WO2019012622A1 - Device for producing three-dimensional cell structure having arbitrary shape, and method for producing same - Google Patents

Device for producing three-dimensional cell structure having arbitrary shape, and method for producing same Download PDF

Info

Publication number
WO2019012622A1
WO2019012622A1 PCT/JP2017/025400 JP2017025400W WO2019012622A1 WO 2019012622 A1 WO2019012622 A1 WO 2019012622A1 JP 2017025400 W JP2017025400 W JP 2017025400W WO 2019012622 A1 WO2019012622 A1 WO 2019012622A1
Authority
WO
WIPO (PCT)
Prior art keywords
manufacturing apparatus
linear members
cell structure
space
cell
Prior art date
Application number
PCT/JP2017/025400
Other languages
French (fr)
Japanese (ja)
Inventor
次郎 大野
Original Assignee
次郎 大野
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 次郎 大野 filed Critical 次郎 大野
Priority to PCT/JP2017/025400 priority Critical patent/WO2019012622A1/en
Publication of WO2019012622A1 publication Critical patent/WO2019012622A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus

Definitions

  • the present invention relates to a method for producing a three-dimensional cell structure or a three-dimensional cell construct using a cell aggregate, and in particular, a three-dimensional cell using a strip-like, linear or planar member formed into an arbitrary shape.
  • the first is the preparation of artificial tissues and organs intended for human transplantation.
  • Artificial tissue is produced in such a way that a portion of the artificial tissue expresses a function, and human transplantation is the final purpose.
  • appropriate evaluation accreditation is required, and long-term efforts are required.
  • the second is a method of utilizing toxicity test, drug effect determination, pathology determination, developmental science, etc. using these three-dimensional cell structures as a test strip.
  • suspension cells There are two types of cells: suspension cells and anchorage-dependent adherent cells.
  • cells of blood system and immune system belong, and in the latter, cells of organs, skin, bone and the like belong.
  • Adherent cells can not survive for a long time in the floating state in a solution, and need to survive and proliferate by adhering to a scaffold such as a glass petri dish or hydrogel.
  • the adherent cells When the adherent cells are placed in a non-adherent environment, the cells adhere to each other in search of a scaffold, cell aggregates are formed, and cell aggregates are placed in an environment in which they are mutually contacted in some way. They adhere and fuse to form larger three-dimensional cell structures. This phenomenon is widely known, and Non-patent documents 1 to 6 show these specific examples.
  • Non-Patent Document 6 shows an idea of treating a three-dimensional cell structure as a "building block", and suggests that various cells can be used.
  • a cell mass is a roughly circular aggregate composed of cells alone
  • a cell aggregate is a aggregate composed of cell mass and cells and other substances. .
  • Patent Document 1 discloses a method for producing a tissue plug which can produce tissue of any shape with cells alone without using a carrier. Specifically, the cell aggregate is placed in a chamber having micropores through which the culture solution can pass only on the bottom surface, and the culture solution is contained in the chamber in an amount such that a part of the cell aggregate contacts the gas phase. The cell aggregates are cultured in a culture solution in an excess amount of the culture solution in the chamber.
  • Patent Document 4 discloses a method of producing a three-dimensional cell by laminating a cultured cell cultured in a flat plane on a permeable sheet on a cultured cell in another planar culture together with the sheet.
  • Patent No. 4122280 U.S. Patent No. 8852932 Patent No. 4517125 International Application No. PCT / JP2008 / 056268
  • International Publication WO2005 / 047496 PLOS ONE Journal. Pone. 0136681
  • a rheological mechanism sufficient to explain the kinetics of cell sorting. J Theor Biol. 1972; 37: 43-73.
  • An object of the present invention is to solve such conventional problems, and to provide a manufacturing apparatus capable of manufacturing a three-dimensional cell structure having an arbitrary shape, and a method for manufacturing the same.
  • a member capable of permeating a liquid such as a culture medium and forming a three-dimensional space for holding cell aggregates is prepared, and a plurality of cell aggregates are collected in the space Providing a collection and fusing the plurality of cell aggregates to form a cell structure.
  • a manufacturing apparatus for manufacturing a cell structure includes a first member defining at least a first space, and a device disposed opposite to the first member and defining at least a second space
  • a plurality of cell aggregates can be accommodated in a third space defined by the first space and the second space, having at least two members, and at least both the first member and the second member Is permeable to liquids such as culture media.
  • a three-dimensional space is formed by a member permeable to a liquid such as a culture medium, and a cell aggregate is supplied in the three-dimensional space to manufacture a cell structure.
  • Three-dimensional structures can be manufactured. Furthermore, it becomes possible to freely set the medium supply channel.
  • FIG. 1 (A) is a perspective view showing a schematic configuration of a cell structure manufacturing apparatus according to an embodiment of the present invention
  • FIG. 1 (B) is a view showing an example of connection between linear members and columns.
  • an arbitrary three-dimensional space for holding cell aggregates is formed by a linear member or a porous member or the like, and the three-dimensional space A plurality of cell aggregates are supplied to the inside to produce a three-dimensional cell structure according to a three-dimensional space.
  • the member forming the three-dimensional space is permeable to a liquid such as a culture medium, so that the cell structure in the three-dimensional space can be supplied with the culture medium or the like from all directions.
  • the member forming the three-dimensional space can be formed using a three-dimensional printer.
  • the three-dimensional printer generates a member that defines an arbitrary three-dimensional space based on the three-dimensional data. It should be noted that the scale of the drawings is exaggerated for the purpose of understanding the present invention, and may not necessarily be different from the size of an actual product or the like.
  • FIG. 1 is a view showing a schematic configuration of a cell structure manufacturing apparatus according to a first embodiment of the present invention.
  • the manufacturing apparatus 100 of the cell structure of the present embodiment includes a plurality of linear members 110, a plurality of columns 120 supporting each of the plurality of linear members 110, a plurality of linear members 130, and a plurality of linear members 130. And a plurality of pillars 140 for supporting each of the linear members 130.
  • the plurality of linear members 110 may be of any shape, for example, the plurality of linear members 110 may have a circular or rectangular cross section, and may be two-dimensionally spaced at a predetermined interval substantially parallel to one another. Extends in a straight line. Alternatively, the plurality of linear members 110 may be curved or bent three-dimensionally at regular intervals substantially parallel to one another. Preferably, the plurality of linear members 110 are processed into an arbitrary shape and made of plastic or other soft material so as to facilitate removal from the cell structure.
  • a plurality of linear members 110 arranged two-dimensionally or three-dimensionally, or processed two-dimensionally or three-dimensionally, form a two-dimensional space or three-dimensional space by the envelope surface of the plurality of lines. As defined above, this two-dimensional space or three-dimensional space provides a space for holding cell aggregates.
  • the plurality of linear members 130 are also configured in the same manner as the plurality of linear members 110, and are arranged two-dimensionally or three-dimensionally, or processed two-dimensionally or three-dimensionally,
  • the envelopes of the lines of each of the linear members 130 define a two-dimensional space or a three-dimensional space, and these spaces provide a space for holding cell aggregates.
  • the plurality of linear members 110 define a two-dimensional flat surface by their lines, and the plurality of linear members 130 have convex steps or bends in part thereof. By forming the part, a substantially convex three-dimensional space S is defined.
  • each of the plurality of linear members 110 is not limited to the same shape, and may have different shapes. The same applies to the plurality of linear members 130. Furthermore, the spacing of each of the plurality of linear members 110 is not limited to being uniform, and each spacing may be different. The same applies to the distance between each of the plurality of linear members 130. Thus, the spacing between each of the plurality of linear members 110 and the spacing between each of the plurality of linear members 130 may be different.
  • the plurality of columns 120 are connected to the back side of each of the plurality of linear members 110. That is, on the back surface of one linear member, it is supported by the plurality of columns 120 along the direction in which the line extends, and as a result, on the back surface side of the plurality of linear members 110, the plurality of columns 120 are two-dimensionally arranged.
  • the plurality of columns 140 are connected to the back side of each of the plurality of linear members 130, and the plurality of columns 140 are two-dimensionally arranged on the back side of the plurality of linear members 130. .
  • the plurality of linear members 110 and the plurality of columns 120 are integrally formed by the three-dimensional printer, and the plurality of linear members 130 and the plurality of columns 140 are also integrally formed by the three-dimensional printer.
  • FIGS. 1 (B), (C), and (D) are diagrams showing an example of connection between a support and a linear member.
  • the connection method between the column and the linear member is arbitrary, in the example shown in FIG. 1B, the column 120/140 has a relatively large head 150 and the head 150 is a linear member. It is engaged in the groove on the back side of 110/130.
  • the tip end portion 152 of the support 120/140 has a trapezoidal shape in which it gradually becomes thinner, and the material forming the support 120/140 and the material forming the linear member 110/130 are Differently, both materials are in an easy-to-peel relationship.
  • FIG. 1B the connection method between the column and the linear member
  • the column 120/140 has a relatively large head 150 and the head 150 is a linear member. It is engaged in the groove on the back side of 110/130.
  • the tip end portion 152 of the support 120/140 has a trapezoidal shape in which it gradually becomes thinner, and the material forming the support 120/
  • the tip end portion 154 of the support column 120/140 has a shape that is easily broken from the linear member 110/130 or is made of a material that is easily broken. As will be described later, when the cell structure of a desired shape is produced by the production apparatus 100, the step of separating the columns 120/140 from the linear members 110/130 is included.
  • FIG. 2 is a schematic cross-sectional view for explaining the manufacturing process of the cell structure of the present example.
  • the ends of the plurality of columns 120 are connected to the lower frame 160, and the ends of the plurality of columns 140 are connected to the upper frame 170.
  • the lower frame 160 includes a recess space and accommodates the linear member 110 and the support 130 in the recess space, and similarly, the upper frame 170 includes the linear member 120 and the linear member 120 in the recess space.
  • the post 140 is accommodated.
  • the lower frame 160 and the upper frame 170 have the same size.
  • the lower frame 160 and the plurality of columns 120 are integrally formed by a three-dimensional printer
  • the upper frame 170 and the plurality of columns 140 are integrally formed by a three-dimensional printer.
  • the lower frame 160 and the upper frame 170 are positioned such that the plurality of linear members 110 face the plurality of linear members 130. At this time, the plurality of linear members 110 and the plurality of linear members 130 are in close contact with each other, and a rectangular space S is formed therebetween.
  • the space S is defined by the plurality of linear members 110 and 130, but since there is a fixed gap between the plurality of linear members 110 and 130, the space S is a linear member Exposed to the outside through the gap of
  • a rectangular space S is formed in order to manufacture a rectangular cell structure, and in the case of manufacturing a cell structure having another shape, a space corresponding to that is formed.
  • Cell aggregates are injected into the rectangular space S.
  • Cell aggregates are a collection of multiple cells.
  • the distance D1 between the plurality of linear members 110 located on the lower side is smaller than the distance D2 between the plurality of linear members 130 located on the upper side (D1 ⁇ D2).
  • the average size (particle size) R is in the relationship of D1 ⁇ R ⁇ D2.
  • An opening (not shown) for injecting a cell aggregate is formed in a part of the upper frame 170, and the discharge part of the dispenser is directed into the space S into the cell aggregate solution through the opening. Discharge.
  • the cell aggregates contained in the solution pass through the linear members 130 having a distance D2 larger than the particle diameter R, and are filled in the space S.
  • the assembly including the lower frame 160 and the upper frame 170 is immersed in a vessel containing the culture fluid.
  • an opening through which the culture solution can enter is formed.
  • the assembly may be subjected to constant vibration or oscillation to promote adhesion and fusion.
  • the culture solution is sufficiently supplied from the three-dimensional direction through the gaps between the plurality of linear members 110 and 130 between the plurality of cell aggregates in the space S, as a result, as shown in FIG. 2 (B). As such, adjacent cell aggregates adhere and fuse to form a cell structure T.
  • the lower frame 160 and the upper frame 170 are pulled apart, and the plurality of columns 120, 140 are separated from the plurality of linear members 110, 130.
  • the columns 120 and 140 are structured to be easily separated from the linear members 110 and 130, and the lower frame 160 and the upper frame 170 are separated.
  • the support columns 120 and 140 are separated from the back side of the linear members 110 and 130.
  • the plurality of linear members 110 and 130 can be removed from the cell structure T in the axial direction X to obtain a cell structure as a final product.
  • FIG. 1 Another structural example of the manufacturing apparatus of this embodiment is shown in FIG.
  • through holes 200, 210, 220, and 230 are formed on the main surfaces of the lower frame 160 and the upper frame 170.
  • the shape, number, and size of the through holes are arbitrary.
  • a passage which can access the space S through the through holes 200 and 210 of the lower frame 160 and a passage which can access the space S through the through holes 220 and 230 of the upper frame 170 And are formed.
  • a nutrient solution or a culture solution can be supplied to the cell aggregate in the space S through the through holes 200 to 230.
  • FIG. 3C is a further modification.
  • the separating member 180 does not have to completely shut off the upper and lower spaces, and it is sufficient if the solutions supplied from the upper and lower sides are prevented from being freely mixed without having a barrier.
  • the separating member 180 can be configured, for example, as a rectangular frame, and is fixed, for example, between the end of the linear member and the inner wall of the frame by an adhesive or the like.
  • FIG. 4 shows a further modification of the manufacturing apparatus of this embodiment.
  • the through holes 240 and 250 are formed only in the upper frame 170, and the culture fluid and the nutrient solution are supplied to the inside through the through holes 240, and the through holes 250 are formed.
  • the culture fluid and nutrient solution are discharged to the outside through the By forming such a circulation route, it is possible to supply a fresh culture fluid or the like to the cell aggregate in the space S, or to supply a selected culture fluid or nutrient solution.
  • the culture fluid and the nutrient solution are supplied to the inside through the through holes 260 of the upper frame 170, and the culture fluid and the nutrition through the through holes 270 of the lower frame 160.
  • the liquid may be discharged to the outside.
  • FIG. 5 shows a further modification of the manufacturing apparatus of this embodiment.
  • a planar member 110A is used instead of the plurality of linear members 110.
  • the planar member 110A may be a flat surface as shown in the figure, or may be a surface (a spherical recess or a rectangular recess) defining a three-dimensional space other than this.
  • a plurality of support columns 120 are connected to the back surface side of the planar member 110A in the same manner as described above.
  • FIG. 5B the space S when the planar member 110A is used is exposed to the outside through the gap of the upper linear member 130.
  • FIG. 6 the further modification of the manufacturing apparatus of a present Example is shown.
  • the directions in which the plurality of linear members 110 and the plurality of linear members 130 extend are the same, but in the example shown in FIG. 6, the plurality of linear members 110 and The direction in which the plurality of linear members 130 extend is different, for example, the directions of both are orthogonal to each other.
  • the linear members 110 and the linear members 130 are drawn out in orthogonal directions, so that the cell structure can be removed at the time of removal.
  • the stress generated in the body can be relieved more than in one direction.
  • FIG. 7 shows a further modification of the manufacturing apparatus of this embodiment.
  • the manufacturing apparatus further includes another plurality of linear members 300. That is, the plurality of linear members have a three-layer structure.
  • Each of the plurality of intermediate linear members 300 may have any shape, any number, any spacing, etc., and extend in the same direction as the plurality of linear members 110 and 130 It may extend in different directions.
  • a plurality of columns 310 are connected to both ends of the intermediate linear member 300.
  • the support 310 is formed on either the lower frame 160 or the upper frame 170. It is fixed. When the lower frame 160 and the upper frame 170 are pulled apart, the support 310 is separated from the linear member 300. Then, the linear members 110, 130, and 300 are removed from the cell structure, respectively.
  • An intermediate linear member 300 can be inserted to promote adhesion, fusion of cell aggregates, or inserted to promote the formation of cell structures.
  • FIG. 8 shows a further modification of the manufacturing apparatus of this embodiment.
  • the manufacturing apparatus further includes a core 330.
  • the plurality of linear members 110 define a semi-cylindrical concave space S1 in a portion thereof, and the plurality of linear members 130 define a semi-cylindrical convex space S2 in a portion thereof
  • the two spaces S1 and S2 define a cylindrical space.
  • the core 330 is a cylindrical member having a diameter smaller than the diameter of the cylindrical space of the spaces S1 and S2, and a part of the core 330 is supported in a floating state by the linear members 110 or 130.
  • the cell aggregate was filled with space S1 and S2, and the cell structure was formed. Thereafter, the plurality of linear members 110, 130 are withdrawn, and the cylindrical core 330 is withdrawn in the axial direction.
  • FIG. 8C for example, a hollow cylindrical cell structure such as a blood vessel can be obtained.
  • FIG. 9 the further modification of the manufacturing apparatus of a present Example is shown.
  • the example shown in the figure is a modification of the planar member 110A shown in FIG. 5, that is, a plurality of through holes 340 are formed in the member 110B on the surface.
  • the shape, size, and number of the through holes 340 are arbitrary.
  • FIG. 9B shows an example in which a semicircular recess 350 is formed in the member 110C on the surface, and a plurality of through holes 352 are formed in the recess 350.
  • FIG. 10 shows a further modification of the manufacturing apparatus of this embodiment.
  • the window 360 which can see the inside is formed in a part of the upper side frame 170.
  • the window 360 may be a through hole, or the window 360 may be attached with transparent glass or transparent plastic to seal the internal space.
  • the adhesion state of the cell aggregate inside and the progress of fusion can be visually confirmed through the window 360. If the culture is confirmed to be insufficient, additional nutrient solution can be supplied.
  • FIG. 11 shows a further modification of the manufacturing apparatus of this embodiment.
  • the porous membrane 380 is embossed toward the back surface of the plurality of linear members 120 by the embossing member 370.
  • a membrane 380 having the same shape as the three-dimensional space of the plurality of linear members 120 can be obtained.
  • Membrane 380 can be, for example, decellularized or a biodegradable material such as collagen.
  • a plurality of linear members 120 can be separated from the embossed membrane 380, and the cell aggregate can be filled in the space of the membrane 380 to form a cell structure.
  • the membrane 380 can be a part of the cell structure, so there is no need to remove it.
  • the step of removing the plurality of linear members 120 can be omitted. , Production of cell structures can be facilitated.
  • the detachment mechanism of the present embodiment includes a grip 400 and a plurality of connecting members 410.
  • One end of the connecting member 410 is connected to the grip 400, and the other end is connected to the back surface side of the plurality of linear members 110, and the connecting members 410A on both sides are connected to the end of the upper frame 170A Be done.
  • the through-hole for making the some connection member 410 penetrate is formed in lower side frame 160A.
  • the lower frame 160A is pulled away from the upper frame 170A by applying a force to the grip 400 so that the gap between the grip 400 and the lower frame 160A is narrowed, and at the same time, the plurality of columns 120 are a plurality of lines Are separated from the back surface of the second member 110.
  • the detachment mechanism further includes a grip 420 and a plurality of connection members 430.
  • One end of the connection member 430 is connected to the grip 420 and the other end is connected to the back side of the plurality of linear members 130.
  • the through-hole for making the some connection member 410 penetrate is formed in the upper side frame 170A.
  • the plurality of columns 140 are separated from the back surface of the plurality of linear members 130 by applying a force to the grip 420 so that the distance between the grip 420 and the upper frame 170A is narrowed.
  • FIG. 13 is a view for explaining an example of extraction of a plurality of linear members from the cell structure T.
  • the linear member 500 is made of a soft material so that it can be easily removed even if it has an arbitrary shape, and at the same time, the strength that the linear member 500 does not break is required.
  • FIG. 13 (C) is a single-core linear member
  • FIG. 13 (D) is an example of a multi-core linear member. When removing such a linear member, the linear member can be removed while rotating so as to facilitate removal from the cell structure.
  • FIG. 14 is a block diagram showing the electrical configuration of the cell aggregate production apparatus of this example.
  • the manufacturing apparatus of this embodiment includes a supply source 610 for supplying a culture solution, a nutrient solution, and the like to the assembly 600 of the lower frame 160 and the upper frame 170, and an assembly from the supply source 610.
  • the controller 690 includes, for example, a RAM / ROM, a microprocessor or the like, and preferably controls each unit by executing a program that controls the manufacturing process of the cell aggregate.
  • FIG. 15 shows an example of a control sequence of the manufacturing process by the controller 690.
  • the assembly 600 is a stack of the lower frame 160 and the upper frame 170, and the inner spaces of both frames are filled with cell aggregates.
  • the supply source 610 is connected to the through hole 260 (see FIG. 4C) of the upper frame 170 by a pipe for conveying a fluid, and the discharge source 640 is penetrated by the lower frame 160 by a pipe. It is connected to the hole 270. From such a state, production of a cell structure shall be started.
  • the internal temperature of the assembly 600 is detected by the temperature sensor 670 (S100), and the internal pressure of the assembly 600 is detected by the pressure sensor 680 (S102).
  • the controller 690 controls the flow rate of fluid supplied to the assembly 600 based on the detected temperature and pressure via the valve control unit 630 and controls the flow rate of fluid discharged from the assembly 600 via the valve control unit 660 (S104). For example, when the pressure of the assembly 600 is above a certain value, the flow rate of the supplied fluid may be decreased or the flow rate of the discharged fluid may be increased. Also, when the temperature in the assembly 600 is above a certain value, the flow rate of the supplied fluid is increased, or the flow rate of the discharged fluid is decreased.
  • the controller 690 checks whether or not a predetermined time has elapsed (S106), and if it has not, the steps S100 to S104 are repeated.
  • the fixed time is, for example, a time until cell aggregates adhere and fuse to form a cell structure.
  • FIG. 14 shows an example in which the fluid is supplied from one source 610 to the assembly 600
  • a plurality of sources are connected to the assembly 600 through a plurality of pipes, and a plurality of sources are connected.
  • the valve may be controlled to supply the assembly 600 with a fluid selected from the following sources. For example, at the first temperature, the first type of fluid is supplied to the assembly 600, and at the second temperature, the supply of the first type of fluid is stopped, and the second type of fluid is assembled to the assembly. It may be supplied. Alternatively, during the first time period, the first type of fluid is supplied to the assembly 600, and during the second time period, the supply of the first type of fluid is stopped, and the second type of Fluid may be supplied to the assembly.

Abstract

[Problem] To provide a production device for producing a three-dimensional cell structure having an arbitrary shape. [Solution] A production device for producing a cell structure according to the present invention is provided with: multiple linear members 110; multiple columnar supports 120 for supporting the multiple linear members 110; multiple linear members 130; multiple columnar supports 140 for supporting the multiple linear members 130; a lower frame body 160A connected to the columnar supports 120; an upper frame body 170A connected to the columnar supports 140; a gripping member 400 for detaching the multiple columnar supports 120 from the multiple linear members 110; and a gripping member 420 for detaching the multiple columnar supports 140 from the multiple linear members 130.

Description

任意形状の3次元細胞構造体の製造装置およびその製造方法Device for producing three-dimensional cell structure of arbitrary shape and method for producing the same
 本発明は、細胞凝集体を用いた3次元細胞構造体もしくは3次元細胞構築物の製造方法に関し、特に、任意の形状に形成されたストリップ状、線状または面状の部材を用いて3次元細胞構造体を製造する装置および方法に関する。 The present invention relates to a method for producing a three-dimensional cell structure or a three-dimensional cell construct using a cell aggregate, and in particular, a three-dimensional cell using a strip-like, linear or planar member formed into an arbitrary shape. Apparatus and method for manufacturing a structure
 世界的な人口増加と長寿命化に従い医療行為への要求・要望・需要は高まるばかりであるが、近年は新たな手法として細胞を利用した再生医療が注目されている。個々の細胞をそのまま体内に注入する医療手法はすでに他分野にて実用化されている。この手法は施術は簡易であるが、注入した細胞が所望の部位に定着しにくいという課題がある。 Although the demand, demand and demand for medical practice are only increasing with the increase of population and long life span worldwide, in recent years, regenerative medicine using cells as a new method has attracted attention. Medical techniques for injecting individual cells directly into the body have already been put to practical use in other fields. Although this method is easy to perform, there is a problem that the injected cells are difficult to be established at the desired site.
 これに対して、大量の細胞を融合させて立体的構造体に作製する手法が開発されてきている。細胞をシャーレ、ゲル状の支持体、針状の支持体などで任意の形状に空間的に保持し、立体構造体を作成する手法である。この手法の用途には大きく二つがあげられる。 On the other hand, methods for fusing a large number of cells to produce a three-dimensional structure have been developed. Cells are spatially retained in any shape with a petri dish, gel-like support, needle-like support or the like to form a three-dimensional structure. There are two major applications of this method.
 一つ目は人体移植目的とした人工組織や人工臓器の作製である。人工組織はその一部分を機能が発現する形で作製されたもので、人体移植が最終目的である。ただし、人体への移植までには相応の評価認定が必要となり、長期的な取り組みが必要である。現状では複雑な形状をした臓器を直接作製することは難しく、単純な形状の臓器(血管など)を作成するにとどまっている。 The first is the preparation of artificial tissues and organs intended for human transplantation. Artificial tissue is produced in such a way that a portion of the artificial tissue expresses a function, and human transplantation is the final purpose. However, before transplantation into the human body, appropriate evaluation accreditation is required, and long-term efforts are required. Under the present circumstances, it is difficult to directly produce an organ having a complicated shape, and only an organ (such as a blood vessel) having a simple shape is created.
 二つ目は、これらの3次元細胞構造体を用いた毒性検査、薬剤効果判定、病理判定、発生学などを試験片としての活用法である。ヒト細胞のみを用いて3次元細胞構造体を作成し体内の環境を再現もしくは近い環境下にて上記の試験をすることで、体内を模した実験が体外で可能となる。これにより効率的な創薬研究、パーソナライズした投薬診断、各器官発生の観察研究などが可能になる。特にがんの投薬においてはその時期と効果予測判定が難しいが、例えば本技術を利用患者のがん組織にて作成された試験片を体外でまず投薬試験評価判定をすることで、薬効果の見極めの指標となることが期待される。 The second is a method of utilizing toxicity test, drug effect determination, pathology determination, developmental science, etc. using these three-dimensional cell structures as a test strip. By creating a three-dimensional cell structure using human cells only and performing the above-described test under or near the environment of the body, experiments simulating the body can be performed outside the body. This enables efficient drug discovery research, personalized medication diagnosis, observational research of each organ development, etc. Especially in the case of cancer medication, it is difficult to predict the timing and effect, but for example, the drug effect can be evaluated by first conducting a medication test assessment and determination outside the test strip created in the cancer tissue of the patient using this technology. It is expected to be an indicator of identification.
 細胞には、浮遊系細胞と足場依存の接着性細胞の2種類がある。前者には、血液系や免疫系の細胞が属し、後者には臓器や皮膚、骨などの細胞が属する。接着性細胞は、在溶液中で浮いている状態では長期間の生存はできず、ガラスシャーレやハイドロゲルなどの足場に付着することで生存及び増殖させる必要がある。接着性の細胞を非接着の環境下に置くと、細胞は足場を求めて相互に接着し、細胞凝集体が形成され、さらに細胞凝集体同士を何らかの手法で相互に接触した環境下に置くと、それらが接着、融合しさらに大きな3次元細胞構造体を構成する。この現象は広く知られており、非特許文献1~6はこれらの具体的実施例を示すものである。非特許文献1にあるように細胞凝集体(本文献内ではClusterとも表記される)が融合する現象は古く1960年代から知られている。特に非特許文献6にて示されるのは、3次元細胞構造体を「積木ブロック(Building Block)」として扱うアイデアを示しており、多様な細胞が利用可能であることを示唆している。 There are two types of cells: suspension cells and anchorage-dependent adherent cells. In the former, cells of blood system and immune system belong, and in the latter, cells of organs, skin, bone and the like belong. Adherent cells can not survive for a long time in the floating state in a solution, and need to survive and proliferate by adhering to a scaffold such as a glass petri dish or hydrogel. When the adherent cells are placed in a non-adherent environment, the cells adhere to each other in search of a scaffold, cell aggregates are formed, and cell aggregates are placed in an environment in which they are mutually contacted in some way. They adhere and fuse to form larger three-dimensional cell structures. This phenomenon is widely known, and Non-patent documents 1 to 6 show these specific examples. As described in Non-Patent Document 1, the phenomenon that cell aggregates (also referred to as Cluster in this document) are fused has long been known from the 1960s. In particular, Non-Patent Document 6 shows an idea of treating a three-dimensional cell structure as a "building block", and suggests that various cells can be used.
 細胞塊(Spheroid)は、細胞のみで構成されたおおむね円形の凝集体、細胞凝集体凝集体(Cell Aggregate)は、細胞塊及び細胞とそれ以外の物質で構成された凝集体を示すものとする。 A cell mass (Spheroid) is a roughly circular aggregate composed of cells alone, and a cell aggregate (Cell Aggregate) is a aggregate composed of cell mass and cells and other substances. .
 特許文献1は、担体を用いることなく細胞だけで任意の形状の組織を作成することができる組織プラグ製造方法を開示する。具体的には、底面のみに培養液が通過できる微細孔を有するチャンバー内に細胞凝集体を入れ、細胞凝集体の一部が気相に接する程度の量の培養液がチャンバー内に含まれるようにして、チャンバー内の培養液よりも過剰量の培養液中で細胞凝集体を培養させるものである。 Patent Document 1 discloses a method for producing a tissue plug which can produce tissue of any shape with cells alone without using a carrier. Specifically, the cell aggregate is placed in a chamber having micropores through which the culture solution can pass only on the bottom surface, and the culture solution is contained in the chamber in an amount such that a part of the cell aggregate contacts the gas phase. The cell aggregates are cultured in a culture solution in an excess amount of the culture solution in the chamber.
 また、3次元細胞構造体を製造する方法として、特許文献2に示すバイオプリンターのノズルから細胞凝集体を平面上に分注していくディスペンス方式や、特許文献3に示す針状の支持体に細胞塊を貫通させる剣山方式が知られている。さらに特許文献4は、透過性シート上で平面培養した培養細胞を他の平面培養した培養細胞上にシートごと積層し、立体的な細胞を製造する方法を開示している。 In addition, as a method for producing a three-dimensional cell structure, a dispensing method in which cell aggregates are dispensed on a plane from a nozzle of a bioprinter shown in Patent Document 2 or a needle-like support shown in Patent Document 3 The Kenzan method of penetrating cell mass is known. Further, Patent Document 4 discloses a method of producing a three-dimensional cell by laminating a cultured cell cultured in a flat plane on a permeable sheet on a cultured cell in another planar culture together with the sheet.
特許第4122280号Patent No. 4122280 米国特許第8852932号公報U.S. Patent No. 8852932 特許第4517125号公報(国際出願番号PCT/JP2008/056826号)Patent No. 4517125 (International Application No. PCT / JP2008 / 056268) 国際公開WO2005/047496号公報International Publication WO2005 / 047496
 特許文献2に示すディスペンス方式の多くは、バイオインクと呼ばれる細胞塊とハイドロゲルやコラーゲンなどの繋ぎ材を混ぜ合わせたものを平面上に吐出していく手法、もしくはハイドロゲルやコラーゲンなどの固まりやすい形状保持可能な材料にてあらかじめ作成した足場(Scaffold)の内部に細胞塊を注入して3次元細胞構造体手法であるが、細胞間の接触が妨げられる欠点がある。また、この手法で作製された3次元細胞構造体の形状は、繋ぎ材の形状保持力に依存するため、3次元細胞構造体の大きさや形状(特に高さ方向)に制限が課される。さらに3次元細胞構造体内に繋ぎ材が残存するので、繋ぎ材が細胞に与える悪影響を排除しきれないという課題が残り、人体移植時、もしくは効果判定時に追加の評価確認が必要となる。また、特許文献3に示す剣山方式は、針状の支持体による形状が制約される。 In many of the dispensing methods shown in Patent Document 2, a method in which a mixture of a cell mass called bio ink and a connecting material such as hydrogel or collagen is discharged on a flat surface, or easily solidified such as hydrogel or collagen Although a cell mass is injected into the inside of a scaffold (scaffold) made of a shape-retainable material in advance to form a three-dimensional cell structure method, there is a drawback that contact between cells is prevented. In addition, since the shape of the three-dimensional cell structure produced by this method depends on the shape holding power of the connecting material, restrictions are imposed on the size and shape (especially in the height direction) of the three-dimensional cell structure. Further, since the binder remains in the three-dimensional cell structure, there remains a problem that the adverse effect of the binder on the cells can not be excluded, and additional evaluation and confirmation are required at the time of human transplantation or effect determination. Moreover, in the Kenzan method shown in Patent Document 3, the shape of the needle-like support is restricted.
 本発明は、このような従来の課題を解決し、任意形状の3次元細胞構造体を製造することができる製造装置およびその製造方法を提供することを目的とする。 An object of the present invention is to solve such conventional problems, and to provide a manufacturing apparatus capable of manufacturing a three-dimensional cell structure having an arbitrary shape, and a method for manufacturing the same.
 本発明に係る細胞構造体の製造方法は、培地等の液体を透過可能であり、かつ細胞凝集体を保持するための3次元空間を形成する部材を用意し、前記空間内に複数の細胞凝集体を供給し、前記複数の細胞凝集体を融合させて細胞構造体を形成するステップを含む。 In the method for producing a cell structure according to the present invention, a member capable of permeating a liquid such as a culture medium and forming a three-dimensional space for holding cell aggregates is prepared, and a plurality of cell aggregates are collected in the space Providing a collection and fusing the plurality of cell aggregates to form a cell structure.
 本発明に係る細胞構造体を製造するための製造装置は、少なくとも第1の空間を規定する第1の部材と、第1の部材に対向して配置され、少なくとも第2の空間を規定する第2の部材とを有し、第1の空間および第2の空間により規定される第3の空間内に複数の細胞凝集体を収容可能であり、少なくとも第1の部材および第2の部材の双方は、培地等の液体を透過可能である。 A manufacturing apparatus for manufacturing a cell structure according to the present invention includes a first member defining at least a first space, and a device disposed opposite to the first member and defining at least a second space A plurality of cell aggregates can be accommodated in a third space defined by the first space and the second space, having at least two members, and at least both the first member and the second member Is permeable to liquids such as culture media.
 本発明によれば、培地等の液体を透過可能な部材により3次元空間を形成し、当該3次元空間内に細胞凝集体を供給して細胞構造体を製造するようにしたので、任意形状の3次元構造体を製造することができる。さらに培地供給路を自由に設定することが可能になる。 According to the present invention, a three-dimensional space is formed by a member permeable to a liquid such as a culture medium, and a cell aggregate is supplied in the three-dimensional space to manufacture a cell structure. Three-dimensional structures can be manufactured. Furthermore, it becomes possible to freely set the medium supply channel.
図1(A)は、本発明の実施例に係る細胞構造体の製造装置の概略構成を示す斜視図、図1(B)は、線状の部材と支柱との接続例を示す図である。FIG. 1 (A) is a perspective view showing a schematic configuration of a cell structure manufacturing apparatus according to an embodiment of the present invention, and FIG. 1 (B) is a view showing an example of connection between linear members and columns. . 本発明の実施例に係る細胞構造体の製造工程を示すフローである。It is a flow which shows the manufacturing process of the cell structure which concerns on the Example of this invention. 本発明の実施例に係る細胞構造体の製造装置の他の構成例を示す図である。It is a figure which shows the other structural example of the manufacturing apparatus of the cell structure which concerns on the Example of this invention. 本発明の実施例に係る細胞構造体の製造装置の他の構成例を示す図である。It is a figure which shows the other structural example of the manufacturing apparatus of the cell structure which concerns on the Example of this invention. 本発明の実施例に係る細胞構造体の製造装置の他の構成例を示す図である。It is a figure which shows the other structural example of the manufacturing apparatus of the cell structure which concerns on the Example of this invention. 本発明の実施例に係る細胞構造体の製造装置の他の構成例を示す図である。It is a figure which shows the other structural example of the manufacturing apparatus of the cell structure which concerns on the Example of this invention. 本発明の実施例に係る細胞構造体の製造装置の他の構成例を示す図である。It is a figure which shows the other structural example of the manufacturing apparatus of the cell structure which concerns on the Example of this invention. 本発明の実施例に係る細胞構造体の製造装置の他の構成例を示す図である。It is a figure which shows the other structural example of the manufacturing apparatus of the cell structure which concerns on the Example of this invention. 本発明の実施例に係る細胞構造体の製造装置の他の構成例を示す図である。It is a figure which shows the other structural example of the manufacturing apparatus of the cell structure which concerns on the Example of this invention. 本発明の実施例に係る細胞構造体の製造装置の他の構成例を示す図である。It is a figure which shows the other structural example of the manufacturing apparatus of the cell structure which concerns on the Example of this invention. 本発明の実施例に係る細胞構造体の製造装置の他の構成例を示す図である。It is a figure which shows the other structural example of the manufacturing apparatus of the cell structure which concerns on the Example of this invention. 本発明の実施例に係る細胞構造体の製造装置の離脱機構の構成例を示す図である。It is a figure which shows the structural example of the detachment | leave mechanism of the manufacturing apparatus of the cell structure which concerns on the Example of this invention. 本発明の実施例に係る細胞構造体の他の製造例を示す図である。It is a figure which shows the other manufacture example of the cell structure which concerns on the Example of this invention. 本発明の実施例に係る細胞構造体の製造装置の電気的な構成を示すブロック図である。It is a block diagram which shows the electric constitution of the manufacturing apparatus of the cell structure which concerns on the Example of this invention. 本発明の実施例に係る細胞構造体の製造装置の動作フローの一例を示す図である。It is a figure which shows an example of the operation | movement flow of the manufacturing apparatus of the cell structure which concerns on the Example of this invention.
 本発明の実施の形態に係る3次元細胞構築物の製造方法は、線状の部材、あるいは多孔質の部材等により細胞凝集体を保持するための任意の3次元空間を形成し、その3次元空間内に複数の細胞凝集体を供給し、3次元空間に応じた立体形状の細胞構造体を製造する。好ましい態様では、3次元空間を形成する部材は、培地等の液体を透過可能であり、それ故、3次元空間内の細胞構造体には、あらゆる方向から培地等の供給が可能である。さらに好ましい態様では、3次元空間を形成する部材は、3次元プリンタを用いて形成することができる。3次元プリンタは、3次元データに基づき任意の3次元空間を規定する部材を生成する。なお、図面のスケールは、本発明を理解するために誇張されており、必ずしも実際の製品等の大きさとは異なる点に留意すべきである。 In the method of producing a three-dimensional cell construct according to the embodiment of the present invention, an arbitrary three-dimensional space for holding cell aggregates is formed by a linear member or a porous member or the like, and the three-dimensional space A plurality of cell aggregates are supplied to the inside to produce a three-dimensional cell structure according to a three-dimensional space. In a preferred embodiment, the member forming the three-dimensional space is permeable to a liquid such as a culture medium, so that the cell structure in the three-dimensional space can be supplied with the culture medium or the like from all directions. In a further preferred embodiment, the member forming the three-dimensional space can be formed using a three-dimensional printer. The three-dimensional printer generates a member that defines an arbitrary three-dimensional space based on the three-dimensional data. It should be noted that the scale of the drawings is exaggerated for the purpose of understanding the present invention, and may not necessarily be different from the size of an actual product or the like.
 次に、本発明の実施例について図面を参照して説明する。図1は、本発明の第1の実施例に係る細胞構造体の製造装置の概略構成を示す図である。本実施例の細胞構造体の製造装置100は、複数の線状の部材110と、複数の線状の部材110の各々を支持する複数の支柱120と、複数の線状の部材130と、複数の線状の部材130の各々を支持する複数の支柱140とを含む。 Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a view showing a schematic configuration of a cell structure manufacturing apparatus according to a first embodiment of the present invention. The manufacturing apparatus 100 of the cell structure of the present embodiment includes a plurality of linear members 110, a plurality of columns 120 supporting each of the plurality of linear members 110, a plurality of linear members 130, and a plurality of linear members 130. And a plurality of pillars 140 for supporting each of the linear members 130.
 複数の線状の部材110は、任意の形状であることができ、例えば、複数の線状の部材110は、断面が円形または矩形状を有し、互いにほぼ平行に一定の間隔で2次元的に直線状に延在する。あるいは、複数の線状の部材110は、互いにほぼ平行に一定の間隔で3次元的に湾曲もしくは屈曲して延在してもよい。好ましくは、複数の線状の部材110は、任意の形状に加工され、かつ細胞構造体からの引き抜きが容易になるように、プラスチックやその他の軟質の材料から構成される。2次元的または3次元的に配置され、あるいは2次元的または3次元的に加工された複数の線状の部材110は、それらの複数の線の包絡面により2次元空間または3次元空間を事実上規定し、この2次元空間または3次元空間は、細胞凝集体を保持するための空間を提供する。 The plurality of linear members 110 may be of any shape, for example, the plurality of linear members 110 may have a circular or rectangular cross section, and may be two-dimensionally spaced at a predetermined interval substantially parallel to one another. Extends in a straight line. Alternatively, the plurality of linear members 110 may be curved or bent three-dimensionally at regular intervals substantially parallel to one another. Preferably, the plurality of linear members 110 are processed into an arbitrary shape and made of plastic or other soft material so as to facilitate removal from the cell structure. A plurality of linear members 110 arranged two-dimensionally or three-dimensionally, or processed two-dimensionally or three-dimensionally, form a two-dimensional space or three-dimensional space by the envelope surface of the plurality of lines. As defined above, this two-dimensional space or three-dimensional space provides a space for holding cell aggregates.
 複数の線状の部材130もまた複数の線状の部材110と同様に構成されるものであり、2次元的あるいは3次元的に配置され、あるいは2次元的または3次元的に加工され、複数の線状の部材130の各々の線の包絡面により2次元空間または3次元空間を規定し、これらの空間は、細胞凝集体を保持するための空間を提供する。図に示す例では、複数の線状の部材110は、それらの線により2次元的な平坦な面を規定し、複数の線状の部材130は、その一部に凸状の段差部または屈曲部を形成することで、概ね凸状の3次元空間Sを規定する。 The plurality of linear members 130 are also configured in the same manner as the plurality of linear members 110, and are arranged two-dimensionally or three-dimensionally, or processed two-dimensionally or three-dimensionally, The envelopes of the lines of each of the linear members 130 define a two-dimensional space or a three-dimensional space, and these spaces provide a space for holding cell aggregates. In the example shown in the figure, the plurality of linear members 110 define a two-dimensional flat surface by their lines, and the plurality of linear members 130 have convex steps or bends in part thereof. By forming the part, a substantially convex three-dimensional space S is defined.
 また、複数の線状の部材110の各々は、同一形状であることに限定されず、各々が異なる形状であってもよい。複数の線状の部材130についても同様である。さらに複数の線状の部材110の各々の間隔は、均一であることに限定されず、各々の間隔が異なっていてもよい。複数の線状の部材130の各々の間隔についても同様である。従って、複数の線状の部材110の各々の間隔と、複数の線状の部材130の各々との間隔は異なっていてもよい。 Further, each of the plurality of linear members 110 is not limited to the same shape, and may have different shapes. The same applies to the plurality of linear members 130. Furthermore, the spacing of each of the plurality of linear members 110 is not limited to being uniform, and each spacing may be different. The same applies to the distance between each of the plurality of linear members 130. Thus, the spacing between each of the plurality of linear members 110 and the spacing between each of the plurality of linear members 130 may be different.
 複数の支柱120は、複数の線状の部材110の各々の裏面側に接続される。つまり、1つの線状の部材の裏面には、その線が延在する方向に沿って複数の支柱120によって支持され、その結果、複数の線状の部材110の裏面側には、複数の支柱120が2次元的に配置される。同様に、複数の支柱140は、複数の線状の部材130の各々の裏面側に接続され、複数の線状の部材130の裏面側には、複数の支柱140が2次元的に配置される。 The plurality of columns 120 are connected to the back side of each of the plurality of linear members 110. That is, on the back surface of one linear member, it is supported by the plurality of columns 120 along the direction in which the line extends, and as a result, on the back surface side of the plurality of linear members 110, the plurality of columns 120 are two-dimensionally arranged. Similarly, the plurality of columns 140 are connected to the back side of each of the plurality of linear members 130, and the plurality of columns 140 are two-dimensionally arranged on the back side of the plurality of linear members 130. .
 好ましくは、複数の線状の部材110および複数の支柱120は、3次元プリンタにより一体に形成され、複数の線状の部材130および複数の支柱140もまた3次元プリンタにより一体に形成される。 Preferably, the plurality of linear members 110 and the plurality of columns 120 are integrally formed by the three-dimensional printer, and the plurality of linear members 130 and the plurality of columns 140 are also integrally formed by the three-dimensional printer.
 図1(B)、(C)、(D)は、支柱と線状の部材との間の接続例を示す図である。支柱と線状の部材との接続方法は任意であるが、図1(B)に示す例は、支柱120/140が相対的に大きな頭部150を有し、頭部150が線状の部材110/130の裏面側の溝内に係合している。図1(C)に示す例は、支柱120/140の先端部152が徐々に細くなる台形状を有し、支柱120/140を構成する材料と線状の部材110/130を構成する材料は異なり、両者の材料が剥離容易な関係にある。図1(D)に示す例は、支柱120/140の先端部154が線状の部材110/130から容易に破断し易い形状をしているか、容易に破断し易い材料から構成されている。後述するように、製造装置100によって所望の形状の細胞構造体を製造するとき、線状の部材110/130から支柱120/140を分離する工程が含まれる。 FIGS. 1 (B), (C), and (D) are diagrams showing an example of connection between a support and a linear member. Although the connection method between the column and the linear member is arbitrary, in the example shown in FIG. 1B, the column 120/140 has a relatively large head 150 and the head 150 is a linear member. It is engaged in the groove on the back side of 110/130. In the example shown in FIG. 1C, the tip end portion 152 of the support 120/140 has a trapezoidal shape in which it gradually becomes thinner, and the material forming the support 120/140 and the material forming the linear member 110/130 are Differently, both materials are in an easy-to-peel relationship. In the example shown in FIG. 1D, the tip end portion 154 of the support column 120/140 has a shape that is easily broken from the linear member 110/130 or is made of a material that is easily broken. As will be described later, when the cell structure of a desired shape is produced by the production apparatus 100, the step of separating the columns 120/140 from the linear members 110/130 is included.
 図2は、本実施例の細胞構造体の製造工程を説明するための概略断面図である。図2(A)に示すように、複数の支柱120の端部は、下側枠体160に接続され、複数の支柱140の端部は、上側枠体170に接続される。下側枠体160は、凹部の空間を含み、凹部の空間内に線状の部材110および支柱130を収容し、同様に、上側枠体170は、凹部の空間内に線状の部材120および支柱140を収容する。下側枠体160および上側枠体170は、同一のサイズを有する。好ましい例では、下側枠体160と複数の支柱120とは、3次元プリンタにより一体に形成され、上側枠体170と複数の支柱140とは、3次元プリンタにより一体に形成される。 FIG. 2 is a schematic cross-sectional view for explaining the manufacturing process of the cell structure of the present example. As shown in FIG. 2A, the ends of the plurality of columns 120 are connected to the lower frame 160, and the ends of the plurality of columns 140 are connected to the upper frame 170. The lower frame 160 includes a recess space and accommodates the linear member 110 and the support 130 in the recess space, and similarly, the upper frame 170 includes the linear member 120 and the linear member 120 in the recess space. The post 140 is accommodated. The lower frame 160 and the upper frame 170 have the same size. In a preferred example, the lower frame 160 and the plurality of columns 120 are integrally formed by a three-dimensional printer, and the upper frame 170 and the plurality of columns 140 are integrally formed by a three-dimensional printer.
 複数の線状の部材110が複数の線状の部材130に対向するように下側枠体160と上側枠体170とが位置決めされる。このとき、複数の線状の部材110と複数の線状の部材130とが密着し、両者の間には、矩形状の空間Sが形成される。空間Sは、複数の線状の部材110、130によって外形を規定されているが、複数の線状の部材110、130の間には一定の隙間があるため、空間Sは、線状の部材の間隙を介して外部に露出された状態である。ここでは、矩形状の細胞構造体を製造するために矩形状の空間Sを形成したのであり、他の形状の細胞構造体を製造する場合には、それに応じた空間が形成される。 The lower frame 160 and the upper frame 170 are positioned such that the plurality of linear members 110 face the plurality of linear members 130. At this time, the plurality of linear members 110 and the plurality of linear members 130 are in close contact with each other, and a rectangular space S is formed therebetween. The space S is defined by the plurality of linear members 110 and 130, but since there is a fixed gap between the plurality of linear members 110 and 130, the space S is a linear member Exposed to the outside through the gap of Here, a rectangular space S is formed in order to manufacture a rectangular cell structure, and in the case of manufacturing a cell structure having another shape, a space corresponding to that is formed.
 矩形状の空間Sには、細胞凝集体が注入される。細胞凝集体は、複数の細胞の集合である。1つの好ましい例では、下側に位置する複数の線状の部材110の間隔D1は、上側に位置する複数の線状の部材130の間隔D2よりも小さく(D1<D2)、細胞凝集体の平均的なサイズ(粒径)Rは、D1<R<D2の関係にある。上側枠体170の一部には、細胞凝集体を注入するための開口部(図示しない)が形成され、当該開口部を介してディスペンサの吐出部が空間S内に向けて細胞凝集体溶液を吐出する。溶液に含まれる細胞凝集体は、その粒径Rよりも大きな間隔D2である線状の部材130を通過し、空間S内に充填される。 Cell aggregates are injected into the rectangular space S. Cell aggregates are a collection of multiple cells. In one preferable example, the distance D1 between the plurality of linear members 110 located on the lower side is smaller than the distance D2 between the plurality of linear members 130 located on the upper side (D1 <D2). The average size (particle size) R is in the relationship of D1 <R <D2. An opening (not shown) for injecting a cell aggregate is formed in a part of the upper frame 170, and the discharge part of the dispenser is directed into the space S into the cell aggregate solution through the opening. Discharge. The cell aggregates contained in the solution pass through the linear members 130 having a distance D2 larger than the particle diameter R, and are filled in the space S.
 空間Sへの細胞凝集体の充填が終了すると、次に、これらを細胞に適した培養液中に透過することで細胞凝集体の接着、融合が行われる。例えば、下側枠体160と上側枠体170を含むアセンブリを、培養液を含む容器内に浸漬する。この場合、下側枠体160と上側枠体170のいずれかには、培養液が内部に進入できるような開口が形成される。接着、融合の促進を図るために、アセンブリに一定の振動または揺動が与えられるようにしてもよい。空間S内の複数の細胞凝集体の間には、複数の線状の部材110、130の間隙を介して3次元方向から培養液が十分に供給され、その結果、図2(B)に示すように、隣接する細胞凝集体が接着、融合し、細胞構造体Tが形成される。 When the filling of the cell aggregates into the space S is completed, then, these are permeated into a medium suitable for cells to adhere and fuse the cell aggregates. For example, the assembly including the lower frame 160 and the upper frame 170 is immersed in a vessel containing the culture fluid. In this case, in either of the lower frame 160 and the upper frame 170, an opening through which the culture solution can enter is formed. The assembly may be subjected to constant vibration or oscillation to promote adhesion and fusion. The culture solution is sufficiently supplied from the three-dimensional direction through the gaps between the plurality of linear members 110 and 130 between the plurality of cell aggregates in the space S, as a result, as shown in FIG. 2 (B). As such, adjacent cell aggregates adhere and fuse to form a cell structure T.
 細胞構造体Tが形成されると、次に、下側枠体160と上側枠体170とを引き離し、複数の支柱120、140を複数の線状の部材110、130から離脱させる。図1(B)ないし(D)に示したように、支柱120、140は、線状の部材110、130から分離し易い構造になっており、下側枠体160と上側枠体170を引き離す方向に力Fを加えることで、図2(C)に示すように、支柱120、140が線状の部材110、130の裏面側から分離される。次に、図2(D)に示すように、細胞構造体Tから複数の線状の部材110、130をその軸方向Xに抜去し、最終生成物としての細胞構造体を得ることができる。 When the cell structure T is formed, next, the lower frame 160 and the upper frame 170 are pulled apart, and the plurality of columns 120, 140 are separated from the plurality of linear members 110, 130. As shown in FIGS. 1B to 1D, the columns 120 and 140 are structured to be easily separated from the linear members 110 and 130, and the lower frame 160 and the upper frame 170 are separated. By applying the force F in the direction, as shown in FIG. 2C, the support columns 120 and 140 are separated from the back side of the linear members 110 and 130. Next, as shown in FIG. 2D, the plurality of linear members 110 and 130 can be removed from the cell structure T in the axial direction X to obtain a cell structure as a final product.
 次に、本実施例の製造装置の他の構成例を図3に示す。同図に示すように、下側枠体160および上側枠体170の主面には、貫通孔200、210、220、230が形成されている。貫通孔の形状、数、大きさは任意である。これにより、下側枠体160の貫通孔200、210を介して空間Sにアクセスすることができる通路と、上側枠体170の貫通孔220、230を介して空間Sへアクセスすることができる通路とが形成される。貫通孔200~230を介して、空間Sの細胞凝集体に、例えば、栄養液や培養液を供給することができる。 Next, another structural example of the manufacturing apparatus of this embodiment is shown in FIG. As shown in the figure, through holes 200, 210, 220, and 230 are formed on the main surfaces of the lower frame 160 and the upper frame 170. The shape, number, and size of the through holes are arbitrary. Thereby, a passage which can access the space S through the through holes 200 and 210 of the lower frame 160 and a passage which can access the space S through the through holes 220 and 230 of the upper frame 170 And are formed. For example, a nutrient solution or a culture solution can be supplied to the cell aggregate in the space S through the through holes 200 to 230.
 図3(C)は、更なる変形例である。下側枠体160と上側枠体170のそれぞれの空間を分離するような分離部材180を設けることで、貫通孔200、210から供給される溶液と、貫通孔220、230から供給される溶液とを異ならせても良い。分離部材180は、上下の空間を完全に遮断するものでなくてもよく、上下から供給される溶液が障壁がなく自由に混ざり合うことが抑制されれば十分である。分離部材180は、例えば、矩形状の枠のような構成であることができ、例えば、接着剤等により線状の部材の端部と枠体の内壁との間に固定される。 FIG. 3C is a further modification. By providing separation members 180 that separate the respective spaces of lower frame 160 and upper frame 170, the solution supplied from through holes 200 and 210 and the solution supplied from through holes 220 and 230 May be different. The separating member 180 does not have to completely shut off the upper and lower spaces, and it is sufficient if the solutions supplied from the upper and lower sides are prevented from being freely mixed without having a barrier. The separating member 180 can be configured, for example, as a rectangular frame, and is fixed, for example, between the end of the linear member and the inner wall of the frame by an adhesive or the like.
 図4に、本実施例の製造装置の更なる変形例を示す。図4(A)、(B)に示す例では、上側枠体170にのみ貫通孔240、250が形成され、貫通孔240を介して培養液や栄養液が内部に供給され、貫通孔250を介して培養液や栄養液が外部に排出される。このような循環経路を形成することで、空間Sの細胞凝集体に新鮮な培養液等を供給したり、あるいは、選択された培養液や栄養液を供給することができる。また、図4(C)に示す例では、上側枠体170の貫通孔260を介して内部に培養液や栄養液を供給し、下側枠体160の貫通孔270を介して培養液や栄養液を外部に排出するようにしてもよい。 FIG. 4 shows a further modification of the manufacturing apparatus of this embodiment. In the example shown in FIGS. 4A and 4B, the through holes 240 and 250 are formed only in the upper frame 170, and the culture fluid and the nutrient solution are supplied to the inside through the through holes 240, and the through holes 250 are formed. The culture fluid and nutrient solution are discharged to the outside through the By forming such a circulation route, it is possible to supply a fresh culture fluid or the like to the cell aggregate in the space S, or to supply a selected culture fluid or nutrient solution. Further, in the example shown in FIG. 4C, the culture fluid and the nutrient solution are supplied to the inside through the through holes 260 of the upper frame 170, and the culture fluid and the nutrition through the through holes 270 of the lower frame 160. The liquid may be discharged to the outside.
 図5に、本実施例の製造装置の更なる変形例を示す。同図に示す例では、複数の線状の部材110の代わりに、面状の部材110Aを用いる。面状の部材110Aは、同図に示すように、平坦な面であってもよいし、これ以外の3次元空間を規定する面(球面状の凹みや矩形状の窪み)であってもよい。面状の部材110Aの裏面側には、上記と同様に複数の支柱120が接続される。図5(B)に示すように、面状の部材110Aを用いたときの空間Sは、上側の線状の部材130の間隙を介して外部へ露出される。 FIG. 5 shows a further modification of the manufacturing apparatus of this embodiment. In the example shown in the figure, a planar member 110A is used instead of the plurality of linear members 110. The planar member 110A may be a flat surface as shown in the figure, or may be a surface (a spherical recess or a rectangular recess) defining a three-dimensional space other than this. . A plurality of support columns 120 are connected to the back surface side of the planar member 110A in the same manner as described above. As shown in FIG. 5B, the space S when the planar member 110A is used is exposed to the outside through the gap of the upper linear member 130.
 図6に、本実施例の製造装置の更なる変形例を示す。図1に示す例では、複数の線状の部材110と複数の線状の部材130とが延在する方向とが同じであるが、図6に示す例では、複数の線状の部材110と複数の線状の部材130とが延在する方向が異なり、例えば、両者の方向は直交する関係にある。このような線状の部材の配列であれば、細胞構造体から線状の部材を抜去するとき、線状の部材110と線状の部材130の抜去する方向が直交するので、抜去時に細胞構造体に生じる応力を1方向のときよりも緩和させることができる。 In FIG. 6, the further modification of the manufacturing apparatus of a present Example is shown. In the example shown in FIG. 1, the directions in which the plurality of linear members 110 and the plurality of linear members 130 extend are the same, but in the example shown in FIG. 6, the plurality of linear members 110 and The direction in which the plurality of linear members 130 extend is different, for example, the directions of both are orthogonal to each other. With such an array of linear members, when the linear members are removed from the cell structure, the linear members 110 and the linear members 130 are drawn out in orthogonal directions, so that the cell structure can be removed at the time of removal. The stress generated in the body can be relieved more than in one direction.
 図7に、本実施例の製造装置の更なる変形例を示す。同図に示す例では、製造装置はさらに、もう1層の複数の線状の部材300を含む。つまり、複数の線状の部材が3層構造である。中間の複数の線状の部材300の各々は、任意の形状、任意の本数、任意の間隔等であることができ、また、複数の線状の部材110、130と同一方向に延在してもよいし、異なる方向に延在してもよい。さらに中間の線状の部材300の両端部には複数の支柱310が接続される。 FIG. 7 shows a further modification of the manufacturing apparatus of this embodiment. In the example shown in the figure, the manufacturing apparatus further includes another plurality of linear members 300. That is, the plurality of linear members have a three-layer structure. Each of the plurality of intermediate linear members 300 may have any shape, any number, any spacing, etc., and extend in the same direction as the plurality of linear members 110 and 130 It may extend in different directions. Furthermore, a plurality of columns 310 are connected to both ends of the intermediate linear member 300.
 1つの例では、図7(B)に示すように、下側枠体160と上側枠体170とが組立てられたとき、支柱310は、下側枠体160または上側枠体170のいずれかに固定される。そして、下側枠体160と上側枠体170とが引き離されるとき、支柱310が線状の部材300から分離される。そして、細胞構造体から、線状の部材110、130、300がそれぞれ抜去される。中間の線状の部材300は、細胞凝集体の接着、融合を促進するために挿入されたり、あるいは細胞構造体の形状形成を促進するために挿入することができる。 In one example, as shown in FIG. 7 (B), when the lower frame 160 and the upper frame 170 are assembled, the support 310 is formed on either the lower frame 160 or the upper frame 170. It is fixed. When the lower frame 160 and the upper frame 170 are pulled apart, the support 310 is separated from the linear member 300. Then, the linear members 110, 130, and 300 are removed from the cell structure, respectively. An intermediate linear member 300 can be inserted to promote adhesion, fusion of cell aggregates, or inserted to promote the formation of cell structures.
 図8に、本実施例の製造装置の更なる変形例を示す。同図に示す例では、製造装置はさらに、中子330を有する。複数の線状の部材110は、その一部に半円筒状の凹状の空間S1を規定し、複数の線状の部材130は、その一部に半円筒状の凸状の空間S2を規定し、2つの空間S1とS2により円筒状の空間が規定される。中子330は、空間S1、S2の円筒状の空間の直径よりも小さい直径の円筒状の部材であり、その一部が線状の部材110または130によって宙に浮いた状態で支持される。そして、図8(B)に示すように、空間S1、S2に細胞凝集体が充填され、細胞構造体が形成された。その後、複数の線状の部材110、130が抜去され、かつ、円筒状の中子330がその軸方向に抜去される。その結果、図8(C)に示すように、例えば、血管のような中空の円筒状の細胞構造体を得ることができる。 FIG. 8 shows a further modification of the manufacturing apparatus of this embodiment. In the example shown in the figure, the manufacturing apparatus further includes a core 330. The plurality of linear members 110 define a semi-cylindrical concave space S1 in a portion thereof, and the plurality of linear members 130 define a semi-cylindrical convex space S2 in a portion thereof The two spaces S1 and S2 define a cylindrical space. The core 330 is a cylindrical member having a diameter smaller than the diameter of the cylindrical space of the spaces S1 and S2, and a part of the core 330 is supported in a floating state by the linear members 110 or 130. And as shown to FIG. 8 (B), the cell aggregate was filled with space S1 and S2, and the cell structure was formed. Thereafter, the plurality of linear members 110, 130 are withdrawn, and the cylindrical core 330 is withdrawn in the axial direction. As a result, as shown in FIG. 8C, for example, a hollow cylindrical cell structure such as a blood vessel can be obtained.
 図9に、本実施例の製造装置の更なる変形例を示す。同図に示す例では、図5に示す面状の部材110Aの変形であり、すなわち、面上の部材110Bには、複数の貫通孔340が形成される。貫通孔340の形状、大きさ、数は任意である。図9(B)は、面上の部材110Cに、半円状の窪み350を形成し、その窪み350に複数の貫通孔352を形成した例である。 In FIG. 9, the further modification of the manufacturing apparatus of a present Example is shown. The example shown in the figure is a modification of the planar member 110A shown in FIG. 5, that is, a plurality of through holes 340 are formed in the member 110B on the surface. The shape, size, and number of the through holes 340 are arbitrary. FIG. 9B shows an example in which a semicircular recess 350 is formed in the member 110C on the surface, and a plurality of through holes 352 are formed in the recess 350.
 図10に、本実施例の製造装置の更なる変形例を示す。同図に示す例では、上側枠体170の一部に、内部を見ることができる窓360が形成される。窓360は、貫通孔であってもよいし、あるいは窓360には透明なガラスや透明なプラスチックが取り付けられ、内部空間を封止するものであっても良い。窓360を介して内部の細胞凝集体の接着、融合の進行状態を目視により確認することができる。培養が不十分であることが確認されれば、さらに追加の栄養液等の補給を行うことができる。 FIG. 10 shows a further modification of the manufacturing apparatus of this embodiment. In the example shown in the figure, the window 360 which can see the inside is formed in a part of the upper side frame 170. The window 360 may be a through hole, or the window 360 may be attached with transparent glass or transparent plastic to seal the internal space. The adhesion state of the cell aggregate inside and the progress of fusion can be visually confirmed through the window 360. If the culture is confirmed to be insufficient, additional nutrient solution can be supplied.
 図11に、本実施例の製造装置の更なる変形例を示す。同図に示す例では、型押し部材370により、多孔質のメンブラン380を複数の線状の部材120の裏面に向けて型押しする。これにより、複数の線状の部材120の3次元空間と同じ形状のメンブラン380を得ることができる。メンブラン380は、例えば、脱細胞化したもの、あるいはコラーゲンのような生体分解材料であることができる。 FIG. 11 shows a further modification of the manufacturing apparatus of this embodiment. In the example shown in the figure, the porous membrane 380 is embossed toward the back surface of the plurality of linear members 120 by the embossing member 370. Thereby, a membrane 380 having the same shape as the three-dimensional space of the plurality of linear members 120 can be obtained. Membrane 380 can be, for example, decellularized or a biodegradable material such as collagen.
 図11(B)に示すように、型押しされたメンブラン380から複数の線状の部材120を分離し、メンブラン380の空間内に細胞凝集体を充填させ、細胞構造体を形成することができる。この場合、メンブラン380は、細胞構造体の一部となり得るため、抜去の必要がない。このように、複数の線状の部材、あるいは面状の部材を、コラーゲンや脱細胞化した多孔質のメンブランから構成すれば、複数の線状の部材120を抜去するステップを省略することができ、細胞構造体の製造を容易にすることができる。 As shown in FIG. 11 (B), a plurality of linear members 120 can be separated from the embossed membrane 380, and the cell aggregate can be filled in the space of the membrane 380 to form a cell structure. . In this case, the membrane 380 can be a part of the cell structure, so there is no need to remove it. As described above, when the plurality of linear members or planar members are made of collagen or a decellularized porous membrane, the step of removing the plurality of linear members 120 can be omitted. , Production of cell structures can be facilitated.
 次に、本実施例の製造装置における下側枠体および上側枠体の離脱機構について図12を参照して説明する。本実施例の離脱機構は、把持部400と複数の連結部材410を含む。連結部材410の一端は、把持部400に接続され、他端は、複数の線状の部材110の裏面側に接続されるとともに、両側の連結部材410Aとが上側枠体170Aの端部に接続される。また、下側枠体160Aには、複数の連結部材410を貫通させるための貫通孔が形成されている。把持部400と下側枠体160Aとの間隔が狭まるように把持部400に力を加えることで、下側枠体160Aが上側枠体170Aから引き離され、同時に、複数の支柱120が複数の線状の部材110の裏面から分離される。 Next, the separating mechanism of the lower side frame and the upper side frame in the manufacturing apparatus of the present embodiment will be described with reference to FIG. The detachment mechanism of the present embodiment includes a grip 400 and a plurality of connecting members 410. One end of the connecting member 410 is connected to the grip 400, and the other end is connected to the back surface side of the plurality of linear members 110, and the connecting members 410A on both sides are connected to the end of the upper frame 170A Be done. Moreover, the through-hole for making the some connection member 410 penetrate is formed in lower side frame 160A. The lower frame 160A is pulled away from the upper frame 170A by applying a force to the grip 400 so that the gap between the grip 400 and the lower frame 160A is narrowed, and at the same time, the plurality of columns 120 are a plurality of lines Are separated from the back surface of the second member 110.
 離脱機構はさらに、把持部420と複数の連結部材430とを含む。連結部材430の一端は、把持部420に接続され、他端は、複数の線状の部材130の裏面側に接続される。また、上側枠体170Aには、複数の連結部材410を貫通させるための貫通孔が形成されている。把持部420と上側枠体170Aとの間隔が狭まるように把持部420に力を加えることで、複数の支柱140が複数の線状の部材130の裏面から分離される。 The detachment mechanism further includes a grip 420 and a plurality of connection members 430. One end of the connection member 430 is connected to the grip 420 and the other end is connected to the back side of the plurality of linear members 130. Moreover, the through-hole for making the some connection member 410 penetrate is formed in the upper side frame 170A. The plurality of columns 140 are separated from the back surface of the plurality of linear members 130 by applying a force to the grip 420 so that the distance between the grip 420 and the upper frame 170A is narrowed.
 図13は、細胞構造体Tからの複数の線状の部材の抜去例を説明する図である。図13(A)に示すように、複数の線状の部材500が直線形状であれば、その抜去は容易である。しかしながら、図13(B)に示すように、複数の線状の部材500が段差や折れ曲がり等があれば、細胞構造体Tからの抜去がし難くなる。好ましくは、線状の部材500を軟質材料から構成し、任意の形状であっても抜去がし易くなるようにし、同時に、線状の部材500が破断しない強度が必要である。 FIG. 13 is a view for explaining an example of extraction of a plurality of linear members from the cell structure T. As shown in FIG. 13A, if the plurality of linear members 500 have a linear shape, removal thereof is easy. However, as shown in FIG. 13 (B), if there are steps, bending or the like in the plurality of linear members 500, removal from the cell structure T becomes difficult. Preferably, the linear member 500 is made of a soft material so that it can be easily removed even if it has an arbitrary shape, and at the same time, the strength that the linear member 500 does not break is required.
 そこで、線状の部材500は、強度のある円筒状の芯材510と、芯材510を接着性のある軟質材料520でコーティングする。図13(C)は、単芯の線状の部材であり、図13(D)は、複芯の線状の部材の例である。このような線状の部材を抜去するとき、線状の部材を回転させながら引き抜くことで、細胞構造体からの抜去を容易にする。 Therefore, the linear member 500 is coated with the strong cylindrical core 510 and the core 510 with the adhesive soft material 520. FIG. 13 (C) is a single-core linear member, and FIG. 13 (D) is an example of a multi-core linear member. When removing such a linear member, the linear member can be removed while rotating so as to facilitate removal from the cell structure.
 図14は、本実施例の細胞凝集体の製造装置の電気的な構成を示すブロック図である。同図に示すように、本実施例の製造装置は、下側枠体160と上側枠体170のアッセンブリ600に培養液や栄養液などを供給するための供給源610と、供給源610からアッセンブリ600へ供給される流体の流量を調整するバルブ620と、バルブ620を制御するバルブ制御部630と、排出源640と、アッセンブリ600から排出源640へ排出される流体の流量を調整するバルブ650と、バルブ650を制御するバルブ制御部660と、アッセンブリ600の内部の温度を検出する温度センサ670と、アッセンブリ600の内部の圧力を検出する圧力センサ680と、各部の動作を制御するコントローラ690とを含んで構成される。 FIG. 14 is a block diagram showing the electrical configuration of the cell aggregate production apparatus of this example. As shown in the figure, the manufacturing apparatus of this embodiment includes a supply source 610 for supplying a culture solution, a nutrient solution, and the like to the assembly 600 of the lower frame 160 and the upper frame 170, and an assembly from the supply source 610. A valve 620 for adjusting the flow rate of fluid supplied to 600, a valve control unit 630 for controlling the valve 620, a discharge source 640, and a valve 650 for adjusting the flow rate of fluid discharged from the assembly 600 to the discharge source 640 Valve controller 660 for controlling valve 650, temperature sensor 670 for detecting the temperature inside assembly 600, pressure sensor 680 for detecting the pressure inside assembly 600, and controller 690 for controlling the operation of each part. It comprises.
 コントローラ690は、例えば、RAM/ROMやマイクロプロセッサ等を含み、好ましくは細胞凝集体の製造工程を制御するプログラムを実行することで各部を制御する。図15に、コントローラ690による製造工程の制御シーケンスの一例示す。 The controller 690 includes, for example, a RAM / ROM, a microprocessor or the like, and preferably controls each unit by executing a program that controls the manufacturing process of the cell aggregate. FIG. 15 shows an example of a control sequence of the manufacturing process by the controller 690.
 上記したように、アッセンブリ600は、下側枠体160と上側枠体170とを積層したものであり、両枠体の内部空間には、細胞凝集体が充填されている。1つの例では、供給源610が、流体を搬送するパイプによって上側枠体170の貫通孔260(図4(C)を参照)に接続され、排出源640がパイプによって下側枠体160の貫通孔270に接続される。このような状態から、細胞構造体の製造が開始されるものとする。 As described above, the assembly 600 is a stack of the lower frame 160 and the upper frame 170, and the inner spaces of both frames are filled with cell aggregates. In one example, the supply source 610 is connected to the through hole 260 (see FIG. 4C) of the upper frame 170 by a pipe for conveying a fluid, and the discharge source 640 is penetrated by the lower frame 160 by a pipe. It is connected to the hole 270. From such a state, production of a cell structure shall be started.
 まず、温度センサ670によりアッセンブリ600の内部温度が検出され(S100)、圧力センサ680によりアッセンブリ600の内部圧力が検出される(S102)。コントローラ690は、検出された温度および圧力に基づきアッセンブリ600に供給する流体の流量をバルブ制御部630を介して制御し、かつアッセンブリ600から排出される流体の流量をバルブ制御部660を介して制御する(S104)。例えば、アッセンブリ600の圧力が一定値以上であるとき、供給される流体の流量を減少させ、あるいは排出される流体の流量を増加させる。また、アッセンブリ600内の温度が一定値以上であるとき、供給される流体の流量を増加させ、あるいは排出される流体の流量を減少させる。コントローラ690は、一定時間が経過したか否かをチェックし(S106)、経過していなければ、ステップS100~S104のステップを繰り返す。一定時間は、例えば、細胞凝集体が接着、融合して細胞構造体が形成されるまでの時間である。 First, the internal temperature of the assembly 600 is detected by the temperature sensor 670 (S100), and the internal pressure of the assembly 600 is detected by the pressure sensor 680 (S102). The controller 690 controls the flow rate of fluid supplied to the assembly 600 based on the detected temperature and pressure via the valve control unit 630 and controls the flow rate of fluid discharged from the assembly 600 via the valve control unit 660 (S104). For example, when the pressure of the assembly 600 is above a certain value, the flow rate of the supplied fluid may be decreased or the flow rate of the discharged fluid may be increased. Also, when the temperature in the assembly 600 is above a certain value, the flow rate of the supplied fluid is increased, or the flow rate of the discharged fluid is decreased. The controller 690 checks whether or not a predetermined time has elapsed (S106), and if it has not, the steps S100 to S104 are repeated. The fixed time is, for example, a time until cell aggregates adhere and fuse to form a cell structure.
 なお、図14は、1つの供給源610からアッセンブリ600に流体が供給される例を示しているが、これに限らず、複数の供給源が複数のパイプを介してアッセンブリ600に接続され、複数の供給源の中から選択された流体がアッセンブリ600に供給されるようにバルブの制御を行うようにしてもよい。例えば、第1の温度のとき、第1の種類の流体をアッセンブリ600に供給し、第2の温度のとき、第1の種類の流体の供給を停止し、第2の種類の流体をアッセンブリに供給するようにしてもよい。あるいは、第1の時間期間のときに、第1の種類の流体をアッセンブリ600に供給し、第2の時間期間のときに、第1の種類の流体の供給を停止し、第2の種類の流体をアッセンブリに供給するようにしてもよい。 Although FIG. 14 shows an example in which the fluid is supplied from one source 610 to the assembly 600, the present invention is not limited thereto. A plurality of sources are connected to the assembly 600 through a plurality of pipes, and a plurality of sources are connected. The valve may be controlled to supply the assembly 600 with a fluid selected from the following sources. For example, at the first temperature, the first type of fluid is supplied to the assembly 600, and at the second temperature, the supply of the first type of fluid is stopped, and the second type of fluid is assembled to the assembly. It may be supplied. Alternatively, during the first time period, the first type of fluid is supplied to the assembly 600, and during the second time period, the supply of the first type of fluid is stopped, and the second type of Fluid may be supplied to the assembly.
 以上、本発明の好ましい実施の形態について詳述したが、本発明は、特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the preferred embodiments of the present invention have been described above in detail, the present invention is not limited to the specific embodiments, and various modifications may be made within the scope of the present invention as set forth in the claims. Modifications and changes are possible.
100:製造装置
110:線状の部材
110A、110B:面状の部材
120:支柱
130:線状の部材
140:支柱
150、152、154:連結手段
160:下側枠体
170:上側枠体
200、210、220、230:貫通孔
300:中間の線状の部材
310:支柱
330:中子
340:貫通孔
350:凹部
360:窓
370:型押し部材
380:メンブレン
400、420:把持部材
410、430:連結部材
T:細胞構造体
 
100: manufacturing apparatus 110: linear members 110A, 110B: planar members 120: support members 130: linear members 140: support members 150, 152, 154: connection means 160: lower frame 170: upper frame 200 210, 220, 230: through hole 300: intermediate linear member 310: post 330: core 340: through hole 350: recess 360: window 370: embossing member 380: membrane 400, 420: gripping member 410, 430: Connecting member T: Cell structure

Claims (22)

  1. 細胞構造体の製造方法であって、
     培地等の液体を透過可能であり、かつ細胞凝集体を保持するための3次元空間を形成する部材を用意し、
     前記空間内に複数の細胞凝集体を供給し、
     前記複数の細胞凝集体を融合させて細胞構造体を形成するステップを含む、細胞構造体の製造方法。
    A method for producing a cell structure, comprising
    Preparing a member which is permeable to a liquid such as a culture medium and which forms a three-dimensional space for holding cell aggregates;
    Supplying a plurality of cell aggregates in the space;
    A method of producing a cell structure, comprising the step of fusing the plurality of cell aggregates to form a cell structure.
  2. 製造方法はさらに、前記細胞凝集体が供給された前記部材を、培養液を含む容器内に浸漬するステップを含む、請求項1に記載の製造方法。 The method according to claim 1, further comprising the step of immersing the member supplied with the cell aggregate in a container containing a culture solution.
  3. 製造方法はさらに、前記細胞構造体から前記部材を分離するステップを含む、請求項1に記載の製造方法。 The method according to claim 1, wherein the method further comprises the step of separating the member from the cell structure.
  4. 前記部材は、少なくとも上側部材と下側部材とを含み、前記上側部材と前記下側部材とによって3次元空間を形成する、請求項1に記載の製造方法。 The method according to claim 1, wherein the member includes at least an upper member and a lower member, and the upper member and the lower member form a three-dimensional space.
  5. 前記部材はさらに、前記上側部材と前記下側部材との間に中子を含み、当該中子によって3次元空間を形成する、請求項4に記載の製造方法。 The method according to claim 4, wherein the member further includes a core between the upper and lower members, and the core forms a three-dimensional space.
  6. 前記部材が複数の線状の部材を含み、前記複数の線状の部材を前記細胞構造体から引き抜くステップを含む、請求項1に記載の製造方法。 The method according to claim 1, wherein the member comprises a plurality of linear members, and the step of drawing the plurality of linear members from the cell structure.
  7. 前記上側部材は、複数の線状の部材を含み、前記下側部材は、複数の線状の部材を含む、請求項5に記載の製造方法。 The method according to claim 5, wherein the upper member includes a plurality of linear members, and the lower member includes a plurality of linear members.
  8. 前記上側部材および前記下側部材のいずれか一方は、平坦な面を含む、請求項6に記載の製造方法。 The method according to claim 6, wherein any one of the upper and lower members includes a flat surface.
  9. 前記部材は、下側の枠部材と上側の枠部材によって保持される、請求項1に記載の製造方法。 The method according to claim 1, wherein the member is held by a lower frame member and an upper frame member.
  10. 前記下側の枠部材および前記上側の枠部材の少なくとも一方には、前記3次元空間に繋がる少なくとも1つの貫通孔が形成される、請求項9に記載の製造方法。 The manufacturing method according to claim 9, wherein at least one through hole connected to the three-dimensional space is formed in at least one of the lower frame member and the upper frame member.
  11. 前記部材は、3次元プリンタにより形成される、請求項1ないし10いずれか1つに記載の製造方法。 The manufacturing method according to any one of claims 1 to 10, wherein the member is formed by a three-dimensional printer.
  12. 前記部材の少なくとも一部は、生体分解材料から構成される、請求項1ないし11いずれか1つに記載の製造方法。 12. A method according to any one of the preceding claims, wherein at least a portion of the member is comprised of a biodegradable material.
  13. 細胞構造体を製造するための製造装置であって、
     少なくとも第1の空間を規定する第1の部材と、
     第1の部材に対向して配置され、少なくとも第2の空間を規定する第2の部材とを有し、
     第1の空間および第2の空間により規定される第3の空間内に複数の細胞凝集体を収容可能であり、
     少なくとも第1の部材および第2の部材の双方は、培地等の液体を透過可能である、製造装置。
    A manufacturing apparatus for manufacturing a cell structure, comprising:
    A first member defining at least a first space;
    A second member disposed opposite to the first member and defining at least a second space;
    A plurality of cell aggregates can be accommodated in a third space defined by the first space and the second space,
    The manufacturing apparatus, wherein at least the first member and the second member are both permeable to a liquid such as a culture medium.
  14. 製造装置はさらに、
     前記第1の部材に接続された複数の支柱を含む第1の支持部材と、
     前記第2の部材に接続された複数の支柱を含む第2の支持部材と、
     前記第1の支持部材に接続された上側の枠体と、
     前記第2の支持体に接続された下側の枠体とを含み、
     前記上側の枠体と前記下側の枠体とが互いに位置決めされる、請求項13に記載の製造装置。
    In addition, the manufacturing equipment
    A first support member including a plurality of columns connected to the first member;
    A second support member comprising a plurality of posts connected to the second member;
    An upper frame connected to the first support member;
    And a lower frame connected to the second support;
    The manufacturing apparatus according to claim 13, wherein the upper frame and the lower frame are positioned relative to each other.
  15. 第1の部材および第2の部材は、複数の線状の部材から構成される、請求項14に記載の製造装置。 15. The manufacturing apparatus according to claim 14, wherein the first member and the second member are composed of a plurality of linear members.
  16. 前記複数の線状の部材と前記複数の支柱とは分離可能である、請求項15に記載の製造装置。 The manufacturing apparatus according to claim 15, wherein the plurality of linear members and the plurality of columns are separable.
  17. 製造装置はさらに、前記上側の枠体と前記下側の枠体とを着脱可能に接続する接続手段を有する、請求項13に記載の製造装置。 The manufacturing apparatus according to claim 13, further comprising connection means for detachably connecting the upper frame and the lower frame.
  18. 前記接続手段は、前記上側の枠体と前記下側の枠体とを離脱するための離脱機構を含む、請求項17に記載の製造装置。 The manufacturing apparatus according to claim 17, wherein the connection means includes a release mechanism for separating the upper frame and the lower frame.
  19. 前記上側の枠体および前記下側の枠体の少なくとも一方に、前記3次元空間に繋がる貫通孔が少なくとも1つ形成される、請求項13に記載の製造装置。 The manufacturing apparatus according to claim 13, wherein at least one through hole connected to the three-dimensional space is formed in at least one of the upper frame and the lower frame.
  20. 製造装置はさらに、培地、栄養素、成長因子等の培養液を前記貫通孔を介して前記3次元空間へ供給する供給手段を含む、請求項19に記載の製造装置。 20. The manufacturing apparatus according to claim 19, further comprising supply means for supplying a culture solution, such as a culture medium, a nutrient, or a growth factor, to the three-dimensional space through the through hole.
  21. 製造装置はさらに、前記貫通孔を介して前記3次元空間へ供給された液体を排出する排出手段を含む、請求項19に記載の製造装置。 20. The manufacturing apparatus according to claim 19, further comprising: a discharge unit configured to discharge the liquid supplied to the three-dimensional space through the through hole.
  22. 前記貫通孔は、前記3次元空間内の細胞凝集体を観察するための窓である、請求項19に記載の製造装置。
     
    The manufacturing apparatus according to claim 19, wherein the through hole is a window for observing cell aggregates in the three-dimensional space.
PCT/JP2017/025400 2017-07-12 2017-07-12 Device for producing three-dimensional cell structure having arbitrary shape, and method for producing same WO2019012622A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/025400 WO2019012622A1 (en) 2017-07-12 2017-07-12 Device for producing three-dimensional cell structure having arbitrary shape, and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/025400 WO2019012622A1 (en) 2017-07-12 2017-07-12 Device for producing three-dimensional cell structure having arbitrary shape, and method for producing same

Publications (1)

Publication Number Publication Date
WO2019012622A1 true WO2019012622A1 (en) 2019-01-17

Family

ID=65001616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025400 WO2019012622A1 (en) 2017-07-12 2017-07-12 Device for producing three-dimensional cell structure having arbitrary shape, and method for producing same

Country Status (1)

Country Link
WO (1) WO2019012622A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7471579B1 (en) 2023-04-28 2024-04-22 ティシューバイネット株式会社 Method for producing a three-dimensional cell structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602028A (en) * 1995-06-30 1997-02-11 The University Of British Columbia System for growing multi-layered cell cultures
JP2007515958A (en) * 2003-12-19 2007-06-21 ユニヴァーシティー オブ ウォータールー Cultured cells, cell culture methods and equipment
WO2012111684A1 (en) * 2011-02-15 2012-08-23 国立大学法人佐賀大学 Debubbling device in automated cell handling robot
JP2013005751A (en) * 2011-06-24 2013-01-10 Saga Univ Apparatus for producing three-dimensional structure of cell
JP2016000029A (en) * 2014-05-20 2016-01-07 国立大学法人佐賀大学 Tissue body forming apparatus and tissue body forming kit
JP2016054655A (en) * 2014-09-05 2016-04-21 日本写真印刷株式会社 Culture vessel
WO2016068292A1 (en) * 2014-10-31 2016-05-06 富士フイルム株式会社 Tubular structure, device for producing tubular structure, and method for producing tubular structure
JP2017023049A (en) * 2015-07-22 2017-02-02 株式会社ファンケル Cell culture vessel having observation window part, cell culture apparatus, and method for observing cultured cells from the side thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602028A (en) * 1995-06-30 1997-02-11 The University Of British Columbia System for growing multi-layered cell cultures
JP2007515958A (en) * 2003-12-19 2007-06-21 ユニヴァーシティー オブ ウォータールー Cultured cells, cell culture methods and equipment
WO2012111684A1 (en) * 2011-02-15 2012-08-23 国立大学法人佐賀大学 Debubbling device in automated cell handling robot
JP2013005751A (en) * 2011-06-24 2013-01-10 Saga Univ Apparatus for producing three-dimensional structure of cell
JP2016000029A (en) * 2014-05-20 2016-01-07 国立大学法人佐賀大学 Tissue body forming apparatus and tissue body forming kit
JP2016054655A (en) * 2014-09-05 2016-04-21 日本写真印刷株式会社 Culture vessel
WO2016068292A1 (en) * 2014-10-31 2016-05-06 富士フイルム株式会社 Tubular structure, device for producing tubular structure, and method for producing tubular structure
JP2017023049A (en) * 2015-07-22 2017-02-02 株式会社ファンケル Cell culture vessel having observation window part, cell culture apparatus, and method for observing cultured cells from the side thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7471579B1 (en) 2023-04-28 2024-04-22 ティシューバイネット株式会社 Method for producing a three-dimensional cell structure

Similar Documents

Publication Publication Date Title
JP2022009363A (en) Organ mimicking device having microchannel and use and production method thereof
US20170145386A1 (en) Self-assembling cell aggregates and methods of making engineered tissue using the same
US7919319B2 (en) Cultured cell and method and apparatus for cell culture
EP2720731B1 (en) Systems, methods, and devices relating to a biomimetic cellularized nephron unit
JP6256853B1 (en) Method for producing three-dimensional cell structure and support used therefor
AU2019280027B2 (en) Organ mimic device with microchannels and methods of use and manufacturing thereof
WO2016021498A1 (en) Method for producing fibrous protein material and cell culturing method
JP2017501745A (en) Fluidic device and perfusion system for the reconstruction of complex biological tissue outside the body
JP6439223B1 (en) Cell structure manufacturing apparatus, manufacturing system, and manufacturing method
JP6296620B2 (en) Hydrogel substrate for cell evaluation, method for producing hydrogel substrate for cell evaluation, and cell evaluation method
WO2019012622A1 (en) Device for producing three-dimensional cell structure having arbitrary shape, and method for producing same
JP2005034069A (en) Bioreactor and method for culturing cell using the same
CN113755425B (en) Preparation method of porous microcarrier for carrying three-dimensional islet beta cell aggregate
WO2022059777A1 (en) Three-dimensional artificial tissue manufacturing apparatus and three-dimensional artificial tissue manufacturing method
JP2005168435A (en) Apparatus for culturing cell and method for culturing cell
JP2005168436A (en) Cell-culturing apparatus and cell-culturing method
JP7157999B2 (en) Method for culturing microorganisms using vesicles encapsulating microorganisms
JP2005168434A (en) Apparatus for culturing cell and method for culturing cell
TW202229536A (en) Cell culture platform and method for manufacture the same
PL240748B1 (en) Magnetic-hydrodynamic microfluidic platform, method of its production and method of artificial tissue culture in a magnetic micropole
WO2017213529A1 (en) A method for manufacturing a cell-culture substrate, a device for the perfusion cell cultures, a method for maintaining cell cultures and a set

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP