WO2019012763A1 - Lens manufacturing method - Google Patents

Lens manufacturing method Download PDF

Info

Publication number
WO2019012763A1
WO2019012763A1 PCT/JP2018/015075 JP2018015075W WO2019012763A1 WO 2019012763 A1 WO2019012763 A1 WO 2019012763A1 JP 2018015075 W JP2018015075 W JP 2018015075W WO 2019012763 A1 WO2019012763 A1 WO 2019012763A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
processed
polishing
manufacturing
polishing step
Prior art date
Application number
PCT/JP2018/015075
Other languages
French (fr)
Japanese (ja)
Inventor
隆敏 土手内
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2019012763A1 publication Critical patent/WO2019012763A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/005Blocking means, chucks or the like; Alignment devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/14Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means

Definitions

  • the present invention relates to a lens manufacturing method.
  • Patent Document 1 an on-vehicle image pickup device attached to the outside of a vehicle body and photographing an appearance of the outside is known (see, for example, Patent Document 1).
  • flying objects may hit the imaging device.
  • flying objects include pebbles splashed by tires while the vehicle is traveling. If such a flying object hits the lens of the imaging device, the lens may be scratched and seriously affect the captured image. Therefore, a lens that is resistant to scratching is required.
  • a lens that is resistant to scratching is also required for a lens provided in a camera provided in a drone (drone) or a lens provided in a small camera optimized for use mainly outdoors, which is called an action camera.
  • the inventors have come to think of polishing sapphire glass as a lens material to produce a lens in order to solve the above-mentioned problems. Since sapphire glass is very hard with a Mohs hardness of 9, it was thought that lenses cut out of sapphire glass would not be easily scratched even when hit by flying objects.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a lens manufacturing method capable of manufacturing a lens made of Al 2 O 3 with high production efficiency and shape accuracy.
  • a lens manufacturing method which comprises a first polishing step of polishing a lens to be processed consisting of 2 O 3 .
  • the present invention it is possible to provide a lens manufacturing method capable of manufacturing a lens made of Al 2 O 3 with high production efficiency and shape accuracy.
  • FIG. 1 is a schematic view showing an example of a lens manufactured by the lens manufacturing method of the embodiment.
  • FIG. 2 is a flowchart showing the lens manufacturing method of the embodiment.
  • FIGS. 1 and 2 a lens manufacturing method according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
  • the dimension of each component, a ratio, etc. are suitably varied.
  • FIG. 1 is a schematic view showing an example of a lens manufactured by the lens manufacturing method of the present embodiment.
  • the lens 1 manufactured by the lens manufacturing method of the present embodiment has a lens body 10 and a coating film 20.
  • the lens main body 10 is formed in a circular shape in plan view, and is made of a single crystal of Al 2 O 3 .
  • the single crystal of Al 2 O 3 is also called corundum or steel ball.
  • the single crystal of Al 2 O 3 has a Mohs hardness of 9. Therefore, the lens body 10 made of a single crystal of Al 2 O 3 is hard, and the surface is not easily scratched.
  • the lens main body 10 can be manufactured by cutting it out of a plate material of Al 2 O 3 single crystal by a method described later.
  • the plate material of Al 2 O 3 single crystal is called sapphire glass.
  • the lens body 10 has one surface S1 viewed along the optical axis L of the lens body 10, the other surface S2 opposite to the one surface S1, and one surface S1 extending in the circumferential direction of the lens body 10 And a circumferential surface S3 intersecting and intersecting with the other surface S2.
  • One surface S1 includes a concave surface Sa which is visible along the optical axis L and overlaps the optical axis L, and a flat surface Sb which is disposed around the concave surface Sa and is continuous with the concave surface Sa.
  • the concave surface Sa is a light transmission surface.
  • the concave surface Sa is formed in a circular shape centered on the position of the optical axis L.
  • the other surface S2 is a convex surface.
  • the other surface S2 is a light transmitting surface.
  • the lens body 10 is a so-called meniscus lens.
  • the lens main body 10 is designed to have a larger curvature of the concave surface Sa than the curvature of the other surface S2, and has negative power.
  • the coating film 20 is provided on one surface S 1 of the lens body 10.
  • examples of the coating film 20 include a dielectric multilayer film that functions as an antireflective film, or a hard coat film that functions as a film that prevents the lens body 10 from being scratched.
  • the coating film 20 covers the entire surface of the concave surface Sa of the lens body 10. Further, the coating film 20 is not provided on the other surface S2 of the lens body.
  • the coating film 20 is a dielectric multilayer film
  • the coating film 20 can be obtained by depositing two inorganic materials having different refractive indexes alternately via a mask.
  • the obtained coating film 20 gives the lens 1 an antireflective function.
  • the lens body 10 is manufactured by the following method.
  • FIG. 2 is a flowchart showing the lens manufacturing method of the present embodiment. Hereinafter, it will be described as manufacturing the lens of FIG. 1 described above. Therefore, in the following description, the symbols shown in FIG. 1 are used as appropriate.
  • a glass material is cut and a lens to be processed made of Al 2 O 3 is manufactured (step S11).
  • a glass material a single crystal of Al 2 O 3 or sapphire glass can be used.
  • lens manufacturing method of the present embodiment an object in the lens manufacturing method of the present embodiment is referred to as a "lens”, and all lens-shaped molded articles in the process of obtaining the object are referred to as "processed lens”.
  • step S11 the glass material is ground first, and the lens shape is cut out of the glass material. Grinding of the glass material can be performed by an apparatus usually used in processing of a glass lens.
  • the obtained processing lens is roughly cut using alumina particles as an abrasive. At this time, it is preferable to carry out polishing a plurality of times while gradually reducing the particle size of the alumina particles to be used to enhance the shape accuracy of the lens to be processed.
  • step S12 the obtained lens to be processed is polished. This step corresponds to the "first polishing step" in the present invention.
  • a method using colloidal silica as an abrasive is known.
  • this method for example, while pouring colloidal silica on a lens to be processed obtained by rough cutting, a polishing plate is pressed against the polishing surface of the lens to be processed for polishing.
  • the desired shape accuracy can not be obtained even if polishing is performed under the same conditions as in the production of a normal glass lens.
  • the conditions set as the manufacture of a normal glass lens include, for example, the rotation speed of the polishing plate, the polishing time, and the like. In such a method, the PV value of the surface after processing tends to be larger than the desired value.
  • the “PV (Peak to Valley) value” is an index indicating “shape accuracy” when the lens to be processed is polished.
  • the PV value is a difference between the highest point and the lowest point of the surface after processing based on the design value of the processed surface. As the PV value is larger, it means that the surface of the processed lens after processing has a larger undulation.
  • the desired shape can be obtained by polishing the surface of the processed lens gradually over a long period of time It is possible to process the lens to be processed with accuracy. However, in this case, it is clear that the production efficiency of the lens to be processed is reduced.
  • the hardness of the lens to be processed which is made of Al 2 O 3 is Mohs hardness 9 and it is difficult to process.
  • the diamond paste is a paste-like abrasive generally used for fine polishing or mirror polishing of metal members.
  • the diamond paste contains diamond particles and a dispersion medium in which the diamond particles are dispersed.
  • the dispersion medium is, for example, a high molecular weight hydrocarbon.
  • Such a diamond paste is typically used for surface polishing or finish polishing of molds used in resin processing, and is not generally used for lens processing.
  • polishing of the lens to be processed made of Al 2 O 3 in the polishing of the lens to be processed made of Al 2 O 3 , a small amount of diamond paste is applied to the surface of the lens to be processed, and the diamond paste is rubbed on the lens to be processed with a polishing dish. Polish the processed lens. Also, as in the case of ordinary glass lens processing, polishing is performed without flowing a liquid such as alumina slurry during processing.
  • the diamond fine particles contained in the diamond paste have a Mohs hardness of 10 and a hardness higher than that of Al 2 O 3 constituting the lens to be processed.
  • the diamond paste tends to remain on the surface of the lens during polishing. Therefore, when the diamond paste is used as described above, the diamond paste remains on the lens to be processed, and the lens to be processed can be easily polished.
  • the lens manufacturing method of the present embodiment by using a diamond paste for polishing the lens to be processed, it is possible to polish the lens to be processed with a desired shape accuracy in a short time.
  • step S13 the surface of the lens to be processed is cleaned to remove the diamond paste. This step corresponds to the "cleaning step” in the present invention.
  • step S14 it is preferable to remove the diamond paste on the surface of the lens to be processed so that the influence of the diamond paste does not affect the subsequent steps.
  • the polishing plate for polishing with a diamond paste may be a dedicated item used only in step S12.
  • step S14 the lens to be processed is polished. This step corresponds to the “second polishing step” in the present invention.
  • step S14 a slurry containing abrasive particles whose material is a material having a hardness lower than that of the diamond particles contained in the diamond paste used in step S12 and water in which the abrasive particles are dispersed is used as the abrasive.
  • abrasive for example, colloidal silica in which the abrasive particles are silica particles can be used.
  • any abrasive particles made of a material having a hardness lower than that of diamond particles can be used as an abrasive in this step.
  • the above-mentioned steps S12 to S14 are performed on one surface of the lens to be processed, and then the above-mentioned steps S12 to S14 are performed on the other surface of the lens to be processed You may do it.
  • step S12 after performing step S12 on both surfaces of the lens to be processed, the cleaning in step S13 may be performed, and then step S14 may be performed on both surfaces of the lens.
  • the two surfaces of the lens to be processed refer to one surface and the other surface of the lens to be processed.
  • a lens to be processed is processed into a meniscus lens through the processing from step S11 to step S14 described above.
  • step S15 a coating process is performed on one surface of the lens to be processed. This step corresponds to the "coating step” in the present invention.
  • the coating treatment may be, for example, an antireflective film performed on the lens surface or a hard coat film performed to prevent the surface from being scratched.
  • the antireflective film include generally known dielectric multilayer films.
  • a dielectric multilayer film is formed in a concave surface formed on one surface of a lens to be processed.
  • the processed lens is the lens body 10 shown in FIG.
  • step S17 the light shielding process is performed on the flat surface Sb and the peripheral surface S3 of the lens body 10 which is the lens to be processed shown in FIG. 1 (step S17). This step corresponds to the “light shielding process” in the present invention.
  • the light shielding process is performed on the surfaces other than the convex surface and the concave surface of the meniscus lens, that is, the flat surface Sb and the circumferential surface S3.
  • Examples of the light shielding process include processing the flat surface Sb and the circumferential surface S3 into a polished surface, and applying the black surface to the flat surface Sb and the circumferential surface S3. By these processes, stray light is suppressed in the obtained lens, and a high quality lens can be obtained.
  • the lens manufacturing method of the present embodiment is performed, and the lens 1 shown in FIG. 1 is obtained.
  • the lens manufacturing method configured as described above, it is possible to manufacture a lens made of Al 2 O 3 with high production efficiency and high shape accuracy.
  • step S15 can be omitted.
  • step S17 can be omitted.
  • SYMBOLS 1 ... Lens, 10 ... Lens main body, 20 ... Coating film, L ... Optical axis, mp ... Processed lens, S1 ... One side, S2 ... Other side, Sa ... Concave surface, Sb ... Flat surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

The lens manufacturing method according to one aspect of the present invention comprises a polishing step for polishing a to-be-processed lens made of Al2O3. The polishing step comprises a first polishing step for polishing the Al2O3 lens being processed by using a diamond paste containing diamond particles.

Description

レンズ製造方法Lens manufacturing method
本発明は、レンズ製造方法に関する。 The present invention relates to a lens manufacturing method.
従来、車体の外部に取り付けられ、外部の様子を撮影する車載用の撮像装置が知られている(例えば、特許文献1参照)。 Conventionally, an on-vehicle image pickup device attached to the outside of a vehicle body and photographing an appearance of the outside is known (see, for example, Patent Document 1).
特開2015-205618号公報JP, 2015-205618, A
上述したような車体の外部に取り付けられる撮像装置の場合、飛来物が撮像装置に当たることがある。飛来物としては、例えば、車両走行中にタイヤで跳ね飛ばした小石が挙げられる。このような飛来物が撮像装置のレンズに当たった場合、レンズが傷付き、撮像画像に深刻な影響を与えることがある。そのため、傷付きにくいレンズが求められていた。  In the case of the imaging device attached to the exterior of the vehicle body as described above, flying objects may hit the imaging device. Examples of flying objects include pebbles splashed by tires while the vehicle is traveling. If such a flying object hits the lens of the imaging device, the lens may be scratched and seriously affect the captured image. Therefore, a lens that is resistant to scratching is required.
さらに、このような傷付きにくいレンズに対する要求は、車載用の撮像装置に限らない。無人飛行体(ドローン)が備えるカメラが備えるレンズ、またはアクションカメラと呼ばれる、主として屋外で用いるために最適化された小型カメラが備えるレンズにおいても、傷付きにくいレンズが求められていた。  Furthermore, the demand for such a scratch-resistant lens is not limited to an on-vehicle imaging device. A lens that is resistant to scratching is also required for a lens provided in a camera provided in a drone (drone) or a lens provided in a small camera optimized for use mainly outdoors, which is called an action camera.
発明者らは、上記課題の解決のため、レンズの材料としてサファイアガラスを研磨してレンズを製造することに思い至った。サファイアガラスは、モース硬度9と非常に硬いため、サファイアガラスから削り出したレンズは、飛来物が当たっても傷がつきにくいと考えた。  The inventors have come to think of polishing sapphire glass as a lens material to produce a lens in order to solve the above-mentioned problems. Since sapphire glass is very hard with a Mohs hardness of 9, it was thought that lenses cut out of sapphire glass would not be easily scratched even when hit by flying objects.
しかし、通常のガラスレンズを作製する方法でサファイアガラスを研磨すると、研磨にムラが生じ、精度良く加工ができなかった。検討したところ、通常のガラスレンズを作製する条件と比べ研磨時間を長く設定すると、研磨時間が長くなるにつれて徐々に研磨ムラが解消する傾向があった。しかし、研磨時間を延長すると生産効率の低下につながる。  However, when sapphire glass is polished by a method of producing a normal glass lens, unevenness occurs in polishing, and processing can not be performed with high accuracy. As a result of investigation, when the polishing time was set longer than the conditions for producing a normal glass lens, there was a tendency for the polishing unevenness to be gradually eliminated as the polishing time became longer. However, extending the polishing time leads to a decrease in production efficiency.
本発明はこのような事情に鑑みてなされたものであって、高い生産効率で形状精度よくAlからなるレンズを製造することが可能なレンズ製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a lens manufacturing method capable of manufacturing a lens made of Al 2 O 3 with high production efficiency and shape accuracy.
上記の課題を解決するため、本発明の一態様によれば、Alからなる被加工レンズを研磨する研磨工程を備え、前記研磨工程は、ダイヤモンド粒子を含むダイヤモンドペーストを用いて、Alからなる被加工レンズを研磨する第1研磨工程を有するレンズ製造方法が提供される。 In order to solve the above-mentioned subject, according to one mode of the present invention, it has a grinding process which grinds a processing lens which consists of Al 2 O 3 , and said grinding process uses Al diamond paste containing diamond particles. A lens manufacturing method is provided which comprises a first polishing step of polishing a lens to be processed consisting of 2 O 3 .
本発明によれば、高い生産効率で形状精度よくAlからなるレンズを製造することが可能なレンズ製造方法を提供することができる。 According to the present invention, it is possible to provide a lens manufacturing method capable of manufacturing a lens made of Al 2 O 3 with high production efficiency and shape accuracy.
図1は、実施形態のレンズ製造方法で製造されるレンズの一例を示す模式図である。FIG. 1 is a schematic view showing an example of a lens manufactured by the lens manufacturing method of the embodiment. 図2は、実施形態のレンズ製造方法を示すフローチャートである。FIG. 2 is a flowchart showing the lens manufacturing method of the embodiment.
以下、図1~図2を参照しながら、本発明の実施形態に係るレンズ製造方法について説明する。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法、比率などは適宜異ならせてある。  Hereinafter, a lens manufacturing method according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. In addition, in all the following drawings, in order to make a drawing intelligible, the dimension of each component, a ratio, etc. are suitably varied.
[レンズ]

 図1は、本実施形態のレンズ製造方法で製造されるレンズの一例を示す模式図である。図に示すように、本実施形態のレンズ製造方法で製造されるレンズ1は、レンズ本体10と、コーティング膜20と、を有している。 
[lens]

FIG. 1 is a schematic view showing an example of a lens manufactured by the lens manufacturing method of the present embodiment. As shown in the figure, the lens 1 manufactured by the lens manufacturing method of the present embodiment has a lens body 10 and a coating film 20.
(レンズ本体)

 レンズ本体10は、平面視円形に形成されており、Alの単結晶からなる。Alの単結晶は、コランダム、鋼玉とも称する。Alの単結晶は、モース硬さが9である。そのため、Alの単結晶からなるレンズ本体10は、硬く、表面に傷がつきにくい。 
(Lens body)

The lens main body 10 is formed in a circular shape in plan view, and is made of a single crystal of Al 2 O 3 . The single crystal of Al 2 O 3 is also called corundum or steel ball. The single crystal of Al 2 O 3 has a Mohs hardness of 9. Therefore, the lens body 10 made of a single crystal of Al 2 O 3 is hard, and the surface is not easily scratched.
レンズ本体10は、後述する方法で、Al単結晶の板材から削り出して作製することができる。Al単結晶の板材は、サファイアガラスと称する。  The lens main body 10 can be manufactured by cutting it out of a plate material of Al 2 O 3 single crystal by a method described later. The plate material of Al 2 O 3 single crystal is called sapphire glass.
レンズ本体10は、レンズ本体10の光軸Lに沿って視た一方の面S1と、一方の面S1に対向する他方の面S2と、レンズ本体10の周方向に延在し一方の面S1および他方の面S2と交差して交わる周面S3とを有する。  The lens body 10 has one surface S1 viewed along the optical axis L of the lens body 10, the other surface S2 opposite to the one surface S1, and one surface S1 extending in the circumferential direction of the lens body 10 And a circumferential surface S3 intersecting and intersecting with the other surface S2.
一方の面S1は、光軸Lに沿って視て光軸Lと重なる凹面Saと、凹面Saの周囲に配置され凹面Saと連続する平坦面Sbと、を含む。凹面Saは、光透過面である。レンズ本体10の光軸Lに沿って一方の面S1を視たときに、凹面Saは光軸Lの位置を中心とする円形に形成されている。  One surface S1 includes a concave surface Sa which is visible along the optical axis L and overlaps the optical axis L, and a flat surface Sb which is disposed around the concave surface Sa and is continuous with the concave surface Sa. The concave surface Sa is a light transmission surface. When one surface S1 is viewed along the optical axis L of the lens body 10, the concave surface Sa is formed in a circular shape centered on the position of the optical axis L.
また、レンズ本体10においては、他方の面S2は、凸面となっている。他方の面S2は、光透過面である。  Further, in the lens body 10, the other surface S2 is a convex surface. The other surface S2 is a light transmitting surface.
レンズ本体10は、いわゆるメニスカスレンズである。また、レンズ本体10は、他方の面S2の曲率よりも凹面Saの曲率の方が大きく設計されており、負のパワーを有する。  The lens body 10 is a so-called meniscus lens. The lens main body 10 is designed to have a larger curvature of the concave surface Sa than the curvature of the other surface S2, and has negative power.
(コーティング膜)

 コーティング膜20は、レンズ本体10の一方の面S1に設けられている。図に示すレンズ1において、コーティング膜20としては、反射防止膜として機能する誘電体多層膜、またはレンズ本体10の傷付きを防止する膜として機能するハードコート膜が挙げられる。コーティング膜20は、レンズ本体10の凹面Saの全面を覆っている。また、コーティング膜20は、レンズ本体の他方の面S2には設けられていない。 
(Coating film)

The coating film 20 is provided on one surface S 1 of the lens body 10. In the lens 1 shown in the figure, examples of the coating film 20 include a dielectric multilayer film that functions as an antireflective film, or a hard coat film that functions as a film that prevents the lens body 10 from being scratched. The coating film 20 covers the entire surface of the concave surface Sa of the lens body 10. Further, the coating film 20 is not provided on the other surface S2 of the lens body.
コーティング膜20が誘電体多層膜である場合、コーティング膜20は、屈折率の異なる2種の無機材料を、マスクを介して交互に蒸着して成膜することにより得られる。得られたコーティング膜20は、レンズ1に反射防止機能を付与する。  When the coating film 20 is a dielectric multilayer film, the coating film 20 can be obtained by depositing two inorganic materials having different refractive indexes alternately via a mask. The obtained coating film 20 gives the lens 1 an antireflective function.
[レンズ製造方法]

 上述のようなレンズ1を製造するにあたり、特にレンズ本体10は、次のような方法で製造する。 
[Lens manufacturing method]

In manufacturing the lens 1 as described above, in particular, the lens body 10 is manufactured by the following method.
図2は、本実施形態のレンズ製造方法を示すフローチャートである。以下、上述した図1のレンズを製造することとして説明する。そのため以下の説明では、必要に応じ、図1で示した符号を適宜用いる。  FIG. 2 is a flowchart showing the lens manufacturing method of the present embodiment. Hereinafter, it will be described as manufacturing the lens of FIG. 1 described above. Therefore, in the following description, the symbols shown in FIG. 1 are used as appropriate.
本実施形態のレンズ製造方法においては、まず、硝材を削りAlからなる被加工レンズを製造する(ステップS11)。硝材としては、Alの単結晶、またはサファイアガラスを用いることができる。  In the lens manufacturing method of the present embodiment, first, a glass material is cut and a lens to be processed made of Al 2 O 3 is manufactured (step S11). As a glass material, a single crystal of Al 2 O 3 or sapphire glass can be used.
なお、以下の説明においては、本実施形態のレンズ製造方法における目的物を「レンズ」とし、目的物を得るまでの加工途中のレンズ状成形体のことを全て「被加工レンズ」と称する。  In the following description, an object in the lens manufacturing method of the present embodiment is referred to as a "lens", and all lens-shaped molded articles in the process of obtaining the object are referred to as "processed lens".
ステップS11においては、まず硝材を研削し、硝材からレンズ形状を削り出す。硝材の研削は、ガラスレンズの加工において通常用いられる装置により行うことができる。  In step S11, the glass material is ground first, and the lens shape is cut out of the glass material. Grinding of the glass material can be performed by an apparatus usually used in processing of a glass lens.
次いで、研磨材であるアルミナ粒子を用い、得られた被加工レンズを荒削りする。この際、用いるアルミナ粒子の粒度を徐々に細かくしながら複数回研磨を行い、被加工レンズの形状精度を高めるとよい。  Next, the obtained processing lens is roughly cut using alumina particles as an abrasive. At this time, it is preferable to carry out polishing a plurality of times while gradually reducing the particle size of the alumina particles to be used to enhance the shape accuracy of the lens to be processed.
これらの工程により、目的とするレンズの曲率に合わせて荒削りされた被加工レンズが得られる。  Through these steps, it is possible to obtain a to-be-processed lens that has been roughly cut according to the target lens curvature.
次いで、ダイヤモンドペーストを用い、得られた被加工レンズを研磨する(ステップS12)。本ステップは、本発明における「第1研磨工程」に該当する。  Next, using the diamond paste, the obtained lens to be processed is polished (step S12). This step corresponds to the "first polishing step" in the present invention.
通常のガラスレンズの製造方法においては、研磨材としてコロイダルシリカを用いる方法が知られている。この方法では、例えば、荒削りして得られた被加工レンズにコロイダルシリカを流しかけながら、被加工レンズの研磨面に研磨皿を押し当てて研磨する。  In the usual glass lens manufacturing method, a method using colloidal silica as an abrasive is known. In this method, for example, while pouring colloidal silica on a lens to be processed obtained by rough cutting, a polishing plate is pressed against the polishing surface of the lens to be processed for polishing.
しかし、発明者がAl製のレンズの製造を検討するにあたって、Al製の被加工レンズの研磨において上記方法を適用したところ、生産効率を低下させることなく所望の形状精度で加工することが困難であることが分かった。  However, when the inventors to consider the production of made of Al 2 O 3 lenses, was applied the above method in the polishing of made of Al 2 O 3 the uncut lens in a desired shape accuracy without reducing the production efficiency It turned out that processing is difficult.
詳しくは、コロイダルシリカを研磨材として用いAl製の被加工レンズを研磨する場合、通常のガラスレンズの製造と同様の条件で研磨しても、所望の形状精度が得られないことが分かった。通常のガラスレンズの製造と同様とする条件とは、例えば研磨皿の回転速度、研磨時間等が挙げられる。このような方法では、加工後の面のPV値が所望の値よりも大きくなりやすい。  Specifically, in the case of polishing an Al 2 O 3 processed lens using colloidal silica as an abrasive, the desired shape accuracy can not be obtained even if polishing is performed under the same conditions as in the production of a normal glass lens. I understood. The conditions set as the manufacture of a normal glass lens include, for example, the rotation speed of the polishing plate, the polishing time, and the like. In such a method, the PV value of the surface after processing tends to be larger than the desired value.
ここで、「PV(Peak to Valley)値」は、被加工レンズを研磨した際の「形状精度」を示す指標である。PV値とは、加工した面の設計値を基準としたときの、加工後の面の最も高い点と最も低い点との差である。PV値が大きいほど、加工後の被加工レンズの表面に大きなうねりが存在することを意味する。  Here, the “PV (Peak to Valley) value” is an index indicating “shape accuracy” when the lens to be processed is polished. The PV value is a difference between the highest point and the lowest point of the surface after processing based on the design value of the processed surface. As the PV value is larger, it means that the surface of the processed lens after processing has a larger undulation.
一方、コロイダルシリカを研磨材として用いてAl製の被加工レンズを研磨する場合であっても、例えば、長時間かけて徐々に被加工レンズの表面を研磨することにより、所望の形状精度で被加工レンズを加工することは可能である。しかしこの場合、被加工レンズの生産効率が低下することは明らかである。  On the other hand, even in the case of polishing a processed lens made of Al 2 O 3 using colloidal silica as an abrasive, for example, the desired shape can be obtained by polishing the surface of the processed lens gradually over a long period of time It is possible to process the lens to be processed with accuracy. However, in this case, it is clear that the production efficiency of the lens to be processed is reduced.
これらは、Alからなる被加工レンズの硬度がモース硬度9であり、加工しにくいことが理由であると考えられる。  It is considered that the reason is that the hardness of the lens to be processed which is made of Al 2 O 3 is Mohs hardness 9 and it is difficult to process.
上記課題に対し、発明者が種々検討した結果、ダイヤモンドペーストを用いて被加工レンズを研磨することで、生産効率を低下させることなく、所望の形状精度で加工することが可能であることが分かった。  With respect to the above-mentioned problems, as a result of various studies made by the inventor, it was found that it is possible to process with desired shape accuracy without lowering production efficiency by polishing a lens to be processed using diamond paste. The
ダイヤモンドペーストは、通常、金属部材の微細研磨、または鏡面研磨に用いられるペースト状の研磨材である。ダイヤモンドペーストは、ダイヤモンド微粒子と、ダイヤモンド微粒子が分散する分散媒とを含む。分散媒は、例えば高分子量の炭化水素である。このようなダイヤモンドペーストは、代表的には、樹脂加工で用いられる金型の表面研磨または仕上げ磨きに用いられるものであり、通常、レンズ加工には用いられない。  The diamond paste is a paste-like abrasive generally used for fine polishing or mirror polishing of metal members. The diamond paste contains diamond particles and a dispersion medium in which the diamond particles are dispersed. The dispersion medium is, for example, a high molecular weight hydrocarbon. Such a diamond paste is typically used for surface polishing or finish polishing of molds used in resin processing, and is not generally used for lens processing.
本実施形態のレンズ製造方法において、Alからなる被加工レンズの研磨では、被加工レンズの表面に少量のダイヤモンドペーストを塗り、被加工レンズに研磨皿でダイヤモンドペーストをこすり付けることで被加工レンズを研磨する。また、通常のガラスレンズ加工のように、アルミナスラリーのような液体を加工中に流しかけることなく、研磨を行う。  In the lens manufacturing method of the present embodiment, in the polishing of the lens to be processed made of Al 2 O 3 , a small amount of diamond paste is applied to the surface of the lens to be processed, and the diamond paste is rubbed on the lens to be processed with a polishing dish. Polish the processed lens. Also, as in the case of ordinary glass lens processing, polishing is performed without flowing a liquid such as alumina slurry during processing.
ダイヤモンドペーストに含まれるダイヤモンド微粒子は、モース硬度10であり、被加工レンズを構成するAlよりも高硬度である。また、研磨中にアルミナスラリーのような液体を流しかけることが無いため、研磨中にダイヤモンドペーストが被加工レンズの表面に残留しやすい。そのため、上述のようにダイヤモンドペーストを用いると、被加工レンズ上にダイヤモンドペーストが留まり、容易に被加工レンズの研磨が可能である。  The diamond fine particles contained in the diamond paste have a Mohs hardness of 10 and a hardness higher than that of Al 2 O 3 constituting the lens to be processed. In addition, since no liquid such as alumina slurry flows during polishing, the diamond paste tends to remain on the surface of the lens during polishing. Therefore, when the diamond paste is used as described above, the diamond paste remains on the lens to be processed, and the lens to be processed can be easily polished.
本実施形態のレンズ製造方法においては、被加工レンズの研磨にダイヤモンドペーストを用いることで、短時間のうちに所望の形状精度で被加工レンズを研磨することが可能となる。  In the lens manufacturing method of the present embodiment, by using a diamond paste for polishing the lens to be processed, it is possible to polish the lens to be processed with a desired shape accuracy in a short time.
次いで、被加工レンズの表面を洗浄し、ダイヤモンドペーストを除去する(ステップS13)。本ステップは、本発明における「洗浄工程」に該当する。  Next, the surface of the lens to be processed is cleaned to remove the diamond paste (step S13). This step corresponds to the "cleaning step" in the present invention.
被加工レンズの表面にダイヤモンドペーストが残存すると、次のステップS14において被加工レンズの表面を研磨する際に、ダイヤモンドペーストでさらに研磨することになり、所望の形状精度が得られない。そのため、ステップS14の前に、被加工レンズの表面のダイヤモンドペーストを除去し、ダイヤモンドペーストの影響が後の工程へ及ばないようにすると好ましい。  If the diamond paste remains on the surface of the lens to be processed, it is further polished with the diamond paste when the surface of the lens to be processed is polished in the next step S14, and a desired shape accuracy can not be obtained. Therefore, before step S14, it is preferable to remove the diamond paste on the surface of the lens to be processed so that the influence of the diamond paste does not affect the subsequent steps.
なお、研磨に用いる研磨皿も交換する。ダイヤモンドペーストを用いて研磨する際の研磨皿は、ステップS12においてのみ用いる専用品とするとよい。  In addition, replace the polishing plate used for polishing. The polishing plate for polishing with a diamond paste may be a dedicated item used only in step S12.
次いで、被加工レンズを研磨する(ステップS14)。本ステップは、本発明における「第2研磨工程」に該当する。  Next, the lens to be processed is polished (step S14). This step corresponds to the “second polishing step” in the present invention.
ステップS14においては、研磨材として、ステップS12で用いたダイヤモンドペーストに含まれるダイヤモンド粒子よりも硬度が低い材料を形成材料とする研磨粒子と、研磨粒子が分散する水と、を含むスラリーを用いる。このような研磨材としては、例えば、研磨粒子がシリカ粒子であるコロイダルシリカを用いることができる。また、コロイダルシリカの他に、ダイヤモンド粒子よりも硬度が低い材料からなる研磨粒子であれば、本ステップにおいて研磨材として用いることができる。  In step S14, a slurry containing abrasive particles whose material is a material having a hardness lower than that of the diamond particles contained in the diamond paste used in step S12 and water in which the abrasive particles are dispersed is used as the abrasive. As such an abrasive, for example, colloidal silica in which the abrasive particles are silica particles can be used. In addition to colloidal silica, any abrasive particles made of a material having a hardness lower than that of diamond particles can be used as an abrasive in this step.
これにより、被加工レンズの表面に付いた微細な傷、荒れ等が除かれ、透明な被加工レンズが得られる。  As a result, fine scratches, rough spots, and the like attached to the surface of the lens to be processed are removed, and a transparent lens to be processed is obtained.
なお、被加工レンズの加工においては、被加工レンズの一方の面に対して上述のステップS12からステップS14を行い、その後、被加工レンズの他方の面に対して上述のステップS12からステップS14を行うこととしてもよい。  In the processing of the lens to be processed, the above-mentioned steps S12 to S14 are performed on one surface of the lens to be processed, and then the above-mentioned steps S12 to S14 are performed on the other surface of the lens to be processed You may do it.
また、被加工レンズの両面にステップS12を行った後に、ステップS13の洗浄を行い、その後、レンズの両面にステップS14を行うこととしてもよい。被加工レンズの両面とは、被加工レンズの一方の面および他方の面のことである。  In addition, after performing step S12 on both surfaces of the lens to be processed, the cleaning in step S13 may be performed, and then step S14 may be performed on both surfaces of the lens. The two surfaces of the lens to be processed refer to one surface and the other surface of the lens to be processed.
図1のレンズを製造する場合、上述したステップS11からステップS14の加工を経ることで、被加工レンズがメニスカスレンズに加工される。  When manufacturing the lens of FIG. 1, a lens to be processed is processed into a meniscus lens through the processing from step S11 to step S14 described above.
次いで、被加工レンズの一面にコーティング処理を行う(ステップS15)。本ステップは、本発明における「コーティング工程」に該当する。  Next, a coating process is performed on one surface of the lens to be processed (step S15). This step corresponds to the "coating step" in the present invention.
コーティング処理は、例えば、レンズ表面に行う反射防止膜、または表面の傷付き防止のために行うハードコート膜が挙げられる。反射防止膜としては、通常知られた誘電体多層膜が挙げられる。例えば、被加工レンズの一方の面に形成された凹面内に誘電体多層膜を形成する。  The coating treatment may be, for example, an antireflective film performed on the lens surface or a hard coat film performed to prevent the surface from being scratched. Examples of the antireflective film include generally known dielectric multilayer films. For example, a dielectric multilayer film is formed in a concave surface formed on one surface of a lens to be processed.
次いで、被加工レンズの外周を研削し、被加工レンズの中心軸と被加工レンズの光軸とを一致させる「芯取り」を行う(ステップS16)。本ステップは、本発明における「芯取り工程」に該当する。被加工レンズが、図1に示すレンズ本体10となる。  Then, the outer periphery of the lens to be processed is ground, and "centering" is performed to align the central axis of the lens to be processed with the optical axis of the lens to be processed (step S16). This step corresponds to the "centering step" in the present invention. The processed lens is the lens body 10 shown in FIG.
次いで、必要に応じて、図1に示す被加工レンズであるレンズ本体10の平坦面Sb、および周面S3に遮光処理を行う(ステップS17)。本ステップは、本発明における「遮光工程」に該当する。  Next, as necessary, the light shielding process is performed on the flat surface Sb and the peripheral surface S3 of the lens body 10 which is the lens to be processed shown in FIG. 1 (step S17). This step corresponds to the “light shielding process” in the present invention.
遮光処理は、メニスカスレンズの凸面と凹面とを除く面、すなわち平坦面Sbおよび周面S3に施す。遮光処理としては、平坦面Sbおよび周面S3を磨り面に加工すること、平坦面Sbおよび周面S3に墨塗りを施すことが挙げられる。これらの加工により、得られるレンズにおいて迷光を抑制し、高品質のレンズが得られる。  The light shielding process is performed on the surfaces other than the convex surface and the concave surface of the meniscus lens, that is, the flat surface Sb and the circumferential surface S3. Examples of the light shielding process include processing the flat surface Sb and the circumferential surface S3 into a polished surface, and applying the black surface to the flat surface Sb and the circumferential surface S3. By these processes, stray light is suppressed in the obtained lens, and a high quality lens can be obtained.
以上のようにして、本実施形態のレンズ製造方法が行われ、図1に示すレンズ1が得られる。  As described above, the lens manufacturing method of the present embodiment is performed, and the lens 1 shown in FIG. 1 is obtained.
以上のような構成のレンズ製造方法によれば、高い生産効率で形状精度よくAlからなるレンズを製造することが可能となる。  According to the lens manufacturing method configured as described above, it is possible to manufacture a lens made of Al 2 O 3 with high production efficiency and high shape accuracy.
なお、本実施形態においては、メニスカスレンズを製造することとして説明したが、これに限らない。本発明のレンズ製造方法によれば、他の形状のレンズを製造することもできる。  In addition, in this embodiment, although demonstrated as manufacturing a meniscus lens, it does not restrict to this. According to the lens manufacturing method of the present invention, lenses of other shapes can also be manufactured.
また、本実施形態においては、図1のレンズ1を製造することとして説明したが、レンズの設計に応じて、適宜製造工程を変更することができる。例えば、製造するレンズがコーティング膜20を有していない場合には、ステップS15を省略することができる。 また、製造するレンズが、墨塗り面または磨り面を有していない場合には、ステップS17を省略することができる。  Moreover, in this embodiment, although it demonstrated as manufacturing the lens 1 of FIG. 1, a manufacturing process can be suitably changed according to the design of a lens. For example, when the lens to be manufactured does not have the coating film 20, step S15 can be omitted. In addition, when the lens to be manufactured does not have a blackened surface or a ground surface, step S17 can be omitted.
以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状、組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 Although the preferred embodiments according to the present invention have been described above with reference to the accompanying drawings, it goes without saying that the present invention is not limited to such examples. The shapes, combinations, and the like of the constituent members shown in the above-described example are merely examples, and various changes can be made based on design requirements and the like without departing from the spirit of the present invention.
1…レンズ、10…レンズ本体、20…コーティング膜、L…光軸、mp…被加工レンズ、S1…一方の面、S2…他方の面、Sa…凹面、Sb…平坦面 DESCRIPTION OF SYMBOLS 1 ... Lens, 10 ... Lens main body, 20 ... Coating film, L ... Optical axis, mp ... Processed lens, S1 ... One side, S2 ... Other side, Sa ... Concave surface, Sb ... Flat surface

Claims (8)

  1. Alからなる被加工レンズを研磨する研磨工程を備え、

     前記研磨工程は、ダイヤモンド粒子を含むダイヤモンドペーストを用いて、Alからなる被加工レンズを研磨する第1研磨工程を有するレンズ製造方法。
    A polishing process for polishing a lens made of Al 2 O 3 ,

    The polishing process using a diamond paste containing diamond particles, a lens manufacturing method comprising a first polishing step of polishing the workpiece lens made of Al 2 O 3.
  2. 前記第1研磨工程の後に、前記被加工レンズを研磨する第2研磨工程を有し、

     前記第2研磨工程で用いる研磨材は、前記ダイヤモンド粒子よりも硬度が低い材料を形成材料とする研磨粒子と、前記研磨粒子が分散する水と、を含むスラリーである請求項1に記載のレンズ製造方法。
    After the first polishing step, there is a second polishing step of polishing the lens to be processed,

    The lens according to claim 1, wherein the abrasive used in the second polishing step is a slurry containing abrasive particles whose material is a material having a hardness lower than that of the diamond particles and water in which the abrasive particles are dispersed. Production method.
  3. 前記研磨粒子は、シリカ粒子である請求項2に記載のレンズ製造方法。 The method according to claim 2, wherein the abrasive particles are silica particles.
  4. 前記第1研磨工程と前記第2研磨工程との間に、前記被加工レンズを洗浄する洗浄工程を有する請求項2または3に記載のレンズ製造方法。 The lens manufacturing method according to claim 2 or 3, further comprising a cleaning step of cleaning the processed lens between the first polishing step and the second polishing step.
  5. 前記被加工レンズは、メニスカスレンズである請求項1から4のいずれか1項に記載のレンズ製造方法。 The lens manufacturing method according to any one of claims 1 to 4, wherein the lens to be processed is a meniscus lens.
  6. 前記研磨工程の後に、前記被加工レンズの凹面の表面にコーティング処理を行うコーティング工程を有する請求項5に記載のレンズ製造方法。 The lens manufacturing method according to claim 5, further comprising a coating step of coating the concave surface of the lens to be processed after the polishing step.
  7. 前記コーティング工程の後に、前記被加工レンズの外周を研削し、前記被加工レンズの中心軸と前記被加工レンズの光軸とを一致させる芯取り工程を有する請求項6に記載のレンズ製造方法。 The lens manufacturing method according to claim 6, further comprising a centering step of grinding an outer periphery of the lens to be processed and aligning a central axis of the lens to be processed and an optical axis of the lens to be processed after the coating step.
  8. 前記コーティング工程の後に、前記メニスカスレンズの凸面と前記凹面とを除く面に遮光処理を行う遮光工程を有する請求項7に記載のレンズ製造方法。 The lens manufacturing method according to claim 7, further comprising a light shielding process of performing a light shielding process on a surface excluding the convex surface and the concave surface of the meniscus lens after the coating process.
PCT/JP2018/015075 2017-07-12 2018-04-10 Lens manufacturing method WO2019012763A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-136338 2017-07-12
JP2017136338 2017-07-12

Publications (1)

Publication Number Publication Date
WO2019012763A1 true WO2019012763A1 (en) 2019-01-17

Family

ID=65002571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015075 WO2019012763A1 (en) 2017-07-12 2018-04-10 Lens manufacturing method

Country Status (1)

Country Link
WO (1) WO2019012763A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187054A (en) * 2000-12-20 2002-07-02 Canon Inc Method for working lens
JP2002219635A (en) * 2001-01-23 2002-08-06 Tokai Univ Method for polishing optical parts
WO2014084380A1 (en) * 2012-11-30 2014-06-05 Hoya株式会社 Glass article
JP2016106239A (en) * 2013-03-27 2016-06-16 富士フイルム株式会社 Lens unit, imaging module, and electronic apparatus
JP2017119738A (en) * 2015-12-28 2017-07-06 花王株式会社 Polishing liquid composition for sapphire plate nonpolar surface

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187054A (en) * 2000-12-20 2002-07-02 Canon Inc Method for working lens
JP2002219635A (en) * 2001-01-23 2002-08-06 Tokai Univ Method for polishing optical parts
WO2014084380A1 (en) * 2012-11-30 2014-06-05 Hoya株式会社 Glass article
JP2016106239A (en) * 2013-03-27 2016-06-16 富士フイルム株式会社 Lens unit, imaging module, and electronic apparatus
JP2017119738A (en) * 2015-12-28 2017-07-06 花王株式会社 Polishing liquid composition for sapphire plate nonpolar surface

Similar Documents

Publication Publication Date Title
JP6252098B2 (en) Square mold substrate
US20170174562A1 (en) Process for producing glass substrate, and glass substrate
US20210001579A1 (en) Method for manufacturing spectacle lenses according to a prescription
CN110426763A (en) A kind of production technology of cam lens
US11919125B2 (en) Carrier wafers and methods of forming carrier wafers
CN104871050B (en) Antiglare polarizing plate and image display device
JP5511287B2 (en) Manufacturing method of plastic lens
KR101713523B1 (en) Apparatus and method for processing circumference of eyeglass lens
WO2014038320A1 (en) Method for polishing glass substrate
WO2019012763A1 (en) Lens manufacturing method
JP5401241B2 (en) Manufacturing method of plastic lens
JP2002228805A (en) Resin joined optical element, molding tool for the same and optical article
CN106695495A (en) ED glass lens machining method
CN115755322A (en) Lens processing method
CN112222954B (en) Processing method of non-spherical convex silicon lens with platform
JP2010238302A (en) Method of producing glass substrate for magnetic disk and electroplated grinding wheel used for the same
KR101930205B1 (en) Method manufacturing for window-camera lens
US20190070807A1 (en) Systems, devices, and methods for manufacturing an eyeglass lens
CN115673881A (en) High-finish polishing method for medium and small-caliber germanium windows
JP2006131468A (en) Method of manufacturing small-sized glassware
US20240135970A1 (en) Magnetic disk substrate, magnetic disk, annular-shaped substrate, and method for manufacturing magnetic disk substrate
CN115139191B (en) Polishing method of optical lens mould core
CN116460667B (en) Processing method of calcium fluoride optical part
CN101992425A (en) Chamfering method of optical lens for camera
CN117583993A (en) Lens processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP