WO2019012666A1 - Material for air electrodes of solid oxide fuel cells and use of same - Google Patents
Material for air electrodes of solid oxide fuel cells and use of same Download PDFInfo
- Publication number
- WO2019012666A1 WO2019012666A1 PCT/JP2017/025604 JP2017025604W WO2019012666A1 WO 2019012666 A1 WO2019012666 A1 WO 2019012666A1 JP 2017025604 W JP2017025604 W JP 2017025604W WO 2019012666 A1 WO2019012666 A1 WO 2019012666A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air electrode
- less
- solid oxide
- oxide fuel
- sofc
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- This specification relates to a cathode material for solid oxide fuel cells and its use.
- Patent Document 1 discloses a stacked structure. If such a stack structure is made using co-sintering, it can itself have excellent self-supporting and integrity.
- Co-sintering at least a portion of the stack structure often requires heat treatment at relatively high temperatures to achieve sufficient sintering with various materials.
- heat treatment at high temperature may cause an undesirable reaction between the cathode material and the solid electrolyte material, and such a reaction product reduces the power generation characteristics.
- LSM lanthanum strontium manganate
- YSZ yttria stabilized zirconia
- LZO La 2 Zr 2 O 7
- SZO 3 SZO
- Non-Patent Documents 1 and 2 a buffer layer such as ceria is introduced between YSZ and LSM (Non-Patent Documents 1 and 2), LSM with A site defect is used (Non-patent document 3), Ce is added to LSM (Non-Patent Document 4).
- the method (1) has a problem that the buffer layer is easily peeled off.
- the methods (2) and (3) although the reduction of the reaction phase is possible, the generation thereof has not been suppressed to the extent that the power generation characteristics of the solid oxide fuel cell are sufficiently reduced.
- the present inventors provide an air electrode material and an air electrode for a solid oxide fuel cell which is excellent in heat resistance. Further, the present specification provides a solid oxide fuel cell having excellent power generation characteristics.
- the present inventors have found that the air electrode material, was studied, obtained by addition of Ni solid solution LSM (La 1-x Sr x ) (Mn 1-y Ni y) O 3 is in the SOFC It has been found that even at temperatures at which the elements can be co-sintered, they exhibit excellent electrode characteristics without forming a harmful reaction phase with a solid electrolyte or the like. That is, it has been unexpectedly found that, even in heat treatment at high temperatures, such a composite oxide can sufficiently exhibit the power generation characteristics as a solid oxide fuel cell by suppressing or avoiding the formation of a reaction phase with YSZ. I got This specification provides the following means based on such knowledge.
- a material for an air electrode of a solid oxide fuel cell Material containing a perovskite oxide (La 1-x Sr x) (Mn 1-y Ni y) O 3 ( however, 0 ⁇ y ⁇ 0.3).
- the (La 1-x Sr x) (Mn 1-y Ni y) O 3 is, (La 1-x Sr x ) (Mn 1-y Ni y) O 3 ( however, 0 ⁇ x ⁇ 0 .3), the material according to (1).
- the material according to any one of (1) to (3) containing 10% by mass or more and 60% by mass or less of the rare earth element-stabilized zirconia.
- An air electrode of a solid oxide fuel cell which is a sintered body of the air electrode material according to any one of (1) to (5).
- a solid oxide fuel cell comprising the sintered body of the air electrode material according to any one of (1) to (5) as an air electrode.
- a solid oxide fuel cell having a laminated structure of one or more solid oxide fuel cells comprising the sintered body of the air electrode material according to any one of (1) to (5) as an air electrode Stack structure.
- a method for producing a solid oxide fuel cell comprising A laminate of two or more cells including one or more cells comprising a fuel electrode layer, a solid electrolyte layer, and an air electrode layer containing the air electrode material according to any one of (1) to (5). Obtaining a precursor of a solid oxide fuel cell stack structure in which at least some of the elements are not integrated with one another; Firing the precursor to integrate the at least some of the elements; A manufacturing method.
- the present specification relates to an SOFC air electrode material, and further relates to an SOFC air electrode, an SOFC including the air electrode, a stack structure including the air electrode, and a method of manufacturing the same.
- the air electrode material (hereinafter, also simply referred to as the present material) disclosed in the present specification is manganese (Mn) of the B site element in the lanthanum strontium manganite (LSM) based acid compound which is a perovskite type oxide.
- LSM lanthanum strontium manganite
- Ni nickel
- the generation of the reaction phase with the solid electrolyte can be significantly suppressed, and the generation of the reaction phase can be avoided even at the operating temperature of the SOFC. Therefore, the produced SOFC and the stack structure can exhibit good power generation characteristics over a long period of time.
- the material is suitable for use in any SOFC.
- any SOFC although not particularly limited, it can be suitably used for the production of an SOFC cell or stack structure produced by co-sintering at least a part of the SOFC cell or stack structure.
- LSM Mn element of the B site of the (LaSr) Mn-based oxide
- Ni hereinafter simply referred to as LSMNi
- LSM refers to a solid solution oxide obtained by substituting a part of La of the A site metal of LaMnO 3 which is a perovskite type oxide with Sr.
- the total molar amount of La and Sr is consistent with the perovskite structure and is approximately one.
- LSMNi can set the mole fraction y of Ni to 0 ⁇ y ⁇ 0.3, when M in LSM is 1 mole. That is, such LSMNi, for example, represented by the general formula (La 1-x Sr x) (Mn 1-y Ni y) O 3.
- the constituent molar amount of the oxygen atom O is “3” in the same manner as described above, but the molar fraction of Sr and Ni constitutes a numerical value which forms the perovskite structure stoichiometrically And can be “3 + ⁇ ”. That can be represented by (La 1-x Sr x) (Mn 1-y Ni y) O 3 + ⁇ . Note that, for example, ⁇ 0.4 ⁇ ⁇ ⁇ + 0.2.
- y When y is in this range, it is possible to obtain the reaction phase suppression effect with the solid electrolyte by the addition of Ni. If y is 0.3 or more, the amount of SZO (SrZrO 3 ) and LZO (La 2 Zr 2 O 7 ), which are high resistance reaction phases generated from YSZ contained in the solid electrolyte, tends to increase. .
- the lower limit and the upper limit of x can be set in consideration of, for example, the mole fraction of Sr with respect to La, conductivity, etc., in addition to the amount of reaction phase produced.
- y is 0.05 or more, for example, 0.1 or more, and for example, 0.15 or more, for example, 0.2 or more.
- y is, for example, 0.25 or less, and for example, 0.2 or less.
- the range of y can also be set, for example, by combining the above lower limit and upper limit as appropriate, and for example, it is 0.05 or more and less than 0.3, 0.05 or more and 0.25 or less, 0. More than 05 and less than 0.2, for example more than 0.1 and less than 0.3, more than 0.1 and less than 0.25, and more than 0.1 and less than 0.2, for example more than 0.15 It is less than 0.3, 0.15 or more and 0.25 or less, and 0.15 or more and 0.2 or less.
- a molar fraction x of Sr when a part of La, that is, La in LSM is 1 mole is not particularly limited, but can be 0 ⁇ x ⁇ 0.3. Within this range, the effect of suppressing the reaction phase with the solid electrolyte can be obtained by the addition of Sr.
- x exceeds 0.3, the amount of SZO (SrZrO 3 ), which is a high resistance reaction phase generated from YSZ contained in the solid electrolyte, tends to increase.
- the lower limit and the upper limit of x can be set in consideration of, for example, the conductivity and the like in addition to the amount of reaction phase produced.
- x is 0.05 or more, for example, 0.1 or more, and for example, 0.15 or more, for example, 0.2 or more. Also, x is, for example, 0.25 or less, and for example, 0.2 or less.
- the range of x can also be set, for example, by appropriately combining the lower limit and the upper limit described above, but for example, it is 0.05 or more and 0.3 or less, 0.05 or more and less than 0.3, 0.
- LSMNi can be produced by a known ceramic synthesis method. That is, a solid phase method, a sol-gel method, a spray pyrolysis method, a hydrothermal method, an alkoxide method, a coprecipitation method, an emulsion method, a complex polymerization method, a glycine method and the like can be mentioned. Although not particularly limited, for example, it is preferable to use a glycine method using glycine. This is because the LSMNi precursor powder or LSMNi powder with higher uniformity can be obtained by this synthesis method.
- LSMNi represented by (La 1 -0.8 Sr 0.2 ) (Mn 0.8 Ni y 0.2 ) O 3 can be synthesized by the following method. That is, glycine, lanthanum nitrate hexahydrate (La (NO 3) 3 ⁇ 6H 2 O), strontium nitrate hexahydrate (Sr (NO 3) 2 ⁇ 6H 2 O), manganese nitrate hexahydrate ( Compound Mn (NO 3 ) 3 ⁇ 6 H 2 O) and nickel nitrate hexahydrate (Ni (NO 3 ) 2 ⁇ 6 H 2 O) as raw materials in the intended molar fraction LSMNi, room temperature Dissolve in water and heat to 180 ° C, then heat at 450 ° C for several hours to remove water and organic matter, then heat bake at 850 ° C in air for 5 hours to obtain LSMNi precursor powder or LSMNi powder Can.
- LSMNi glycine, lanthanum
- the present material can also include other materials that can be used as the cathode material of SOFC in addition to such LSMNi.
- an ABO 3 -type perovskite-type oxide containing La or La and Sr may be mentioned oxides other than LSMNi.
- transition metal perovskite type oxides for example, LaCoO 3 based oxides, LaMnO 3 based oxides, LaFeO 3 based oxides, etc. in which La or La and Sr or Ca coexist at A site, etc. It can be mentioned.
- La or a LaTiO 3 based oxide in which La and La together with Sr or Ca coexist at A site can be mentioned.
- (LaSr) MnO 3 , (LaCa) MnO 3 , LaCoO 3 , (LaSr) CoO 3 , (LaSr) (CoFe) O 3 , (LaSr) (TiFe) O 3 and the like can be mentioned.
- This material can contain the oxide of the element contained in a solid electrolyte similarly to the cathode material of well-known SOFC.
- the oxide contained in the solid electrolyte is useful for controlling the thermal expansion coefficient and the like.
- Such an oxide is not particularly limited, and examples thereof include ZrO 2 (zirconia) which is at least partially stabilized by a rare earth element such as Y, Sc, and Yb.
- the rare earth element is YSZ which is yttrium.
- CeO 2 (ceria) doped with a rare earth element such as Gd and Sm, LaGaO 3 (lanthanum gallate) in which La and Ga are partially substituted with an alkaline earth metal such as Sr and Mg, and the like can be mentioned.
- LSMNi is advantageous in the case of containing zirconia as a solid electrolyte or in the case of containing zirconia in the present material because LSMNi can suppress or avoid the formation of a reaction phase containing Zr
- LSMNi low-density polystyrene-maleic anhydride
- the present material can appropriately contain a solid electrolyte material
- the ratio thereof is not particularly limited, and for example, 10% by mass to 60% by mass with respect to the total mass of the present material be able to. Within this range, even when coexisting with the solid electrolyte material, the generation of the reaction phase can be suppressed, and an air electrode with sufficiently good characteristics can be configured.
- the solid electrolyte material is 20% by mass or more and 60% by mass or less, for example, 30% by mass or more and 60% by mass or less, for example 40% by mass or more and 60% by mass % Or less.
- the air electrode disclosed in the present specification (hereinafter, also simply referred to as the present air electrode) is a sintered body of the present material.
- the cathode can be obtained as an independent SOFC element or component, or as an SOFC cell and a SOFC stack structural component, as described below, in their inherent form.
- the air electrode is generally porous, and its porosity is appropriately set.
- the porosity is preferably 15% or more, and more preferably about 20% or more and 40% or less.
- the porosity can be measured from the area ratio of the pore portion to the dense portion of a cross-sectional image of a cross-sectional image taken by a scanning electron beam microscope, for a plurality of cross-sections created by mechanical cutting and polishing. .
- the area ratio is determined by binarizing the pore portion and the dense portion of the layer by image processing in a field of view of 500 ⁇ m ⁇ 500 ⁇ m including the layer for each of five cut planes, and taking an average of all the cut planes.
- the porosity can be determined by
- the average pore diameter is preferably 1 ⁇ m to 10 ⁇ m. More preferably, it is 2 micrometers or more and 5 micrometers or less. In the present specification, it is assumed that the average pore diameter is obtained by connecting a plurality of spherical cross-sections obtained by mechanically cutting and polishing a plurality of cross-sections taken by a scanning electron microscope with a plurality of spherical pores.
- the average pore diameter can be determined by calculating the average diameter of all the cut surfaces.
- the thickness of the air electrode is not particularly limited, and varies depending on the presence or absence of an oxidizing gas flow passage in the electrode and the flow passage form, but can be, for example, 15 ⁇ m to 500 ⁇ m, and for example, 20 ⁇ m or more It can be 500 ⁇ m or less. More preferably, it can be 50 ⁇ m or more and 400 ⁇ m or less.
- the form and manufacturing method of the present air electrode are variously different depending on the SOFC to be obtained, for example, the form of the stack structure, the manufacturing method thereof and the like, and the present air electrode can take various forms.
- the form and manufacturing method of the present air electrode will be described in detail later in the SOFC and SOFC stack structures.
- the solid oxide fuel cell (hereinafter, also referred to as the present SOFC) disclosed herein can include an air electrode layer including the present air electrode.
- the present SOFC includes the present air electrode
- the other elements known in the art ie, the fuel electrode, solid electrolyte, separator or interconnector, gas flow path for supplying reducing gas to the fuel electrode, and air
- a gas channel or the like for supplying the oxidizing gas to the electrode can be provided.
- the present SOFC can be produced by a known method, and can also be produced in cell units according to the method for producing a stacked structure of the present SOFC described in detail later.
- the fuel electrode is not particularly limited, and can be a porous body made of one or more conductive ceramic materials applied to the SOFC fuel electrode.
- the fuel electrode material can include zirconia or ceria in which a rare earth element is solid-solved, and Ni / NiO.
- the rare earth element for example, yttrium (Y), scandium (Sc), samarium (Sm), gadolinium (Gd), etc. can be used.
- the fuel electrode is generally porous, and its porosity is appropriately set. Although not particularly limited, the porosity is preferably 15% or more, and more preferably about 20% or more and 40% or less.
- the shape of pores in the fuel electrode can be any shape such as irregular shape, fibrous shape, and spherical shape.
- the average pore diameter is preferably 1 ⁇ m to 10 ⁇ m. More preferably, it is 2 micrometers or more and 5 micrometers or less.
- the thickness of the fuel electrode is not particularly limited, and varies depending on the presence or absence of the gas flow channel 22 and the flow channel configuration, but can be, for example, 15 ⁇ m to 500 ⁇ m. More preferably, it can be 20 ⁇ m to 500 ⁇ m. More preferably, it can be 50 ⁇ m or more and 400 ⁇ m or less, and still more preferably 50 ⁇ m or more and 300 ⁇ m or less. As described later, the thicknesses of the fuel electrode and the air electrode are not necessarily constant in one layer. Thus, references to anode and cathode thicknesses mean that one layer is in this thickness range, unless stated otherwise.
- the solid electrolyte can be a compact body made of one or more kinds of oxide ion conductive materials applied to a solid electrolyte of SOFC without limitation.
- examples of the solid electrolyte material include the oxide ion conductive materials exemplified above.
- the solid electrolyte is generally dense and preferably has the same relative density as the interconnector from the viewpoint of blocking gas permeability.
- the thickness of the solid electrolyte is not particularly limited, but can be, for example, 1 ⁇ m or more and 100 ⁇ m or less. More preferably, it can be 3 ⁇ m or more and 40 ⁇ m or less, and still more preferably 5 ⁇ m or more and 30 ⁇ m or less.
- Separators or interconnectors are used in SOFCs comprising a fuel electrode, a solid electrolyte, and an air electrode, and are separation elements provided with gas blocking properties to shut off gas as intended, and conductivity to draw current from each cell It is.
- a separation element is referred to as a separator from the viewpoint of gas barrier property and an interconnector from the viewpoint of conductivity.
- an interconnector it is referred to as an interconnector.
- interconnector materials of conventionally known interconnectors can be easily applied.
- conductive materials such as various known perovskite oxides of ABO 3 can be mentioned.
- Ln is a rare earth element and includes elements of atomic numbers 57 to 71.
- M 1 represents an alkaline earth metal, and examples thereof include calcium (Ca), strontium (Sr) and barium (Ba), and one or more kinds can be used.
- M 2 is one or more selected from transition elements such as titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co) and the like. Can be mentioned. Preferably, it is one or more selected from Ti, Cr, Mn, Fe and Co.
- LaCoO 3 based oxide, LaMnO 3 based oxide, La (CoFe) O 3 based oxide, LaCrO 3 based oxide, in which La and Sr or Ca coexist at A site, LaTiO 3 based acid compounds and the like can be mentioned.
- Cr, Fe, Mg, etc. may be present as another element together with Co, Mn, Ti. More specifically, (LaSr) MnO 3 , (LaSr) CoO 3 , (LaSr) (CoFe) O 3 , (LaSr) TiO 3 , LaCrMgO 3 and the like can be mentioned.
- the interconnector can further include an oxide material of elements contained in the solid electrolyte. Such materials are as already described as materials that may be included for this material.
- the conductive ceramic material included in the interconnector and the oxide material of the element included in the solid electrolyte are, for example, the material of the fuel electrode of SOFC to which the present interconnector is applied, the material of the cathode, the operating temperature, and the burning of the stack. It is appropriately selected in consideration of the congee temperature and the like.
- the interconnector generally has the compactness of the interconnector.
- the interconnector preferably has a relative density (according to the Archimedes method) of 93% or more, more preferably 95% or more.
- the thickness or the like of the interconnector is not particularly limited, but can be, for example, 1 ⁇ m or more and 100 ⁇ m or less in consideration of, for example, the size and conductivity of the entire stack. Preferably, it can be 2 ⁇ m or more and 60 ⁇ m or less, and more preferably 2 ⁇ m or more and 40 ⁇ m or less.
- the cells of the SOFC are each provided with a gas flow path for a reducing gas containing hydrogen supplied to the fuel electrode and an oxidizing gas containing oxygen supplied to the air electrode.
- the gas flow path can be formed across one or two layers constituting a single cell. That is, the gas flow path may be provided in each of the fuel electrode and the air electrode, may be provided in the interconnector, or may be provided over the fuel electrode and the interconnector. It may be provided across the poles and the interconnectors.
- the form of gas flow path in SOFC is well known to those skilled in the art.
- the thickness of the unit cell (fuel electrode, air electrode, solid electrolyte) configured in this manner is not particularly limited, but can be, for example, 100 ⁇ m or more and 1000 ⁇ m or less. Moreover, Preferably it can be 150 micrometers or more and 1000 micrometers or less. Furthermore, preferably it can be 200 micrometers or more and 1000 micrometers or less. Moreover, Preferably it can be 300 micrometers or more and 600 micrometers or less.
- the present SOFC can be provided with various elements that can be included in the conventionally known SOFC, as needed.
- the SOFC stack structure disclosed herein (hereinafter, also simply referred to as the present stack structure) is a stack structure of a plurality of cells including one or more solid oxide fuel cells including the present air electrode. It can have. That is, it is only necessary to further include an air electrode layer including the present air electrode.
- the stack structure may be co-sintered with a first cell comprising the air electrode and a second cell comprising the air electrode.
- an interconnector or a part thereof can be provided for a single cell.
- a unit cell in which a fuel electrode, an air electrode and a solid electrolyte are stacked has a structure in which the unit cell and another unit cell are stacked and connected via an interconnector.
- the manufacturing method of the present stack structure is a laminate of two or more cells including one or more cells including a fuel electrode layer, a solid electrolyte layer, and an air electrode layer including the present air electrode, Obtaining a precursor of a solid oxide fuel cell stack structure in which the elements of the part are not integrated with each other; and calcining the precursor to integrate the at least part of the elements; Can be provided. According to the present manufacturing method, even if the precursor including such non-integrated elements is integrated by co-sintering, the generation of the harmful reaction phase in the air electrode layer is suppressed or avoided. It is possible to obtain a stack structure with excellent power generation efficiency.
- the integration step of the present manufacturing method can take a step of sintering the precursors all together. By taking such a process, it is possible to obtain a stack structure having excellent power generation efficiency while being compactly integrated and having sufficient strength.
- the stack structure and the method for producing the same by such integral sintering have already been described, for example, by JP-A-2014-56824, WO 2016-9542, WO 2015/05613, WO.
- the stack structure can be manufactured by appropriately referring to methods disclosed in the 20154/122807 and the like and disclosed therein.
- the firing temperature in the integration step is not particularly limited, but can be, for example, 1200 ° C. or more. It is because it is difficult to densify the electrolyte and the interconnector if the temperature is less than 1200 ° C. Also, for example, the temperature can be higher than 1200 ° C., can be, for example, 1250 ° C. or higher, can be, for example, 1300 ° C. or higher, and can be, for example, 1350 ° C. or higher. And can be 1400 ° C. or higher. Although not particularly limited, for example, the temperature can be 1600 ° C. or less, for example 1550 ° C. or less, for example 1500 ° C. or less, for example 1450 ° C.
- the range of the firing temperature can be set by appropriately combining the upper limit temperature and the lower limit temperature described above, for example, 1200 ° C. to 1400 ° C., for example, 1250 ° C. to 1350 ° C., for example, 1250 ° C. to 1300 It can be set to, for example, less than
- the heating time by the above-mentioned baking temperature is not particularly limited either, and is appropriately determined in a range where good integrity can be obtained, for example, 30 minutes or more, for example 45 minutes or more, For example, it can be 1 hour or more, for example 2 hours or more, for example 3 hours or more, for example 4 hours or more, for example 5 hours or more.
- an integration process can be implemented in air.
- the integration step is not particularly limited, it can be carried out in a state where the precursor is pressurized as necessary.
- the pressurizing method is not particularly limited, but, for example, CIP can be adopted.
- the heating time by the said baking temperature in an integration process is not specifically limited, either, although it determines suitably in the range from which favorable integrity is obtained, For example, 30 minutes or more, 45 minutes or more, For example, 1 hour or more, for example, 2 hours or more, for example, 3 hours or more, for example, 4 hours or more, for example 5 hours or more.
- an integration process can be implemented in air.
- the integration process can be performed at such a high temperature, layers having suitable interconnector properties (conductivity and gas barrier properties) can be applied to each of the fuel electrode and the air electrode. Conductivity and integrity can be exhibited. It is possible to integrally sinter the stack structure without complicating the manufacturing process.
- the manufacturing method of the SOFC stack is not particularly limited, but generally, a green sheet including materials of single cells and one or more elements constituting the stack is prepared in advance and then laminated, or, as appropriate, such materials While laminating the layers directly as a slurry, they are laminated in the required order and integrally fired.
- a green sheet including materials of single cells and one or more elements constituting the stack is prepared in advance and then laminated, or, as appropriate, such materials While laminating the layers directly as a slurry, they are laminated in the required order and integrally fired.
- Those skilled in the art can appropriately determine and carry out what kind of elements to prepare a green sheet containing the element, or supply it as a slurry, and further, the stacking order and the like as long as the SOFC stack can be obtained.
- the integration step is performed such that at least a part of the elements constituting the precursor sinter and integrate. Preferably, all the elements are co-sintered.
- the precursor may be crimped by cold isostatic pressing (CIP) at a temperature of about 60 ° C. to 120 ° C., if necessary, prior to the integration step.
- CIP cold isostatic pressing
- the degreasing treatment can be performed within the range of 300 ° C. to 500 ° C.
- the methods for producing the slurry and the green sheet itself are well known to those skilled in the art.
- the slurry for each layer can be prepared by further adding an appropriate amount of a binder resin, an organic solvent, etc., with the material of each element as the main component.
- the green sheet can be prepared by using a sheet forming method by casting such as tape casting using a coating apparatus such as knife coating or doctor blade, or using a screen printing method, a spray method, or the like. You can get A green sheet (an unfired ceramic green sheet) can be obtained by drying the obtained sheet precursor according to a conventional method, and then heat treatment as necessary.
- a person skilled in the art may add a particulate disappearance material to the slurry formulation according to a known method, or include a pore forming agent or the like to obtain a desired average pore size, porosity, pore size distribution, etc. It is possible to produce a green sheet which can express its quality by firing.
- a pore forming agent or the like to obtain a desired average pore size, porosity, pore size distribution, etc. It is possible to produce a green sheet which can express its quality by firing.
- various materials are commercially available.
- the method of manufacturing the SOFC stack described above is only an example of the method of manufacturing the SOFC stack disclosed in the present specification. Therefore, according to the conventionally known SOFC manufacturing method, lamination of green sheets including at least one layer of SOFC single cells or layers constituting an SOFC stack or lamination by directly applying a slurry etc. is appropriately combined, SOFC single cells and SOFC stacks can be manufactured.
- Methods of forming gas passages in the fuel electrode, air electrode and interconnector are also well known to those skilled in the art.
- a person skilled in the art appropriately arranges an expendable material capable of forming a desired gas flow path pattern on a green sheet of a fuel electrode material, etc. according to a known method, and further laminates a green sheet of a fuel electrode material etc. can do.
- an electrode green sheet provided with a seal material layer which becomes a seal portion adjacent to the fuel electrode material layer or the air electrode material layer, as appropriate.
- the stack structure described above further connects current collectors, etc., appropriately connects sources of reducing gas and oxidizing gas, etc., and further includes a heating device.
- SOFC system can be built.
- the various LSMNis obtained were calcined in air at 1300 ° C. for 5 hours.
- the XRD profile of the obtained calcined powder is shown in FIG. As shown in FIG. 1, it was found that no impurity phase was observed even in the heat treatment at 1300 ° C. in the above-described raw material range of molar fraction, and all single phase was obtained. From the above, it was found that it is possible to replace a part of the B site (Mn site) of LSM with Ni.
- the conductivity of each of the various LSM Ni synthesized in Example 1 was measured.
- Samples for measuring conductivity were formed into pellets of 20 mm diameter and 4 mm thickness by CIP using various LSMNi powders, and then fired in air at 1300 ° C. for 5 hours for 5 hours, then both sides of the pellet were # 400 It manufactured by grind
- the conductivity was measured from room temperature to 800 ° C. with the DC four probe method at the Van der Pauw setting. Silver mesh and wire were used as conductors. The results are shown in FIG.
- x exhibits a high conductivity at 0.1 to 0.4, and exhibits a high conductivity at 0.2 to 0.3, and exhibits the highest conductivity at 0.3. I understood it.
- the air electrode is in contact with a solid electrolyte such as YSZ, etc., and the solid electrolyte is mixed with the air electrode to control the thermal expansion coefficient.
- a solid electrolyte such as YSZ, etc.
- the reactivity with YSZ etc. be as small as negligible.
- LSMNi and YSZ 8 mol% Y 2 O 3 stabilized ZrO 2
- LSMNi and YSZ 8 mol% Y 2 O 3 stabilized ZrO 2
- Example 1 Various kinds of LSMNi and YSZ synthesized in Example 1 are thoroughly mixed at 50:50 (mass ratio) and formed into pellets of 20 mm in diameter and 4 mm thickness by CIP, and heat treated in air at 1300 ° C. for 5 hours A sintered body was obtained to obtain a sintered body, and then both sides of the pellet were polished in order with # 400 to # 1500 SiC abrasive paper to prepare a sample. XRD diffraction was performed on these samples to obtain an XRD profile. The results are shown in FIG.
- the (110) peak intensity ratio of SZO was estimated based on the (111) peak intensity of 8YSZ.
- the results are shown in FIG. As shown in FIG. 4, it was found that when x is 0.24 or less, it can be said that the SZO phase, which is a high resistance reaction phase, is hardly generated.
- Example 2 LSMNi in which y is changed to 0.1, 0.2, and 0.3 was synthesized as La 0.8 Sr 0.2 Mn 1-y Ni y O 3-d , and 50: 50 with YSZ.
- a mixed powder of (mass ratio) was prepared, and a sintered body sample obtained from this mixed powder according to Example 2 was subjected to powder XRD analysis to obtain an XRD profile.
- a mixed powder-derived sintered body sample of mere 50: 50 (mass ratio) of LSM and YSZ was used as a control. The results are shown in FIG.
- LSM Ni ((La 0.8 Sr 0.2 ) (Mn 0.8 Ni 0.2 ) O 3 ) and LSM were compared.
- Each sintered body sample was mixed with YSZ at 50:50 (mass ratio) and molded according to Example 2 and fired in air at 1300 ° C. for 5 hours or 24 hours according to Example 2 , XRD diffraction was performed to obtain an XRD profile. The results are shown in FIG.
- Example 5 the conductivity of the air electrode manufactured from LSMNi and LSM evaluated in Example 5 was examined.
- LSM or LSMNi was screen printed on both sides of a 300 ⁇ m thick YSZ electrolyte and baked at 1300 ° C.
- the temperature dependence of the conductivity of this sample was measured in air.
- the conductivity was evaluated using the reciprocal value of ASR (resistance normalized by area).
- the conductivity was measured in the same manner as in Example 3. The results are shown in FIG.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
The present invention provides, as a material for air electrodes of solid oxide fuel cells, a material which contains a perovskite oxide expressed as (La1-xSrx)(Mn1-yNiy)O3 (wherein 0 < y < 0.3).
Description
本明細書は、固体酸化物形燃料電池の空気極用材料及びその利用に関する。
This specification relates to a cathode material for solid oxide fuel cells and its use.
固体酸化物形燃料電池(以下、単に、SOFCともいう。)に用いるスタック構造体として、燃料極層と、固体電解質層と、空気極層とを備えるセルの2以上がセパレータ層を介して積層されたスタック構造体が開示されている(特許文献1)。かかるスタック構造体が共焼結を利用して作製される場合には、それ自身が優れた自立性及び一体性を有することができる。
As a stack structure used for a solid oxide fuel cell (hereinafter simply referred to as SOFC), two or more of a cell including a fuel electrode layer, a solid electrolyte layer, and an air electrode layer are stacked via a separator layer Patent Document 1 discloses a stacked structure. If such a stack structure is made using co-sintering, it can itself have excellent self-supporting and integrity.
スタック構造体の少なくとも一部を共焼結するには、種々の材料との十分な焼結を実現するには、比較的高温での温度での熱処理が必要となることが多い。一方、高温での熱処理は、空気極材料と固体電解質材料との望ましくない反応を引き起こすことがあり、かかる反応生成物が発電特性を低下させることがよく知られている。
Co-sintering at least a portion of the stack structure often requires heat treatment at relatively high temperatures to achieve sufficient sintering with various materials. On the other hand, it is well known that heat treatment at high temperature may cause an undesirable reaction between the cathode material and the solid electrolyte material, and such a reaction product reduces the power generation characteristics.
例えば、比較的耐熱性に優れる空気極材料であるランタンストロンチウムマンガンネート(LSM)であっても、固体電解質材料であるイットリア安定化ジルコニア(YSZ)との反応相として、La2Zr2O7(LZO)及びSrZrO3(SZO)が知られている。これらの物質は高抵抗であるために、SOFCの発電特性を著しく低下させてしまう。
For example, even if lanthanum strontium manganate (LSM), which is an air electrode material relatively excellent in heat resistance, is used as a reaction phase with yttria stabilized zirconia (YSZ) which is a solid electrolyte material, La 2 Zr 2 O 7 ( LZO) and SrZrO 3 (SZO) are known. The high resistance of these substances significantly degrades the power generation characteristics of the SOFC.
LZO及びSZOの生成を抑制する方法として、これまでに以下の様な方法が提案されている。例えば、YSZとLSMとの間にセリア等のバッファ層を導入したり(非特許文献1、2)、Aサイトを欠損させたLSMを用いたり(非特許文献3)、LSMにCeを添加したりする(非特許文献4)ことが挙げられる。
The following methods have been proposed as methods for suppressing the formation of LZO and SZO. For example, a buffer layer such as ceria is introduced between YSZ and LSM (Non-Patent Documents 1 and 2), LSM with A site defect is used (Non-patent document 3), Ce is added to LSM (Non-Patent Document 4).
しかしながら、共焼結のような比較的高い熱処理条件に十分耐えられる空気極材料は現在までのところ、得られていない。すなわち、上記(1)の方法ではバッファ層がはく離しやすいなどの問題点がある。(2)及び(3)の方法では、反応相の低減は可能であるが、その生成を、固体酸化物形燃料電池の発電特性を十分低下させるほどに抑制するまでには至っていない。
However, cathode materials that can sufficiently withstand relatively high heat treatment conditions such as co-sintering have not been obtained so far. That is, the method (1) has a problem that the buffer layer is easily peeled off. In the methods (2) and (3), although the reduction of the reaction phase is possible, the generation thereof has not been suppressed to the extent that the power generation characteristics of the solid oxide fuel cell are sufficiently reduced.
本発明者らは、かかる従来の問題に鑑みて、耐熱性に優れる固体酸化物形燃料電池用の空気極材料及び空気極を提供する。また、本明細書は、発電特性に優れる固体酸化物形燃料電池を提供する。
In view of such conventional problems, the present inventors provide an air electrode material and an air electrode for a solid oxide fuel cell which is excellent in heat resistance. Further, the present specification provides a solid oxide fuel cell having excellent power generation characteristics.
本発明者らは、空気極材料について、種々検討したところ、LSMにNiを添加し固溶させ得られた(La1-xSrx)(Mn1-yNiy)O3が、SOFCにおける要素の共焼結が可能な温度においても、固体電解質等との間で、有害な反応相を形成することなく、優れた電極特性を呈することを見出した。すなわち、かかる複合酸化物が、意外にも、高温での熱処理においても、YSZとの反応相の生成を抑制又は回避して、固体酸化物形燃料電池としての発電特性を十分に発揮できるという知見を得た。本明細書は、かかる知見に基づき以下の手段を提供する。
The present inventors have found that the air electrode material, was studied, obtained by addition of Ni solid solution LSM (La 1-x Sr x ) (Mn 1-y Ni y) O 3 is in the SOFC It has been found that even at temperatures at which the elements can be co-sintered, they exhibit excellent electrode characteristics without forming a harmful reaction phase with a solid electrolyte or the like. That is, it has been unexpectedly found that, even in heat treatment at high temperatures, such a composite oxide can sufficiently exhibit the power generation characteristics as a solid oxide fuel cell by suppressing or avoiding the formation of a reaction phase with YSZ. I got This specification provides the following means based on such knowledge.
(1)固体酸化物形燃料電池の空気極用材料であって、
ペロブスカイト型酸化物である(La1-xSrx)(Mn1-yNiy)O3(ただし、0<y<0.3)を含む材料。
(2)前記(La1-xSrx)(Mn1-yNiy)O3は、(La1-xSrx)(Mn1-yNiy)O3(ただし、0<x≦0.3)である、(1)に記載の材料。
(3)さらに、希土類元素安定化ジルコニアを含む、(1)又は(2)に記載の材料。
(4)前記希土類元素は、イットリウムである、(2)又は(3)に記載の材料。
(5)前記希土類元素安定化ジルコニアを10質量%以上60質量%以下含有する、 (1)~(3)のいずれかに記載の材料。
(6)(1)~(5)のいずれかに記載の空気極材料の焼結体である、固体酸化物形燃料電池の空気極。
(7)(1)~(5)のいずれかに記載の空気極材料の焼結体を空気極として備える、固体酸化物形燃料電池。
(8)(1)~(5)のいずれかに記載の空気極材料の焼結体を空気極として備える1以上の固体酸化物形燃料電池セルの積層構造を有する、固体酸化物形燃料電池スタック構造体。
(9)前記スタック構造体においては、前記空気極層を含む第1のセルと前記空気極層を含む第2のセルと共焼結されている、(8)に記載のスタック構造体。
(10)固体酸化物形燃料電池の製造方法であって、
燃料極層と、固体電解質層と、(1)~(5)のいずれかに記載の空気極材料を含む空気極層と、を備える1以上のセルを含む2以上のセルの積層体であって、少なくとも一部の要素が相互に一体化されていない固体酸化物形燃料電池スタック構造体の前駆体を取得する工程と、
前記前駆体を焼成して、前記少なくとも一部の要素を一体化する工程と、
を備える、製造方法。 (1) A material for an air electrode of a solid oxide fuel cell
Material containing a perovskite oxide (La 1-x Sr x) (Mn 1-y Ni y) O 3 ( however, 0 <y <0.3).
(2) the (La 1-x Sr x) (Mn 1-y Ni y) O 3 is, (La 1-x Sr x ) (Mn 1-y Ni y) O 3 ( however, 0 <x ≦ 0 .3), the material according to (1).
(3) The material according to (1) or (2), further comprising a rare earth element stabilized zirconia.
(4) The material according to (2) or (3), wherein the rare earth element is yttrium.
(5) The material according to any one of (1) to (3), containing 10% by mass or more and 60% by mass or less of the rare earth element-stabilized zirconia.
(6) An air electrode of a solid oxide fuel cell, which is a sintered body of the air electrode material according to any one of (1) to (5).
(7) A solid oxide fuel cell comprising the sintered body of the air electrode material according to any one of (1) to (5) as an air electrode.
(8) A solid oxide fuel cell having a laminated structure of one or more solid oxide fuel cells comprising the sintered body of the air electrode material according to any one of (1) to (5) as an air electrode Stack structure.
(9) The stack structure according to (8), wherein the first cell including the cathode layer and the second cell including the cathode layer are co-sintered in the stack structure.
(10) A method for producing a solid oxide fuel cell, comprising
A laminate of two or more cells including one or more cells comprising a fuel electrode layer, a solid electrolyte layer, and an air electrode layer containing the air electrode material according to any one of (1) to (5). Obtaining a precursor of a solid oxide fuel cell stack structure in which at least some of the elements are not integrated with one another;
Firing the precursor to integrate the at least some of the elements;
A manufacturing method.
ペロブスカイト型酸化物である(La1-xSrx)(Mn1-yNiy)O3(ただし、0<y<0.3)を含む材料。
(2)前記(La1-xSrx)(Mn1-yNiy)O3は、(La1-xSrx)(Mn1-yNiy)O3(ただし、0<x≦0.3)である、(1)に記載の材料。
(3)さらに、希土類元素安定化ジルコニアを含む、(1)又は(2)に記載の材料。
(4)前記希土類元素は、イットリウムである、(2)又は(3)に記載の材料。
(5)前記希土類元素安定化ジルコニアを10質量%以上60質量%以下含有する、 (1)~(3)のいずれかに記載の材料。
(6)(1)~(5)のいずれかに記載の空気極材料の焼結体である、固体酸化物形燃料電池の空気極。
(7)(1)~(5)のいずれかに記載の空気極材料の焼結体を空気極として備える、固体酸化物形燃料電池。
(8)(1)~(5)のいずれかに記載の空気極材料の焼結体を空気極として備える1以上の固体酸化物形燃料電池セルの積層構造を有する、固体酸化物形燃料電池スタック構造体。
(9)前記スタック構造体においては、前記空気極層を含む第1のセルと前記空気極層を含む第2のセルと共焼結されている、(8)に記載のスタック構造体。
(10)固体酸化物形燃料電池の製造方法であって、
燃料極層と、固体電解質層と、(1)~(5)のいずれかに記載の空気極材料を含む空気極層と、を備える1以上のセルを含む2以上のセルの積層体であって、少なくとも一部の要素が相互に一体化されていない固体酸化物形燃料電池スタック構造体の前駆体を取得する工程と、
前記前駆体を焼成して、前記少なくとも一部の要素を一体化する工程と、
を備える、製造方法。 (1) A material for an air electrode of a solid oxide fuel cell
Material containing a perovskite oxide (La 1-x Sr x) (Mn 1-y Ni y) O 3 ( however, 0 <y <0.3).
(2) the (La 1-x Sr x) (Mn 1-y Ni y) O 3 is, (La 1-x Sr x ) (Mn 1-y Ni y) O 3 ( however, 0 <x ≦ 0 .3), the material according to (1).
(3) The material according to (1) or (2), further comprising a rare earth element stabilized zirconia.
(4) The material according to (2) or (3), wherein the rare earth element is yttrium.
(5) The material according to any one of (1) to (3), containing 10% by mass or more and 60% by mass or less of the rare earth element-stabilized zirconia.
(6) An air electrode of a solid oxide fuel cell, which is a sintered body of the air electrode material according to any one of (1) to (5).
(7) A solid oxide fuel cell comprising the sintered body of the air electrode material according to any one of (1) to (5) as an air electrode.
(8) A solid oxide fuel cell having a laminated structure of one or more solid oxide fuel cells comprising the sintered body of the air electrode material according to any one of (1) to (5) as an air electrode Stack structure.
(9) The stack structure according to (8), wherein the first cell including the cathode layer and the second cell including the cathode layer are co-sintered in the stack structure.
(10) A method for producing a solid oxide fuel cell, comprising
A laminate of two or more cells including one or more cells comprising a fuel electrode layer, a solid electrolyte layer, and an air electrode layer containing the air electrode material according to any one of (1) to (5). Obtaining a precursor of a solid oxide fuel cell stack structure in which at least some of the elements are not integrated with one another;
Firing the precursor to integrate the at least some of the elements;
A manufacturing method.
本明細書は、SOFCの空気極材料に関し、さらに、SOFCの空気極、当該空気極を備えるSOFC、当該空気極を備えるスタック構造体及びその製造方法に関する。本明細書に開示される空気極材料(以下、単に、本材料ともいう。)は、ペロブスカイト型酸化物であるランタンストロンチウムマンガナイト(LSM)系酸化合物中のBサイト元素のマンガン(Mn)の一部をニッケル(Ni)で置換することにより、セル又はスタック構造体作製時において、高温での熱処理が必要な場合であっても、空気極と固体電解質と望ましくない反応相の生成を抑制又は回避して、良好な電極特性ひいては発電特性を有するSOFCのセル又はスタック構造体を提供することができる。
The present specification relates to an SOFC air electrode material, and further relates to an SOFC air electrode, an SOFC including the air electrode, a stack structure including the air electrode, and a method of manufacturing the same. The air electrode material (hereinafter, also simply referred to as the present material) disclosed in the present specification is manganese (Mn) of the B site element in the lanthanum strontium manganite (LSM) based acid compound which is a perovskite type oxide. By partially replacing with nickel (Ni), it is possible to suppress the formation of the air electrode, the solid electrolyte, and the undesirable reaction phase, even when heat treatment at high temperature is required at the time of cell or stack structure preparation. It can be avoided to provide a SOFC cell or stack structure with good electrode properties and thus power generation properties.
また、本材料によれば、従来とは格段に固体電解質との反応相の生成を抑制でき、かつ、SOFCの運転温度でも反応相の生成を回避できる。このため、作製したSOFC及びスタック構造体は、良好な発電特性を長期にわたって発揮することができる。
Moreover, according to the present material, the generation of the reaction phase with the solid electrolyte can be significantly suppressed, and the generation of the reaction phase can be avoided even at the operating temperature of the SOFC. Therefore, the produced SOFC and the stack structure can exhibit good power generation characteristics over a long period of time.
本材料は、いかなるSOFCにも好適に使用できる。なかでも、特に限定するものではないが、SOFCセル又はスタック構造体の少なくとも一部を共焼結によって作製するSOFCセル又はスタック構造体の製造に好適に使用することができる。
The material is suitable for use in any SOFC. Among them, although not particularly limited, it can be suitably used for the production of an SOFC cell or stack structure produced by co-sintering at least a part of the SOFC cell or stack structure.
以下、本開示の代表的かつ非限定的な具体例について、適宜図面を参照して詳細に説明する。この詳細な説明は、本発明の好ましい例を実施するための詳細を当業者に示すことを単純に意図しており、本開示の範囲を限定することを意図したものではない。また、以下に開示される追加的な特徴ならびに開示は、さらに改善されたSOFC用空気極材料、空気極、SOFCセル、SOFCスタック構造体及びその製造方法等を提供するために、他の特徴や開示とは別に、又は共に用いることができる。
Hereinafter, representative and non-limiting specific examples of the present disclosure will be described in detail with reference to the drawings as appropriate. This detailed description is merely intended to show the person skilled in the art the details for practicing the preferred embodiments of the present invention, and is not intended to limit the scope of the present disclosure. In addition, additional features and disclosure disclosed below may be used to provide a further improved cathode material for SOFC, cathode, SOFC cell, SOFC stack structure, and a method of manufacturing the same. It can be used separately or together with the disclosure.
また、以下の詳細な説明で開示される特徴や工程の組み合わせは、最も広い意味において本開示を実施する際に必須のものではなく、特に本開示の代表的な具体例を説明するためにのみ記載されるものである。さらに、上記及び下記の代表的な具体例の様々な特徴、ならびに、独立及び従属クレームに記載されるものの様々な特徴は、本開示の追加的かつ有用な実施形態を提供するにあたって、ここに記載される具体例のとおりに、あるいは列挙された順番のとおりに組合せなければならないものではない。
Also, the combination of features and steps disclosed in the following detailed description is not essential to the practice of the present disclosure in the broadest sense, and in particular, to illustrate representative examples of the present disclosure. It is described. Furthermore, various features of the above and below described representative embodiments, as well as various features of what is set forth in the independent and dependent claims, are set forth herein to provide additional and useful embodiments of the present disclosure. It does not have to be combined as per the example given or in the order listed.
本明細書及び/又はクレームに記載された全ての特徴は、実施例及び/又はクレームに記載された特徴の構成とは別に、出願当初の開示ならびにクレームされた特定事項に対する限定として、個別に、かつ互いに独立して開示されることを意図するものである。さらに、全ての数値範囲及びグループ又は集団に関する記載は、出願当初の開示ならびにクレームされた特定事項に対する限定として、それらの中間の構成を開示する意図を持ってなされている。
All features described in the specification and / or claims are separately from the configuration of the features described in the examples and / or claims, individually as limitations on the initial disclosure of the application and the specific matters claimed. And intended to be disclosed independently of each other. In addition, the descriptions of all numerical ranges and groups or groups are intended to disclose intermediate constructions as limitations on the initial disclosure and the specific matters claimed.
(SOFC用の空気極材料)
本材料は、ペロブスカイト型酸化物である(LaSr)Mn系酸化物(以下、単に、LSMともいう。)のBサイトのMn元素の一部をNiで置換した酸化物(以下、単に、LSMNiともいう。)を含むことができる。なお、本明細書において、LSMは、ペロブスカイト型酸化物であるLaMnO3のAサイト金属のLaの一部をSrで置換して得られる固溶体酸化物をいう。LaとSrの合計モル量は、ペロブスカイト構造に整合するものであり、概ね1である。 (Air electrode material for SOFC)
This material is an oxide obtained by substituting a part of the Mn element of the B site of the (LaSr) Mn-based oxide (hereinafter, also simply referred to as LSM), which is a perovskite type oxide, with Ni (hereinafter simply referred to as LSMNi) Can be included. In the present specification, LSM refers to a solid solution oxide obtained by substituting a part of La of the A site metal of LaMnO 3 which is a perovskite type oxide with Sr. The total molar amount of La and Sr is consistent with the perovskite structure and is approximately one.
本材料は、ペロブスカイト型酸化物である(LaSr)Mn系酸化物(以下、単に、LSMともいう。)のBサイトのMn元素の一部をNiで置換した酸化物(以下、単に、LSMNiともいう。)を含むことができる。なお、本明細書において、LSMは、ペロブスカイト型酸化物であるLaMnO3のAサイト金属のLaの一部をSrで置換して得られる固溶体酸化物をいう。LaとSrの合計モル量は、ペロブスカイト構造に整合するものであり、概ね1である。 (Air electrode material for SOFC)
This material is an oxide obtained by substituting a part of the Mn element of the B site of the (LaSr) Mn-based oxide (hereinafter, also simply referred to as LSM), which is a perovskite type oxide, with Ni (hereinafter simply referred to as LSMNi) Can be included. In the present specification, LSM refers to a solid solution oxide obtained by substituting a part of La of the A site metal of LaMnO 3 which is a perovskite type oxide with Sr. The total molar amount of La and Sr is consistent with the perovskite structure and is approximately one.
LSMNiは、LSMにおけるMを1モルとした場合において、Niのモル分率yを、0<y<0.3とすることができる。すなわち、かかるLSMNiは、例えば、一般式(La1-xSrx)(Mn1-yNiy)O3で表される。なお、この一般式においては、上記と同様、酸素原子Oの構成モル量は「3」であるが、Sr及びNiのモル分率によって、ペロブスカイト構造を化学量論的に構成する数値として構成されるものであり、「3+δ」となりうる。すなわち、(La1-xSrx)(Mn1-yNiy)O3+δで表されうる。なお、例えば、-0.4≦δ≦+0.2である。
LSMNi can set the mole fraction y of Ni to 0 <y <0.3, when M in LSM is 1 mole. That is, such LSMNi, for example, represented by the general formula (La 1-x Sr x) (Mn 1-y Ni y) O 3. In this general formula, the constituent molar amount of the oxygen atom O is “3” in the same manner as described above, but the molar fraction of Sr and Ni constitutes a numerical value which forms the perovskite structure stoichiometrically And can be “3 + δ”. That can be represented by (La 1-x Sr x) (Mn 1-y Ni y) O 3 + δ. Note that, for example, −0.4 ≦ δ ≦ + 0.2.
yがこの範囲であると、Niの添加によって、固体電解質との間での反応相抑制効果を得ることができる。yが0.3以上であると、固体電解質に含まれるYSZとから生成する高抵抗反応相であるSZO(SrZrO3)やLZO(La2Zr2O7)の生成量が増大する傾向にある。xの下限及び上限は、反応相の生成量ほか、例えば、Laに対するSrのモル分率及び導電率等を考慮して設定することができる。特に限定するものではないが、例えば、yは、0.05以上であり、また例えば、0.1以上であり、また例えば、0.15以上であり、また例えば、0.2以上である。また、yは、例えば、0.25以下であり、また例えば、0.2以下である。yの範囲は、また例えば、上記した下限及び上限を適宜組み合わせて設定することができるが、例えば、0.05以上0.3未満であり、0.05以上0.25以下であり、0.05以上0.2以下であり、また例えば0.1以上0.3未満であり、0.1以上0.25以下であり、0.1以上0.2以下であり、また例えば0.15以上0.3未満であり、0.15以上0.25以下であり、0.15以上0.2以下である。
When y is in this range, it is possible to obtain the reaction phase suppression effect with the solid electrolyte by the addition of Ni. If y is 0.3 or more, the amount of SZO (SrZrO 3 ) and LZO (La 2 Zr 2 O 7 ), which are high resistance reaction phases generated from YSZ contained in the solid electrolyte, tends to increase. . The lower limit and the upper limit of x can be set in consideration of, for example, the mole fraction of Sr with respect to La, conductivity, etc., in addition to the amount of reaction phase produced. Although not particularly limited, for example, y is 0.05 or more, for example, 0.1 or more, and for example, 0.15 or more, for example, 0.2 or more. Also, y is, for example, 0.25 or less, and for example, 0.2 or less. The range of y can also be set, for example, by combining the above lower limit and upper limit as appropriate, and for example, it is 0.05 or more and less than 0.3, 0.05 or more and 0.25 or less, 0. More than 05 and less than 0.2, for example more than 0.1 and less than 0.3, more than 0.1 and less than 0.25, and more than 0.1 and less than 0.2, for example more than 0.15 It is less than 0.3, 0.15 or more and 0.25 or less, and 0.15 or more and 0.2 or less.
LSMNiにおいて、Laの一部、すなわち、LSMにおけるLaを1モルとした場合の、Srのモル分率xは、特に限定するものではないが、0<x≦0.3とすることができる。この範囲であると、Srの添加によって、固体電解質との間での反応相抑制効果を得ることができる。xが0.3を越えると、固体電解質に含まれるYSZとから生成する高抵抗反応相であるSZO(SrZrO3)の生成量が増大する傾向にある。xの下限及び上限は、反応相の生成量ほか、例えば、導電率等を考慮して設定することができる。特に限定するものではないが、例えば、xは、0.05以上であり、また例えば、0.1以上であり、また例えば、0.15以上であり、また例えば、0.2以上である。また、xは、例えば、0.25以下であり、また例えば、0.2以下である。xの範囲は、また例えば、上記した下限及び上限を適宜組み合わせて設定することができるが、例えば、0.05以上0.3以下であり、0.05以上0.3未満であり、0.05以上0.25以下であり、0.05以上0.2以下であり、また例えば、0.1以上0.3以下であり、0.1以上0.3未満であり、0.1以上0.25以下であり、0.1以上0.2以下であり、また例えば、0.15以上0.3以下であり、0.15以上0.3未満であり、0.15以上0.25以下であり、0.15以上0.2以下であり、また例えば、0.2以上0.3以下であり、0.2以上0.3未満であり、0.2以上0.25以下である。
In LSMNi, a molar fraction x of Sr when a part of La, that is, La in LSM is 1 mole, is not particularly limited, but can be 0 <x ≦ 0.3. Within this range, the effect of suppressing the reaction phase with the solid electrolyte can be obtained by the addition of Sr. When x exceeds 0.3, the amount of SZO (SrZrO 3 ), which is a high resistance reaction phase generated from YSZ contained in the solid electrolyte, tends to increase. The lower limit and the upper limit of x can be set in consideration of, for example, the conductivity and the like in addition to the amount of reaction phase produced. Although not particularly limited, for example, x is 0.05 or more, for example, 0.1 or more, and for example, 0.15 or more, for example, 0.2 or more. Also, x is, for example, 0.25 or less, and for example, 0.2 or less. The range of x can also be set, for example, by appropriately combining the lower limit and the upper limit described above, but for example, it is 0.05 or more and 0.3 or less, 0.05 or more and less than 0.3, 0. It is 05 or more and 0.25 or less, 0.05 or more and 0.2 or less, and for example, 0.1 or more and 0.3 or less, 0.1 or more and less than 0.3, 0.1 or more and 0 .25 or less, 0.1 or more and 0.2 or less, and for example, 0.15 or more and 0.3 or less, 0.15 or more and less than 0.3, and 0.15 or more and 0.25 or less It is 0.15 or more and 0.2 or less, for example, 0.2 or more and 0.3 or less, 0.2 or more and less than 0.3, and 0.2 or more and 0.25 or less.
LSMNiは、公知のセラミックス合成方法で製造することができる。すなわち、固相法、ゾルゲル法、噴霧熱分解法、水熱法、アルコキシド法、共沈法、エマルジョン法、錯体重合法、グリシン法等が挙げられる。特に限定するものではないが、例えば、グリシンを用いたグリシン法を用いることが好ましい。かかる合成法によるとより均一性の高いLSMNi前駆体粉末またはLSMNi粉末が得られるからである。
LSMNi can be produced by a known ceramic synthesis method. That is, a solid phase method, a sol-gel method, a spray pyrolysis method, a hydrothermal method, an alkoxide method, a coprecipitation method, an emulsion method, a complex polymerization method, a glycine method and the like can be mentioned. Although not particularly limited, for example, it is preferable to use a glycine method using glycine. This is because the LSMNi precursor powder or LSMNi powder with higher uniformity can be obtained by this synthesis method.
例えば、(La1-0.8Sr0.2)(Mn0.8Niy0.2)O3で表されるLSMNiを以下の方法で合成することができる。すなわち、グリシンと、硝酸ランタン6水和物(La(NO3)3・6H2O)、硝酸ストロンチウム6水和物(Sr(NO3)2・6H2O)、硝酸マンガン6水和物(Mn(NO3)3・6H2O)、硝酸ニッケル6水和物(Ni(NO3)2・6H2O)を、原料として、意図したモル分率のLSMNiとなるように配合し、室温で水に溶解し、180℃まで加熱後、450℃で数時間加熱して水及び有機物を除去後、空気中850℃で5時間加熱焼成することで、LSMNi前駆体粉末またはLSMNi粉末を得ることができる。
For example, LSMNi represented by (La 1 -0.8 Sr 0.2 ) (Mn 0.8 Ni y 0.2 ) O 3 can be synthesized by the following method. That is, glycine, lanthanum nitrate hexahydrate (La (NO 3) 3 · 6H 2 O), strontium nitrate hexahydrate (Sr (NO 3) 2 · 6H 2 O), manganese nitrate hexahydrate ( Compound Mn (NO 3 ) 3 · 6 H 2 O) and nickel nitrate hexahydrate (Ni (NO 3 ) 2 · 6 H 2 O) as raw materials in the intended molar fraction LSMNi, room temperature Dissolve in water and heat to 180 ° C, then heat at 450 ° C for several hours to remove water and organic matter, then heat bake at 850 ° C in air for 5 hours to obtain LSMNi precursor powder or LSMNi powder Can.
本材料は、また、こうしたLSMNi以外に、SOFCの空気極材料として用いることができる他の材料を含むことができる。例えば、La又はLa及びSrを含有するABO3型のペロブスカイト型酸化物であって、LSMNi以外の酸化物が挙げられる。かかるペロブスカイト型酸化物としては、遷移金属ペロブスカイト型酸化物、例えば、AサイトにLa又はLaとSr若しくはCaとが共存するLaCoO3系酸化物、LaMnO3系酸化物、LaFeO3系酸化物等が挙げられる。また、AサイトにLa又はLaとSr若しくはCaとが共存するLaTiO3系酸化物等が挙げられる。なお、各種酸化物のBサイトには、Co、Mn、Tiとともに、別の元素として、Cr、Fe、Mgなどが存在していてもよい。より具体的には、(LaSr)MnO3、(LaCa)MnO3、LaCoO3、(LaSr)CoO3、(LaSr)(CoFe)O3、(LaSr)(TiFe)O3等が挙げられる。
The present material can also include other materials that can be used as the cathode material of SOFC in addition to such LSMNi. For example, an ABO 3 -type perovskite-type oxide containing La or La and Sr may be mentioned oxides other than LSMNi. As such perovskite type oxides, transition metal perovskite type oxides, for example, LaCoO 3 based oxides, LaMnO 3 based oxides, LaFeO 3 based oxides, etc. in which La or La and Sr or Ca coexist at A site, etc. It can be mentioned. In addition, La or a LaTiO 3 based oxide in which La and La together with Sr or Ca coexist at A site can be mentioned. In addition to Co, Mn, and Ti, other elements such as Cr, Fe, Mg, and the like may exist in the B site of various oxides. More specifically, (LaSr) MnO 3 , (LaCa) MnO 3 , LaCoO 3 , (LaSr) CoO 3 , (LaSr) (CoFe) O 3 , (LaSr) (TiFe) O 3 and the like can be mentioned.
本材料は、公知のSOFCの空気極材料と同様に、固体電解質に含まれる元素の酸化物を含むことができる。固体電解質に含まれる酸化物を含有することで、熱膨張率の制御等に有用である。かかる酸化物としては、特に限定するものではないが、例えば、Y、Sc、Yb等の希土類元素で少なくとも部分的に安定化されたZrO2(ジルコニア)が挙げられる。典型的には、希土類元素は、イットリウムであるYSZが挙げられる。また、Gd、Smなどの希土類元素がドープされたCeO2(セリア)、SrやMgなどのアルカリ土類金属でLa及びGaの一部を置換したLaGaO3(ランタンガレート)等が挙げられる。LSMNiは、Zrを含む反応相の生成を抑制又は回避できることから、固体電解質としてジルコニアを含む場合や本材料中にジルコニアを含む場合に有利である。
This material can contain the oxide of the element contained in a solid electrolyte similarly to the cathode material of well-known SOFC. The oxide contained in the solid electrolyte is useful for controlling the thermal expansion coefficient and the like. Such an oxide is not particularly limited, and examples thereof include ZrO 2 (zirconia) which is at least partially stabilized by a rare earth element such as Y, Sc, and Yb. Typically, the rare earth element is YSZ which is yttrium. In addition, CeO 2 (ceria) doped with a rare earth element such as Gd and Sm, LaGaO 3 (lanthanum gallate) in which La and Ga are partially substituted with an alkaline earth metal such as Sr and Mg, and the like can be mentioned. LSMNi is advantageous in the case of containing zirconia as a solid electrolyte or in the case of containing zirconia in the present material because LSMNi can suppress or avoid the formation of a reaction phase containing Zr.
本材料においては、特に限定するものではないが、実質的な電極構成材料としては、LSMNiを50質量%以上含むことが好ましく、より好ましくは60質量%以上であり、さらに好ましくは70質量%以上であり、なお好ましくは80質量%以上であり、一層好ましくは90質量%以上であり、より一層好ましくは95質量%以上であり、さらに一層好ましくは99質量%以上である。
In the present material, although not particularly limited, as a substantial electrode constituent material, it is preferable to contain 50 mass% or more of LSMNi, more preferably 60 mass% or more, and still more preferably 70 mass% or more It is more preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and still more preferably 99% by mass or more.
また、本材料は、適宜、固体電解質材料を含むことができるが、その比率は特に限定するものではないが、例えば、本材料の全質量に対して10質量%以上60質量%以下などとすることができる。この範囲であると、固体電解質材料と併存していても、反応相の生成を抑制でき十分に良好な特性の空気極を構成することができる。特に限定するものではないが、例えば、固体電解質材料は、20質量%以上、60質量%以下であり、また例えば、30質量%以上60質量%以下であり、また例えば、40質量%以上60質量%以下である。
In addition, although the present material can appropriately contain a solid electrolyte material, the ratio thereof is not particularly limited, and for example, 10% by mass to 60% by mass with respect to the total mass of the present material be able to. Within this range, even when coexisting with the solid electrolyte material, the generation of the reaction phase can be suppressed, and an air electrode with sufficiently good characteristics can be configured. Although not particularly limited, for example, the solid electrolyte material is 20% by mass or more and 60% by mass or less, for example, 30% by mass or more and 60% by mass or less, for example 40% by mass or more and 60% by mass % Or less.
(空気極)
本明細書に開示される空気極(以下、単に、本空気極ともいう。)は、本材料の焼結体である。本空気極は、それ自体独立したSOFCの要素ないし部品として得ることができるほか、後述するように、SOFCセル及びSOFCスタック構造構成要素としてこれらの内在する形態で得ることができる。 (Air electrode)
The air electrode disclosed in the present specification (hereinafter, also simply referred to as the present air electrode) is a sintered body of the present material. The cathode can be obtained as an independent SOFC element or component, or as an SOFC cell and a SOFC stack structural component, as described below, in their inherent form.
本明細書に開示される空気極(以下、単に、本空気極ともいう。)は、本材料の焼結体である。本空気極は、それ自体独立したSOFCの要素ないし部品として得ることができるほか、後述するように、SOFCセル及びSOFCスタック構造構成要素としてこれらの内在する形態で得ることができる。 (Air electrode)
The air electrode disclosed in the present specification (hereinafter, also simply referred to as the present air electrode) is a sintered body of the present material. The cathode can be obtained as an independent SOFC element or component, or as an SOFC cell and a SOFC stack structural component, as described below, in their inherent form.
空気極は概して多孔質であり、その気孔率は、適宜設定される。特に限定するものではないが、好ましくは、気孔率は、15%以上であることが好ましく、より好ましくは20%以上40%以下程度である。なお、本明細書において、気孔率は、機械的に切断研磨して作成した複数の断面を、走査型電子線顕微鏡で撮影した断面画像の気孔部と緻密部の面積比から測定することができる。例えば、5つの切断面のそれぞれについて当該層を含む500μm×500μmの視野で当該層の気孔部と緻密部を画像処理によって二値化して面積比を求めて、全ての切断面の平均をとることで気孔率を求めることができる。
The air electrode is generally porous, and its porosity is appropriately set. Although not particularly limited, the porosity is preferably 15% or more, and more preferably about 20% or more and 40% or less. In the present specification, the porosity can be measured from the area ratio of the pore portion to the dense portion of a cross-sectional image of a cross-sectional image taken by a scanning electron beam microscope, for a plurality of cross-sections created by mechanical cutting and polishing. . For example, the area ratio is determined by binarizing the pore portion and the dense portion of the layer by image processing in a field of view of 500 μm × 500 μm including the layer for each of five cut planes, and taking an average of all the cut planes. The porosity can be determined by
空気極における気孔が球状である場合の平均気孔径は、1μm以上10μm以下であることが好ましい。より好ましくは2μm以上5μm以下である。なお、本明細書において、平均気孔径は、機械的に切断研磨して作成した複数の断面を、走査型電子線顕微鏡で撮影した断面画像の気孔部を複数の球状の気孔が接続したと仮定した場合の平均径から測定することができる。例えば、5つの切断面のそれぞれについて当該層を含む500μm×500μmの視野で当該層の気孔部と緻密部を画像処理によって二値化し、視野に含まれる全ての気孔部に対して円近似した場合の直径を求めて、全ての切断面の平均をとることで平均気孔径を求めることができる。
When the pores in the air electrode are spherical, the average pore diameter is preferably 1 μm to 10 μm. More preferably, it is 2 micrometers or more and 5 micrometers or less. In the present specification, it is assumed that the average pore diameter is obtained by connecting a plurality of spherical cross-sections obtained by mechanically cutting and polishing a plurality of cross-sections taken by a scanning electron microscope with a plurality of spherical pores. It can measure from the average diameter in the case of For example, when the pores and dense parts of the layer are binarized by image processing in a field of view of 500 μm × 500 μm including the layer for each of the five cut surfaces, and circular approximation is performed for all pores included in the field of view. The average pore diameter can be determined by calculating the average diameter of all the cut surfaces.
空気極の厚みは、特に限定するものではなく、電極内における酸化性のガス流路の有無や流路形態によっても異なるが、例えば、15μm以上500μm以下とすることができ、また例えば、20μm以上500μm以下とすることができる。より好ましくは、50μm以上400μm以下とすることができる。
The thickness of the air electrode is not particularly limited, and varies depending on the presence or absence of an oxidizing gas flow passage in the electrode and the flow passage form, but can be, for example, 15 μm to 500 μm, and for example, 20 μm or more It can be 500 μm or less. More preferably, it can be 50 μm or more and 400 μm or less.
本空気極の形態及び製造方法は、得ようとするSOFCまた例えばスタック構造体の形態やその製造方法等によっても種々に異なり、本空気極は、種々の形態を採ることができる。本空気極の形態や製造方法については、SOFC及びSOFCスタック構造体に関する後段において詳細に説明する。
The form and manufacturing method of the present air electrode are variously different depending on the SOFC to be obtained, for example, the form of the stack structure, the manufacturing method thereof and the like, and the present air electrode can take various forms. The form and manufacturing method of the present air electrode will be described in detail later in the SOFC and SOFC stack structures.
(固体酸化物形燃料電池)
本明細書に開示される固体酸化物形燃料電池(以下、本SOFCともいう。)は、本空気極を含む空気極層を備えることができる。本空気極を本SOFCが備える他の要素については、従来公知の他の要素、すなわち、燃料極、固体電解質、セパレータ又はインターコネクタ、燃料極に還元性ガスを供給するためのガス流路及び空気極に酸化性ガスを供給するためのガス流路等をそれぞれ備えることができる。また、本SOFCは、公知の方法で製造できるほか、後段で詳細する本SOFCのスタック構造体の製造方法に準じてセル単位でも製造することができる。 (Solid oxide fuel cell)
The solid oxide fuel cell (hereinafter, also referred to as the present SOFC) disclosed herein can include an air electrode layer including the present air electrode. With regard to the other elements that the present SOFC includes the present air electrode, the other elements known in the art, ie, the fuel electrode, solid electrolyte, separator or interconnector, gas flow path for supplying reducing gas to the fuel electrode, and air A gas channel or the like for supplying the oxidizing gas to the electrode can be provided. Further, the present SOFC can be produced by a known method, and can also be produced in cell units according to the method for producing a stacked structure of the present SOFC described in detail later.
本明細書に開示される固体酸化物形燃料電池(以下、本SOFCともいう。)は、本空気極を含む空気極層を備えることができる。本空気極を本SOFCが備える他の要素については、従来公知の他の要素、すなわち、燃料極、固体電解質、セパレータ又はインターコネクタ、燃料極に還元性ガスを供給するためのガス流路及び空気極に酸化性ガスを供給するためのガス流路等をそれぞれ備えることができる。また、本SOFCは、公知の方法で製造できるほか、後段で詳細する本SOFCのスタック構造体の製造方法に準じてセル単位でも製造することができる。 (Solid oxide fuel cell)
The solid oxide fuel cell (hereinafter, also referred to as the present SOFC) disclosed herein can include an air electrode layer including the present air electrode. With regard to the other elements that the present SOFC includes the present air electrode, the other elements known in the art, ie, the fuel electrode, solid electrolyte, separator or interconnector, gas flow path for supplying reducing gas to the fuel electrode, and air A gas channel or the like for supplying the oxidizing gas to the electrode can be provided. Further, the present SOFC can be produced by a known method, and can also be produced in cell units according to the method for producing a stacked structure of the present SOFC described in detail later.
(燃料極及び燃料極層)
燃料極は、特に限定することなく、SOFCの燃料極に適用される導電性セラミックス材料の1種又は2種以上からなる多孔質体とすることができる。例えば、燃料極材料としては、希土類元素が固溶したジルコニア又はセリアと、Ni/NiOと、を含むことができる。希土類元素としては、例えば、イットリウム(Y)、スカンジウム(Sc)、サマリウム(Sm)、ガドリニウム(Gd)等を用いることができる。具体的には、イットリア部分安定化又は安定化ジルコニア(YSZ)、スカンジア部分安定化又は安定化ジルコニア(ScSZ)、ガドリニア固溶セリア(GDC)とNi/NiOとを含むNiサーメットが挙げられる。 (Fuel electrode and fuel electrode layer)
The fuel electrode is not particularly limited, and can be a porous body made of one or more conductive ceramic materials applied to the SOFC fuel electrode. For example, the fuel electrode material can include zirconia or ceria in which a rare earth element is solid-solved, and Ni / NiO. As the rare earth element, for example, yttrium (Y), scandium (Sc), samarium (Sm), gadolinium (Gd), etc. can be used. Specifically, mention may be made of Ni cermet containing yttria partially stabilized or stabilized zirconia (YSZ), scandia partially stabilized or stabilized zirconia (ScSZ), gadolinia solid solution ceria (GDC) and Ni / NiO.
燃料極は、特に限定することなく、SOFCの燃料極に適用される導電性セラミックス材料の1種又は2種以上からなる多孔質体とすることができる。例えば、燃料極材料としては、希土類元素が固溶したジルコニア又はセリアと、Ni/NiOと、を含むことができる。希土類元素としては、例えば、イットリウム(Y)、スカンジウム(Sc)、サマリウム(Sm)、ガドリニウム(Gd)等を用いることができる。具体的には、イットリア部分安定化又は安定化ジルコニア(YSZ)、スカンジア部分安定化又は安定化ジルコニア(ScSZ)、ガドリニア固溶セリア(GDC)とNi/NiOとを含むNiサーメットが挙げられる。 (Fuel electrode and fuel electrode layer)
The fuel electrode is not particularly limited, and can be a porous body made of one or more conductive ceramic materials applied to the SOFC fuel electrode. For example, the fuel electrode material can include zirconia or ceria in which a rare earth element is solid-solved, and Ni / NiO. As the rare earth element, for example, yttrium (Y), scandium (Sc), samarium (Sm), gadolinium (Gd), etc. can be used. Specifically, mention may be made of Ni cermet containing yttria partially stabilized or stabilized zirconia (YSZ), scandia partially stabilized or stabilized zirconia (ScSZ), gadolinia solid solution ceria (GDC) and Ni / NiO.
燃料極は概して多孔質であり、その気孔率は、適宜設定される。特に限定するものではないが、気孔率は、好ましくは、15%以上であることが好ましく、より好ましくは20%以上40%以下程度である。
The fuel electrode is generally porous, and its porosity is appropriately set. Although not particularly limited, the porosity is preferably 15% or more, and more preferably about 20% or more and 40% or less.
燃料極における気孔形状は不定形状、繊維状、球状など任意の形状をとることができる。球状の場合は平均気孔径は、1μm以上10μm以下であることが好ましい。より好ましくは2μm以上5μm以下である。
The shape of pores in the fuel electrode can be any shape such as irregular shape, fibrous shape, and spherical shape. In the case of a spherical shape, the average pore diameter is preferably 1 μm to 10 μm. More preferably, it is 2 micrometers or more and 5 micrometers or less.
燃料極の厚みは、特に限定するものではなく、ガス流路22の有無や流路形態によっても異なるが、例えば、15μm以上500μm以下とすることができる。より好ましくは20μm以上500μm以下とすることができる。さらに好ましくは、50μm以上400μm以下とすることができ、なお、好ましくは50μm以上300μm以下とすることができる。なお、後述するように、燃料極及び空気極の厚みは、1つの層において必ずしも一定ではない。したがって、燃料極及び空気極の厚みに関する記載は、特に言及されない限り、1つの層がこうした厚みの範囲にあることを意味している。
The thickness of the fuel electrode is not particularly limited, and varies depending on the presence or absence of the gas flow channel 22 and the flow channel configuration, but can be, for example, 15 μm to 500 μm. More preferably, it can be 20 μm to 500 μm. More preferably, it can be 50 μm or more and 400 μm or less, and still more preferably 50 μm or more and 300 μm or less. As described later, the thicknesses of the fuel electrode and the air electrode are not necessarily constant in one layer. Thus, references to anode and cathode thicknesses mean that one layer is in this thickness range, unless stated otherwise.
(固体電解質及び固体電解質層)
固体電解質は、特に限定することなく、SOFCの固体電解質に適用される酸化物イオン伝導性材料の1種又は2種以上からなる緻密質体とすることができる。例えば、固体電解質材料としては、既に、例示した酸化物イオン伝導性材料が挙げられる。 (Solid electrolyte and solid electrolyte layer)
The solid electrolyte can be a compact body made of one or more kinds of oxide ion conductive materials applied to a solid electrolyte of SOFC without limitation. For example, examples of the solid electrolyte material include the oxide ion conductive materials exemplified above.
固体電解質は、特に限定することなく、SOFCの固体電解質に適用される酸化物イオン伝導性材料の1種又は2種以上からなる緻密質体とすることができる。例えば、固体電解質材料としては、既に、例示した酸化物イオン伝導性材料が挙げられる。 (Solid electrolyte and solid electrolyte layer)
The solid electrolyte can be a compact body made of one or more kinds of oxide ion conductive materials applied to a solid electrolyte of SOFC without limitation. For example, examples of the solid electrolyte material include the oxide ion conductive materials exemplified above.
固体電解質は概して緻密質であり、ガス透過性を遮断する観点から、インターコネクタと同様の相対密度を有していることが好ましい。また、固体電解質の厚みは、特に限定するものではないが、例えば、1μm以上100μm以下とすることができる。より好ましくは、3μm以上40μm以下とすることができ、さらに好ましくは5μm以上30μm以下とすることができる。
The solid electrolyte is generally dense and preferably has the same relative density as the interconnector from the viewpoint of blocking gas permeability. The thickness of the solid electrolyte is not particularly limited, but can be, for example, 1 μm or more and 100 μm or less. More preferably, it can be 3 μm or more and 40 μm or less, and still more preferably 5 μm or more and 30 μm or less.
(セパレータ又はインターコネクタ)
セパレータ又はインターコネクタは、燃料極と、固体電解質と、空気極とを備えるSOFCに用いられ、ガスを意図するように遮断するガス遮断性と、各セルから電流を取り出す導電性とを備える離隔要素である。かかる離隔要素が、ガス遮断性の観点からセパレータ、導電性との観点からインターコネクタと称される。以下、本明細書においては、インターコネクタと称する。 (Separator or interconnector)
Separators or interconnectors are used in SOFCs comprising a fuel electrode, a solid electrolyte, and an air electrode, and are separation elements provided with gas blocking properties to shut off gas as intended, and conductivity to draw current from each cell It is. Such a separation element is referred to as a separator from the viewpoint of gas barrier property and an interconnector from the viewpoint of conductivity. Hereinafter, in the present specification, it is referred to as an interconnector.
セパレータ又はインターコネクタは、燃料極と、固体電解質と、空気極とを備えるSOFCに用いられ、ガスを意図するように遮断するガス遮断性と、各セルから電流を取り出す導電性とを備える離隔要素である。かかる離隔要素が、ガス遮断性の観点からセパレータ、導電性との観点からインターコネクタと称される。以下、本明細書においては、インターコネクタと称する。 (Separator or interconnector)
Separators or interconnectors are used in SOFCs comprising a fuel electrode, a solid electrolyte, and an air electrode, and are separation elements provided with gas blocking properties to shut off gas as intended, and conductivity to draw current from each cell It is. Such a separation element is referred to as a separator from the viewpoint of gas barrier property and an interconnector from the viewpoint of conductivity. Hereinafter, in the present specification, it is referred to as an interconnector.
インターコネクタとしては、従来公知のインターコネクタの材料を容易に適用することができる。典型的には、導電性材料であって、各種公知のABO3のペロブスカイト型酸化物が挙げられる。例えば、かかる酸化物は、希土類元素がドープされたペロブスカイト型酸化物であり、(LnaM1
b)M2O3と(ただし、a+b=1などペロブスカイト構造に整合する数値である。)して表される。Lnは希土類元素であり、原子番号57~71までの元素が挙げられる。希土類元素としては、例えば、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)等の比較的イオン半径の大きな元素を用いることができ、Laを好ましく用いることができる。M1は、アルカリ土類金属を示し、例えば、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)が挙げられ、1種又は2種以上を用いることができる。M2は、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)等の遷移元素から選択される1種又は2種以上である。が挙げられる。好ましくは、Ti、Cr、Mn、Fe及びCoから選択される1種又は2種以上である。
As the interconnector, materials of conventionally known interconnectors can be easily applied. Typically, conductive materials such as various known perovskite oxides of ABO 3 can be mentioned. For example, such an oxide is a perovskite-type oxide doped with a rare earth element, and is (Ln a M 1 b ) M 2 O 3 (however, it is a numerical value consistent with the perovskite structure such as a + b = 1). Is represented. Ln is a rare earth element and includes elements of atomic numbers 57 to 71. As the rare earth element, for example, an element having a relatively large ion radius such as lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm) can be used, and La is preferably used be able to. M 1 represents an alkaline earth metal, and examples thereof include calcium (Ca), strontium (Sr) and barium (Ba), and one or more kinds can be used. M 2 is one or more selected from transition elements such as titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co) and the like. Can be mentioned. Preferably, it is one or more selected from Ti, Cr, Mn, Fe and Co.
こうした導電性セラミックス材料としては、例えば、AサイトにLaとSr若しくはCaとが共存するLaCoO3系酸化物、LaMnO3系酸化物、La(CoFe)O3系酸化物、LaCrO3系酸化物、LaTiO3系酸化合物等が挙げられる。各種酸化物のBサイトには、Co、Mn、Tiとともに、別の元素として、Cr、Fe、Mgなどが存在していてもよい。より具体的には、(LaSr)MnO3、(LaSr)CoO3、(LaSr)(CoFe)O3、(LaSr)TiO3、LaCrMgO3等が挙げられる。
As such a conductive ceramic material, for example, LaCoO 3 based oxide, LaMnO 3 based oxide, La (CoFe) O 3 based oxide, LaCrO 3 based oxide, in which La and Sr or Ca coexist at A site, LaTiO 3 based acid compounds and the like can be mentioned. In the B site of various oxides, Cr, Fe, Mg, etc. may be present as another element together with Co, Mn, Ti. More specifically, (LaSr) MnO 3 , (LaSr) CoO 3 , (LaSr) (CoFe) O 3 , (LaSr) TiO 3 , LaCrMgO 3 and the like can be mentioned.
インターコネクタは、さらに、固体電解質に含まれる元素の酸化物材料を含むこともできる。かかる材料については、本材料について含まれうる材料として既に説明したとおりである。
The interconnector can further include an oxide material of elements contained in the solid electrolyte. Such materials are as already described as materials that may be included for this material.
インターコネクタが含む導電性セラミックス材料及び固体電解質に含まれる元素の酸化物材料は、それぞれ、例えば、本インターコネクタが適用されるSOFCの燃料極の材料、空気極の材料、作動温度、スタックの焼結温度等を考慮して、適宜選択される。
The conductive ceramic material included in the interconnector and the oxide material of the element included in the solid electrolyte are, for example, the material of the fuel electrode of SOFC to which the present interconnector is applied, the material of the cathode, the operating temperature, and the burning of the stack. It is appropriately selected in consideration of the congee temperature and the like.
インターコネクタは、一般的にインターコネクタが備える緻密性を備えている。例えば、インターコネクタは、相対密度(アルキメデス法による)は、93%以上であることが好ましく、より好ましくは95%以上であることが好ましい。
The interconnector generally has the compactness of the interconnector. For example, the interconnector preferably has a relative density (according to the Archimedes method) of 93% or more, more preferably 95% or more.
インターコネクタの厚み等は、特に限定するものではないが、例えば、スタック全体の大きさや導電性を考慮すると、例えば、1μm以上μm100μm以下とすることができる。好ましくは、2μm以上60μm以下とすることができ、より好ましくは2μm以上40μm以下である。
The thickness or the like of the interconnector is not particularly limited, but can be, for example, 1 μm or more and 100 μm or less in consideration of, for example, the size and conductivity of the entire stack. Preferably, it can be 2 μm or more and 60 μm or less, and more preferably 2 μm or more and 40 μm or less.
(ガス流路)
SOFCのセルは、燃料極に供給される水素を含有する還元性ガス及び空気極に供給される酸素を含有する酸化性ガスのためのガス流路をそれぞれ備えている。ガス流路は、単セルを構成する1又は2つの層に亘って形成することができる。すなわち、ガス流路は、それぞれ燃料極、空気極内に備えられていてもよいし、インターコネクタ内に備えられていてもよいし、燃料極とインターコネクタにわたって備えられていてもよいし、空気極とインターコネクタにわたって備えられていてもよい。SOFCにおけるガス流路の形態等は当業者において周知である。 (Gas flow path)
The cells of the SOFC are each provided with a gas flow path for a reducing gas containing hydrogen supplied to the fuel electrode and an oxidizing gas containing oxygen supplied to the air electrode. The gas flow path can be formed across one or two layers constituting a single cell. That is, the gas flow path may be provided in each of the fuel electrode and the air electrode, may be provided in the interconnector, or may be provided over the fuel electrode and the interconnector. It may be provided across the poles and the interconnectors. The form of gas flow path in SOFC is well known to those skilled in the art.
SOFCのセルは、燃料極に供給される水素を含有する還元性ガス及び空気極に供給される酸素を含有する酸化性ガスのためのガス流路をそれぞれ備えている。ガス流路は、単セルを構成する1又は2つの層に亘って形成することができる。すなわち、ガス流路は、それぞれ燃料極、空気極内に備えられていてもよいし、インターコネクタ内に備えられていてもよいし、燃料極とインターコネクタにわたって備えられていてもよいし、空気極とインターコネクタにわたって備えられていてもよい。SOFCにおけるガス流路の形態等は当業者において周知である。 (Gas flow path)
The cells of the SOFC are each provided with a gas flow path for a reducing gas containing hydrogen supplied to the fuel electrode and an oxidizing gas containing oxygen supplied to the air electrode. The gas flow path can be formed across one or two layers constituting a single cell. That is, the gas flow path may be provided in each of the fuel electrode and the air electrode, may be provided in the interconnector, or may be provided over the fuel electrode and the interconnector. It may be provided across the poles and the interconnectors. The form of gas flow path in SOFC is well known to those skilled in the art.
このようにして構成される単セル(燃料極、空気極、固体電解質)の厚みは、特に限定するものではないが、例えば、100μm以上1000μm以下とすることができる。また、好ましくは150μm以上1000μm以下とすることができる。さらに、好ましくは200μm以上1000μm以下とすることができる。また、好ましくは300μm以上600μm以下とすることができる。
The thickness of the unit cell (fuel electrode, air electrode, solid electrolyte) configured in this manner is not particularly limited, but can be, for example, 100 μm or more and 1000 μm or less. Moreover, Preferably it can be 150 micrometers or more and 1000 micrometers or less. Furthermore, preferably it can be 200 micrometers or more and 1000 micrometers or less. Moreover, Preferably it can be 300 micrometers or more and 600 micrometers or less.
このほか、本SOFCは、従来公知のSOFCが備えることができる種々の要素を必要に応じて備えることができる。
In addition to this, the present SOFC can be provided with various elements that can be included in the conventionally known SOFC, as needed.
(SOFCスタック構造体及びその製造方法)
本明細書に開示されるSOFCスタック構造体は(以下、単に、本スタック構造体ともいう。)、本空気極を備える1以上の固体酸化物形燃料電池セルを含む複数のセルの積層構造を有することができる。すなわち、本空気極を含む空気極層を一層含んでいればよい。 (SOFC stack structure and manufacturing method thereof)
The SOFC stack structure disclosed herein (hereinafter, also simply referred to as the present stack structure) is a stack structure of a plurality of cells including one or more solid oxide fuel cells including the present air electrode. It can have. That is, it is only necessary to further include an air electrode layer including the present air electrode.
本明細書に開示されるSOFCスタック構造体は(以下、単に、本スタック構造体ともいう。)、本空気極を備える1以上の固体酸化物形燃料電池セルを含む複数のセルの積層構造を有することができる。すなわち、本空気極を含む空気極層を一層含んでいればよい。 (SOFC stack structure and manufacturing method thereof)
The SOFC stack structure disclosed herein (hereinafter, also simply referred to as the present stack structure) is a stack structure of a plurality of cells including one or more solid oxide fuel cells including the present air electrode. It can have. That is, it is only necessary to further include an air electrode layer including the present air electrode.
本スタック構造体は、本空気極を含む第1のセルと本空気極を含む第2のセルと共焼結されていてもよい。本空気極を含む複数のセルが共焼結されていることで高温を要する共焼結時においても、望ましくない反応相の生成が抑制又は回避されて好適な電極特性を発揮でき、良好な発電特性を発揮しうる。
The stack structure may be co-sintered with a first cell comprising the air electrode and a second cell comprising the air electrode. By co-sintering a plurality of cells including the air electrode, even during co-sintering requiring a high temperature, generation of an undesirable reaction phase can be suppressed or avoided, and suitable electrode characteristics can be exhibited, and good power generation can be achieved. It can exhibit the characteristics.
本スタック構造体においては、単セルに対してインターコネクタ又はその一部を備えることができる。スタック構造体においては、概して、燃料極、空気極及び固体電解質が積層された単セルが、他の単セルとインターコネクタを介して積層され接続された構造を有している。
In the present stack structure, an interconnector or a part thereof can be provided for a single cell. In a stack structure, generally, a unit cell in which a fuel electrode, an air electrode and a solid electrolyte are stacked has a structure in which the unit cell and another unit cell are stacked and connected via an interconnector.
本スタック構造体の製造方法は、燃料極層と、固体電解質層と、本空気極を含む空気極層と、を備える1以上のセルを含む2以上のセルの積層体であって、少なくとも一部の要素が相互に一体化されていない固体酸化物形燃料電池スタック構造体の前駆体を取得する工程と、前記前駆体を焼成して、前記少なくとも一部の要素を一体化する工程と、を備えることができる。本製造方法によれば、こうした一体化されていない要素を備える前駆体であっても、共焼結によって一体化しても、空気極層において有害な反応相の生成が抑制又は回避されるため、優れた発電効率のスタック構造体を得ることができる。
The manufacturing method of the present stack structure is a laminate of two or more cells including one or more cells including a fuel electrode layer, a solid electrolyte layer, and an air electrode layer including the present air electrode, Obtaining a precursor of a solid oxide fuel cell stack structure in which the elements of the part are not integrated with each other; and calcining the precursor to integrate the at least part of the elements; Can be provided. According to the present manufacturing method, even if the precursor including such non-integrated elements is integrated by co-sintering, the generation of the harmful reaction phase in the air electrode layer is suppressed or avoided. It is possible to obtain a stack structure with excellent power generation efficiency.
本製造方法の一体化工程は、前駆体を一括して焼結する工程をとることができる。かかる工程を採ることにより、コンパクトに一体化された上に十分な強度を有して、優れた発電効率を有するスタック構造体を得ることができる。こうした一体焼結によるスタック構造体及びその製造方法は、例えば、出願人らにより、既に、特開2014-56824号公報、国際公開第2016-9542号、国際公開第2015/05613号、国際公開第20154/122807号等として開示されており、これらに開示される方法を、当業者であれば適宜参照して本スタック構造体を製造することができる。
The integration step of the present manufacturing method can take a step of sintering the precursors all together. By taking such a process, it is possible to obtain a stack structure having excellent power generation efficiency while being compactly integrated and having sufficient strength. The stack structure and the method for producing the same by such integral sintering have already been described, for example, by JP-A-2014-56824, WO 2016-9542, WO 2015/05613, WO. The stack structure can be manufactured by appropriately referring to methods disclosed in the 20154/122807 and the like and disclosed therein.
一体化工程における焼成温度は、特に限定するものではないが、例えば、1200℃以上とすることができる。1200℃未満であると電解質及びインターコネクタを緻密にすることが困難だからである。また例えば、1200℃超とすることができ、また例えば、1250℃以上とすることができ、また例えば、1300℃以上とすることができ、また例えば、1350℃以上とすることができ、また例えば、1400℃以上とすることができる。また、特に限定するものではないが、例えば、1600℃以下、また例えば、1550℃以下、また例えば、1500℃以下、また例えば、1450℃以下、また例えば1400℃以下などとすることができる。焼成温度の範囲は、既述の上限温度及び下限温度を適宜組合せて設定することができるが、例えば、1200℃以上1400℃以下、また例えば、1250℃以上1350℃以下、また例えば1250℃以上1300℃以下などとすることができる。
The firing temperature in the integration step is not particularly limited, but can be, for example, 1200 ° C. or more. It is because it is difficult to densify the electrolyte and the interconnector if the temperature is less than 1200 ° C. Also, for example, the temperature can be higher than 1200 ° C., can be, for example, 1250 ° C. or higher, can be, for example, 1300 ° C. or higher, and can be, for example, 1350 ° C. or higher. And can be 1400 ° C. or higher. Although not particularly limited, for example, the temperature can be 1600 ° C. or less, for example 1550 ° C. or less, for example 1500 ° C. or less, for example 1450 ° C. or less, for example 1400 ° C. or less. The range of the firing temperature can be set by appropriately combining the upper limit temperature and the lower limit temperature described above, for example, 1200 ° C. to 1400 ° C., for example, 1250 ° C. to 1350 ° C., for example, 1250 ° C. to 1300 It can be set to, for example, less than
また、一体化工程において、上記焼成温度による加熱時間も特に限定するものではなく、良好な一体性が得られる範囲で適宜決定されるが、例えば、30分以上、また例えば、45分以上、また例えば、1時間以上、また例えば、2時間以上、また例えば、3時間以上、また例えば、4時間以上、また例えば5時間以上などとすることができる。なお、一体化工程は、空気中で実施することができる。
Further, in the integration step, the heating time by the above-mentioned baking temperature is not particularly limited either, and is appropriately determined in a range where good integrity can be obtained, for example, 30 minutes or more, for example 45 minutes or more, For example, it can be 1 hour or more, for example 2 hours or more, for example 3 hours or more, for example 4 hours or more, for example 5 hours or more. In addition, an integration process can be implemented in air.
また、一体化工程は、特に限定するものではないが、必要に応じて前駆体を加圧した状態で実施することができる。加圧方法は特に限定するものではないが、例えば、CIPなどを採用することができる。
In addition, although the integration step is not particularly limited, it can be carried out in a state where the precursor is pressurized as necessary. The pressurizing method is not particularly limited, but, for example, CIP can be adopted.
また、一体化工程における上記焼成温度による加熱時間も特に限定するものではなく、良好な一体性が得られる範囲で適宜決定されるが、例えば、30分以上、また例えば、45分以上、また例えば、1時間以上、また例えば、2時間以上、また例えば、3時間以上、また例えば、4時間以上、また例えば5時間以上などとすることができる。なお、一体化工程は、空気中で実施することができる。
Moreover, the heating time by the said baking temperature in an integration process is not specifically limited, either, Although it determines suitably in the range from which favorable integrity is obtained, For example, 30 minutes or more, 45 minutes or more, For example, 1 hour or more, for example, 2 hours or more, for example, 3 hours or more, for example, 4 hours or more, for example 5 hours or more. In addition, an integration process can be implemented in air.
本製造方法によれば、こうした高温で一体化工程を実施できるため、燃料極及び空気極のそれぞれに対して好適なインターコネクタ特性(導電性及びガス遮断性)を有する層をそれぞれ適用でき、優れた導電性と一体性を発揮させることができる。製造工程を複雑化することなく、スタック構造体の一体焼結が可能である。
According to the present manufacturing method, since the integration process can be performed at such a high temperature, layers having suitable interconnector properties (conductivity and gas barrier properties) can be applied to each of the fuel electrode and the air electrode. Conductivity and integrity can be exhibited. It is possible to integrally sinter the stack structure without complicating the manufacturing process.
SOFCスタックの製造方法は、特に限定するものではないが、概して、単セル及びスタックを構成する1又は2以上の要素の材料を含むグリーンシートを予め準備した上で積層したり、適宜、こうした材料層をスラリーとして直接積層したりしつつ、これらを必要な順序で積層し、一体焼成する。どのような要素を含むグリーンシートを準備するか、あるいはスラリーとして供給するか、さらには、積層順序等は、SOFCスタックを得られる範囲で当業者であれば適宜決定して実施することができる。
The manufacturing method of the SOFC stack is not particularly limited, but generally, a green sheet including materials of single cells and one or more elements constituting the stack is prepared in advance and then laminated, or, as appropriate, such materials While laminating the layers directly as a slurry, they are laminated in the required order and integrally fired. Those skilled in the art can appropriately determine and carry out what kind of elements to prepare a green sheet containing the element, or supply it as a slurry, and further, the stacking order and the like as long as the SOFC stack can be obtained.
一体化工程は、前駆体を構成する要素のうち、少なくとも一部が焼結一体化するように実施する。好ましくは、全ての要素を共焼結させる。なお、一体化工程に先だって、前駆体を、60℃~120℃程度の温度で、必要に応じて冷間等方圧プレス(CIP)することにより圧着してもよいし、この圧着体を温度300℃~500℃の範囲内で脱脂処理を施すことができる。
The integration step is performed such that at least a part of the elements constituting the precursor sinter and integrate. Preferably, all the elements are co-sintered. The precursor may be crimped by cold isostatic pressing (CIP) at a temperature of about 60 ° C. to 120 ° C., if necessary, prior to the integration step. The degreasing treatment can be performed within the range of 300 ° C. to 500 ° C.
なお、スラリーやグリーンシート自体の作製方法は、当業者に周知である。例えば、各層のためのスラリーは、各要素の材料を主成分等として、さらにバインダー樹脂、有機溶媒などが適量加えることで調製することができる。また、グリーンシートは、調製したスラリーを、ナイフコート、ドクターブレードなどの塗工装置を用いたテープキャスト法などのキャスティングによるシート成形法、あるいはスクリーン印刷法やスプレー法などを用いてグリーンシート前駆体を得ることができる。なお、得られたシート前駆体を、常法に従い、乾燥後、必要に応じて加熱処理することでグリーンシート(未焼成のセラミックスグリーンシート)を得ることができる。
The methods for producing the slurry and the green sheet itself are well known to those skilled in the art. For example, the slurry for each layer can be prepared by further adding an appropriate amount of a binder resin, an organic solvent, etc., with the material of each element as the main component. In addition, the green sheet can be prepared by using a sheet forming method by casting such as tape casting using a coating apparatus such as knife coating or doctor blade, or using a screen printing method, a spray method, or the like. You can get A green sheet (an unfired ceramic green sheet) can be obtained by drying the obtained sheet precursor according to a conventional method, and then heat treatment as necessary.
また、燃料極、空気極の作製方法も、当業者に周知である。例えば、当業者は、公知の方法に従って粒子状の消失材料をスラリーの配合に含めるか、あるいは造孔剤等を含めることで、所望の平均気孔径、気孔率、気孔径分布等や適度な多孔質性を焼成により発現できるグリーンシートを作製することができる。なお、消失材料自体も周知であるとともに、各種材料を商業的に入手可能である。
Also, methods of making the fuel electrode and the air electrode are well known to those skilled in the art. For example, a person skilled in the art may add a particulate disappearance material to the slurry formulation according to a known method, or include a pore forming agent or the like to obtain a desired average pore size, porosity, pore size distribution, etc. It is possible to produce a green sheet which can express its quality by firing. In addition, while the lost material itself is also known, various materials are commercially available.
なお、以上説明したSOFCスタックの製造方法は、本明細書に開示されるSOFCスタックの製造方法の一例に過ぎない。したがって、従来公知のSOFCの製造方法に従い、SOFCの単セルやSOFCスタックを構成する層の少なくとも1層を含むグリーンシートの積層や構成層を直接スラリーを塗布等することによる積層を適宜組み合わせて、SOFC単セル及びSOFCスタックを製造することができる。
The method of manufacturing the SOFC stack described above is only an example of the method of manufacturing the SOFC stack disclosed in the present specification. Therefore, according to the conventionally known SOFC manufacturing method, lamination of green sheets including at least one layer of SOFC single cells or layers constituting an SOFC stack or lamination by directly applying a slurry etc. is appropriately combined, SOFC single cells and SOFC stacks can be manufactured.
燃料極、空気極及びインターコネクタにガス流路を形成する方法も、当業者に周知である。当業者であれば、公知の方法に従い、燃料極材料のグリーンシート等に所望のガス流路パターンを形成可能な消失材料を配置して、さらに燃料極材料のグリーンシート等を積層するなど適宜実施することができる。
Methods of forming gas passages in the fuel electrode, air electrode and interconnector are also well known to those skilled in the art. A person skilled in the art appropriately arranges an expendable material capable of forming a desired gas flow path pattern on a green sheet of a fuel electrode material, etc. according to a known method, and further laminates a green sheet of a fuel electrode material etc. can do.
また、適宜、燃料極材料層や空気極材料層に隣接してシール部となるシール材料層を備える電極グリーンシートも製造できる。
In addition, it is possible to manufacture an electrode green sheet provided with a seal material layer which becomes a seal portion adjacent to the fuel electrode material layer or the air electrode material layer, as appropriate.
以上説明した本スタック構造体は、さらに、必要に応じて集電体等を接続し、還元性ガス及び酸化性ガスの供給源などを適宜接続し、さらに、加熱装置を備えるようにすることで、SOFCシステムを構築できる。
Further, according to need, the stack structure described above further connects current collectors, etc., appropriately connects sources of reducing gas and oxidizing gas, etc., and further includes a heating device. , SOFC system can be built.
以下、本明細書の開示を具現化した実施例を説明するが、本明細書の開示は以下の実施例に限定されるものではない。
Hereinafter, examples embodying the disclosure of the present specification will be described, but the disclosure of the present specification is not limited to the following examples.
(La1-xSrx)(Mn1-yNiy)O3(LSMNi)として,y=0.2と固定し、x=0.1,0.2,0.3,0.4,0.5の組成でグリシン法を用いて合成を行った。すなわち、グリシン20gに対して、化学量論的に意図した組成になるように硝酸ランタン6水和物(La(NO3)3・6H2O)、硝酸ストロンチウム6水和物(Sr(NO3)2・6H2O)、硝酸マンガン6水和物(Mn(NO3)3・6H2O)、硝酸ニッケル6水和物(Ni(NO3)2・6H2O)の混合物20gを混合したものを原料として、室温で水に溶解し、180℃まで加熱後、450℃で数時間加熱して水及び有機物を除去後、空気中850℃で5時間加熱焼成することで、LSMNiないしその前駆体を得た。
(La 1-x Sr x) (Mn 1-y Ni y) O 3 as a (LSMNi), fixed with y = 0.2, x = 0.1,0.2,0.3,0.4, The synthesis was performed using the glycine method with a composition of 0.5. That is, for 20 g of glycine, lanthanum nitrate hexahydrate (La (NO 3 ) 3 .6H 2 O), strontium nitrate hexahydrate (Sr (NO 3 ) so as to obtain a composition as intended stoichiometrically. 2. ) Mix 20 g of a mixture of 2 · 6 H 2 O), manganese nitrate hexahydrate (Mn (NO 3 ) 3 · 6 H 2 O), nickel nitrate hexahydrate (Ni (NO 3 ) 2 · 6 H 2 O) The raw material is dissolved in water at room temperature, heated to 180 ° C., heated at 450 ° C. for several hours to remove water and organic substances, and then heat-fired at 850 ° C. in air for 5 hours to obtain LSM Ni or its The precursor was obtained.
得られた各種のLSMNiを空気中1300℃,5時間焼成した。得られた焼成粉末のXRDプロファイルを図1に示す。図1に示すように、上記したモル分率の原料範囲内において、1300℃の熱処理においても不純物相が見られず、すべて単一相が得られていることがわかった。以上のことから、LSMのBサイト(Mnサイト)の一部をNiで置換することが可能であることがわかった。
The various LSMNis obtained were calcined in air at 1300 ° C. for 5 hours. The XRD profile of the obtained calcined powder is shown in FIG. As shown in FIG. 1, it was found that no impurity phase was observed even in the heat treatment at 1300 ° C. in the above-described raw material range of molar fraction, and all single phase was obtained. From the above, it was found that it is possible to replace a part of the B site (Mn site) of LSM with Ni.
本実施例では、実施例1で合成した各種のLSMNiについて導電率を測定した。導電率を測定するための試料を、各種のLSMNi粉末を、CIPにより直径20mm、4mm厚さのペレットに成形後、空気中で1300℃で5時間焼成し、その後、ペレットの両面を#400から#1500までのSiC研磨紙で順に研磨して作製した。導電率は、Van der Pauw 設定においてDC四端子法で、室温から800℃の範囲で測定した。銀製のメッシュとワイヤを導体として用いた。結果を図2に示す。
In the present example, the conductivity of each of the various LSM Ni synthesized in Example 1 was measured. Samples for measuring conductivity were formed into pellets of 20 mm diameter and 4 mm thickness by CIP using various LSMNi powders, and then fired in air at 1300 ° C. for 5 hours for 5 hours, then both sides of the pellet were # 400 It manufactured by grind | polishing in order with # 1500 SiC grinding paper. The conductivity was measured from room temperature to 800 ° C. with the DC four probe method at the Van der Pauw setting. Silver mesh and wire were used as conductors. The results are shown in FIG.
図2に示すように、xが0.1~0.4で高い導電率を示し、さらに、同0.2~0.3で高い導電率を示し、0.3で最も高い導電率を示すことがわかった。
As shown in FIG. 2, x exhibits a high conductivity at 0.1 to 0.4, and exhibits a high conductivity at 0.2 to 0.3, and exhibits the highest conductivity at 0.3. I understood it.
一般に、空気極は、YSZ等の固体電解質と接しているほか、空気極に固体電解質を混合して熱膨張率を制御するなどが行われている。材料を空気極材料として使用するためには、YSZ等との反応性が無視できるレベルに小さいことが重要となる。本実施例では、LSMNiと固体電解質の材料であり、また空気極材料でもあるYSZ(8モル%Y2O3安定化ZrO2)との反応性を評価した。実施例1で合成した各種のLSMNiとYSZとを50:50(質量比)で十分混合し、CIPにより直径20mm、4mm厚さのペレットに成形後、空気中で1300℃,5時間の熱処理を行って焼結体を得、その後、ペレットの両面を#400から#1500までのSiC研磨紙で順に研磨して試料を作製した。これらの試料につき、XRD回折を行って、XRDプロファイルを得た。結果を、図3に示す。
Generally, the air electrode is in contact with a solid electrolyte such as YSZ, etc., and the solid electrolyte is mixed with the air electrode to control the thermal expansion coefficient. In order to use the material as an air electrode material, it is important that the reactivity with YSZ etc. be as small as negligible. In this example, the reactivity between LSMNi and YSZ (8 mol% Y 2 O 3 stabilized ZrO 2 ) which is a material of a solid electrolyte and also an air electrode material was evaluated. Various kinds of LSMNi and YSZ synthesized in Example 1 are thoroughly mixed at 50:50 (mass ratio) and formed into pellets of 20 mm in diameter and 4 mm thickness by CIP, and heat treated in air at 1300 ° C. for 5 hours A sintered body was obtained to obtain a sintered body, and then both sides of the pellet were polished in order with # 400 to # 1500 SiC abrasive paper to prepare a sample. XRD diffraction was performed on these samples to obtain an XRD profile. The results are shown in FIG.
図3に示すように、x=0.1及び0.2のときは、LSMとYSZ以外の反応相の生成は見られないが、x=0.3になると、少量ではあるが高抵抗反応相であるSZO反応相が生成していた。さらに、x=0.4以上となると、それに対して、xが0.3より多いときには、高抵抗反応相であるSZO相が顕著に生成する傾向が観察された。以上のことから、xを0.3以下、あるいは0.3未満とすることにより、高温の焼成温度においてもSZO反応相の生成を効果的に抑制又は回避した空気極材料を得ることができることがわかった。反応相抑制の観点からは、xは好ましくは、0.2以下、また好ましくは0.1以下であることがわかった。
As shown in FIG. 3, when x = 0.1 and 0.2, no formation of reaction phases other than LSM and YSZ is observed, but when x = 0.3, a small but high resistance reaction is obtained. A phase SZO reaction phase was formed. Furthermore, when x was 0.4 or more, on the other hand, when x was more than 0.3, it was observed that the high resistance reaction phase, the SZO phase, tended to be generated remarkably. From the above, by setting x to 0.3 or less, or less than 0.3, it is possible to obtain an air electrode material in which the generation of the SZO reaction phase is effectively suppressed or avoided even at a high-temperature firing temperature. all right. From the viewpoint of reaction phase suppression, it was found that x is preferably 0.2 or less, and preferably 0.1 or less.
さらに、SZOの生成量につき、8YSZの(111)ピーク強度を基準にSZOの(110)ピーク強度比を見積もった。結果を図4に示す。図4に示すように、x=0.24以下であれば、高抵抗反応相であるSZO相をほぼ生成しないといえることがわかった。
Furthermore, with respect to the amount of SZO produced, the (110) peak intensity ratio of SZO was estimated based on the (111) peak intensity of 8YSZ. The results are shown in FIG. As shown in FIG. 4, it was found that when x is 0.24 or less, it can be said that the SZO phase, which is a high resistance reaction phase, is hardly generated.
本実施例では、LSMNiにおけるMnとNiの最適なモル分率について検討した。実施例1に準じて、La0.8Sr0.2Mn1-yNiyO3-dとして、yを0.1、0.2及び0.3と変化させたLSMNiを合成し、YSZと50:50(質量比)の混合粉末を調製し、この混合粉末から実施例2に準じて得た焼結体試料につき、粉末XRD解析を行い、XRDプロファイルを得た。なお、対照として、単なるLSMとYSZの50:50(質量比)の混合粉末由来焼結体試料を用いた。結果を、図5に示す。
In this example, the optimum mole fractions of Mn and Ni in LSMNi were examined. According to Example 1, LSMNi in which y is changed to 0.1, 0.2, and 0.3 was synthesized as La 0.8 Sr 0.2 Mn 1-y Ni y O 3-d , and 50: 50 with YSZ. A mixed powder of (mass ratio) was prepared, and a sintered body sample obtained from this mixed powder according to Example 2 was subjected to powder XRD analysis to obtain an XRD profile. As a control, a mixed powder-derived sintered body sample of mere 50: 50 (mass ratio) of LSM and YSZ was used. The results are shown in FIG.
図5に示すように、y=0.1及び0.2のときは、LSMNiとYSZ以外の反応相の生成は観察されないが、yが0.3を越えると、高抵抗反応相であるSZOやLZOが生成する傾向が大きくなることがわかった。従って、yを0.3以下、あるいは0.3未満などとしてLSMNiを合成することによって、高温での熱処理にも高抵抗反応相の生成を効果的に抑制又は回避できる空気極材料が得られることがわかった。
As shown in FIG. 5, when y = 0.1 and 0.2, formation of reaction phases other than LSMNi and YSZ is not observed, but when y exceeds 0.3, SZO which is a high resistance reaction phase It was found that the tendency to generate LZO and LZO increases. Therefore, by synthesizing LSMNi with y being 0.3 or less, or less than 0.3, etc., it is possible to obtain an air electrode material capable of effectively suppressing or avoiding the formation of a high resistance reaction phase even in heat treatment at high temperatures. I understand.
本実施例では、LSMNi((La0.8Sr0.2)(Mn0.8Ni0.2)O3)とLSMとの比較を行った。それぞれYSZと50:50(質量比)で混合し、実施例2に準じて成形後、空気中で1300℃,5時間あるいは24時間焼成した焼結体試料を実施例2に準じて研磨して、XRD回折を行い、XRDプロファイルを得た。結果を、図6に示す。
In this example, LSM Ni ((La 0.8 Sr 0.2 ) (Mn 0.8 Ni 0.2 ) O 3 ) and LSM were compared. Each sintered body sample was mixed with YSZ at 50:50 (mass ratio) and molded according to Example 2 and fired in air at 1300 ° C. for 5 hours or 24 hours according to Example 2 , XRD diffraction was performed to obtain an XRD profile. The results are shown in FIG.
図6に示すように、LSMでは、5時間の熱処理で既にLZOの生成が見られるが、LSMNiでは、24時間の焼成でも、LZO及びSZOのような高抵抗反応相が生成しないことがわかった。そのため、本空気極を用いることによって、高温焼成による電極抵抗の低下が大幅に抑制できることが示唆された。
As shown in FIG. 6, in LSM, the formation of LZO was already observed after 5 hours of heat treatment, but in LSMNi, it was found that high resistance reaction phases such as LZO and SZO were not formed even after 24 hours of calcination. . Therefore, it was suggested that the fall of the electrode resistance by high temperature baking can be suppressed significantly by using this air electrode.
本実施例では、実施例5で評価したLSMNi及びLSMから作製した空気極の導電性について調べた。厚さ300μmのYSZ電解質の両面に、LSMあるいはLSMNiをスクリーン印刷し、1300℃で焼き付けた。この試料の導電性の温度依存性を空気中で測定した。導電性については、ASR(面積で規格化した抵抗)の逆数の値を用いて評価した。なお、導電率は、実施例3と同様にして測定した。結果を図7に示す。
In this example, the conductivity of the air electrode manufactured from LSMNi and LSM evaluated in Example 5 was examined. LSM or LSMNi was screen printed on both sides of a 300 μm thick YSZ electrolyte and baked at 1300 ° C. The temperature dependence of the conductivity of this sample was measured in air. The conductivity was evaluated using the reciprocal value of ASR (resistance normalized by area). The conductivity was measured in the same manner as in Example 3. The results are shown in FIG.
図7に示すように、LSMNiを用いることによって、導電性が大幅に改善できることを明らかにできた。
As shown in FIG. 7, it has been clarified that the conductivity can be significantly improved by using LSMNi.
Claims (10)
- 固体酸化物形燃料電池の空気極用材料であって、
ペロブスカイト型酸化物である(La1-xSrx)(Mn1-yNiy)O3(ただし、0<y<0.3)を含む材料。 A material for an air electrode of a solid oxide fuel cell,
Material containing a perovskite oxide (La 1-x Sr x) (Mn 1-y Ni y) O 3 ( however, 0 <y <0.3). - 前記(La1-xSrx)(Mn1-yNiy)O3は、(La1-xSrx)(Mn1-yNiy)O3 (ただし、0<x≦0.3)である、請求項1に記載の材料。 The (La 1-x Sr x) (Mn 1-y Ni y) O 3 is, (La 1-x Sr x ) (Mn 1-y Ni y) O 3 ( however, 0 <x ≦ 0.3) The material according to claim 1, which is
- さらに、希土類元素安定化ジルコニアを含む、請求項1又は2に記載の材料。 The material according to claim 1, further comprising a rare earth element stabilized zirconia.
- 前記希土類元素は、イットリウムである、請求項3に記載の材料。 The material according to claim 3, wherein the rare earth element is yttrium.
- 前記希土類元素安定化ジルコニアを10質量%以上60質量%以下含有する、請求項2~4のいずれかに記載の材料。 The material according to any one of claims 2 to 4, containing 10% by mass or more and 60% by mass or less of the rare earth element-stabilized zirconia.
- 請求項1~5のいずれかに記載の空気極材料の焼結体である、固体酸化物形燃料電池の空気極。 An air electrode of a solid oxide fuel cell, which is a sintered body of the air electrode material according to any one of claims 1 to 5.
- 請求項1~5のいずれかに記載の空気極材料の焼結体を空気極として備える、固体酸化物形燃料電池。 A solid oxide fuel cell comprising the sintered body of the air electrode material according to any one of claims 1 to 5 as an air electrode.
- 請求項1~5のいずれかに記載の空気極材料の焼結体である空気極を含む空気極層を備える1以上の固体酸化物形燃料電池セルを複数の積層構造を有する、固体酸化物形燃料電池スタック構造体。 A solid oxide having one or more solid oxide fuel cell comprising a plurality of solid oxide fuel cell cells each having a stacked structure, the solid oxide fuel cell comprising an air electrode layer including an air electrode comprising a sintered body of the air electrode material according to any one of claims 1 to 5 Fuel cell stack structure.
- 前記スタック構造体においては、前記空気極層を含む第1のセルと前記空気極層を含む第2のセルとが共焼結されている、請求項8に記載のスタック構造体。 The stack structure according to claim 8, wherein in the stack structure, the first cell including the air electrode layer and the second cell including the air electrode layer are co-sintered.
- 固体酸化物形燃料電池の製造方法であって、
燃料極層と、固体電解質層と、請求項1~5のいずれかに記載の空気極材料を含む空気極層と、を備える1以上のセルを含む2以上のセルの積層体であって、少なくとも一部の要素が相互に一体化されていない固体酸化物形燃料電池スタック構造体の前駆体を取得する工程と、
前記前駆体を焼成して、前記少なくとも一部の要素を一体化する工程と、
を備える、製造方法。 A method of manufacturing a solid oxide fuel cell, comprising:
A laminate of two or more cells comprising one or more cells comprising a fuel electrode layer, a solid electrolyte layer, and an air electrode layer comprising the air electrode material according to any one of claims 1 to 5, Obtaining a precursor of a solid oxide fuel cell stack structure in which at least some of the elements are not mutually integrated;
Firing the precursor to integrate the at least some of the elements;
A manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/025604 WO2019012666A1 (en) | 2017-07-13 | 2017-07-13 | Material for air electrodes of solid oxide fuel cells and use of same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/025604 WO2019012666A1 (en) | 2017-07-13 | 2017-07-13 | Material for air electrodes of solid oxide fuel cells and use of same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019012666A1 true WO2019012666A1 (en) | 2019-01-17 |
Family
ID=65001172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/025604 WO2019012666A1 (en) | 2017-07-13 | 2017-07-13 | Material for air electrodes of solid oxide fuel cells and use of same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019012666A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000200613A (en) * | 1999-01-06 | 2000-07-18 | Mitsubishi Heavy Ind Ltd | Air-electrode material for solid-electrolyte fuel cell |
JP2005139024A (en) * | 2003-11-06 | 2005-06-02 | Toto Ltd | Mixed conductive ceramic material and solid oxide type fuel cell using this material |
JP2006001813A (en) * | 2004-06-18 | 2006-01-05 | Central Res Inst Of Electric Power Ind | B site-substituted type lanthanum strontium manganite powder, its sintered compact and solid oxide type fuel cell utilizing the sintered compact |
JP2012099493A (en) * | 2008-03-26 | 2012-05-24 | Japan Fine Ceramics Center | Stack structure for multilayer type solid oxide fuel cell, multilayer type solid oxide fuel cell, and method of manufacturing the same |
JP2016154096A (en) * | 2015-02-20 | 2016-08-25 | 三菱日立パワーシステムズ株式会社 | Solid oxide fuel battery and manufacturing method for solid oxide fuel battery |
-
2017
- 2017-07-13 WO PCT/JP2017/025604 patent/WO2019012666A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000200613A (en) * | 1999-01-06 | 2000-07-18 | Mitsubishi Heavy Ind Ltd | Air-electrode material for solid-electrolyte fuel cell |
JP2005139024A (en) * | 2003-11-06 | 2005-06-02 | Toto Ltd | Mixed conductive ceramic material and solid oxide type fuel cell using this material |
JP2006001813A (en) * | 2004-06-18 | 2006-01-05 | Central Res Inst Of Electric Power Ind | B site-substituted type lanthanum strontium manganite powder, its sintered compact and solid oxide type fuel cell utilizing the sintered compact |
JP2012099493A (en) * | 2008-03-26 | 2012-05-24 | Japan Fine Ceramics Center | Stack structure for multilayer type solid oxide fuel cell, multilayer type solid oxide fuel cell, and method of manufacturing the same |
JP2016154096A (en) * | 2015-02-20 | 2016-08-25 | 三菱日立パワーシステムズ株式会社 | Solid oxide fuel battery and manufacturing method for solid oxide fuel battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015102701A2 (en) | Formation of solid oxide fuel cells | |
JP4018377B2 (en) | Solid oxide fuel cell and manufacturing method thereof | |
JP5336207B2 (en) | Solid oxide fuel cell | |
JP6100050B2 (en) | Air electrode for fuel cell | |
JP2007200664A (en) | Method of manufacturing solid oxide fuel cell | |
JP6519001B2 (en) | Solid oxide fuel cell air electrode, solid oxide fuel cell, and method of manufacturing solid oxide fuel cell air electrode | |
JP2015191810A (en) | Anode support substrate for solid oxide fuel batteries and solid oxide fuel battery cell | |
JP4828104B2 (en) | Fuel cell | |
JP2017157553A (en) | Fuel cell | |
JP6358099B2 (en) | Fuel cell single cell and manufacturing method thereof | |
JPH09180731A (en) | Solid electrolyte fuel cell | |
JP2006059611A (en) | Ceria based solid electrolyte fuel cell and its manufacturing method | |
JP2006059610A (en) | Solid electrolyte fuel cell and its manufacturing method | |
WO2019012666A1 (en) | Material for air electrodes of solid oxide fuel cells and use of same | |
JP6524434B2 (en) | Solid oxide fuel cell air electrode, solid oxide fuel cell, and method of manufacturing solid oxide fuel cell air electrode | |
JP5091433B2 (en) | Solid oxide fuel cell and manufacturing method thereof | |
JP5597177B2 (en) | Air electrode material for solid oxide fuel cell and solid oxide fuel cell | |
JP6694724B2 (en) | Solid oxide fuel cell | |
KR102026502B1 (en) | Solid oxide fuel cell, battery module comprising the same and method for manufacturing solid oxide fuel cell | |
JP6712119B2 (en) | Solid oxide fuel cell stack | |
JP7114555B2 (en) | Electrodes for water vapor electrolysis | |
JP6524756B2 (en) | Solid oxide fuel cell stack | |
US20230282840A1 (en) | Solid oxide electrochemical cell and use thereof | |
JP2007200663A (en) | Manufacturing method of cerium based solid electrolyte fuel cell | |
JP5885878B1 (en) | Interconnector material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17917694 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17917694 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |