wiring board of the present invention includes a thin glass multilayer wiring board, and the glass multilayer wiring board includes internal wiring that can be fine wiring, so that it can be used as a probe card to electrically test semiconductor elements. It can be performed.
  • the composite wiring board of the present invention is a substrate capable of preventing peeling between the ceramic layer and the fine wiring layer provided on the ceramic layer, there is no concern about delamination, and the reliability is high. It can be used as a probe card.
  • a composite wiring board capable of preventing peeling between a ceramic layer and a fine wiring layer provided on the ceramic layer, and a probe card provided with the above-mentioned composite wiring board. it can.
  • FIG. 1 is a cross-sectional view schematically showing an example of the composite wiring board of the present invention.
  • 2 (a), 2 (b) and 2 (c) are cross-sectional views schematically showing an example of a manufacturing process of the composite wiring board.
  • 3 (a) and 3 (b) are cross-sectional views schematically showing an example of a manufacturing process of the composite wiring board.
  • FIG. 1 is a cross-sectional view schematically showing an example of the composite wiring board of the present invention.
  • a composite wiring board 1 shown in FIG. 1 includes a ceramic multilayer wiring board 10 and a glass multilayer wiring board 20 stacked on the ceramic multilayer wiring board 10.
  • the ceramic multilayer wiring substrate 10 is a substrate in which a plurality of low temperature sintered ceramic layers 11 are stacked, and the internal wiring 12 is provided in the ceramic multilayer wiring substrate 10.
  • the internal wiring 12 is interlayer connected by the interlayer connection conductor 13.
  • a lower surface electrode 14 is provided on the main surface of the ceramic multilayer wiring board 10 opposite to the glass multilayer wiring board 20.
  • the glass multilayer wiring board 20 is a substrate in which a plurality of glass insulating layers 21 are stacked, and the internal wiring 22 is provided in the glass multilayer wiring board 20.
  • the internal wiring 22 is connected by interlayer connection conductor 23.
  • An upper surface electrode 24 is provided on the surface of the main surface of the glass multilayer wiring substrate 20 opposite to the ceramic multilayer wiring substrate 10.
  • the thickness of the ceramic multi-layer wiring board 10 (in FIG. 1, in showing double-headed arrow T 10), the thickness of the glass multilayer wiring board 20 (in FIG. 1, indicated by double-headed arrow T 20) is thicker than the. Further, the pitch of each upper surface electrode 24 is set narrower than the pitch of each lower surface electrode 14, and a rewiring structure is formed inside the composite wiring board 1.
  • the ceramic multilayer wiring board is provided with a low temperature sintered ceramic layer as an insulating layer.
  • the low temperature sintered ceramic layer is a layer comprising a low temperature sintered ceramic material.
  • the low-temperature sintered ceramic material means, among ceramic materials, a material which can be sintered at a sintering temperature of 1000 ° C. or less and can be co-fired with Ag or Cu. Many ceramic materials used for ceramic substrates are fired at a high temperature of 1500 ° C. or higher, but the firing temperature can be lowered to 1000 ° C. or less by mixing the ceramic component with the ceramic material, and Ag or the like having low conductor resistance Cu is a material that can be used for internal wiring.
  • Such a ceramic material is a low temperature sintered ceramic material, also called a low temperature co-fired ceramic (LTCC) material.
  • LTCC low temperature co-fired ceramic
  • the low temperature sintered ceramic material for example, ceramic materials such as quartz, alumina, forsterite and the like, borosilicate glass, SiO 2 -CaO-Al 2 O 3 -B 2 O 3 based glass ceramic, or SiO 2 -MgO- Glass composite low temperature sintered ceramic material formed by mixing Al 2 O 3 -B 2 O 3 type glass ceramic, crystallized glass based low temperature crystallized glass using ZnO-MgO-Al 2 O 3 -SiO 2 type crystallized glass Non-glass based low-temperature sintered ceramic material using sintered ceramic material, BaO-Al 2 O 3 -SiO 2 ceramic material, Al 2 O 3 -CaO-SiO 2 -MgO-B 2 O 3 ceramic material, etc.
  • the low temperature sintered ceramic layer preferably contains a crystalline phase.
  • the low temperature sintered ceramic layer contains alumina as a ceramic material, it can be said that it contains a crystalline phase.
  • anorthite (CaO-Al 2 O 3 -2SiO 2 ) generated by sintering may be included as a crystal phase.
  • the internal wiring and the interlayer connection conductor contained in the ceramic multilayer wiring board preferably contain Au, Ag or Cu, and more preferably contain Ag or Cu.
  • the thickness per one layer of the low temperature sintered ceramic layer is preferably 20 ⁇ m or more and 150 ⁇ m or less. Moreover, it is preferable that the thickness of a ceramic multilayer wiring board is 1 mm or more and 8 mm or less.
  • the ceramic multilayer wiring board may be provided with a constraining layer made of a ceramic material which does not sinter at the sintering temperature (for example, 800 ° C. or more and 1000 ° C. or less) of the low temperature sintered ceramic material between layers of the low temperature sintered ceramic layer.
  • a constraining layer made of a ceramic material which does not sinter at the sintering temperature (for example, 800 ° C. or more and 1000 ° C. or less) of the low temperature sintered ceramic material between layers of the low temperature sintered ceramic layer.
  • the glass multilayer wiring board is provided with a glass insulating layer as an insulating layer.
  • the glass insulating layer is a layer containing glass as a main component.
  • a glass insulating layer is a baked body of the photosensitive glass paste containing the inorganic component containing glass, a sintering auxiliary agent, and a ceramic aggregate, and a photosensitive organic component.
  • the glass component after firing is Si at 65 wt% or more and 85 wt% or less in SiO 2 conversion, B at 15 wt% or more and 20 wt% or less in B 2 O 3 conversion, and 1 wt% or more and 5 wt% or less in K 2 O conversion And Al in an amount of 0.1 wt% or more and 2.0 wt% or less in terms of Al 2 O 3 , and the metal oxide crystal after firing contains alumina, magnesia, spinel, silica, forsterite, steatite and zirconia.
  • the content of the glass component after firing is 50 wt% or more and 70 wt% or less, and the content of the metal oxide crystal after firing is 30 wt% or more and 50 wt% or less Is preferred.
  • an acid for example, hydrochloric acid, nitric acid, hydrofluoric acid
  • the solution Can be determined by inductively coupled plasma emission spectroscopy (ICP-AES).
  • ICP-AES inductively coupled plasma emission spectroscopy
  • the obtained powder is obtained.
  • the glass insulating layer preferably contains an amorphous phase.
  • the glass contained in the glass paste is an amorphous phase, it can be said to contain an amorphous phase.
  • the low temperature sintered ceramic layer in the crystalline phase is larger than that in the glass insulating layer, As for the crystalline phase, it is preferable that the glass insulating layer is more than the low temperature sintered ceramic layer.
  • the low-temperature sintered ceramic layer and the glass insulating layer both consist of inorganic materials, and their constituent elements are often similar, but the low-temperature sintered ceramic layer has many crystalline phases and the glass insulating layer has many amorphous phases. It is possible to distinguish in the point.
  • the photosensitive organic component contained in the photosensitive glass paste preferably contains an alkali-soluble polymer, a photosensitive monomer, a photopolymerization initiator, a solvent, and the like.
  • an acrylic polymer having a carboxyl group in a side chain can be used as the alkali-soluble polymer.
  • An acrylic polymer having a carboxyl group in a side chain can be produced, for example, by copolymerizing an unsaturated carboxylic acid and an ethylenically unsaturated compound.
  • unsaturated carboxylic acids include acrylic acid, methacrylic acid, maleic acid, fumaric acid, vinyl acetic acid and anhydrides thereof.
  • examples of the ethylenically unsaturated compound include acrylic esters such as methyl acrylate and ethyl acrylate, methacrylic esters such as methyl methacrylate and ethyl methacrylate, and fumaric esters such as monoethyl fumarate.
  • acrylic polymer having a carboxyl group in the side chain one having a unsaturated bond of the following form may be used. 1) To the carboxyl group of the side chain of the acrylic polymer, an acrylic monomer having a functional group such as an epoxy group capable of reacting with this is added.
  • an unsaturated monocarboxylic acid is reacted with the above-mentioned acrylic polymer in which an epoxy group is introduced instead of a carboxyl group in a side chain, and then a saturated or unsaturated polyvalent carboxylic acid anhydride is introduced.
  • an acrylic polymer which has a carboxyl group in a side chain that whose weight average molecular weight (Mw) is 50000 or less and whose acid value is 30 or more and 150 or less is preferable.
  • photosensitive monomer for example, dipentaerythritol monohydroxy pentaacrylate can be used.
  • photosensitive monomer in addition, hexanediol triacrylate, tripropylene glycol triacrylate, trimethylolpropane triacrylate, EO modified trimethylolpropane triacrylate, stearyl acrylate, tetrahydrofurfuryl acrylate, lauryl acrylate, 2-phenoxyethyl Acrylate, isodecyl acrylate, isooctyl acrylate, tridecyl acrylate, caprolactone acrylate, ethoxylated nonylphenol acrylate, 1,3-butanediol diacrylate, 1,4-butanediol diacrylate, diethylene glycol diacrylate, tetraethylene glycol diacrylate, Triethylene glycol diacrylate, ethoxylated bis fe A diacrylate, propoxylated
  • photopolymerization initiator for example, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one can be used.
  • photopolymerization initiator in addition, benzyl, benzoin ethyl ether, benzoin isobutyl ether, benzoin isopropyl ether, benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-benzoyl-4'-methyldiphenyl sulfide, benzyl dimethyl ketal , 2-n-butoxy-4-dimethylaminobenzoate, 2-chlorothioxanthone, 2,4-diethyl thioxanthone, 2,4-diisopropyl thioxanthone, isopropyl thioxanthone, 2-dimethylaminoethyl benzoate, ethyl p-dimethylaminobenzo
  • the photosensitive organic component may further contain a sensitizer, an antifoamer, and the like.
  • a sensitizer an antifoamer
  • the content of the photosensitive organic component in the photosensitive glass paste is preferably 25% by weight or more, more preferably 33% by weight or more, and preferably 47% by weight or less, more preferably 38% by weight or less .
  • the internal wiring and interlayer connection conductor contained in a glass multilayer wiring board are a sintered body of a photosensitive wiring conductor paste.
  • the fired body of the photosensitive wiring conductor paste means that it is a wiring conductor formed by photolithography using the photosensitive conductive paste.
  • the baked body of the photosensitive wiring paste is a baked body of the photosensitive silver paste obtained by forming a pattern of the baked body of the photosensitive wiring conductor paste by photolithography using the photosensitive silver paste and further baking the pattern.
  • the photosensitive conductive paste those containing a metal material and a photosensitive organic component (alkali-soluble polymer, photosensitive monomer and photopolymerization initiator) can be used.
  • the metal material preferably contains Au, Ag or Cu, more preferably Ag or Cu.
  • a photosensitive silver paste is a mixture of Ag as a metal material and a photosensitive organic component.
  • the thickness per one layer of the glass insulating layer is preferably 5 ⁇ m or more and 50 ⁇ m or less. Moreover, it is preferable that the thickness of a glass multilayer wiring board is 10 micrometers or more and 200 micrometers or less.
  • the thickness of the glass multilayer wiring substrate is considerably thinner than that of the ceramic multilayer wiring substrate, and it can be said that the glass multilayer wiring substrate is a thin film substrate.
  • the design rule of the thin film substrate is fine wiring, and when the composite wiring substrate is used as a probe card, it can be wiring matched to the terminal interval of the semiconductor element to be inspected.
  • the average thermal expansion coefficient difference between the ceramic multilayer wiring board and the glass multilayer wiring board at 30 ° C. to 900 ° C. is preferably 10 ppm ⁇ K ⁇ 1 or less, and the average thermal expansion of the two substrates is It is preferred that the coefficients be close.
  • the composite wiring board of the present invention has the configuration as described above, and the glass constituting the glass insulating layer is excellent in adhesion to the low-temperature sintered ceramic material constituting the ceramic multilayer substrate.
  • the glass and the low temperature sintered ceramic material are co-fired in the manufacturing process, the glass can be melted into the low temperature sintered ceramic material, and the glass and the low temperature sintered ceramic material can be melt bonded. Therefore, peeling of the glass insulating layer and the low temperature sintered ceramic layer can be reliably prevented.
  • the composite wiring board of the present invention has the following effects.
  • the composite wiring board of the present invention Since the composite wiring board of the present invention has a glass insulating layer instead of a resin layer, it has low hygroscopicity, and evaporation of moisture absorbed when the composite wiring board is exposed to heating conditions such as in a reflow furnace It is prevented that delamination and a burst occur. (2) Since the composite wiring board of the present invention has not a resin layer but a glass insulating layer, no dimensional distortion occurs even in a high temperature environment exceeding 200 ° C., and the positional accuracy is stable. Therefore, it can be used also in inspection of a semiconductor element under high temperature environment as a probe card. (3) Since the composite wiring board of the present invention has a glass insulating layer instead of a resin layer, the heat resistance is high, and even if heat is applied to the board by applying a large current to the wiring, structural destruction or A change in appearance is prevented from occurring.
  • the probe card of the present invention is characterized by comprising the composite wiring board of the present invention. It can be used as a probe card by mounting a probe pin on the surface electrode (upper surface electrode 24 in FIG. 1) on the glass multilayer wiring substrate side of the composite wiring substrate of the present invention.
  • the composite wiring board of the present invention may be the entire probe card, and the composite wiring board of the present invention may be used as a part of the probe card.
  • it When used as part of a probe card, it preferably serves as a substrate called a space transformer or an interposer and is used as a wiring pitch conversion substrate.
  • the surface electrode (lower surface electrode 14 in FIG. 1) on the ceramic multilayer wiring board side of the composite wiring board of the present invention is electrically connected to a printed wiring board serving as a probe card body.
  • probe pins are mounted on the surface of the glass multilayer wiring board.
  • the accuracy of the surface electrode on which the probe pins are mounted is important, and the accuracy of the insulating layer around the surface electrode is also important.
  • the surface on which the probe pin is mounted is the surface of the glass multilayer wiring board and is made of an inorganic material, so the surface strength is high and scratch resistant, so handling in the manufacturing process and use is easy. It is advantageous in that it is.
  • FIGS. 3 (a) and 3 (b) are cross-sectional views schematically showing an example of a manufacturing process of a composite wiring board .
  • a photosensitive glass paste is screen-printed on a ceramic multilayer wiring substrate 10, dried, exposed, patterned by development processing, and further debindered and fired to form a first glass insulating layer 21. Shows the condition.
  • Via holes 25 are formed at positions corresponding to the internal wires 12 of the ceramic multilayer wiring substrate 10 in a part of the glass insulating layer 21 by pattern formation.
  • the components contained in the photosensitive glass paste are an inorganic component including the above-described glass, a sintering aid, and a ceramic aggregate, and a photosensitive organic component.
  • the baking of the photosensitive glass paste is preferably performed at a temperature equal to or higher than the softening point of the glass contained in the photosensitive glass paste, and is preferably performed at 750 ° C. or more and 950 ° C. or less.
  • FIG. 2B a state is provided in which the interlayer connection conductor 23 is provided by filling the via hole 25 with the photosensitive conductor paste, and the internal wiring 22 formed by patterning with the photosensitive conductor paste is provided. It shows.
  • the internal wiring 22 and the internal wiring 12 of the ceramic multilayer wiring substrate 10 are electrically connected by the interlayer connection conductor 23.
  • the baking of the photosensitive conductor paste is preferably performed at 700 ° C. or more and 850 ° C. or less.
  • the glass contained in a glass insulating layer fuse melts in the case of baking of a photosensitive conductor paste. Since a glass insulating layer exists around the photosensitive conductor paste filled in the via holes and under the photosensitive conductor paste to be the internal wiring, when a void is generated in the photosensitive conductor paste, the void The glass contained in the glass insulating layer melts into the glass. That is, since the internal wiring and the interlayer connection conductor are formed in a state in which the adjacent glass insulating layer enters therein, the glass insulating layer and the internal wiring and the interlayer connection conductor are strongly coupled.
  • the photosensitive glass paste is further screen-printed and dried, exposure, pattern formation by development, binder removal and firing are performed to form a second glass insulating layer 21. .
  • a via hole 25 is formed in a part of the second glass insulating layer 21 at a position corresponding to the inner wiring 22.
  • the glass contained in the photosensitive glass paste is melted at the time of firing, and enters the voids of the adjacent internal wiring to be strongly bonded. Further, the glass contained in the photosensitive glass paste is melt-bonded to the first glass insulating layer.
  • the method and conditions for forming the second glass insulating layer can be the same as the method for forming the first glass insulating layer.
  • the interlayer connection conductor 23 is provided by filling the via hole 25 provided in the second glass insulating layer 21 with a photosensitive conductor paste, and the first internal wiring 22 and the second internal wiring are provided. 22 are electrically connected.
  • the second layer internal wiring 22 and the interlayer connection conductor 23 are strongly coupled to the adjacent second glass insulating layer 21.
  • the method and conditions for forming the second layer internal wiring and the interlayer connection conductor can be the same as the method for forming the first layer internal wiring and the interlayer connection conductor.
  • a glass multilayer wiring board consisting of three insulating layers and three internal wiring layers is formed by similarly forming the third glass insulating layer, the internal wiring and the interlayer connection conductor. 20 are provided.
  • the composite wiring board 1 is obtained by this process.
  • Wiring to be the upper surface electrode 24 is formed on the upper surface of the glass multilayer wiring substrate 20.
  • the surface of the top electrode 24 may be plated with Ni / Au for surface protection.
  • an example of manufacturing a glass multilayer wiring board consisting of three insulating layers and three internal wiring layers is shown, but the number of layers is not limited to three, and a necessary number of layers may be stacked. do it.
  • the glass multilayer wiring board is provided on the ceramic multilayer wiring board.
  • the following method may be used in which the layers are not fired each time a layer is formed, but are stacked in an unfired state and fired at one time. .
  • photosensitive glass paste is screen-printed and dried on a ceramic multilayer wiring substrate, and a pattern is formed by exposure and development. Further, binder removal is performed to form a non-fired first glass insulating layer.
  • screen printing and drying of a photosensitive conductor paste are performed without baking, pattern formation by exposure and development is performed, and an unbaked first layer internal wiring is formed.
  • the photosensitive glass paste is screen-printed and dried without baking, and a pattern is formed by exposure and development. Further, binder removal is performed to form an unbaked second glass insulating layer.
  • screen printing and drying of a photosensitive conductor paste are performed without baking, pattern formation by exposure and development is performed, and an unbaked second-layer internal wiring is formed.
  • a glass multilayer wiring board can be provided on the ceramic multilayer wiring board by the above steps.
  • a low-temperature sintered ceramic material is prepared by mixing SiO 2 -CaO-Al 2 O 3 -B 2 O 3 -based glass ceramic and alumina powder as a ceramic multilayer wiring board including internal wiring and a plurality of low-temperature sintered ceramic layers.
  • a substrate which is a material, was prepared.
  • the thickness of the ceramic multilayer wiring board was 1.5 mm, and the thickness per one layer of the low temperature sintered ceramic layer was 100 ⁇ m.
  • a photosensitive glass paste consisting of SiO 2 -B 2 O 3 -K 2 O glass, SiO 2 -B 2 O 3 -CaO-LiO 2 -ZnO, ceramic aggregate (alumina) and photosensitive organic component mixed
  • a photosensitive organic component a copolymer of methacrylic acid-methyl methacrylate as an alkali-soluble polymer, trimethylolpropane triacrylate as a photosensitive monomer, pentamethylene glycol as a solvent, and a photopolymerization initiator And 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one.
  • Ag powder and the said photosensitive organic component were mixed, and the photosensitive silver paste was prepared.
  • photosensitive glass paste was screen-printed and dried, exposure, pattern formation by development processing, binder removal and firing were performed to form a glass insulating layer. Subsequently, screen printing and drying of photosensitive silver paste were carried out, and pattern formation was carried out by exposure and development to form internal wiring. Further, binder removal and firing were performed. Thereafter, the insulating layer 3 is repeatedly formed in the order of screen printing of photosensitive glass paste to formation of a second glass insulating layer by firing, and screen printing of photosensitive silver paste to formation of a second internal wire by firing. A glass multi-layered wiring substrate of 3 layers of internal wiring was formed. The thickness of the glass multilayer wiring board was 30 ⁇ m, and the thickness per glass insulating layer was 10 ⁇ m. According to the above procedure, a composite wiring board provided with a ceramic multilayer wiring board and a glass multilayer wiring board was produced.
  • a substrate for comparison was formed using a resin insulating layer made of polyimide instead of the glass insulating layer and using copper plating as internal wiring.
  • Substrate evaluation was performed for each of the composite wiring substrate and the comparison substrate.
  • the surface on which the surface was evaluated is the surface of the glass multilayer wiring substrate in the case of the composite wiring substrate, and the surface of the resin insulation layer in the case of the comparison substrate.
  • Adhesion Evaluation Cellotape (registered trademark) (No. 405) was attached to the insulating layer portion and the surface electrode portion of the surface of the substrate, and the state after peeling was confirmed.
  • peeling was not seen in any part.
  • delamination was observed after one test on the insulating layer portion.
  • the substrate was placed on a hot plate set to 250 ° C., 300 ° C. and 350 ° C., respectively, and the appearance was confirmed. The appearance was observed by heating for 10 minutes after the surface temperature of the substrate reached each set temperature. No defect was found in the appearance of the composite wiring board at any temperature. In the comparative substrate, no defect was observed in the appearance by heating at 250 ° C., but defects such as discoloration of the appearance were observed by heating at 300 ° C. and 350 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

The composite wiring board according to the present invention is provided with: a ceramic multilayer wiring board including internal wiring and a plurality of low temperature sintered ceramic layers; and a glass multilayer wiring board stacked on the ceramic multilayer wiring board and including internal wiring and a plurality of glass insulation layers. The composite wiring board according to the present invention is characterized in that the ceramic multilayer wiring board is thicker than the glass multilayer wiring board.

Description

複合配線基板及びプローブカードComposite wiring board and probe card
本発明は、複合配線基板及びプローブカードに関する。 The present invention relates to a composite wiring board and a probe card.
半導体素子の電気検査には、プローブカードと呼ばれる検査基板が使用される。
特許文献1には、プローブカードとして使用することのできる積層配線基板が記載されている。
An inspection substrate called a probe card is used for the electrical inspection of a semiconductor element.
Patent Document 1 describes a laminated wiring board that can be used as a probe card.
国際公開第2015/151809号International Publication No. 2015/151809
特許文献1に記載された基板は、セラミック積層体と、複数の樹脂層が積層された樹脂積層体とからなる基板である。
プローブカードにおいては、検査対象である半導体素子の端子間隔に合わせるための微細配線が必要であるため、微細な電極パターンの形成が可能なポリイミド等の薄膜で形成された樹脂層を積層することが一般的である。また、微細な電極パターンが要求されない部分を、樹脂層よりも強度の高いセラミック層を積層した基板とすることが一般的であり、特許文献1に記載された積層配線基板も、セラミック層と樹脂層の複合基板である。
The substrate described in Patent Document 1 is a substrate including a ceramic laminate and a resin laminate in which a plurality of resin layers are laminated.
In the probe card, since fine wiring is required to be matched with the terminal interval of the semiconductor element to be inspected, it is necessary to laminate a resin layer formed of a thin film such as polyimide capable of forming a fine electrode pattern. It is common. Moreover, it is common to use a portion where a fine electrode pattern is not required as a substrate on which ceramic layers having higher strength than resin layers are laminated, and the laminated wiring substrate described in Patent Document 1 also includes ceramic layers and resins It is a composite substrate of layers.
セラミック層と樹脂層からなる従来の積層配線基板は、微細配線となる配線層を樹脂層により形成している。そのため、セラミック層との密着性が不足し、セラミック層と樹脂層との間での剥離を生じるという問題があった。
特許文献1では、この剥離の解消のために、セラミック積層体と樹脂積層体の境界面に露出した第1層間接続導体と、第1層間接続導体の上端面に直接接続された第2層間接続導体の位置関係を規定している。そして、この位置関係を規定することによりセラミック積層体と樹脂積層体の密着する面積を増加させてセラミック積層体と樹脂積層体の密着強度を増加させるとしている。
In a conventional laminated wiring board consisting of a ceramic layer and a resin layer, a wiring layer to be a fine wiring is formed of a resin layer. Therefore, there is a problem that the adhesion with the ceramic layer is insufficient, and the peeling between the ceramic layer and the resin layer occurs.
In Patent Document 1, in order to eliminate this peeling, the first interlayer connection conductor exposed at the interface between the ceramic laminate and the resin laminate, and the second interlayer connection directly connected to the upper end surface of the first interlayer connection conductor It defines the positional relationship of the conductors. Then, by defining this positional relationship, the contact area between the ceramic laminate and the resin laminate is increased, and the adhesion strength between the ceramic laminate and the resin laminate is increased.
しかしながら、特許文献1に記載の積層配線基板もセラミック層と樹脂層の複合基板であることから、セラミック層と樹脂層との間での剥離という問題を根本的に解決するまでには至らなかった。 However, since the laminated wiring substrate described in Patent Document 1 is also a composite substrate of a ceramic layer and a resin layer, it has not reached a fundamental solution to the problem of peeling between the ceramic layer and the resin layer. .
本発明は、上記問題点に鑑みて、セラミック層と、セラミック層の上に設ける微細配線層との間での剥離を防止することのできる複合配線基板を提供すること、及び、上記複合配線基板を備えるプローブカードを提供することを目的とする。 In view of the above problems, the present invention provides a composite wiring board capable of preventing peeling between a ceramic layer and a fine wiring layer provided on the ceramic layer, and the above composite wiring board It aims at providing a probe card provided with.
本発明の複合配線基板は、内部配線を含み低温焼結セラミック層を複数層含むセラミック多層配線基板と、上記セラミック多層配線基板に積層された、内部配線を含みガラス絶縁層を複数層含むガラス多層配線基板と、を備える複合配線基板であって、上記セラミック多層配線基板の厚さが上記ガラス多層配線基板の厚さよりも厚いことを特徴とする。 The composite wiring board of the present invention comprises a ceramic multilayer wiring board including internal wiring and a plurality of low temperature sintered ceramic layers, and a glass multilayer including a plurality of glass insulating layers including an internal wiring laminated on the ceramic multilayer wiring board. And a wiring board, wherein the thickness of the ceramic multilayer wiring board is thicker than the thickness of the glass multilayer wiring board.
本発明の複合配線基板は、厚いセラミック多層配線基板の上に、薄いガラス多層配線基板が積層された構造である。ガラス多層配線基板は内部配線を含んでおり、この内部配線を微細配線とすることができるため、複合配線基板をプローブカードとして使用した際に検査対象である半導体素子の端子間隔に合わせた配線とすることができる。 The composite wiring board of the present invention has a structure in which a thin glass multilayer wiring board is laminated on a thick ceramic multilayer wiring board. The glass multilayer wiring board includes internal wiring, and this internal wiring can be made fine wiring. Therefore, when the composite wiring board is used as a probe card, the wiring matched with the terminal interval of the semiconductor element to be inspected and can do.
また、本発明の複合配線基板においてガラス絶縁層を構成するガラスは、セラミック多層基板を構成する低温焼結セラミック材料との密着性に優れている。ガラスと低温焼結セラミック材料をその製造工程において共に焼成すると、ガラスが溶融して低温焼結セラミック材料に入り込み、ガラスと低温焼結セラミック材料が溶融結合することができる。そのため、ガラス絶縁層と低温焼結セラミック層との剥離を確実に防止することができる。 Moreover, the glass which comprises a glass insulating layer in the composite wiring board of this invention is excellent in adhesiveness with the low temperature sintering ceramic material which comprises a ceramic multilayer board | substrate. When the glass and the low temperature sintered ceramic material are co-fired in the manufacturing process, the glass can be melted into the low temperature sintered ceramic material, and the glass and the low temperature sintered ceramic material can be melt bonded. Therefore, peeling of the glass insulating layer and the low temperature sintered ceramic layer can be reliably prevented.
本発明の複合配線基板では、上記セラミック多層配線基板と上記ガラス多層配線基板の30℃~900℃における平均熱膨張係数差は、10ppm・K-1以下であることが好ましい。
セラミック多層配線基板を構成する低温焼結セラミック材料とガラス多層配線基板を構成するガラスはともに無機材料であり、その熱膨張係数が近い。従来技術のようなセラミック層と樹脂層の複合基板では樹脂の熱膨張係数がセラミックの熱膨張係数に比べてかなり大きいので、このように近い熱膨張係数の関係とすることは難しい。
そして、2つの基板の平均熱膨張係数差を上記範囲にすることによって、複合配線基板にヒートショックが加わった場合であっても熱膨張係数差に起因する剥離が生じることを防止することができる。
なお、本明細書において、セラミック多層配線基板の熱膨張係数は、セラミック多層配線基板を構成する低温焼結セラミック層の材質である低温焼結セラミック材料の熱膨張係数として定める。また、ガラス多層配線基板の熱膨張係数は、ガラス多層配線基板を構成するガラス絶縁層の材質であるガラスの熱膨張係数として定める。
In the composite wiring board of the present invention, the difference in average thermal expansion coefficient at 30 ° C. to 900 ° C. between the ceramic multilayer wiring board and the glass multilayer wiring board is preferably 10 ppm · K −1 or less.
The low temperature sintered ceramic material constituting the ceramic multilayer wiring board and the glass constituting the glass multilayer wiring board are both inorganic materials, and their thermal expansion coefficients are close to each other. In the composite substrate of the ceramic layer and the resin layer as in the prior art, since the thermal expansion coefficient of the resin is considerably larger than the thermal expansion coefficient of the ceramic, it is difficult to make such a close thermal expansion coefficient relationship.
Then, by setting the average thermal expansion coefficient difference between the two substrates within the above range, it is possible to prevent the occurrence of peeling due to the thermal expansion coefficient difference even when heat shock is applied to the composite wiring substrate. .
In the present specification, the thermal expansion coefficient of the ceramic multilayer wiring board is determined as the thermal expansion coefficient of the low temperature sintered ceramic material which is the material of the low temperature sintered ceramic layer constituting the ceramic multilayer wiring board. Further, the thermal expansion coefficient of the glass multilayer wiring board is determined as the thermal expansion coefficient of glass which is a material of the glass insulating layer constituting the glass multilayer wiring board.
本発明の複合配線基板では、上記ガラス絶縁層は、ガラスと、焼結助剤と、セラミック骨材と、を含む無機成分と、感光性有機成分と、を含有する感光性ガラスペーストの焼成体であり、焼成後のガラス成分は、SiO換算で65wt%以上85wt%以下のSiと、B換算で15wt%以上20wt%以下のBと、KO換算で1wt%以上5wt%以下のKと、Al換算で0.1wt%以上2.0wt%以下のAlを含み、焼成後の金属酸化物結晶は、アルミナ、マグネシア、スピネル、シリカ、フォルステライト、ステアタイト及びジルコニアからなる群より選択された少なくとも1種であり、上記焼成後のガラス成分の含有割合が50wt%以上70wt%以下であるとともに、上記焼成後の金属酸化物結晶の含有割合が30wt%以上50wt%以下であることが好ましい。
ガラス絶縁層が感光性ガラスペーストの焼成体であるということは、フォトリソグラフィにより感光性ガラスペーストに内部配線を形成する工程を経た絶縁層であることを意味している。フォトリソグラフィを使用することにより微細配線を形成することができるので、複合配線基板をプローブカードとして使用した際に検査対象である半導体素子の端子間隔に合わせた配線とすることに特に適している。
In the composite wiring board of the present invention, the glass insulating layer is a fired body of a photosensitive glass paste containing an inorganic component including glass, a sintering aid, and a ceramic aggregate, and a photosensitive organic component. The glass component after firing is 65 wt% or more and 85 wt% or less Si in terms of SiO 2 , B 15 wt% or more and 20 wt% or less in terms of B 2 O 3 , and 1 wt% or more and 5 wt% in terms of K 2 O The metal oxide crystals after firing contain alumina, magnesia, spinel, silica, forsterite, steatite, and zirconia containing the following K and Al of 0.1 wt% or more and 2.0 wt% or less in terms of Al 2 O 3 : And at least one selected from the group consisting of: the content ratio of the glass component after the baking is 50 wt% or more and 70 wt% or less; It is preferable chromatic ratio is not less than 30 wt% 50 wt% or less.
The fact that the glass insulating layer is a fired body of photosensitive glass paste means that the insulating layer has been subjected to the step of forming internal wiring in the photosensitive glass paste by photolithography. Since fine wiring can be formed by using photolithography, when using a composite wiring board as a probe card, it is particularly suitable for wiring in accordance with the terminal interval of a semiconductor element to be inspected.
本発明の複合配線基板では、上記ガラス多層配線基板の内部配線は、感光性配線導体ペーストの焼成体であることが好ましい。
ガラス多層配線基板の内部配線を感光性配線導体ペーストを用いて形成すると、ガラス絶縁層の層間を接続するための層間接続導体を形成する際に断面形状が矩形(テーパーがついていない)のビアホールをあけることができる。層間接続導体の断面形状を矩形とするとコイルを形成したときに良好な特性が得られる。
In the composite wiring board of the present invention, the internal wiring of the glass multilayer wiring board is preferably a fired body of a photosensitive wiring conductor paste.
When the internal wiring of the glass multilayer wiring board is formed using a photosensitive wiring conductor paste, when forming an interlayer connection conductor for connecting the layers of the glass insulating layer, a via hole having a rectangular (non-tapered) cross-sectional shape is formed. I can make it go. If the cross-sectional shape of the interlayer connection conductor is rectangular, good characteristics can be obtained when the coil is formed.
本発明の複合配線基板では、上記ガラス多層配線基板の内部配線は、感光性銀ペーストの焼成体であることが好ましい。
感光性銀ペーストを用いて内部配線を形成すると、薄膜工法(例えば、スパッタめっき)と比べて、簡単に膜厚を厚くすることができるため、配線抵抗を小さくすることができる。
In the composite wiring board of the present invention, the internal wiring of the glass multilayer wiring board is preferably a fired body of photosensitive silver paste.
When the internal wiring is formed using the photosensitive silver paste, the film thickness can be easily increased as compared with the thin film method (for example, sputter plating), and therefore, the wiring resistance can be reduced.
本発明の複合配線基板では、上記セラミック多層配線基板の厚さが1mm以上、8mm以下であることが好ましい。
セラミック多層配線基板の厚さが上記範囲であると、充分な強度を有した複合配線基板となる。
In the composite wiring board of the present invention, the thickness of the ceramic multilayer wiring board is preferably 1 mm or more and 8 mm or less.
When the thickness of the ceramic multilayer wiring board is in the above range, a composite wiring board having sufficient strength is obtained.
また、本発明の複合配線基板では、上記低温焼結セラミック層の1層あたりの厚さが20μm以上、150μm以下であることが好ましい。
低温焼結セラミック層の1層あたりの厚さが上記範囲であると、微細配線ではないセラミック多層配線基板側の内部配線の寸法に合致しているため好ましい。
In the composite wiring board of the present invention, the thickness per one layer of the low-temperature sintered ceramic layer is preferably 20 μm or more and 150 μm or less.
It is preferable that the thickness per one layer of the low-temperature sintered ceramic layer is in the above-mentioned range because it conforms to the size of the internal wiring on the ceramic multilayer wiring board side which is not a fine wiring.
本発明の複合配線基板では、上記ガラス多層配線基板の厚さが10μm以上、200μm以下であることが好ましい。
また、本発明の複合配線基板では、上記ガラス絶縁層の1層あたりの厚さが5μm以上、50μm以下であることが好ましい。
ガラス絶縁層の1層あたりの厚さが上記範囲であると、微細配線であるガラス多層配線基板側の内部配線の寸法に合致しているため好ましい。
また、このような薄いガラス絶縁層を複数層含むガラス多層配線基板の厚さは上記範囲となる。
In the composite wiring board of the present invention, the thickness of the glass multilayer wiring board is preferably 10 μm or more and 200 μm or less.
In the composite wiring board of the present invention, the thickness per one layer of the glass insulating layer is preferably 5 μm or more and 50 μm or less.
It is preferable that the thickness per one layer of the glass insulating layer is in the above-mentioned range because it conforms to the dimension of the internal wiring on the glass multilayer wiring board side which is a fine wiring.
In addition, the thickness of the glass multilayer wiring board including a plurality of such thin glass insulating layers is in the above range.
本発明の複合配線基板では、上記低温焼結セラミック層と上記ガラス絶縁層における結晶相と非晶質相の割合を比較した際に、結晶相については上記低温焼結セラミック層の方が上記ガラス絶縁層に比べて多く、非晶質相については上記ガラス絶縁層の方が上記低温焼結セラミック層に比べて多いことが好ましい。
低温焼結セラミック層とガラス絶縁層はともに無機材料からなり、その構成元素も類似している場合が多いが、低温焼結セラミック層は結晶相が多く、ガラス絶縁層は非晶質相が多いという点で区別することが可能である。
また、低温焼結セラミック層に結晶相が多く含まれることにより、セラミック多層配線基板の抗折強度が向上する。
また、ガラス絶縁層に非晶質相が多く含まれることにより、薄膜形成が容易になる。これは、低温での焼成でガラスの軟化流動が容易となり、緻密化が促進されるためである。
各層が結晶相と非晶質相を含むかの判定は、X線回折装置により結晶相ピークの有無を判定することによって行うことができる。
In the composite wiring board of the present invention, when the proportions of the crystalline phase and the amorphous phase in the low temperature sintered ceramic layer and the glass insulating layer are compared, the low temperature sintered ceramic layer is the glass in the crystalline phase. It is preferable that the number is larger than that of the insulating layer, and the number of the glass insulating layer is more than that of the low temperature sintered ceramic layer in the amorphous phase.
The low-temperature sintered ceramic layer and the glass insulating layer both consist of inorganic materials, and their constituent elements are often similar, but the low-temperature sintered ceramic layer has many crystalline phases and the glass insulating layer has many amorphous phases. It is possible to distinguish in the point.
In addition, when the low-temperature sintered ceramic layer contains a large amount of crystal phase, the flexural strength of the ceramic multilayer wiring board is improved.
In addition, when the glass insulating layer contains a large amount of amorphous phase, thin film formation becomes easy. This is because the baking at a low temperature facilitates the softening flow of the glass and promotes the densification.
The determination of whether each layer contains a crystalline phase and an amorphous phase can be performed by determining the presence or absence of a crystalline phase peak with an X-ray diffractometer.
本発明のプローブカードは、本発明の複合配線基板を備えることを特徴とする。
本発明の複合配線基板は、薄いガラス多層配線基板を備えており、ガラス多層配線基板は微細配線とすることのできる内部配線を含んでいるので、プローブカードとして使用することで半導体素子の電気検査を行うことができる。
また、本発明の複合配線基板は、セラミック層と、セラミック層の上に設ける微細配線層との間での剥離を防止することのできる基板であるので、層間剥離の心配がない信頼性の高いプローブカードとして使用することができる。
The probe card of the present invention is characterized by comprising the composite wiring board of the present invention.
The composite wiring board of the present invention includes a thin glass multilayer wiring board, and the glass multilayer wiring board includes internal wiring that can be fine wiring, so that it can be used as a probe card to electrically test semiconductor elements. It can be performed.
In addition, since the composite wiring board of the present invention is a substrate capable of preventing peeling between the ceramic layer and the fine wiring layer provided on the ceramic layer, there is no concern about delamination, and the reliability is high. It can be used as a probe card.
本発明によれば、セラミック層と、セラミック層の上に設ける微細配線層との間での剥離を防止することのできる複合配線基板、及び、上記複合配線基板を備えるプローブカードを提供することができる。 According to the present invention, there is provided a composite wiring board capable of preventing peeling between a ceramic layer and a fine wiring layer provided on the ceramic layer, and a probe card provided with the above-mentioned composite wiring board. it can.
図1は、本発明の複合配線基板の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of the composite wiring board of the present invention. 図2(a)、図2(b)及び図2(c)は、複合配線基板の製造工程の一例を模式的に示す断面図である。2 (a), 2 (b) and 2 (c) are cross-sectional views schematically showing an example of a manufacturing process of the composite wiring board. 図3(a)及び図3(b)は、複合配線基板の製造工程の一例を模式的に示す断面図である。3 (a) and 3 (b) are cross-sectional views schematically showing an example of a manufacturing process of the composite wiring board.
以下、本発明の複合配線基板及びプローブカードについて説明する。
しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する本発明の個々の望ましい構成を2つ以上組み合わせたものもまた本発明である。
Hereinafter, the composite wiring board and the probe card of the present invention will be described.
However, the present invention is not limited to the following configurations, and can be appropriately modified and applied without departing from the scope of the present invention. In addition, what combined two or more each desired structure of this invention described below is also this invention.
[複合配線基板]
図1は、本発明の複合配線基板の一例を模式的に示す断面図である。
図1に示す複合配線基板1は、セラミック多層配線基板10と、セラミック多層配線基板10に積層されたガラス多層配線基板20を備える。
セラミック多層配線基板10は、低温焼結セラミック層11が複数層積層された基板であり、セラミック多層配線基板10の中には内部配線12が設けられている。内部配線12は層間接続導体13によって層間接続されている。
セラミック多層配線基板10の主面のうち、ガラス多層配線基板20と反対側の面には下面電極14が設けられている。
ガラス多層配線基板20は、ガラス絶縁層21が複数層積層された基板であり、ガラス多層配線基板20の中には内部配線22が設けられている。内部配線22は層間接続導体23によって層間接続されている。
ガラス多層配線基板20の主面のうち、セラミック多層配線基板10と反対側の面には上面電極24が設けられている。
[Composite wiring board]
FIG. 1 is a cross-sectional view schematically showing an example of the composite wiring board of the present invention.
A composite wiring board 1 shown in FIG. 1 includes a ceramic multilayer wiring board 10 and a glass multilayer wiring board 20 stacked on the ceramic multilayer wiring board 10.
The ceramic multilayer wiring substrate 10 is a substrate in which a plurality of low temperature sintered ceramic layers 11 are stacked, and the internal wiring 12 is provided in the ceramic multilayer wiring substrate 10. The internal wiring 12 is interlayer connected by the interlayer connection conductor 13.
A lower surface electrode 14 is provided on the main surface of the ceramic multilayer wiring board 10 opposite to the glass multilayer wiring board 20.
The glass multilayer wiring board 20 is a substrate in which a plurality of glass insulating layers 21 are stacked, and the internal wiring 22 is provided in the glass multilayer wiring board 20. The internal wiring 22 is connected by interlayer connection conductor 23.
An upper surface electrode 24 is provided on the surface of the main surface of the glass multilayer wiring substrate 20 opposite to the ceramic multilayer wiring substrate 10.
セラミック多層配線基板10の厚さ(図1中、両矢印T10で示す)は、ガラス多層配線基板20の厚さ(図1中、両矢印T20で示す)よりも厚くなっている。
また、各上面電極24のピッチは、各下面電極14のピッチよりも狭く設定されていて、複合配線基板1の内部に再配線構造が形成されている。
The thickness of the ceramic multi-layer wiring board 10 (in FIG. 1, in showing double-headed arrow T 10), the thickness of the glass multilayer wiring board 20 (in FIG. 1, indicated by double-headed arrow T 20) is thicker than the.
Further, the pitch of each upper surface electrode 24 is set narrower than the pitch of each lower surface electrode 14, and a rewiring structure is formed inside the composite wiring board 1.
以下、複合配線基板を構成するセラミック多層配線基板の詳細について説明する。
セラミック多層配線基板は、絶縁層としての低温焼結セラミック層を備える。
低温焼結セラミック層は、低温焼結セラミック材料を含む層である。
低温焼結セラミック材料とは、セラミック材料のうち、1000℃以下の温度の焼成温度で焼結可能であり、AgやCuとの同時焼成が可能である材料を意味する。
セラミック基板に使用されるセラミック材料は1500℃以上の高温で焼成されるものが多いが、セラミック材料にガラス成分を混ぜることで焼成温度を1000℃以下に下げることができ、導体抵抗の低いAgやCuを内部配線に使用することができる材料となる。このようなセラミック材料が低温焼結セラミック材料であり、LTCC(Low Temperature Co-fired Ceramics)材料とも呼ばれる。
低温焼結セラミック材料としては、例えば、クオーツやアルミナ、フォルステライト等のセラミック材料にホウ珪酸ガラス、SiO-CaO-Al-B系ガラスセラミック、又は、SiO-MgO-Al-B系ガラスセラミックを混合してなるガラス複合系低温焼結セラミック材料、ZnO-MgO-Al-SiO系の結晶化ガラスを用いた結晶化ガラス系低温焼結セラミック材料、BaO-Al-SiO系セラミック材料やAl-CaO-SiO-MgO-B系セラミック材料等を用いた非ガラス系低温焼結セラミック材料等が挙げられる。
低温焼結セラミック層には、結晶相を含むことが好ましい。低温焼結セラミック層がセラミック材料としてのアルミナを含む場合、結晶相を含むといえる。また、焼結により生成するアノーサイト(CaO-Al-2SiO)を結晶相として含んでいてもよい。
The details of the ceramic multilayer wiring board constituting the composite wiring board will be described below.
The ceramic multilayer wiring board is provided with a low temperature sintered ceramic layer as an insulating layer.
The low temperature sintered ceramic layer is a layer comprising a low temperature sintered ceramic material.
The low-temperature sintered ceramic material means, among ceramic materials, a material which can be sintered at a sintering temperature of 1000 ° C. or less and can be co-fired with Ag or Cu.
Many ceramic materials used for ceramic substrates are fired at a high temperature of 1500 ° C. or higher, but the firing temperature can be lowered to 1000 ° C. or less by mixing the ceramic component with the ceramic material, and Ag or the like having low conductor resistance Cu is a material that can be used for internal wiring. Such a ceramic material is a low temperature sintered ceramic material, also called a low temperature co-fired ceramic (LTCC) material.
As the low temperature sintered ceramic material, for example, ceramic materials such as quartz, alumina, forsterite and the like, borosilicate glass, SiO 2 -CaO-Al 2 O 3 -B 2 O 3 based glass ceramic, or SiO 2 -MgO- Glass composite low temperature sintered ceramic material formed by mixing Al 2 O 3 -B 2 O 3 type glass ceramic, crystallized glass based low temperature crystallized glass using ZnO-MgO-Al 2 O 3 -SiO 2 type crystallized glass Non-glass based low-temperature sintered ceramic material using sintered ceramic material, BaO-Al 2 O 3 -SiO 2 ceramic material, Al 2 O 3 -CaO-SiO 2 -MgO-B 2 O 3 ceramic material, etc. Can be mentioned.
The low temperature sintered ceramic layer preferably contains a crystalline phase. When the low temperature sintered ceramic layer contains alumina as a ceramic material, it can be said that it contains a crystalline phase. Further, anorthite (CaO-Al 2 O 3 -2SiO 2 ) generated by sintering may be included as a crystal phase.
セラミック多層配線基板に含まれる内部配線及び層間接続導体は、Au、Ag又はCuを含むことが好ましく、Ag又はCuを含むことがより好ましい。 The internal wiring and the interlayer connection conductor contained in the ceramic multilayer wiring board preferably contain Au, Ag or Cu, and more preferably contain Ag or Cu.
低温焼結セラミック層の1層あたりの厚さは20μm以上、150μm以下であることが好ましい。
また、セラミック多層配線基板の厚さが1mm以上、8mm以下であることが好ましい。
The thickness per one layer of the low temperature sintered ceramic layer is preferably 20 μm or more and 150 μm or less.
Moreover, it is preferable that the thickness of a ceramic multilayer wiring board is 1 mm or more and 8 mm or less.
セラミック多層配線基板は、低温焼結セラミック層の層間に、低温焼結セラミック材料の焼結温度(例えば800℃以上1000℃以下)では焼結しないセラミック材料からなる拘束層を備えていてもよい。低温焼結セラミック層の層間に拘束層を設けることによって低温焼結セラミック材料の焼成時に各低温焼結セラミック層が主面方向に収縮するのを抑制することができる。このようにすると、セラミック多層配線基板に含まれる内部配線及び層間接続導体の位置精度が向上する。 The ceramic multilayer wiring board may be provided with a constraining layer made of a ceramic material which does not sinter at the sintering temperature (for example, 800 ° C. or more and 1000 ° C. or less) of the low temperature sintered ceramic material between layers of the low temperature sintered ceramic layer. By providing a constraining layer between the low-temperature sintered ceramic layers, it is possible to suppress shrinkage of each low-temperature-sintered ceramic layer in the main surface direction during firing of the low-temperature-sintered ceramic material. This improves the positional accuracy of the internal wiring and the interlayer connection conductor included in the ceramic multilayer wiring board.
以下、複合配線基板を構成するガラス多層配線基板の詳細について説明する。
ガラス多層配線基板は、絶縁層としてのガラス絶縁層を備える。
ガラス絶縁層は、ガラスを主成分として含む層である。
また、ガラス絶縁層は、ガラスと、焼結助剤と、セラミック骨材と、を含む無機成分と、感光性有機成分と、を含有する感光性ガラスペーストの焼成体であることが好ましい。
焼成後のガラス成分は、SiO換算で65wt%以上85wt%以下のSiと、B換算で15wt%以上20wt%以下のBと、KO換算で1wt%以上5wt%以下のKと、Al換算で0.1wt%以上2.0wt%以下のAlを含み、焼成後の金属酸化物結晶は、アルミナ、マグネシア、スピネル、シリカ、フォルステライト、ステアタイト及びジルコニアからなる群より選択された少なくとも1種であり、上記焼成後のガラス成分の含有割合が50wt%以上70wt%以下であるとともに、上記焼成後の金属酸化物結晶の含有割合が30wt%以上50wt%以下であることが好ましい。
焼成後のガラス成分に含まれる元素及びその比率については、得られた複合配線基板(固体試料)を粉砕処理した後、酸(例えば、塩酸、硝酸、フッ化水素酸)に溶解させ、その溶液を誘導結合プラズマ発光分光法(ICP-AES)により求めることができる。
また、焼成後のガラス成分の含有割合、及び、焼成後の金属酸化物結晶の種類及びその含有割合については、得られた複合配線基板(固体試料)を粉砕処理した後、得られた粉末に一定量の内部標準物質(非晶質ガラスを含む)を添加した後、X線回折法(XRD)による測定を行い、得られたプロファイルに対してリートベルト解析を行い算出することができる。
ガラス絶縁層には、非晶質相を含むことが好ましい。ガラスペーストに含まれるガラスが非晶質相であると、非晶質相を含むといえる。
Hereinafter, the detail of the glass multilayer wiring board which comprises a composite wiring board is demonstrated.
The glass multilayer wiring board is provided with a glass insulating layer as an insulating layer.
The glass insulating layer is a layer containing glass as a main component.
Moreover, it is preferable that a glass insulating layer is a baked body of the photosensitive glass paste containing the inorganic component containing glass, a sintering auxiliary agent, and a ceramic aggregate, and a photosensitive organic component.
The glass component after firing is Si at 65 wt% or more and 85 wt% or less in SiO 2 conversion, B at 15 wt% or more and 20 wt% or less in B 2 O 3 conversion, and 1 wt% or more and 5 wt% or less in K 2 O conversion And Al in an amount of 0.1 wt% or more and 2.0 wt% or less in terms of Al 2 O 3 , and the metal oxide crystal after firing contains alumina, magnesia, spinel, silica, forsterite, steatite and zirconia. And the content of the glass component after firing is 50 wt% or more and 70 wt% or less, and the content of the metal oxide crystal after firing is 30 wt% or more and 50 wt% or less Is preferred.
About the element contained in the glass component after baking, and its ratio, after grind-processing the obtained composite wiring board (solid sample), it is made to dissolve in an acid (for example, hydrochloric acid, nitric acid, hydrofluoric acid), and the solution Can be determined by inductively coupled plasma emission spectroscopy (ICP-AES).
Moreover, about the content rate of the glass component after baking, and the kind of metal oxide crystal after baking, and its content rate, after grind-processing the obtained composite wiring board (solid sample), the obtained powder is obtained. After adding a fixed amount of internal standard substance (including amorphous glass), measurement by X-ray diffraction method (XRD) can be performed, and Rietveld analysis can be performed on the obtained profile to calculate.
The glass insulating layer preferably contains an amorphous phase. When the glass contained in the glass paste is an amorphous phase, it can be said to contain an amorphous phase.
上記低温焼結セラミック層と上記ガラス絶縁層における結晶相と非晶質相の割合を比較した際に、結晶相については上記低温焼結セラミック層の方が上記ガラス絶縁層に比べて多く、非晶質相については上記ガラス絶縁層の方が上記低温焼結セラミック層に比べて多いことが好ましい。
低温焼結セラミック層とガラス絶縁層はともに無機材料からなり、その構成元素も類似している場合が多いが、低温焼結セラミック層は結晶相が多く、ガラス絶縁層は非晶質相が多いという点で区別することが可能である。
When the proportions of the crystalline phase and the amorphous phase in the low temperature sintered ceramic layer and the glass insulating layer are compared, the low temperature sintered ceramic layer in the crystalline phase is larger than that in the glass insulating layer, As for the crystalline phase, it is preferable that the glass insulating layer is more than the low temperature sintered ceramic layer.
The low-temperature sintered ceramic layer and the glass insulating layer both consist of inorganic materials, and their constituent elements are often similar, but the low-temperature sintered ceramic layer has many crystalline phases and the glass insulating layer has many amorphous phases. It is possible to distinguish in the point.
感光性ガラスペーストに含まれる感光性有機成分としては、アルカリ可溶ポリマー、感光性モノマー、光重合開始剤及び溶剤等を含有することが好ましい。 The photosensitive organic component contained in the photosensitive glass paste preferably contains an alkali-soluble polymer, a photosensitive monomer, a photopolymerization initiator, a solvent, and the like.
アルカリ可溶ポリマーとしては、例えば、側鎖にカルボキシル基を有するアクリル系重合体を用いることができる。側鎖にカルボキシル基を有するアクリル系重合体は、例えば、不飽和カルボン酸とエチレン性不飽和化合物を共重合させることによって製造することができる。
不飽和カルボン酸としては、アクリル酸、メタクリル酸、マレイン酸、フマル酸、ビニル酢酸及びこれらの無水物等が挙げられる。一方、エチレン性不飽和化合物としては、アクリル酸メチル、アクリル酸エチル等のアクリル酸エステル、メタクリル酸メチル、メタクリル酸エチル等のメタクリル酸エステル、フマル酸モノエチル等のフマル酸エステル等が挙げられる。
また、側鎖にカルボキシル基を有するアクリル系重合体としては、以下のような形態の不飽和結合を導入したものを用いてもよい。
1)アクリル系重合体の側鎖のカルボキシル基に、これと反応可能な、例えばエポキシ基等の官能基を有するアクリル系モノマーを付加する。
2)側鎖のカルボキシル基の代わりにエポキシ基が導入されてなる上記アクリル系重合体に、不飽和モノカルボン酸を反応させた後、さらに飽和又は不飽和多価カルボン酸無水物を導入する。
また、側鎖にカルボキシル基を有するアクリル系重合体としては、重量平均分子量(Mw)が50000以下、かつ酸価が30以上150以下のものが好ましい。
As the alkali-soluble polymer, for example, an acrylic polymer having a carboxyl group in a side chain can be used. An acrylic polymer having a carboxyl group in a side chain can be produced, for example, by copolymerizing an unsaturated carboxylic acid and an ethylenically unsaturated compound.
Examples of unsaturated carboxylic acids include acrylic acid, methacrylic acid, maleic acid, fumaric acid, vinyl acetic acid and anhydrides thereof. On the other hand, examples of the ethylenically unsaturated compound include acrylic esters such as methyl acrylate and ethyl acrylate, methacrylic esters such as methyl methacrylate and ethyl methacrylate, and fumaric esters such as monoethyl fumarate.
Further, as the acrylic polymer having a carboxyl group in the side chain, one having a unsaturated bond of the following form may be used.
1) To the carboxyl group of the side chain of the acrylic polymer, an acrylic monomer having a functional group such as an epoxy group capable of reacting with this is added.
2) An unsaturated monocarboxylic acid is reacted with the above-mentioned acrylic polymer in which an epoxy group is introduced instead of a carboxyl group in a side chain, and then a saturated or unsaturated polyvalent carboxylic acid anhydride is introduced.
Moreover, as an acrylic polymer which has a carboxyl group in a side chain, that whose weight average molecular weight (Mw) is 50000 or less and whose acid value is 30 or more and 150 or less is preferable.
感光性モノマーとしては、例えば、ジペンタエリスリトールモノヒドロキシペンタアクリレートを用いることができる。感光性モノマーとしては、その他にも、ヘキサンジオールトリアクリレート、トリプロピレングリコールトリアクリレート、トリメチロールプロパントリアクリレート、EO変性トリメチロールプロパントリアクリレート、ステアリルアクリレート、テトラヒドロフルフリルアクリレート、ラウリルアクリレート、2-フェノキシエチルアクリレート、イソデシルアクリレート、イソオクチルアクリレート、トリデシルアクリレート、カプロラクトンアクリレート、エトキシ化ノニルフェノールアクリレート、1,3-ブタンジオールジアクリレート、1,4-ブタンジオールジアクリレート、ジエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、エトキシ化ビスフェノールAジアクリレート、プロポキシ化ネオペンチルグリコールジアクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリアクリレート、ペンタエリスリトールトリアクリレート、プロポキシ化トリメチロールプロパントリアクリレート、プロポキシ化グリセリルトリアクリレート、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート等を用いることができる。また、上記化合物の分子内のアクリレートの一部又は全てをメタクリレートに変えたものを用いることもできる。 As the photosensitive monomer, for example, dipentaerythritol monohydroxy pentaacrylate can be used. As the photosensitive monomer, in addition, hexanediol triacrylate, tripropylene glycol triacrylate, trimethylolpropane triacrylate, EO modified trimethylolpropane triacrylate, stearyl acrylate, tetrahydrofurfuryl acrylate, lauryl acrylate, 2-phenoxyethyl Acrylate, isodecyl acrylate, isooctyl acrylate, tridecyl acrylate, caprolactone acrylate, ethoxylated nonylphenol acrylate, 1,3-butanediol diacrylate, 1,4-butanediol diacrylate, diethylene glycol diacrylate, tetraethylene glycol diacrylate, Triethylene glycol diacrylate, ethoxylated bis fe A diacrylate, propoxylated neopentyl glycol diacrylate, tris (2-hydroxyethyl) isocyanurate triacrylate, pentaerythritol triacrylate, propoxylated trimethylolpropane triacrylate, propoxylated glyceryl triacrylate, pentaerythritol tetraacrylate, Ditrimethylolpropane tetraacrylate, ethoxylated pentaerythritol tetraacrylate or the like can be used. Further, it is also possible to use one in which a part or all of the acrylate in the molecule of the above compound is replaced with a methacrylate.
光重合開始剤としては、例えば、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オンを用いることができる。光重合開始剤としては、その他にも、ベンジル、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-ベンゾイル-4’-メチルジフェニルサルファイド、ベンジルジメチルケタール、2-n-ブトキシ-4-ジメチルアミノベンゾエート、2-クロロチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン、イソプロピルチオキサントン、2-ジメチルアミノエチルベンゾエート、p-ジメチルアミノ安息香酸エチル、p-ジメチルアミノ安息香酸イソアミル、3,3’-ジメチル-4-メトキシベンゾフェノン、2,4-ジメチルチオキサントン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、メチルベンゾイルフォルメート、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド等を用いることができる。 As the photopolymerization initiator, for example, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one can be used. As the photopolymerization initiator, in addition, benzyl, benzoin ethyl ether, benzoin isobutyl ether, benzoin isopropyl ether, benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-benzoyl-4'-methyldiphenyl sulfide, benzyl dimethyl ketal , 2-n-butoxy-4-dimethylaminobenzoate, 2-chlorothioxanthone, 2,4-diethyl thioxanthone, 2,4-diisopropyl thioxanthone, isopropyl thioxanthone, 2-dimethylaminoethyl benzoate, ethyl p-dimethylaminobenzoate, p-Dimethylaminobenzoate isoamyl, 3,3'-dimethyl-4-methoxybenzophenone, 2,4-dimethylthioxanthone, 1- (4-dodecylphenyl)- -Hydroxy-2-methylpropan-1-one, 2,2-dimethoxy-1,2-diphenylethane-1-one, hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, methyl benzoylformate, 1-phenyl-1,2-propanedione-2- (O-ethoxycarbonyl) oxime, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphos Using fin oxide, bis (2,4,6-trimethyl benzoyl) phenyl phosphine oxide, etc. Door can be.
感光性有機成分は、その他、増感剤、消泡剤等を含有してもよい。
溶剤、増感剤及び消泡剤については、特に制約はなく、種々のものを用いることができる。
The photosensitive organic component may further contain a sensitizer, an antifoamer, and the like.
There are no particular restrictions on the solvent, sensitizer and antifoamer, and various ones can be used.
感光性ガラスペースト中の感光性有機成分の含有量は、好ましくは25重量%以上、より好ましくは33重量%以上であり、また、好ましくは47重量%以下、より好ましくは38重量%以下である。 The content of the photosensitive organic component in the photosensitive glass paste is preferably 25% by weight or more, more preferably 33% by weight or more, and preferably 47% by weight or less, more preferably 38% by weight or less .
ガラス多層配線基板に含まれる内部配線及び層間接続導体は、感光性配線導体ペーストの焼成体であることが好ましい。感光性配線導体ペーストの焼成体とは、感光性の導電ペーストを使用したフォトリソグラフィにより形成された配線導体であることを意味する。
とくに、感光性配線導体ペーストの焼成体が感光性銀ペーストを使用したフォトリソグラフィによりパターン形成され、さらに焼成されることにより得られる、感光性銀ペーストの焼成体であることが好ましい。
感光性の導電ペーストとしては金属材料と感光性有機成分(アルカリ可溶ポリマー、感光性モノマー及び光重合開始剤)を含むものを使用することができる。
アルカリ可溶ポリマー、感光性モノマー及び光重合開始剤の好ましい例は、感光性ガラスペーストに含まれる材料の例として説明した各成分と同様である。
また、金属材料としてはAu、Ag又はCuを含むことが好ましく、Ag又はCuを含むことがより好ましい。
金属材料としてのAgを感光性有機成分と混合したものが感光性銀ペーストである。
It is preferable that the internal wiring and interlayer connection conductor contained in a glass multilayer wiring board are a sintered body of a photosensitive wiring conductor paste. The fired body of the photosensitive wiring conductor paste means that it is a wiring conductor formed by photolithography using the photosensitive conductive paste.
In particular, it is preferable that the baked body of the photosensitive wiring paste is a baked body of the photosensitive silver paste obtained by forming a pattern of the baked body of the photosensitive wiring conductor paste by photolithography using the photosensitive silver paste and further baking the pattern.
As the photosensitive conductive paste, those containing a metal material and a photosensitive organic component (alkali-soluble polymer, photosensitive monomer and photopolymerization initiator) can be used.
Preferred examples of the alkali-soluble polymer, the photosensitive monomer and the photopolymerization initiator are the same as the components described as the examples of the material contained in the photosensitive glass paste.
The metal material preferably contains Au, Ag or Cu, more preferably Ag or Cu.
A photosensitive silver paste is a mixture of Ag as a metal material and a photosensitive organic component.
ガラス絶縁層の1層あたりの厚さは5μm以上、50μm以下であることが好ましい。
また、ガラス多層配線基板の厚さが10μm以上、200μm以下であることが好ましい。
ガラス多層配線基板の厚さはセラミック多層配線基板よりもかなり薄く、ガラス多層配線基板は薄膜基板であるといえる。薄膜基板のデザインルールは微細配線となり、複合配線基板をプローブカードとして使用した際に検査対象である半導体素子の端子間隔に合わせた配線とすることができる。
The thickness per one layer of the glass insulating layer is preferably 5 μm or more and 50 μm or less.
Moreover, it is preferable that the thickness of a glass multilayer wiring board is 10 micrometers or more and 200 micrometers or less.
The thickness of the glass multilayer wiring substrate is considerably thinner than that of the ceramic multilayer wiring substrate, and it can be said that the glass multilayer wiring substrate is a thin film substrate. The design rule of the thin film substrate is fine wiring, and when the composite wiring substrate is used as a probe card, it can be wiring matched to the terminal interval of the semiconductor element to be inspected.
本発明の複合配線基板では、セラミック多層配線基板とガラス多層配線基板の30℃~900℃における平均熱膨張係数差は、10ppm・K-1以下であることが好ましく、2つの基板の平均熱膨張係数が近くなることが好ましい。 In the composite wiring board of the present invention, the average thermal expansion coefficient difference between the ceramic multilayer wiring board and the glass multilayer wiring board at 30 ° C. to 900 ° C. is preferably 10 ppm · K −1 or less, and the average thermal expansion of the two substrates is It is preferred that the coefficients be close.
本発明の複合配線基板は、上記のような構成を有しており、ガラス絶縁層を構成するガラスは、セラミック多層基板を構成する低温焼結セラミック材料との密着性に優れている。ガラスと低温焼結セラミック材料をその製造工程において共に焼成すると、ガラスが溶融して低温焼結セラミック材料に入り込み、ガラスと低温焼結セラミック材料が溶融結合することができる。そのため、ガラス絶縁層と低温焼結セラミック層との剥離を確実に防止することができる。
本発明の複合配線基板は、その他に以下のような効果を有する。
(1)本発明の複合配線基板は樹脂層ではなくガラス絶縁層を有するために、吸湿性が低く、複合配線基板がリフロー炉内等の加熱条件に曝された際に吸湿した水分の蒸発による層間剥離や破裂が生じることが防止される。
(2)本発明の複合配線基板は樹脂層ではなくガラス絶縁層を有するために、200℃を超えるような高温環境下においても寸法の歪みが生じず、位置精度が安定している。
そのため、プローブカードとして高温環境下での半導体素子の検査においても使用することができる。
(3)本発明の複合配線基板は樹脂層ではなくガラス絶縁層を有するために、耐熱性が高く、配線に大電流が印加されることで基板に熱が加わることがあっても構造破壊や外観の変化が生じることが防止される。
The composite wiring board of the present invention has the configuration as described above, and the glass constituting the glass insulating layer is excellent in adhesion to the low-temperature sintered ceramic material constituting the ceramic multilayer substrate. When the glass and the low temperature sintered ceramic material are co-fired in the manufacturing process, the glass can be melted into the low temperature sintered ceramic material, and the glass and the low temperature sintered ceramic material can be melt bonded. Therefore, peeling of the glass insulating layer and the low temperature sintered ceramic layer can be reliably prevented.
In addition, the composite wiring board of the present invention has the following effects.
(1) Since the composite wiring board of the present invention has a glass insulating layer instead of a resin layer, it has low hygroscopicity, and evaporation of moisture absorbed when the composite wiring board is exposed to heating conditions such as in a reflow furnace It is prevented that delamination and a burst occur.
(2) Since the composite wiring board of the present invention has not a resin layer but a glass insulating layer, no dimensional distortion occurs even in a high temperature environment exceeding 200 ° C., and the positional accuracy is stable.
Therefore, it can be used also in inspection of a semiconductor element under high temperature environment as a probe card.
(3) Since the composite wiring board of the present invention has a glass insulating layer instead of a resin layer, the heat resistance is high, and even if heat is applied to the board by applying a large current to the wiring, structural destruction or A change in appearance is prevented from occurring.
[プローブカード]
本発明のプローブカードは、本発明の複合配線基板を備えることを特徴とする。
本発明の複合配線基板のガラス多層配線基板側の表面電極(図1における上面電極24)にプローブピンを実装することでプローブカードとして使用することができる。
本発明の複合配線基板はプローブカードの全体であってもよく、本発明の複合配線基板をプローブカードの一部として使用してもよい。
プローブカードの一部として使用する場合は、スペーストランスフォーマー又はインターポーザーと呼ばれる基板として働き、配線ピッチ変換基板として使用されることが好ましい。この場合、本発明の複合配線基板のセラミック多層配線基板側の表面電極(図1における下面電極14)をプローブカード本体となるプリント配線板と電気的に接続して使用する。
[Probe card]
The probe card of the present invention is characterized by comprising the composite wiring board of the present invention.
It can be used as a probe card by mounting a probe pin on the surface electrode (upper surface electrode 24 in FIG. 1) on the glass multilayer wiring substrate side of the composite wiring substrate of the present invention.
The composite wiring board of the present invention may be the entire probe card, and the composite wiring board of the present invention may be used as a part of the probe card.
When used as part of a probe card, it preferably serves as a substrate called a space transformer or an interposer and is used as a wiring pitch conversion substrate. In this case, the surface electrode (lower surface electrode 14 in FIG. 1) on the ceramic multilayer wiring board side of the composite wiring board of the present invention is electrically connected to a printed wiring board serving as a probe card body.
本発明のプローブカードではガラス多層配線基板の表面にプローブピンを実装する。プローブカードにおいてはプローブピンを実装する表面電極の精度が重要であり、表面電極の周辺の絶縁層の精度も重要である。本発明のプローブカードではプローブピンを実装する面がガラス多層配線基板の表面であり、無機材料により構成されているので表面の強度が高く、傷がつきにくいので製造工程及び使用時における取り扱いが容易である点で有利である。 In the probe card of the present invention, probe pins are mounted on the surface of the glass multilayer wiring board. In the probe card, the accuracy of the surface electrode on which the probe pins are mounted is important, and the accuracy of the insulating layer around the surface electrode is also important. In the probe card of the present invention, the surface on which the probe pin is mounted is the surface of the glass multilayer wiring board and is made of an inorganic material, so the surface strength is high and scratch resistant, so handling in the manufacturing process and use is easy. It is advantageous in that it is.
[複合配線基板の製造方法]
続いて、本発明の複合配線基板の製造方法の一例について説明する。
内部配線を含み低温焼結セラミック層を複数層含むセラミック多層配線基板を得る方法としては公知の方法を使用することができる。
以下には、図1に示すセラミック多層配線基板10の上にガラス多層配線基板20を設けることにより複合配線基板1を得る工程の一例について説明する。
[Method of manufacturing composite wiring board]
Subsequently, an example of a method of manufacturing the composite wiring board of the present invention will be described.
A known method can be used as a method of obtaining a ceramic multilayer wiring board including internal wiring and a plurality of low-temperature sintered ceramic layers.
Below, an example of a process of obtaining the composite wiring board 1 by providing the glass multilayer wiring board 20 on the ceramic multilayer wiring board 10 shown in FIG. 1 is demonstrated.
図2(a)、図2(b)及び図2(c)、並びに、図3(a)及び図3(b)は、複合配線基板の製造工程の一例を模式的に示す断面図である。
図2(a)には、セラミック多層配線基板10に感光性ガラスペーストをスクリーン印刷、乾燥し、露光、現像処理によるパターン形成、さらに脱バインダー及び焼成を行い1層目のガラス絶縁層21を形成した状態を示している。
パターン形成によりガラス絶縁層21の一部には、セラミック多層配線基板10の内部配線12の上にあたる位置にビアホール25を形成している。
感光性ガラスペーストに含まれる成分は上述のガラスと、焼結助剤と、セラミック骨材とを含む無機成分、及び、感光性有機成分である。
感光性ガラスペーストの焼成は、感光性ガラスペーストに含まれるガラスの軟化点以上の温度で行うことが好ましく、750℃以上、950℃以下で行うことが好ましい。
感光性ガラスペーストを焼成することにより、感光性ガラスペーストに含まれるガラスが溶融して低温焼結セラミック材料に入り込み、ガラスと低温焼結セラミック材料が溶融結合することができる。
2 (a), 2 (b) and 2 (c), and FIGS. 3 (a) and 3 (b) are cross-sectional views schematically showing an example of a manufacturing process of a composite wiring board .
In FIG. 2A, a photosensitive glass paste is screen-printed on a ceramic multilayer wiring substrate 10, dried, exposed, patterned by development processing, and further debindered and fired to form a first glass insulating layer 21. Shows the condition.
Via holes 25 are formed at positions corresponding to the internal wires 12 of the ceramic multilayer wiring substrate 10 in a part of the glass insulating layer 21 by pattern formation.
The components contained in the photosensitive glass paste are an inorganic component including the above-described glass, a sintering aid, and a ceramic aggregate, and a photosensitive organic component.
The baking of the photosensitive glass paste is preferably performed at a temperature equal to or higher than the softening point of the glass contained in the photosensitive glass paste, and is preferably performed at 750 ° C. or more and 950 ° C. or less.
By firing the photosensitive glass paste, the glass contained in the photosensitive glass paste can be melted into the low temperature sintered ceramic material, and the glass and the low temperature sintered ceramic material can be melt-bonded.
続いて、感光性の導体ペーストのスクリーン印刷、乾燥を行い、露光、現像処理によるパターン形成を行って1層目の内部配線を形成する。
図2(b)には、ビアホール25に感光性の導体ペーストを充填することにより層間接続導体23が設けられ、さらに感光性の導体ペーストによりパターン形成されてなる内部配線22が設けられた状態を示している。
層間接続導体23により、内部配線22とセラミック多層配線基板10の内部配線12とが電気的に接続される。
感光性の導体ペーストの焼成は、700℃以上、850℃以下で行うことが好ましい。
Subsequently, screen printing and drying of a photosensitive conductor paste are performed, and pattern formation by exposure and development is performed to form a first layer of internal wiring.
In FIG. 2B, a state is provided in which the interlayer connection conductor 23 is provided by filling the via hole 25 with the photosensitive conductor paste, and the internal wiring 22 formed by patterning with the photosensitive conductor paste is provided. It shows.
The internal wiring 22 and the internal wiring 12 of the ceramic multilayer wiring substrate 10 are electrically connected by the interlayer connection conductor 23.
The baking of the photosensitive conductor paste is preferably performed at 700 ° C. or more and 850 ° C. or less.
この工程において、感光性の導体ペーストを焼成すると感光性の導体ペーストに含まれる感光性有機成分が飛散したことに起因する空隙が生じる。
また、感光性の導体ペーストの焼成の際にはガラス絶縁層に含まれるガラスが溶融する。
ビアホールに充填された感光性導体ペーストの周囲、及び、内部配線となる感光性の導体ペーストの下にはガラス絶縁層が存在しているので、感光性の導体ペーストに空隙が生じると、その空隙にガラス絶縁層に含まれるガラスが溶解して入り込む。
すなわち、内部配線及び層間接続導体は、隣接するガラス絶縁層がその中に入り込んだ状態で形成されるので、ガラス絶縁層と内部配線及び層間接続導体は強固に結合される。
In this process, when the photosensitive conductor paste is fired, voids are generated due to scattering of the photosensitive organic component contained in the photosensitive conductor paste.
Moreover, the glass contained in a glass insulating layer fuse | melts in the case of baking of a photosensitive conductor paste.
Since a glass insulating layer exists around the photosensitive conductor paste filled in the via holes and under the photosensitive conductor paste to be the internal wiring, when a void is generated in the photosensitive conductor paste, the void The glass contained in the glass insulating layer melts into the glass.
That is, since the internal wiring and the interlayer connection conductor are formed in a state in which the adjacent glass insulating layer enters therein, the glass insulating layer and the internal wiring and the interlayer connection conductor are strongly coupled.
続いて、図2(c)に示すように、さらに感光性ガラスペーストをスクリーン印刷、乾燥し、露光、現像処理によるパターン形成、脱バインダー及び焼成を行い2層目のガラス絶縁層21を形成する。2層目のガラス絶縁層21の一部には、内部配線22の上にあたる位置にビアホール25を形成している。
この場合も、焼成の際に感光性ガラスペーストに含まれるガラスが溶融して、隣接する内部配線の空隙に入り込んで強固に結合される。また、感光性ガラスペーストに含まれるガラスは1層目のガラス絶縁層と溶融結合する。
なお、2層目のガラス絶縁層を形成する方法及び条件は、1層目のガラス絶縁層を形成する際と同様にすることができる。
Subsequently, as shown in FIG. 2C, the photosensitive glass paste is further screen-printed and dried, exposure, pattern formation by development, binder removal and firing are performed to form a second glass insulating layer 21. . A via hole 25 is formed in a part of the second glass insulating layer 21 at a position corresponding to the inner wiring 22.
Also in this case, the glass contained in the photosensitive glass paste is melted at the time of firing, and enters the voids of the adjacent internal wiring to be strongly bonded. Further, the glass contained in the photosensitive glass paste is melt-bonded to the first glass insulating layer.
Note that the method and conditions for forming the second glass insulating layer can be the same as the method for forming the first glass insulating layer.
続いて、図3(a)に示すように、さらに感光性の導体ペーストのスクリーン印刷、乾燥を行い、露光、現像処理によるパターン形成を行って2層目の内部配線22を形成する。
この際、2層目のガラス絶縁層21に設けられたビアホール25に感光性の導体ペーストを充填することにより層間接続導体23が設けられ、1層目の内部配線22と2層目の内部配線22が電気的に接続される。また、2層目の内部配線22及び層間接続導体23は隣接する2層目のガラス絶縁層21と強固に結合される。
2層目の内部配線及び層間接続導体を形成する方法及び条件は、1層目の内部配線及び層間接続導体を形成する際と同様にすることができる。
Subsequently, as shown in FIG. 3A, screen printing and drying of a photosensitive conductor paste are further performed, and pattern formation by exposure and development is performed to form a second layer internal wiring 22.
At this time, the interlayer connection conductor 23 is provided by filling the via hole 25 provided in the second glass insulating layer 21 with a photosensitive conductor paste, and the first internal wiring 22 and the second internal wiring are provided. 22 are electrically connected. In addition, the second layer internal wiring 22 and the interlayer connection conductor 23 are strongly coupled to the adjacent second glass insulating layer 21.
The method and conditions for forming the second layer internal wiring and the interlayer connection conductor can be the same as the method for forming the first layer internal wiring and the interlayer connection conductor.
以後、図3(b)に示すように、3層目のガラス絶縁層、内部配線及び層間接続導体の形成を同様に行うことにより、絶縁層3層及び内部配線3層からなるガラス多層配線基板20が設けられる。この工程により複合配線基板1が得られる。
ガラス多層配線基板20の上面には、上面電極24となる配線を形成する。
上面電極24の表面には表面保護のためにNi/Auめっきを施してもよい。
なお、上記工程では絶縁層3層及び内部配線3層からなるガラス多層配線基板を製造する例を示したが、層数は3層に限定されるものではなく、必要な枚数を積層するようにすればよい。
Thereafter, as shown in FIG. 3 (b), a glass multilayer wiring board consisting of three insulating layers and three internal wiring layers is formed by similarly forming the third glass insulating layer, the internal wiring and the interlayer connection conductor. 20 are provided. The composite wiring board 1 is obtained by this process.
Wiring to be the upper surface electrode 24 is formed on the upper surface of the glass multilayer wiring substrate 20.
The surface of the top electrode 24 may be plated with Ni / Au for surface protection.
In the above process, an example of manufacturing a glass multilayer wiring board consisting of three insulating layers and three internal wiring layers is shown, but the number of layers is not limited to three, and a necessary number of layers may be stacked. do it.
上記に説明した方法では、感光性ガラスペーストの印刷~焼成を行い1層目のガラス絶縁層を形成し、感光性導体ペーストの印刷~焼成により1層目の内部配線を形成している。
続けて、感光性ガラスペーストの印刷~焼成を行い2層目のガラス絶縁層を形成し、感光性導体ペーストの印刷~焼成により2層目の内部配線を形成している。
すなわち、感光性ガラスペーストの焼成と感光性導体ペーストの焼成を繰り返すことによって、セラミック多層配線基板の上にガラス多層配線基板を設けている。
しかし、セラミック多層配線基板の上にガラス多層配線基板を設ける方法としては、層形成のたびに焼成を行なわず、未焼成の状態で積層を行い、一度に焼成する下記の方法を用いることもできる。
In the method described above, printing to firing of the photosensitive glass paste is performed to form a first glass insulating layer, and printing to firing of the photosensitive conductor paste is performed to form the first internal wiring.
Subsequently, printing to baking of the photosensitive glass paste is performed to form a second glass insulating layer, and printing to baking of the photosensitive conductor paste is performed to form a second internal wiring.
That is, by repeating the firing of the photosensitive glass paste and the firing of the photosensitive conductor paste, the glass multilayer wiring board is provided on the ceramic multilayer wiring board.
However, as a method of providing a glass multilayer wiring substrate on a ceramic multilayer wiring substrate, the following method may be used in which the layers are not fired each time a layer is formed, but are stacked in an unfired state and fired at one time. .
まず、セラミック多層配線基板に感光性ガラスペーストをスクリーン印刷、乾燥し、露光、現像処理によるパターン形成を行う。さらに脱バインダーを行い、未焼成の1層目のガラス絶縁層を形成する。
次に、焼成は行わずに感光性の導体ペーストのスクリーン印刷、乾燥を行い、露光、現像処理によるパターン形成を行って未焼成の1層目の内部配線を形成する。
続けて、焼成は行わずに感光性ガラスペーストをスクリーン印刷、乾燥し、露光、現像処理によるパターン形成を行う。さらに脱バインダーを行い、未焼成の2層目のガラス絶縁層を形成する。
次に、焼成は行わずに感光性の導体ペーストのスクリーン印刷、乾燥を行い、露光、現像処理によるパターン形成を行って未焼成の2層目の内部配線を形成する。
以下、未焼成のガラス絶縁層の形成と未焼成の内部配線の形成を行い、必要な枚数の層を形成する。
そして、全ての層形成の後に、焼成を行い、焼成されたガラス絶縁層及び内部配線を形成する。
上記の工程によりセラミック多層配線基板の上にガラス多層配線基板を設けることができる。
First, photosensitive glass paste is screen-printed and dried on a ceramic multilayer wiring substrate, and a pattern is formed by exposure and development. Further, binder removal is performed to form a non-fired first glass insulating layer.
Next, screen printing and drying of a photosensitive conductor paste are performed without baking, pattern formation by exposure and development is performed, and an unbaked first layer internal wiring is formed.
Subsequently, the photosensitive glass paste is screen-printed and dried without baking, and a pattern is formed by exposure and development. Further, binder removal is performed to form an unbaked second glass insulating layer.
Next, screen printing and drying of a photosensitive conductor paste are performed without baking, pattern formation by exposure and development is performed, and an unbaked second-layer internal wiring is formed.
Thereafter, the formation of the unfired glass insulating layer and the formation of the unfired internal wiring are performed to form the required number of layers.
Then, after forming all the layers, baking is performed to form a baked glass insulating layer and internal wiring.
A glass multilayer wiring board can be provided on the ceramic multilayer wiring board by the above steps.
以下、本発明の複合配線基板をより具体的に開示した実施例を示す。なお、本発明は、これらの実施例のみに限定されるものではない。 Hereinafter, an example will be described in which the composite wiring board of the present invention is more specifically disclosed. The present invention is not limited to only these examples.
[複合配線基板の作製]
内部配線を含み低温焼結セラミック層を複数層含むセラミック多層配線基板として、低温焼結セラミック材料がSiO-CaO-Al-B系ガラスセラミックとアルミナ粉末を混合してなる材料である基板を準備した。
セラミック多層配線基板の厚さは1.5mmであり、低温焼結セラミック層1層あたりの厚さは100μmであった。
[Fabrication of composite wiring board]
A low-temperature sintered ceramic material is prepared by mixing SiO 2 -CaO-Al 2 O 3 -B 2 O 3 -based glass ceramic and alumina powder as a ceramic multilayer wiring board including internal wiring and a plurality of low-temperature sintered ceramic layers. A substrate, which is a material, was prepared.
The thickness of the ceramic multilayer wiring board was 1.5 mm, and the thickness per one layer of the low temperature sintered ceramic layer was 100 μm.
SiO-B-KOガラスと、SiO-B-CaO-LiO-ZnOからなる焼結助剤と、セラミック骨材(アルミナ)と、感光性有機成分を混合して感光性ガラスペーストを調製した。
感光性有機成分には、アルカリ可溶ポリマーとしてのメタクリル酸-メタクリル酸メチルの共重合体と、感光性モノマーとしてのトリメチロールプロパントリアクリレートと、溶剤としてのペンタメチレングリコールと、光重合開始剤としての2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オンを含む。
また、Ag粉末と上記感光性有機成分を混合して感光性銀ペーストを調製した。
Sintering aid consisting of SiO 2 -B 2 O 3 -K 2 O glass, SiO 2 -B 2 O 3 -CaO-LiO 2 -ZnO, ceramic aggregate (alumina) and photosensitive organic component mixed Thus, a photosensitive glass paste was prepared.
As a photosensitive organic component, a copolymer of methacrylic acid-methyl methacrylate as an alkali-soluble polymer, trimethylolpropane triacrylate as a photosensitive monomer, pentamethylene glycol as a solvent, and a photopolymerization initiator And 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one.
Moreover, Ag powder and the said photosensitive organic component were mixed, and the photosensitive silver paste was prepared.
準備したセラミック多層配線基板に対し、感光性ガラスペーストをスクリーン印刷、乾燥し、露光、現像処理によるパターン形成、さらに脱バインダー及び焼成を行いガラス絶縁層を形成した。
続いて、感光性銀ペーストのスクリーン印刷、乾燥を行い、露光、現像処理によるパターン形成を行って内部配線を形成した。さらに脱バインダー及び焼成を行った。
以後、感光性ガラスペーストのスクリーン印刷~焼成による2層目のガラス絶縁層の形成、及び、感光性銀ペーストのスクリーン印刷~焼成による2層目の内部配線の形成、の順に繰り返して絶縁層3層、内部配線3層のガラス多層配線基板を形成した。
ガラス多層配線基板の厚さは30μmであり、ガラス絶縁層1層あたりの厚さは10μmであった。
上記手順により、セラミック多層配線基板とガラス多層配線基板とを備える複合配線基板を作製した。
With respect to the prepared ceramic multilayer wiring substrate, photosensitive glass paste was screen-printed and dried, exposure, pattern formation by development processing, binder removal and firing were performed to form a glass insulating layer.
Subsequently, screen printing and drying of photosensitive silver paste were carried out, and pattern formation was carried out by exposure and development to form internal wiring. Further, binder removal and firing were performed.
Thereafter, the insulating layer 3 is repeatedly formed in the order of screen printing of photosensitive glass paste to formation of a second glass insulating layer by firing, and screen printing of photosensitive silver paste to formation of a second internal wire by firing. A glass multi-layered wiring substrate of 3 layers of internal wiring was formed.
The thickness of the glass multilayer wiring board was 30 μm, and the thickness per glass insulating layer was 10 μm.
According to the above procedure, a composite wiring board provided with a ceramic multilayer wiring board and a glass multilayer wiring board was produced.
[対比用基板の作製]
上記複合配線基板との対比のため、ガラス絶縁層に代えてポリイミドからなる樹脂絶縁層を使用し、内部配線として銅めっきを用いて形成した対比用基板を作製した。
[Production of substrate for comparison]
For comparison with the composite wiring substrate, a substrate for comparison was formed using a resin insulating layer made of polyimide instead of the glass insulating layer and using copper plating as internal wiring.
[基板の評価]
複合配線基板及び対比用基板のそれぞれについて、基板評価を行った。
表面の評価を行った面は複合配線基板においてはガラス多層配線基板の表面、対比用基板においては樹脂絶縁層の表面である。
[Evaluation of substrate]
Substrate evaluation was performed for each of the composite wiring substrate and the comparison substrate.
The surface on which the surface was evaluated is the surface of the glass multilayer wiring substrate in the case of the composite wiring substrate, and the surface of the resin insulation layer in the case of the comparison substrate.
(1)密着性評価
基板の表面の絶縁層部分と表面電極部にそれぞれセロテープ(登録商標)(No.405)を貼り付け、剥がした後の状態を確認した。
複合配線基板では同一箇所で3回繰り返して試験した結果、いずれの部位にも剥離は見られなかった。
対比用基板では、絶縁層部分で1回の試験後に層間の剥離が見られた。
(1) Adhesion Evaluation Cellotape (registered trademark) (No. 405) was attached to the insulating layer portion and the surface electrode portion of the surface of the substrate, and the state after peeling was confirmed.
In the composite wiring board, as a result of repeating and testing 3 times in the same place, peeling was not seen in any part.
In the control substrate, delamination was observed after one test on the insulating layer portion.
(2)吸湿性評価
基板を湿中槽(85℃/湿度60%)に168時間保持し、槽から取り出して30分以内に、260℃のリフロー炉に5回通して、その後の外観の確認を行い、さらに上記(1)密着性評価で行った試験と同じテープ剥離試験を行った。
複合配線基板では変色及び膨れがなく、テープ剥離試験での剥離は見られなかった。
対比用基板では、変色及び膨れが生じており、テープ剥離試験での層間の剥離が見られた。
(2) Hygroscopicity Evaluation The substrate is kept in a wet tank (85 ° C./60% humidity) for 168 hours, taken out of the tank, passed through a reflow furnace at 260 ° C. 5 times within 30 minutes, and then the appearance is confirmed And the same tape peel test as the test conducted in the above (1) adhesion evaluation.
The composite wiring board did not show discoloration and swelling, and no peeling was observed in the tape peeling test.
On the control substrate, discoloration and swelling occurred, and delamination of the layers was observed in the tape peeling test.
(3)熱による歪み評価
ベルト炉で基板を加熱して、加熱前後の表面電極の位置を測定した。
ベルト炉条件:最高温度400℃、保持時間30分
測定点9点:48mm×43mm角の領域の外周8点/センター1点
各測定点につき、X方向、Y方向の設計値(座標)からのズレを測定した。
複合配線基板では、X方向、Y方向とも、加熱前後での寸法差は-0.003~0.003mm(-3μm~3μm)の範囲に収まっており、熱による歪みは見られなかった。
対比用基板は、400℃での加熱に耐えられなかったため評価ができなかった。
(3) Evaluation of distortion due to heat The substrate was heated in a belt furnace, and the position of the surface electrode before and after heating was measured.
Belt furnace conditions: Maximum temperature 400 ° C, holding time 30 minutes 9 points: outer circumference 8 points / center 1 point of the area of 48 mm × 43 mm square from the design values (coordinates) in X direction and Y direction Deviation was measured.
In the composite wiring board, the dimensional difference before and after heating was in the range of −0.003 to 0.003 mm (−3 μm to 3 μm) in both the X and Y directions, and no distortion due to heat was observed.
The comparison substrate could not be evaluated because it could not withstand heating at 400 ° C.
(4)耐熱性評価
温度をそれぞれ250℃、300℃、350℃に設定したホットプレート上に基板を載置し、外観状態を確認した。
基板の表面温度が各設定温度に到達してから10分加熱し、外観を観察した。
複合配線基板ではいずれの温度でも外観に不具合は見られなかった。
対比用基板では250℃での加熱では外観に不具合は見られなかったが、300℃及び350℃での加熱では外観の変色等の不具合が見られた。
(4) Heat resistance evaluation The substrate was placed on a hot plate set to 250 ° C., 300 ° C. and 350 ° C., respectively, and the appearance was confirmed.
The appearance was observed by heating for 10 minutes after the surface temperature of the substrate reached each set temperature.
No defect was found in the appearance of the composite wiring board at any temperature.
In the comparative substrate, no defect was observed in the appearance by heating at 250 ° C., but defects such as discoloration of the appearance were observed by heating at 300 ° C. and 350 ° C.
(5)表面の強度評価
基板の表面の絶縁層部分3箇所に、カッターナイフを用いて切り傷を入れたのち、上記(1)密着性評価で行った試験と同じテープ剥離試験を行い、カット端からの絶縁層の剥離の有無を観察した。
複合配線基板では3箇所ともテープ剥離試験での剥離は見られなかった。
対比用基板では3箇所ともテープ剥離試験での剥離が見られた。
(5) Evaluation of surface strength After making cuts using a cutter knife at three insulating layer parts on the surface of the substrate, the same tape peeling test as the test carried out in the above (1) adhesion evaluation is carried out, and cut ends The presence or absence of peeling of the insulating layer from
No peeling was observed in the tape peeling test at all three points on the composite wiring board.
Peeling in the tape peeling test was observed at all three places on the control substrate.
1 複合配線基板
10 セラミック多層配線基板
11 低温焼結セラミック層
12 内部配線(セラミック多層配線基板に含まれる内部配線)
13 層間接続導体(セラミック多層配線基板に含まれる層間接続導体)
14 下面電極
20 ガラス多層配線基板
21 ガラス絶縁層
22 内部配線(ガラス多層配線基板に含まれる内部配線)
23 層間接続導体(ガラス多層配線基板に含まれる層間接続導体)
24 上面電極
25 ビアホール
1 composite wiring board 10 ceramic multilayer wiring board 11 low temperature sintered ceramic layer 12 internal wiring (internal wiring included in ceramic multilayer wiring board)
13 Interlayer connection conductor (Interlayer connection conductor included in ceramic multilayer wiring board)
14 lower surface electrode 20 glass multilayer wiring board 21 glass insulating layer 22 internal wiring (internal wiring included in glass multilayer wiring board)
23 Interlayer connection conductor (Interlayer connection conductor included in glass multilayer wiring board)
24 top electrode 25 via hole

Claims (11)

  1. 内部配線を含み低温焼結セラミック層を複数層含むセラミック多層配線基板と、
    前記セラミック多層配線基板に積層された、内部配線を含みガラス絶縁層を複数層含むガラス多層配線基板と、を備える複合配線基板であって、
    前記セラミック多層配線基板の厚さが前記ガラス多層配線基板の厚さよりも厚いことを特徴とする複合配線基板。
    A ceramic multilayer wiring board including internal wiring and a plurality of low temperature sintered ceramic layers;
    And a glass multilayer wiring board including internal wiring and a plurality of glass insulating layers laminated on the ceramic multilayer wiring board,
    A composite wiring board characterized in that the thickness of the ceramic multilayer wiring board is thicker than the thickness of the glass multilayer wiring board.
  2. 前記セラミック多層配線基板と前記ガラス多層配線基板の30℃~900℃における平均熱膨張係数差は、10ppm・K-1以下である請求項1に記載の複合配線基板。 The composite wiring board according to claim 1, wherein a difference between average thermal expansion coefficients of the ceramic multilayer wiring board and the glass multilayer wiring board at 30 ° C to 900 ° C is 10 ppm · K -1 or less.
  3. 前記ガラス絶縁層は、ガラスと、焼結助剤と、セラミック骨材と、を含む無機成分と、感光性有機成分と、を含有する感光性ガラスペーストの焼成体であり、焼成後のガラス成分は、SiO換算で65wt%以上85wt%以下のSiと、B換算で15wt%以上20wt%以下のBと、KO換算で1wt%以上5wt%以下のKと、Al換算で0.1wt%以上2.0wt%以下のAlを含み、焼成後の金属酸化物結晶は、アルミナ、マグネシア、スピネル、シリカ、フォルステライト、ステアタイト及びジルコニアからなる群より選択された少なくとも1種であり、前記焼成後のガラス成分の含有割合が50wt%以上70wt%以下であるとともに、前記焼成後の金属酸化物結晶の含有割合が30wt%以上50wt%以下である請求項1又は2に記載の複合配線基板。 The glass insulating layer is a fired body of a photosensitive glass paste containing an inorganic component including glass, a sintering aid, a ceramic aggregate, and a photosensitive organic component, and the glass component after firing is a 85 wt% or less of Si more than 65 wt% in terms of SiO 2, B and 2 O 3 in terms in the following 15 wt% or more 20 wt% B, and 5 wt% or less of the K least 1 wt% in K 2 O in terms, Al 2 O The metal oxide crystal after firing contains at least 0.1 wt% to 2.0 wt% of Al in terms of 3 and is at least one selected from the group consisting of alumina, magnesia, spinel, silica, forsterite, steatite and zirconia It is 1 type, and while the content rate of the glass component after the said baking is 50 wt%-70 wt%, the content rate of the metal oxide crystal after the said firing is 30 wt%-5 Interconnect board according to claim 1 or 2 or less wt%.
  4. 前記ガラス多層配線基板の内部配線は、感光性配線導体ペーストの焼成体である請求項1~3のいずれかに記載の複合配線基板。 The composite wiring board according to any one of claims 1 to 3, wherein the internal wiring of the glass multilayer wiring board is a fired body of a photosensitive wiring conductor paste.
  5. 前記ガラス多層配線基板の内部配線は、感光性銀ペーストの焼成体である請求項1~4のいずれかに記載の複合配線基板。 The composite wiring board according to any one of claims 1 to 4, wherein the internal wiring of the glass multilayer wiring board is a fired body of a photosensitive silver paste.
  6. 前記セラミック多層配線基板の厚さが1mm以上、8mm以下である請求項1~5のいずれかに記載の複合配線基板。 The composite wiring board according to any one of claims 1 to 5, wherein the thickness of the ceramic multilayer wiring board is 1 mm or more and 8 mm or less.
  7. 前記低温焼結セラミック層の1層あたりの厚さが20μm以上、150μm以下である請求項1~6のいずれかに記載の複合配線基板。 The composite wiring board according to any one of claims 1 to 6, wherein the thickness per one layer of the low-temperature sintered ceramic layer is 20 μm or more and 150 μm or less.
  8. 前記ガラス多層配線基板の厚さが10μm以上、200μm以下である請求項1~7のいずれかに記載の複合配線基板。 The composite wiring board according to any one of claims 1 to 7, wherein the thickness of the glass multilayer wiring board is 10 μm or more and 200 μm or less.
  9. 前記ガラス絶縁層の1層あたりの厚さが5μm以上、50μm以下である請求項1~8のいずれかに記載の複合配線基板。 The composite wiring board according to any one of claims 1 to 8, wherein the thickness per one layer of the glass insulating layer is 5 μm or more and 50 μm or less.
  10. 前記低温焼結セラミック層と前記ガラス絶縁層における結晶相と非晶質相の割合を比較した際に、結晶相については前記低温焼結セラミック層の方が前記ガラス絶縁層に比べて多く、非晶質相については前記ガラス絶縁層の方が前記低温焼結セラミック層に比べて多い、請求項1~9のいずれかに記載の複合配線基板。 When the proportions of the crystalline phase and the amorphous phase in the low temperature sintered ceramic layer and the glass insulating layer are compared, the low temperature sintered ceramic layer is larger in the crystalline phase than the glass insulating layer, The composite wiring board according to any one of claims 1 to 9, wherein the glass insulating layer is more in crystalline phase than the low temperature sintered ceramic layer.
  11. 請求項1~10のいずれかに記載の複合配線基板を備えることを特徴とするプローブカード。 A probe card comprising the composite wiring board according to any one of claims 1 to 10.
PCT/JP2018/023379 2017-07-12 2018-06-20 Composite wiring board and probe card WO2019012929A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-136229 2017-07-12
JP2017136229 2017-07-12

Publications (1)

Publication Number Publication Date
WO2019012929A1 true WO2019012929A1 (en) 2019-01-17

Family

ID=65001299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023379 WO2019012929A1 (en) 2017-07-12 2018-06-20 Composite wiring board and probe card

Country Status (1)

Country Link
WO (1) WO2019012929A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11224825A (en) * 1998-02-06 1999-08-17 Murata Mfg Co Ltd Manufacture of electronic component
JP2001210141A (en) * 2000-01-31 2001-08-03 Murata Mfg Co Ltd Method of manufacturing photosensitive glass plate and multilayer wiring circuit board using it
JP2005249998A (en) * 2004-03-03 2005-09-15 Toray Ind Inc Photosensitive ceramic composition and ceramic multilayer substrate using the same
JP2006083014A (en) * 2004-09-16 2006-03-30 Toray Ind Inc Ceramic sintered compact and ceramic multilayer substrate using the same
WO2015151809A1 (en) * 2014-03-31 2015-10-08 株式会社村田製作所 Laminated wiring board and probe card provided with same
JP2016134424A (en) * 2015-01-16 2016-07-25 株式会社村田製作所 Method of manufacturing multilayer wiring board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11224825A (en) * 1998-02-06 1999-08-17 Murata Mfg Co Ltd Manufacture of electronic component
JP2001210141A (en) * 2000-01-31 2001-08-03 Murata Mfg Co Ltd Method of manufacturing photosensitive glass plate and multilayer wiring circuit board using it
JP2005249998A (en) * 2004-03-03 2005-09-15 Toray Ind Inc Photosensitive ceramic composition and ceramic multilayer substrate using the same
JP2006083014A (en) * 2004-09-16 2006-03-30 Toray Ind Inc Ceramic sintered compact and ceramic multilayer substrate using the same
WO2015151809A1 (en) * 2014-03-31 2015-10-08 株式会社村田製作所 Laminated wiring board and probe card provided with same
JP2016134424A (en) * 2015-01-16 2016-07-25 株式会社村田製作所 Method of manufacturing multilayer wiring board

Similar Documents

Publication Publication Date Title
KR100493759B1 (en) Multilayer ceramic circuit boards with embedded resistors
JP5163687B2 (en) Photosensitive conductive paste, method for manufacturing multilayer electronic component using the same, and multilayer electronic component
JP3460657B2 (en) Photosensitive glass paste for multilayer wiring circuit board and method for manufacturing multilayer wiring circuit board
JP6540711B2 (en) PHOTOSENSITIVE CONDUCTIVE PASTE AND METHOD FOR MANUFACTURING LAMINATED ELECTRONIC COMPONENT USING THE SAME
US11051398B2 (en) Ceramic electronic component
JP2007184247A (en) Thick film conductor composition for multilayered electronic circuit and device, and its processing technology
JP4782993B2 (en) Glass composition and thick film dielectric composition containing the same
JP2020152639A (en) Photosensitive glass paste, electronic component, and production method of electronic component
JP2004047856A (en) Conductive paste and printing method as well as manufacturing method of ceramic multilayer circuit board
WO2019012929A1 (en) Composite wiring board and probe card
JP4802039B2 (en) Ceramic composition and multilayer ceramic circuit device
KR100744855B1 (en) High Thermal Cycle Conductor System
JPH06334351A (en) Conductor paste and ceramic multilayer interconnection board using same
JP2004087989A (en) Multilayer wiring substrate
CN106940514B (en) Photosensitive resin composition and photosensitive paste using same
JP7120195B2 (en) Photosensitive insulating paste and electronic components
JPH02141458A (en) Low-temperature calcined ceramic multilayered base plate and production thereof
JPH09260853A (en) Ceramic circuit board and its manufacture
JP3493294B2 (en) Circuit board
JP2001068852A (en) Multi-layered wiring board and its manufacture
JP2004235346A (en) Manufacturing method of multilayer wiring board
JPS622597A (en) Manufacture of ceramic wiring substrate
JP2004207009A (en) Copper-metallized composition and wiring board and manufacturing method therefor
JPH06112604A (en) Multilayer glass ceramic substrate and its manufacture
JPH03151690A (en) Multilayer ceramic circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP