WO2019012578A1 - Indoor unit for air conditioner - Google Patents

Indoor unit for air conditioner Download PDF

Info

Publication number
WO2019012578A1
WO2019012578A1 PCT/JP2017/025133 JP2017025133W WO2019012578A1 WO 2019012578 A1 WO2019012578 A1 WO 2019012578A1 JP 2017025133 W JP2017025133 W JP 2017025133W WO 2019012578 A1 WO2019012578 A1 WO 2019012578A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation axis
cross
distance
inscribed circle
section
Prior art date
Application number
PCT/JP2017/025133
Other languages
French (fr)
Japanese (ja)
Inventor
池田 尚史
平川 誠司
祥吾 生田目
貴紀 吉田
代田 光宏
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/025133 priority Critical patent/WO2019012578A1/en
Priority to JP2019529331A priority patent/JP6811863B2/en
Priority to CN201780091508.9A priority patent/CN110914550B/en
Publication of WO2019012578A1 publication Critical patent/WO2019012578A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/04Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • F04D29/283Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis rotors of the squirrel-cage type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes

Definitions

  • Patent Document 1 describes a cross-flow fan in which a plurality of impellers are stacked in the rotation center line direction.
  • Each of the plurality of impellers includes a support plate and a plurality of vanes formed on the main surface of the support plate.
  • the cross section perpendicular to the rotation center line in each blade portion decreases in the direction from the root to the tip. Further, the center of the cross section perpendicular to the rotation center line in each blade portion is displaced forward in the rotational direction as it goes from the root portion to the tip portion, and is displaced radially outward. .
  • the thickness of the central portion between the outer end portion and the inner end portion in the cross section perpendicular to the rotation center line is approximately the maximum thickness.
  • the wall thickness becomes smaller as it goes away and approaches the outer end portion or the inner end portion, and both the outer end portion and the inner end portion have a thickness distribution in which the wall thickness becomes minimum. If each blade portion of the cross flow fan has such a thickness distribution, the flow of air is likely to be separated from the blade surface, and there is a problem that the efficiency of the cross flow fan may be lowered. .
  • the present invention is made to solve the problems as described above, and it is an object of the present invention to provide an indoor unit of an air conditioner that can improve the efficiency of the cross flow fan.
  • An indoor unit of an air conditioner is an indoor unit of an air conditioner including a casing in which an inlet and an outlet are formed, and a cross flow fan housed in the casing, and the cross
  • the flow fan includes an impeller disposed in an air passage formed in the casing, a stabilizer that divides the air passage into a suction side air passage and an outlet side air passage, and the air passage side from the impeller.
  • a guide wall for guiding the air blown out to the air outlet, and the impellers are respectively disposed on a circumference centered on a rotation axis of the impeller, and a direction along the rotation axis
  • a plurality of wings each having a first end and a second end as an end of the second support, and a support plate for supporting the first end of each of the plurality of wings, the second end A portion of the impeller that is closer to the first end than the first
  • the plurality of wings are disposed forward in the rolling direction, and each of the plurality of wings has an inner peripheral end and an outer peripheral end as radial ends centered on the rotation axis, and the second
  • the cross-sectional area of the end in a cross section perpendicular to the axis of rotation is smaller than the cross-sectional area of the first end in a cross section perpendicular to the axis of rotation, and the axis of rotation and the second end
  • each of the plurality of wings is Having a thickest portion with the largest thickness on the inner peripheral end side of a straight line passing through the midpoints of the chord lines of the plurality of wings and perpendicular to the chord line It is.
  • the thickness of the inner peripheral end which is the front edge is larger than the thickness of the outer peripheral end, it is possible to prevent separation from occurring even if the inflow angle of air changes. it can. Therefore, according to the indoor unit of the air conditioner according to the present invention, the efficiency of the cross flow fan can be improved.
  • FIG. 5 is a cross-sectional view showing a part of a VII-VII cross section of FIG. 3;
  • FIG. 5 is a cross-sectional view showing a part of a VIII-VIII cross section of FIG. 3;
  • FIG. 4 is a cross-sectional view showing a part of a cross section taken along line IX-IX of FIG. 3;
  • the centers 8gma, 8gmb and 8gmc have respective cross sections of the first end 8ca, the second end 8cb and the middle part 8cc.
  • FIG. 1 is an external appearance perspective view which shows the structure of the indoor unit 100 of the air conditioner concerning this Embodiment.
  • FIG. 2 is a side view showing the internal structure of the indoor unit 100 of the air conditioner according to the present embodiment.
  • FIG. 1 and FIG. 2 illustrate the wall-mounted indoor unit 100 installed on the wall 11a of the room 11, which is a space to be air-conditioned, the indoor unit 100 may be another indoor type such as a ceiling-embedded type. It may be a machine.
  • the room 11 is not necessarily limited to the room in the house, and may be an office, a warehouse, or the like.
  • the indoor unit 100 has a casing 1 for housing internal devices.
  • the casing 1 has a casing body 1a attached to the wall 11a, and a front panel 1b provided on the front surface of the casing body 1a and capable of opening and closing.
  • a suction grill 2 is formed on the top surface portion 1c of the casing body 1a.
  • a plurality of openings 2 a are formed in the suction grill 2 as suction ports through which indoor air is sucked into the indoor unit 100.
  • the suction grille 2 may be formed not only on the top surface portion 1c of the casing main body 1a but also on the front panel 1b. Further, the shape of the suction grille 2 is not particularly limited.
  • an air outlet 3 through which conditioned air is blown into the room.
  • the air outlet 3 is provided with a vertical wind direction vane 4a that adjusts the wind direction of the conditioned air in the vertical direction, and a left and right wind direction vane 4b that adjusts the wind direction of the conditioned air in the horizontal direction.
  • the up and down wind direction vanes 4a are disposed downstream of the left and right wind direction vanes 4b.
  • Shaft portions provided at both ends of the up and down wind direction vanes 4a are rotatably supported by a pair of bearing portions provided in the casing main body 1a with the blowout port 3 interposed therebetween.
  • the shaft portion provided on the upper portion of the left and right wind direction vanes 4b is rotatably supported by a bearing portion provided on an upper wall 9b described later.
  • An air passage extending from the opening 2 a of the suction grill 2 to the blowout port 3 is formed at a central portion inside the casing 1.
  • the air passage is provided with a filter 5 and a heat exchanger 7 that transmits the heat or cold of the refrigerant to the air that has passed through the filter 5 to generate conditioned air.
  • the air flow path is provided with a cross flow fan 8 that generates a flow of air from the opening 2 a toward the air outlet 3.
  • the heat exchanger 7 is a fin-and-tube type heat exchanger provided with a plurality of aluminum plate-like fins arranged in parallel and a heat transfer tube penetrating the plate-like fins.
  • the heat exchanger 7 constitutes a refrigeration cycle together with a compressor, an outdoor heat exchanger, a throttling device, and the like.
  • the compressor, the outdoor heat exchanger, and the expansion device are accommodated in an outdoor unit (not shown).
  • the heat exchanger 7 functions as an evaporator or heat absorber to cool the air during the cooling operation, and functions as a condenser or radiator to heat the air during the heating operation.
  • the heat exchanger 7 is shaped to surround the front side (left side in FIG. 2) and the back side (right side in FIG. 2) of the impeller 8a, heat exchange is performed.
  • the shape of the vessel 7 is not particularly limited.
  • the cross flow fan 8 includes an impeller 8a disposed in an air passage, a motor 12 (not shown in FIGS. 1 and 2) for rotationally driving the impeller 8a, and a suction passage air passage E1 and a blowout side. It has a stabilizer 9 divided into an air passage E2, and a guide wall 10 for guiding the air blown out from the impeller 8a to the outlet air passage E2 to the air outlet 3.
  • the impeller 8 a is disposed on the downstream side of the heat exchanger 7 in the air path and on the upstream side of the blowout port 3. As the impeller 8 a rotates, room air is sucked from the opening 2 a and conditioned air is blown out from the blowout port 3.
  • the impeller 8a is formed of a thermoplastic resin such as AS resin. The details of the impeller 8a will be described later with reference to FIGS.
  • the stabilizer 9 is formed to project into the air passage inside the casing 1 from the front side of the casing body 1 a.
  • a tongue 9a facing the impeller 8a is formed at the tip of the stabilizer 9.
  • the tongue 9a extends in a direction perpendicular to the paper surface of FIG. 2 along the rotation axis O of the impeller 8a.
  • the lower surface of the stabilizer 9 constitutes an upper wall 9 b of the outlet 3.
  • a drain pan 9 c for receiving the condensed water from the heat exchanger 7 is formed on the upper surface of the stabilizer 9.
  • the guide wall 10 constitutes a rear wall of the outlet side air passage E2.
  • the guide wall 10 forms a spiral slope which is inclined from the impeller 8 a to the air outlet 3.
  • the downstream side portion of the guide wall 10 faces the upper wall 9 b with the blowout port 3 interposed therebetween.
  • FIG. 3 is an external view showing the configuration of the impeller 8 a and the motor 12 in the indoor unit 100 of the air conditioner according to the present embodiment.
  • the front view of the impeller 8a and the motor 12 and the side view of the impeller 8a are shown together.
  • FIG. 4 is an external perspective view showing a configuration of an impeller unit 8 d in the indoor unit 100 of the air conditioner according to the present embodiment.
  • FIG. 5 is a side view showing a configuration of an impeller unit 8 d in the indoor unit 100 of the air conditioner according to the present embodiment.
  • the impeller 8a has a configuration in which a plurality of impeller units 8d are connected in the direction of the rotation axis O by welding or the like.
  • Each of the plurality of impeller units 8d has a plurality of wings 8c and a support plate 8b supporting one end of each of the plurality of wings 8c.
  • the plurality of wings 8 c are disposed at predetermined intervals on a circumference centered on the rotation axis O, and extend generally along the rotation axis O.
  • Each of the plurality of wings 8 c has a first end 8 ca and a second end 8 cb as an end in a direction along the rotation axis O.
  • the first end 8ca is supported by the outer periphery of one surface of the support plate 8b. That is, in the impeller unit 8d, each of the plurality of wings 8c protrudes from the outer peripheral portion of one surface of the support plate 8b in a direction substantially perpendicular to the surface.
  • the first end 8ca is an end of the root of the wing 8c
  • the second end 8cb is an end of the tip of the wing 8c.
  • each of the plurality of wings 8c has an intermediate portion 8cc located in the middle between the first end 8ca and the second end 8cb in the direction along the rotation axis O. Assuming that the distance between two adjacent support plates 8b, that is, the distance between the first end 8ca and the second end 8cb in the direction along the rotation axis O is P, the first end in the direction along the rotation axis O The distance between the portion 8ca and the middle portion 8cc is P / 2.
  • the support plate 8 b has a disk-like shape centered on the rotation axis O. As shown in FIGS. 7 to 9 described later, the radius of the support plate 8b is Rr.
  • the support plate 8b located in the impeller 8a other than the both ends in the direction of the rotational axis O may have a ring shape with the central axis opened with the rotational axis O as the center.
  • an end plate 8f having a disk shape centered on the rotation axis O is provided at the other end of the impeller 8a in the direction of the rotation axis O.
  • the end plate 8f has the same radius as the support plate 8b.
  • the end plate 8 f is provided with a fan shaft 8 fa extending along the rotation axis O to the outside of the impeller 8 a.
  • the fan shaft 8 fa is rotatably supported by a bearing provided on the casing body 1 a.
  • the motor 12 When the motor 12 is energized, the driving force of the motor 12 is transmitted to the impeller 8a via the motor shaft 12a. Thereby, the impeller 8a rotates in the rotation direction RO centering on the rotation axis O. As the impeller 8 a rotates, room air is sucked from the opening 2 a of the suction grille 2, and conditioned air is blown out from the blowout port 3.
  • FIG. 6 is an enlarged view of a portion VI of FIG.
  • the second end 8cb of the wing 8c is disposed forward of the first end 8ca by a rotational displacement angle ⁇ 2 in the rotational direction RO of the impeller 8a.
  • blade 8c inclines only angle (delta) in the circumferential direction with respect to the rotating shaft O (refer FIG. 3). That is, the wing 8c is a so-called skewed wing.
  • the timing of passing through the tongue portion that divides the suction side air passage and the discharge side air passage is simultaneous at each position in the blade rotation axis direction.
  • the timing of passing through the tongue 9a deviates at each position in the rotation axis O direction of the wing 8c. Therefore, in the present embodiment, the rotational noise of the cross flow fan 8 can be reduced.
  • the wing 8c is an end on the inner peripheral side of the impeller single unit 8d as an end in the radial direction about the rotation axis O, and an outer periphery on the outer peripheral side of the impeller single unit 8d And the side end 8g.
  • the pressure surface 8j which is the side surface of the wing 8c on the rotational direction RO side is curved in the rotational direction RO as it goes from the inner peripheral end 8h to the outer peripheral end 8g.
  • the negative pressure surface 8k which is the side surface of the wing 8c opposite to the rotational direction RO is curved in the rotational direction RO as it goes from the inner end 8h to the outer end 8g.
  • the wing 8c is curved so that the pressure surface 8j side is concave and the suction surface 8k side is convex.
  • the center of the inner peripheral end 8h of the wing 8c is 8 hm, and the angle formed by the two line segments respectively connecting the center 8 hm of the two adjacent wings 8c and the rotation axis O Is the pitch angle (see FIG. 5).
  • the pitch angle ⁇ 1 between two given wings 8c is different from the pitch angle ⁇ 2 between two other wings 8c ( ⁇ 1 ⁇ ⁇ 2). That is, the plurality of blades 8c are not equal pitch blades all having a uniform pitch angle, but are unequal pitch blades having at least two different pitch angles.
  • FIG. 7 is a cross-sectional view showing a part of a VII-VII cross section of FIG.
  • FIG. 8 is a cross-sectional view showing a part of a VIII-VIII cross section of FIG.
  • FIG. 9 is a cross-sectional view showing a part of a cross section taken along the line IX-IX of FIG. 7, 8 and 9 respectively show cross sections of the first end 8ca, the second end 8cb and the middle part 8cc of one wing 8c taken along a plane perpendicular to the rotation axis O.
  • cross-sectional hatching of the first end 8ca, the second end 8cb, and the middle portion 8cc is omitted in FIGS.
  • a distance Rt between the rotation axis O and the outer peripheral side end 8g is defined as a radius of a circumscribed circle which is in contact with the outer peripheral side end 8g with the rotation axis O as a center in a cross section perpendicular to the rotation axis O.
  • the distance Rib between the rotation axis O and the inner end 8hb at the second end 8cb is longer than the distance Ria between the rotation axis O and the inner end 8ha at the first end 8ca. (Rib> Ria).
  • the distance Ric between the rotation axis O and the inner peripheral end 8hc at the intermediate portion 8cc is shorter than the distance Rib and longer than the distance Ria (Rib> Ric> Ria). That is, the distance between the rotation axis O and the inner peripheral end 8h gradually increases from the first end 8ca to the second end 8cb.
  • the distance Ri between the rotation axis O and the inner peripheral end 8 h is defined as the radius of the inscribed circle in contact with the inner peripheral end 8 h with the rotation axis O as a center.
  • chord line Lo is defined as a straight line in contact with both the contour of the inner peripheral end 8 h and the contour of the outer peripheral end 8 g in a cross section perpendicular to the rotation axis O.
  • the chord length L is defined as the length of the wing 8 c in the direction along the chord line Lo. That is, the chord length L is a straight line perpendicular to the chord line Lo and in contact with the contour of the inner end 8h, and a straight line perpendicular to the chord line Lo and in contact with the contour of the outer end 8g Equal to the distance.
  • the chord length Lb of the second end 8cb is shorter than the chord length La of the first end 8ca (Lb ⁇ La).
  • chord length Lc of the middle portion 8cc is longer than the chord length Lb of the second end 8cb and shorter than the chord length La of the first end 8ca (Lb ⁇ Lc ⁇ La). That is, the chord length L gradually reduces from the first end 8ca to the second end 8cb.
  • the thickness t1 of the inner peripheral end 8h is the contour of the inner peripheral end 8h, the diameter of the inscribed circle in contact with the pressure surface 8j and the negative pressure surface 8k in a cross section perpendicular to the rotation axis O, It is defined.
  • the thickness t2 of the outer peripheral end 8g is defined as the contour of the outer peripheral end 8g, the diameter of the inscribed circle in contact with the pressure surface 8j and the negative pressure surface 8k in a cross section perpendicular to the rotation axis O.
  • the thickness of the other portion of the wing 8c is defined as the diameter of the inscribed circle in contact with the pressure surface 8j and the suction surface 8k in a cross section perpendicular to the rotation axis O.
  • the wing 8c has the largest thickness portion TM where the thickness (that is, the diameter of the inscribed circle in contact with the pressure surface 8j and the suction surface 8k) becomes maximum.
  • the largest thick portion TM is located closer to the inner peripheral end 8 h than a straight line Lo 3 which passes through the middle point Lo 2 of the chord line Lo and is perpendicular to the chord line Lo.
  • the largest thickness portion TM is located on the outer peripheral side than the inner peripheral end 8 h.
  • the thickness of the wing 8c gradually decreases from the largest thick portion TM toward the inner circumferential end 8h, and from the largest thick portion TM to the outer circumferential end 8g. Gradually decrease towards.
  • the thickness of the largest thickness part TMa at the first end 8ca is tmaxa
  • the thickness of the largest thickness part TMb at the second end 8cb is tmaxb
  • the largest thickness part TMc at the middle part 8cc Has a wall thickness of tmaxc. Since the wing 8c has a tapered shape, the thickness of the largest thickness portion TM gradually decreases from the first end 8ca to the second end 8cb (tmaxa> tmaxc> tmaxb).
  • the thickness t1b of the inner end 8hb is 0.60 mm
  • the thickness t2b of the outer end 8gb is 0.50 mm
  • the thickness of the maximum thickness portion TMb tmaxb is 0.62 mm.
  • Rhc the distance between the center 8 hmc and the rotation axis O.
  • the distance between the center 8hma and the center 8gma in the cross section shown in FIG. 7, the distance between the center 8hmb and the center 8gmb in the cross section shown in FIG. 8, and the distance between the center 8hmc and the center 8gmc in the cross section shown in FIG. Are equal.
  • the distance Rmb is longer than the distance Rhb and shorter than the distance Rgb (Rhb ⁇ Rmb ⁇ Rgb).
  • Rmc the distance between the center TMmc and the rotation axis O.
  • the distance Rmc is longer than the distance Rhc and shorter than the distance Rgc (Rhc ⁇ Rmc ⁇ Rgc).
  • a distance Rta between the rotation axis O and the outer peripheral end 8ga of the first end 8ca, a distance Rtb between the rotation axis O and the outer peripheral end 8gb of the second end 8cb, the rotation axis O with the first end 8ca The distance Ria with the inner peripheral end 8ha, the distance Rib between the rotation axis O and the inner peripheral end 8hb of the second end 8cb, and the first end 8ca with the second end in the direction along the rotational axis O
  • the pressure surface 8ja in the cross section shown in FIG. 7 has a first curve portion 8Cja formed of a curve in which the pressure surface 8ja side is concave and a first straight portion 8Lja formed of a straight line. ing.
  • One end of the first curved portion 8Cja is connected to the pressure surface side end of the arc that constitutes the outline of the outer peripheral side end 8ga.
  • the other end of the first curved portion 8Cja is connected to one end of the first straight portion 8Lja.
  • the other end of the first straight portion 8Lja is connected to the pressure surface side end of an arc that constitutes the contour of the inner peripheral side end 8ha.
  • the first curved portion 8Cja is a multiple arc curve formed of two or more arcs different in radius.
  • the radius Rja1 of the arc on the outer peripheral end 8ga side is larger than the radius Rja2 of the arc on the inner peripheral end 8ha side.
  • the negative pressure surface 8ka has a second curved portion 8Cka which is formed of a curve which is convex on the negative pressure surface 8ka side, and a second straight portion 8Lka which is formed of a straight line.
  • One end of the second curved portion 8Cka is connected to the negative pressure surface side end of an arc that constitutes the outline of the outer peripheral side end 8ga.
  • the other end of the second curved portion 8Cka is connected to one end of the second straight portion 8Lka.
  • the other end of the second straight portion 8Lka is connected to the negative pressure surface side end of an arc that constitutes the contour of the inner peripheral side end 8ha.
  • the second straight portion 8Lka is parallel to the first straight portion 8Lja.
  • the pressure surface 8jb in the cross section shown in FIG. 8 has a first curved portion 8Cjb formed of a curve which is concave on the pressure surface 8jb side, and a first straight portion 8Ljb formed of a straight line.
  • One end of the first curved portion 8Cjb is connected to the pressure surface side end of an arc that constitutes the outline of the outer peripheral side end 8gb.
  • the other end of the first curved portion 8Cjb is connected to one end of the first straight portion 8Ljb.
  • the other end of the first straight portion 8Ljb is connected to the pressure surface side end of an arc that constitutes the contour of the inner peripheral side end 8hb.
  • the first curved portion 8Cjb is a multiple arc curve formed of two or more arcs different in radius.
  • the radius Rjb1 of the arc on the outer peripheral end 8gb side is larger than the radius Rjb2 of the arc on the inner peripheral end 8hb side.
  • the negative pressure surface 8 kb has a second curved portion 8 Ckb formed of a curve which is convex on the negative pressure surface 8 kb side, and a second straight portion 8 Lkb formed of a straight line.
  • One end of the second curved portion 8Ckb is connected to the negative pressure surface side end of an arc that constitutes the outline of the outer peripheral side end 8gb.
  • the other end of the second curved portion 8Ckb is connected to one end of the second straight portion 8Lkb.
  • the other end of the second straight portion 8Lkb is connected to the negative pressure surface side end of an arc that constitutes the contour of the inner peripheral side end 8hb.
  • the second straight portion 8Lkb is parallel to the first straight portion 8Ljb.
  • the second curved portion 8Ckb is a multiple arc curve formed of two or more arcs different in radius.
  • the radius Rkb1 of the arc on the outer peripheral end 8gb side is larger than the radius Rkb2 of the arc on the inner peripheral end 8hb side.
  • the first curved portion 8Cjc is a multiple arc curve formed of two or more arcs different in radius.
  • the radius Rjc1 of the arc on the outer peripheral end 8gc side is larger than the radius Rjc2 of the arc on the inner peripheral end 8hc side.
  • the negative pressure surface 8kc has a second curved portion 8Ckc formed of a curve which is convex on the negative pressure surface 8kc side, and a second straight portion 8Lkc formed of a straight line.
  • One end of the second curved portion 8Ckc is connected to the negative pressure surface side end of an arc that constitutes the outline of the outer peripheral side end 8gc.
  • the other end of the second curved portion 8Ckc is connected to one end of the second straight portion 8Lkc.
  • the other end of the second straight portion 8Lkc is connected to the negative pressure surface side end of an arc that constitutes the contour of the inner peripheral side end 8hc.
  • the second straight portion 8Lkc is parallel to the first straight portion 8Ljc.
  • the second curved portion 8Ckc is a multiple arc curve formed of two or more arcs different in radius.
  • the radius Rkc1 of the arc on the outer peripheral end 8gc side is larger than the radius Rkc2 of the arc on the inner peripheral end 8hc side.
  • a flat plate portion is formed on the inner peripheral end 8h side of the wing 8c. There is.
  • the flat plate portion has a constant thickness in a cross section perpendicular to the rotation axis O.
  • the wing 8c has a maximum warpage portion having the maximum warpage heights hsa, hsb and hsc on the inner peripheral side end 8h side of the straight line Lo3.
  • the maximum warpage height is defined as the maximum value of the distance from the chord line Lo to the suction surface 8k.
  • the distance Ls from the inner circumferential end 8h to the maximum warpage in the direction along the chord line Lo is shorter than half the chord length L (Ls ⁇ L / 2).
  • FIG. 11 is a graph showing the relationship between the rotational displacement angle ratio A of the wing 8c and the motor input ratio in the cross flow fan 8 of the indoor unit 100 of the air conditioner according to the present embodiment.
  • the horizontal axis of the graph represents the rotational displacement angle ratio A [deg / mm] of the wing 8c, and the vertical axis represents the motor input ratio (%) of the cross flow fan 8.
  • the rotational displacement angle ratio A is represented by ⁇ 2 / P [deg / mm].
  • ⁇ 2 [deg] is a rotational displacement angle with respect to the first end 8ca of the second end 8cb around the rotation axis O (see FIG. 6).
  • P [mm] is the distance between the first end 8 ca and the second end 8 cb in the direction along the rotation axis O (see FIG. 3).
  • the motor input ratio can be reduced when tmax / L satisfies the relationship 0.045 ⁇ tmax / L ⁇ 0.080.
  • tmax / L satisfies the relationship 0.045 ⁇ tmax / L ⁇ 0.080.
  • a high reduction effect of the motor input ratio can be obtained (a point represented by a square in the graph), and the motor
  • a high reduction effect of the input ratio can not be obtained (a point represented by a circle in the graph).
  • FIG. 13 is a graph showing the relation between tmax / t2 and the motor input ratio in the cross flow fan 8 satisfying the relation of 0.045 ⁇ tmax / L ⁇ 0.080.
  • the horizontal axis of the graph represents tmax / t 2
  • the vertical axis represents the motor input ratio (%) of the cross flow fan 8.
  • tmax [mm] is the thickness of the largest thickness portion TM of the wing 8c in a cross section perpendicular to the rotation axis O (see FIGS. 7 to 9).
  • t2 [mm] is the thickness of the outer peripheral side end 8g of the wing 8c in the same cross section (see FIGS. 7 to 9).
  • FIG. 14 is a graph showing the relationship between P / (2 ⁇ Rt) and motor input ratio in the cross flow fan 8 of the indoor unit 100 of the air conditioner according to the present embodiment.
  • the horizontal axis of the graph represents P / (2 ⁇ Rt), and the vertical axis represents the motor input ratio (%) of the cross flow fan 8.
  • P [mm] is the distance between the first end 8 ca and the second end 8 cb in the direction along the rotation axis O (see FIG. 3).
  • Rt [mm] is a distance between the rotation axis O and the outer peripheral end 8g in a cross section perpendicular to the rotation axis O (see FIGS. 7 to 9).
  • the distance Rt is defined as the radius of the circumscribed circle in contact with the outer peripheral end 8g around the rotation axis O in a cross section perpendicular to the rotation axis O
  • (2 ⁇ Rt) is the rotation axis O It is equal to the diameter of the circumscribed circle in contact with the outer peripheral end 8g about the rotation axis O in the vertical cross section.
  • the indoor unit 100 of the air conditioner includes the casing 1 in which the opening 2 a and the outlet 3 are formed, and the cross flow fan 8 housed in the casing 1.
  • the cross flow fan 8 includes an impeller 8a disposed in an air passage formed in the casing 1, a stabilizer 9 dividing the air passage into a suction side air passage E1 and an outlet side air passage E2, and an impeller 8a. And a guide wall 10 for guiding the air blown out to the outlet side air path E2 to the outlet 3.
  • the impellers 8a are respectively disposed on a circumference centered on the rotation axis O of the impeller 8a, and have a plurality of first ends 8ca and second ends 8cb as ends in a direction along the rotation axis O. It has a wing 8c and a support plate 8b for supporting the first end 8ca of each of the wings 8c.
  • the second end 8cb is disposed forward of the first end 8ca in the rotational direction RO of the impeller 8a.
  • Each of the plurality of wings 8 c has an inner peripheral end 8 h and an outer peripheral end 8 g as radial ends centered on the rotation axis O.
  • the cross-sectional area of the second end 8cb in a cross section perpendicular to the rotation axis O is smaller than the cross-sectional area of the first end 8ca in a cross section perpendicular to the rotation axis O.
  • the distance Rtb between the rotation axis O and the outer peripheral end 8g at the second end 8cb is shorter than the distance Rta between the rotation axis O and the outer peripheral end 8g at the first end 8ca.
  • the distance Rib between the rotation axis O and the inner end 8h at the second end 8cb is longer than the distance Ria between the rotation axis O and the inner end 8h at the first end 8ca. .
  • each of the plurality of wings 8c passes the middle point Lo2 of the chord line Lo of each of the plurality of wings 8c, and the inner circumferential end than the straight line Lo3 perpendicular to the chord line Lo On the 8h side, there is the largest thickness part TM where the thickness is the largest.
  • the opening 2a is an example of a suction port.
  • a minimum gap between the outer peripheral end 8g of the wing 8c and the tongue 9a of the stabilizer 9 is a fan gap G1
  • a minimum clearance between the outer peripheral end 8g of the wing 8c and the guide wall 10 is the fan gap G2.
  • the fan gaps G1 and G2 both gradually increase from the first end 8ca of the wing 8c toward the second end 8cb. At the first end 8ca, since the fan gaps G1 and G2 are relatively narrow, the flow of air changes rapidly from the suction side air passage E1 to the blowout side air passage E2.
  • the first end 8ca is relatively thick compared to the second end 8cb, peeling is less likely to occur even if an angle change occurs due to a change in air flow. .
  • the fan gaps G1 and G2 become relatively wide. Therefore, although the second end 8cb is relatively thin, the fluctuation of the flow of air from the suction side air passage E1 to the blowout side air passage E2 is relatively small at the second end 8cb, Peeling is less likely to occur. Therefore, according to the present embodiment, since generation of a vortex due to separation can be suppressed, the effective passage area when air passes between adjacent wings 8c can be expanded. Efficiency can be improved.
  • the inter-blade distance between adjacent wings 8c is smaller on the thick first end 8ca side than on the thin second end 8cb side.
  • the chord length La of the first end 8ca is longer than the chord length Lb of the second end 8cb.
  • the inter-blade distance gradually increases from the first end 8ca to the second end 8cb.
  • the inter-blade passing wind speed gradually decreases from the first end 8ca to the second end 8cb.
  • the inflow angle of air to the wing 8c is more likely to change than the inlet side of the impeller 8a due to the fluctuation of the flow.
  • the thickness t1 of the inner peripheral end 8h which is the front edge is larger than the thickness t2 of the outer peripheral end 8g, separation is caused even if the inflow angle of air changes. It can be suppressed to occur. Therefore, according to the present embodiment, the generation of a vortex due to separation can be suppressed, so the effective passage area between adjacent wings 8c can be expanded, and the efficiency of the cross flow fan 8 can be improved. Can.
  • the inner peripheral end 8 h of the wing 8 c is relatively thick, and the wing 8 c is inclined with respect to the rotation axis O. For this reason, even if the flow is likely to be separated in a partial region of the blade surface due to the angular difference between the air flow and the blade surface of the blade 8c on the outlet side of the impeller 8a, the flow is deviated from the flow timing. Peeling is suppressed by mixing with another flow flowing into the partial region. Therefore, the rotational noise of the cross flow fan 8 can be reduced. Moreover, since the effective passage area between the adjacent wing
  • the wing 8c is inclined with respect to the rotation axis O in the present embodiment, even if separation of the flow occurs at the outer peripheral end 8g after passing through the tongue 9a on the suction side of the impeller 8a, A part of the vortex generated by the separation moves to the downstream side, that is, the first end 8ca side according to the inclination of the wing 8c.
  • the shape of the vortex can be flattened along the wing surface of the wing 8c, and therefore, the thickness of the vortex on the wing surface can be reduced. Therefore, the effective passage area between the adjacent wings 8c can be expanded, so the efficiency of the cross flow fan 8 can be improved.
  • the efficiency of the cross flow fan 8 can be improved, and the rotational noise of the cross flow fan 8 can be reduced. Therefore, the indoor unit 100 of the air conditioner excellent in energy saving performance and high in quality can be obtained.
  • the cross section perpendicular to the rotation axis O at the first end 8ca is taken as the first cross section of each of the plurality of wings 8c
  • the rotation at the second end 8cb A cross section perpendicular to the axis O is taken as a second cross section of each of the plurality of wings 8c.
  • the inscribed circle in contact with the outer peripheral end 8ga, the pressure surface 8ja and the negative pressure surface 8ka is a first inscribed circle
  • the outer peripheral end 8gb, the pressure surface 8jb and the negative pressure surface 8kb Let the inscribed circle in contact be the second inscribed circle.
  • an inscribed circle in contact with the inner peripheral end 8ha, the pressure surface 8ja and the negative pressure surface 8ka is a third inscribed circle
  • the inner peripheral end 8hb, the pressure surface 8jb and the negative pressure surface Let the inscribed circle in contact with 8 kb be the fourth inscribed circle.
  • the distance Rga between the rotation axis O and the center 8gma of the first inscribed circle and the distance Rgb between the rotation axis O and the center 8gmb of the second inscribed circle are equal.
  • the distance Rha between the rotation axis O and the center 8hma of the third inscribed circle and the distance Rhb between the rotation axis O and the center 8hmb of the fourth inscribed circle are equal.
  • the cross-sectional center of the blade is displaced radially outward of the impeller from the root toward the tip.
  • the centrifugal force applied to the tip of the wing is greater than the centrifugal force applied to the base of the wing.
  • the distance between the rotation axis O and the center 8 gm of the outer peripheral end 8 g and the distance between the rotation axis O and the center 8 hm of the inner peripheral end 8 h are all first ends. It is constant between the portion 8ca and the second end 8cb. Therefore, since deformation of the wing 8c due to load fluctuation can be suppressed, noise reduction and high efficiency of the cross flow fan 8 can be realized.
  • the inscribed circle in contact with the pressure surface 8ja and the negative pressure surface 8ka at the largest thick portion TMa of the first cross section is taken as a fifth inscribed circle.
  • the distance Rma between the rotation axis O and the center TMma of the fifth inscribed circle and the distance Rmb between the rotation axis O and the center TMmb of the sixth inscribed circle are equal.
  • the center 8gma of the first inscribed circle and the center 8gmb of the second inscribed circle coincide, and the center 8hma of the third inscribed circle and the third
  • the distance ⁇ Le between the contour of the first cross section and the contour of the second cross section is It is constant all around each of the multiple wings.
  • the distance ⁇ Le can be made constant over the entire circumference of the wing 8c, and the rate of change of the distance between the rotation axis O and the outer peripheral end 8g in the rotation axis O direction, and the rotation axis O And the rate of change in the direction of the rotation axis O of the distance between the inner circumferential end 8 h and the inner circumferential end 8 h can be made constant. Therefore, the flow does not become unstable at each position in the direction of the rotation axis O of the wing 8c, and separation or disturbance does not easily occur, so that the efficiency of the cross flow fan 8 can be improved. Thereby, the indoor unit 100 of the air conditioner excellent in energy saving property is obtained.
  • the blow-off direction is substantially orthogonal to the rotation axis O. For this reason, even if load fluctuation occurs, it becomes difficult to form a wind speed distribution such that the wind speed is locally slowed at the end in the direction of the rotation axis O in the outlet 3 of the indoor unit 100. Therefore, since the fluctuation of the air flow characteristic due to the load fluctuation can be suppressed, the noise of the cross flow fan 8 can be reduced and the efficiency of the cross flow fan 8 can be improved. Therefore, the indoor unit 100 of the air conditioner having high quality and excellent energy saving can be obtained.
  • the chord length of each of the plurality of wings 8c is L
  • the thickness of the outer peripheral end 8g is t2.
  • the distance between the rotation axis O and the outer peripheral end 8g at the first end 8ca is Rta, and the first in the direction along the rotation axis O
  • the distance between the end 8ca and the second end 8cb is P, 0.45 ⁇ P / (2 ⁇ Rta) ⁇ 0.80 Relationship is satisfied.
  • the support plate 8b is disposed at an appropriate interval, even if separation occurs at the second end 8cb of the wing 8c on the suction side of the impeller 8a, the flow is unstable due to the support plate 8b Can be suppressed. As a result, even if dust accumulates on the filter 5, the air flow is unlikely to stall and a cross flow fan 8 with high efficiency at low load can be obtained.
  • the wing 8c is deformed when assembling the impeller 8a, and the efficiency of the cross flow fan 8 is lowered. There is a case.
  • the suction surface 8k has a plurality of arcs with different radii, even if the flow starts to separate on a part of the suction surface 8k, the flow can be reattached in another arc portion with a different radius, so cross flow The loss of the fan 8 can be reduced.
  • the pressure surface 8j has a plurality of arcs with different radii, the pressure can be gradually increased on the pressure surface 8j side, so that the friction loss can be reduced.
  • the wing 8 c can be thinned while the efficiency of the cross flow fan 8 can be enhanced, so that the impeller 8 a can be reduced in weight. Therefore, the indoor unit 100 of the air conditioner excellent in energy saving property and lightweight can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Abstract

An indoor unit for an air conditioner is provided with a cross flow fan. An impeller of the cross flow fan has a plurality of blades each having a first end part and second end part as end parts along the direction of a rotary shaft, and a support panel that supports the first end parts of each of the plurality of blades. The second end parts are disposed farther forward in the rotational direction of the impeller than the first end parts. Each of the plurality of blades has an inner peripheral end part and an outer peripheral end part as end parts along a radial direction centered around the rotary shaft. The wall thickness of the inner peripheral end parts is greater than that of the outer peripheral end parts. Each of the plurality of blades has, toward the inner peripheral end part from a straight line that passes through a center point of a chord line of each of the plurality of blades and is perpendicular to the chord line, a maximum-wall-thickness part where the wall thickness reaches a maximum.

Description

空気調和機の室内機Indoor unit of air conditioner
 本発明は、クロスフローファンを備えた空気調和機の室内機に関するものである。 The present invention relates to an indoor unit of an air conditioner provided with a cross flow fan.
 特許文献1には、複数の羽根車が回転中心線方向に積層された貫流ファンが記載されている。複数の羽根車のそれぞれは、支持板と、支持板の主表面上に形成された複数の羽根部と、を備えている。各羽根部における回転中心線に垂直な断面は、付根部から先端部に向かうに従って小さくなっている。また、各羽根部における回転中心線に垂直な断面の中心は、付根部から先端部に向かうに従って、回転方向前方側に向けて変位しており、かつ径方向外方に向けて変位している。 Patent Document 1 describes a cross-flow fan in which a plurality of impellers are stacked in the rotation center line direction. Each of the plurality of impellers includes a support plate and a plurality of vanes formed on the main surface of the support plate. The cross section perpendicular to the rotation center line in each blade portion decreases in the direction from the root to the tip. Further, the center of the cross section perpendicular to the rotation center line in each blade portion is displaced forward in the rotational direction as it goes from the root portion to the tip portion, and is displaced radially outward. .
特開2010-101222号公報JP, 2010-101222, A
 特許文献1に記載された貫流ファンの各羽根部は、回転中心線に垂直な断面において、外端部と内端部との間の中心部分の肉厚が概ね最大肉厚となり、中心部分から離れて外端部又は内端部に近づくほど肉厚が小さくなり、外端部及び内端部の肉厚がいずれも最小肉厚となる肉厚分布を有している。貫流ファンの各羽根部がこのような肉厚分布を有していると、空気の流れが翼面から剥離しやすくなるため、貫流ファンの効率が低下してしまう場合があるという課題があった。 In each cross-section fan of the cross-flow fan described in Patent Document 1, the thickness of the central portion between the outer end portion and the inner end portion in the cross section perpendicular to the rotation center line is approximately the maximum thickness. The wall thickness becomes smaller as it goes away and approaches the outer end portion or the inner end portion, and both the outer end portion and the inner end portion have a thickness distribution in which the wall thickness becomes minimum. If each blade portion of the cross flow fan has such a thickness distribution, the flow of air is likely to be separated from the blade surface, and there is a problem that the efficiency of the cross flow fan may be lowered. .
 本発明は、上述のような課題を解決するためになされたものであり、クロスフローファンの効率を向上できる空気調和機の室内機を提供することを目的とする。 The present invention is made to solve the problems as described above, and it is an object of the present invention to provide an indoor unit of an air conditioner that can improve the efficiency of the cross flow fan.
 本発明に係る空気調和機の室内機は、吸込口及び吹出口が形成されたケーシングと、前記ケーシングに収容されたクロスフローファンと、を備えた空気調和機の室内機であって、前記クロスフローファンは、前記ケーシング内に形成された風路に配置された羽根車と、前記風路を吸込側風路と吹出側風路とに区画するスタビライザーと、前記羽根車から前記吹出側風路に吹き出された空気を前記吹出口に導くガイドウォールと、を有しており、前記羽根車は、前記羽根車の回転軸を中心とする円周上にそれぞれ配置され、前記回転軸に沿う方向の端部として第1端部及び第2端部をそれぞれ有する複数の翼と、前記複数の翼のそれぞれの前記第1端部を支持する支持板と、を有しており、前記第2端部は、前記第1端部よりも前記羽根車の回転方向で前方に配置されており、前記複数の翼のそれぞれは、前記回転軸を中心とする半径方向の端部として内周側端部及び外周側端部を有しており、前記第2端部の前記回転軸と垂直な断面での断面積は、前記第1端部の前記回転軸と垂直な断面での断面積よりも小さくなっており、前記回転軸と前記第2端部での前記外周側端部との距離は、前記回転軸と前記第1端部での前記外周側端部との距離よりも短くなっており、前記回転軸と前記第2端部での前記内周側端部との距離は、前記回転軸と前記第1端部での前記内周側端部との距離よりも長くなっており、前記回転軸と垂直な断面において、前記内周側端部の肉厚は、前記外周側端部の肉厚よりも大きくなっており、前記回転軸と垂直な断面において、前記複数の翼のそれぞれは、前記複数の翼のそれぞれの翼弦線の中点を通り前記翼弦線に垂直な直線よりも前記内周側端部側に、肉厚が最大となる最大肉厚部を有しているものである。 An indoor unit of an air conditioner according to the present invention is an indoor unit of an air conditioner including a casing in which an inlet and an outlet are formed, and a cross flow fan housed in the casing, and the cross The flow fan includes an impeller disposed in an air passage formed in the casing, a stabilizer that divides the air passage into a suction side air passage and an outlet side air passage, and the air passage side from the impeller. A guide wall for guiding the air blown out to the air outlet, and the impellers are respectively disposed on a circumference centered on a rotation axis of the impeller, and a direction along the rotation axis A plurality of wings each having a first end and a second end as an end of the second support, and a support plate for supporting the first end of each of the plurality of wings, the second end A portion of the impeller that is closer to the first end than the first The plurality of wings are disposed forward in the rolling direction, and each of the plurality of wings has an inner peripheral end and an outer peripheral end as radial ends centered on the rotation axis, and the second The cross-sectional area of the end in a cross section perpendicular to the axis of rotation is smaller than the cross-sectional area of the first end in a cross section perpendicular to the axis of rotation, and the axis of rotation and the second end The distance between the outer peripheral end portion of the first end portion and the outer peripheral end portion is shorter than the distance between the rotary shaft and the outer peripheral end portion at the first end portion. The distance from the circumferential end is longer than the distance between the rotation axis and the inner circumferential end at the first end, and in the cross section perpendicular to the rotation axis, the inner circumferential end The thickness of the portion is greater than the thickness of the outer peripheral end, and in the cross section perpendicular to the rotation axis, each of the plurality of wings is Having a thickest portion with the largest thickness on the inner peripheral end side of a straight line passing through the midpoints of the chord lines of the plurality of wings and perpendicular to the chord line It is.
 羽根車の吸込側では、翼の外周側端部から内周側端部に向かって空気が流れる。本発明では、最大肉厚部が翼の内周側に形成されているため、翼の外周側で空気の流れが翼面から剥離しそうになっても、翼間距離が小さくなる翼の最大肉厚部で剥離を抑えることができる。
 羽根車の吹出側では、翼の内周側端部から外周側端部に向かって空気が流れる。羽根車の吹出側では、流れの変動によって翼に対する空気の流入角度が羽根車の吸込側よりも変化しやすい。本発明では、前縁となる内周側端部の肉厚が外周側端部の肉厚よりも大きくなっているため、空気の流入角度が変化しても、剥離が生じるのを防ぐことができる。
 したがって、本発明に係る空気調和機の室内機によれば、クロスフローファンの効率を向上させることができる。
On the suction side of the impeller, air flows from the outer peripheral end of the blade toward the inner peripheral end. In the present invention, since the largest thickness portion is formed on the inner peripheral side of the wing, even if the air flow is likely to be separated from the wing surface on the outer peripheral side of the wing, the maximum wing thickness decreases. Peeling can be suppressed at the thick part.
On the outlet side of the impeller, air flows from the inner circumferential end to the outer circumferential end of the wing. On the outlet side of the impeller, the inflow angle of air to the blade is more likely to change than the suction side of the impeller due to the fluctuation of the flow. In the present invention, since the thickness of the inner peripheral end which is the front edge is larger than the thickness of the outer peripheral end, it is possible to prevent separation from occurring even if the inflow angle of air changes. it can.
Therefore, according to the indoor unit of the air conditioner according to the present invention, the efficiency of the cross flow fan can be improved.
本発明の実施の形態1に係る空気調和機の室内機100の構成を示す外観斜視図である。It is an external appearance perspective view which shows the structure of the indoor unit 100 of the air conditioner concerning Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和機の室内機100の内部構造を示す側面図である。It is a side view which shows the internal structure of the indoor unit 100 of the air conditioner concerning Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和機の室内機100における羽根車8a及びモータ12の構成を示す外観図である。It is an external view which shows the structure of the impeller 8a and the motor 12 in the indoor unit 100 of the air conditioner concerning Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和機の室内機100における羽根車単体8dの構成を示す外観斜視図である。It is an external appearance perspective view which shows the structure of the impeller single-piece | unit 8d in the indoor unit 100 of the air conditioner concerning Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和機の室内機100における羽根車単体8dの構成を示す側面図である。It is a side view which shows the structure of the impeller single-piece | unit 8d in the indoor unit 100 of the air conditioner concerning Embodiment 1 of this invention. 図5のVI部を拡大して示す図である。It is a figure which expands and shows the VI section of FIG. 図3のVII-VII断面の一部を示す断面図である。FIG. 5 is a cross-sectional view showing a part of a VII-VII cross section of FIG. 3; 図3のVIII-VIII断面の一部を示す断面図である。FIG. 5 is a cross-sectional view showing a part of a VIII-VIII cross section of FIG. 3; 図3のIX-IX断面の一部を示す断面図である。FIG. 4 is a cross-sectional view showing a part of a cross section taken along line IX-IX of FIG. 3; 本発明の実施の形態1に係る空気調和機の室内機100の羽根車単体8dにおいて、第1端部8ca、第2端部8cb及び中間部8ccの各断面を、中心8gma、8gmb及び8gmcが一致し、かつ中心8hma、8hmb及び8hmcが一致するように同一平面上で重ね合わせた仮想の状態を示す図である。In the impeller unit 8d of the indoor unit 100 of the air conditioner according to Embodiment 1 of the present invention, the centers 8gma, 8gmb and 8gmc have respective cross sections of the first end 8ca, the second end 8cb and the middle part 8cc. It is a figure which shows the virtual state which piled up on the same plane so that center 8hma, 8hmb, and 8hmc may correspond and correspond. 本発明の実施の形態1に係る空気調和機の室内機100のクロスフローファン8において、翼8cの回転変位角度比Aとモータ入力比との関係を示すグラフである。In the cross flow fan 8 of the indoor unit 100 of the air conditioner concerning Embodiment 1 of this invention, it is a graph which shows the relationship between rotational displacement angle ratio A of the wing | blade 8c, and a motor input ratio. 本発明の実施の形態1に係る空気調和機の室内機100のクロスフローファン8において、tmax/Lとモータ入力比との関係を示すグラフである。It is a graph which shows the relationship of tmax / L and motor input ratio in the crossflow fan 8 of the indoor unit 100 of the air conditioner concerning Embodiment 1 of this invention. 0.045≦tmax/L≦0.080の関係を満たすクロスフローファン8において、tmax/t2とモータ入力比との関係を示すグラフである。In the cross flow fan 8 which satisfy | fills the relationship of 0.045 <= tmax / L <= 0.080, it is a graph which shows the relationship of tmax / t2 and motor input ratio. 本発明の実施の形態1に係る空気調和機の室内機100のクロスフローファン8において、P/(2×Rt)とモータ入力比との関係を示すグラフである。In the cross-flow fan 8 of the indoor unit 100 of the air conditioner concerning Embodiment 1 of this invention, it is a graph which shows the relationship between P / (2xRt) and motor input ratio.
実施の形態1.
 本発明の実施の形態1に係る空気調和機の室内機について説明する。図1は、本実施の形態に係る空気調和機の室内機100の構成を示す外観斜視図である。図2は、本実施の形態に係る空気調和機の室内機100の内部構造を示す側面図である。図1及び図2では、空調対象空間である部屋11の壁11aに設置される壁掛形の室内機100を例示しているが、室内機100は、天井埋込形等の他の形態の室内機であってもよい。また、部屋11は必ずしも住宅内の居室には限られず、事務室又は倉庫等であってもよい。
Embodiment 1
The indoor unit of the air conditioner according to Embodiment 1 of the present invention will be described. FIG. 1: is an external appearance perspective view which shows the structure of the indoor unit 100 of the air conditioner concerning this Embodiment. FIG. 2 is a side view showing the internal structure of the indoor unit 100 of the air conditioner according to the present embodiment. Although FIG. 1 and FIG. 2 illustrate the wall-mounted indoor unit 100 installed on the wall 11a of the room 11, which is a space to be air-conditioned, the indoor unit 100 may be another indoor type such as a ceiling-embedded type. It may be a machine. In addition, the room 11 is not necessarily limited to the room in the house, and may be an office, a warehouse, or the like.
 図1及び図2に示すように、室内機100は、内部機器を収容するケーシング1を有している。ケーシング1は、壁11aに取り付けられるケーシング本体1aと、ケーシング本体1aの前面に設けられて開閉可能な前面パネル1bと、を有している。ケーシング本体1aの天面部1cには、吸込グリル2が形成されている。吸込グリル2には、室内空気が室内機100内に吸い込まれる吸込口として、複数の開口2aが形成されている。吸込グリル2は、ケーシング本体1aの天面部1cだけでなく前面パネル1bにも形成されていてもよい。また、吸込グリル2の形状は特に限定されるものではない。 As shown in FIG. 1 and FIG. 2, the indoor unit 100 has a casing 1 for housing internal devices. The casing 1 has a casing body 1a attached to the wall 11a, and a front panel 1b provided on the front surface of the casing body 1a and capable of opening and closing. A suction grill 2 is formed on the top surface portion 1c of the casing body 1a. A plurality of openings 2 a are formed in the suction grill 2 as suction ports through which indoor air is sucked into the indoor unit 100. The suction grille 2 may be formed not only on the top surface portion 1c of the casing main body 1a but also on the front panel 1b. Further, the shape of the suction grille 2 is not particularly limited.
 ケーシング本体1aの下部には、空調空気が室内に吹き出される吹出口3が形成されている。吹出口3には、空調空気の風向を上下方向で調整する上下風向ベーン4aと、空調空気の風向を左右方向で調整する左右風向ベーン4bと、が設けられている。上下風向ベーン4aは、左右風向ベーン4bの下流側に配置されている。上下風向ベーン4aの両端に設けられた軸部は、吹出口3を挟んでケーシング本体1aに設けられた一対の軸受部によって回転自在に支持されている。左右風向ベーン4bの上部に設けられた軸部は、後述する上部壁9bに設けられた軸受部によって回転自在に支持されている。 At the lower part of the casing main body 1a, there is formed an air outlet 3 through which conditioned air is blown into the room. The air outlet 3 is provided with a vertical wind direction vane 4a that adjusts the wind direction of the conditioned air in the vertical direction, and a left and right wind direction vane 4b that adjusts the wind direction of the conditioned air in the horizontal direction. The up and down wind direction vanes 4a are disposed downstream of the left and right wind direction vanes 4b. Shaft portions provided at both ends of the up and down wind direction vanes 4a are rotatably supported by a pair of bearing portions provided in the casing main body 1a with the blowout port 3 interposed therebetween. The shaft portion provided on the upper portion of the left and right wind direction vanes 4b is rotatably supported by a bearing portion provided on an upper wall 9b described later.
 ケーシング1の内部の中央部には、吸込グリル2の開口2aから吹出口3に至る風路が形成されている。この風路には、フィルタ5と、フィルタ5を通過した空気に冷媒の温熱又は冷熱を伝達して空調空気を生成する熱交換器7と、が設けられている。また、風路には、開口2aから吹出口3に向かう空気の流れを生じさせるクロスフローファン8が設けられている。 An air passage extending from the opening 2 a of the suction grill 2 to the blowout port 3 is formed at a central portion inside the casing 1. The air passage is provided with a filter 5 and a heat exchanger 7 that transmits the heat or cold of the refrigerant to the air that has passed through the filter 5 to generate conditioned air. Further, the air flow path is provided with a cross flow fan 8 that generates a flow of air from the opening 2 a toward the air outlet 3.
 フィルタ5は、例えば網目状に形成され、開口2aから吸い込まれる空気中の塵埃等を除去するものである。フィルタ5は、風路のうち吸込グリル2の下流側であって熱交換器7の上流側に配置されている。 The filter 5 is formed, for example, in a mesh shape, and removes dust and the like in the air sucked from the opening 2a. The filter 5 is disposed downstream of the suction grille 2 and upstream of the heat exchanger 7 in the air passage.
 熱交換器7は、並列して配置されたアルミニウム製の複数の板状フィンと複数の板状フィンを貫通する伝熱管とを備えたフィン・アンド・チューブ型熱交換器である。熱交換器7は、圧縮機、室外熱交換器及び絞り装置などと共に冷凍サイクルを構成している。圧縮機、室外熱交換器及び絞り装置は、不図示の室外機に収容されている。熱交換器7は、冷房運転時には蒸発器すなわち吸熱器として機能して空気を冷却し、暖房運転時には凝縮器すなわち放熱器として機能して空気を加熱する。なお、図2では、熱交換器7が羽根車8aの前面側(図2中の左方)及び背面側(図2中の右方)を取り囲むような形状を有しているが、熱交換器7の形状は特に限定されるものではない。 The heat exchanger 7 is a fin-and-tube type heat exchanger provided with a plurality of aluminum plate-like fins arranged in parallel and a heat transfer tube penetrating the plate-like fins. The heat exchanger 7 constitutes a refrigeration cycle together with a compressor, an outdoor heat exchanger, a throttling device, and the like. The compressor, the outdoor heat exchanger, and the expansion device are accommodated in an outdoor unit (not shown). The heat exchanger 7 functions as an evaporator or heat absorber to cool the air during the cooling operation, and functions as a condenser or radiator to heat the air during the heating operation. Although in FIG. 2 the heat exchanger 7 is shaped to surround the front side (left side in FIG. 2) and the back side (right side in FIG. 2) of the impeller 8a, heat exchange is performed. The shape of the vessel 7 is not particularly limited.
 クロスフローファン8は、風路に配置された羽根車8aと、羽根車8aを回転駆動するモータ12(図1及び図2では図示せず)と、風路を吸込側風路E1と吹出側風路E2とに区画するスタビライザー9と、羽根車8aから吹出側風路E2に吹き出された空気を吹出口3に導くガイドウォール10と、を有している。羽根車8aは、風路のうち熱交換器7の下流側であって吹出口3の上流側に配置されている。羽根車8aが回転することにより、室内空気が開口2aから吸い込まれ、空調空気が吹出口3から吹き出される。羽根車8aは、AS樹脂等の熱可塑性樹脂で形成されている。羽根車8aの詳細については、図3~図10を用いて後述する。 The cross flow fan 8 includes an impeller 8a disposed in an air passage, a motor 12 (not shown in FIGS. 1 and 2) for rotationally driving the impeller 8a, and a suction passage air passage E1 and a blowout side. It has a stabilizer 9 divided into an air passage E2, and a guide wall 10 for guiding the air blown out from the impeller 8a to the outlet air passage E2 to the air outlet 3. The impeller 8 a is disposed on the downstream side of the heat exchanger 7 in the air path and on the upstream side of the blowout port 3. As the impeller 8 a rotates, room air is sucked from the opening 2 a and conditioned air is blown out from the blowout port 3. The impeller 8a is formed of a thermoplastic resin such as AS resin. The details of the impeller 8a will be described later with reference to FIGS.
 スタビライザー9は、ケーシング本体1aの前面側からケーシング1の内部の風路内に突出して形成されている。スタビライザー9の先端には、羽根車8aに対向する舌部9aが形成されている。舌部9aは、羽根車8aの回転軸Oに沿って図2の紙面に直交する方向に延びている。スタビライザー9の下面は、吹出口3の上部壁9bを構成している。スタビライザー9の上面には、熱交換器7からの凝縮水を受けるドレンパン9cが形成されている。 The stabilizer 9 is formed to project into the air passage inside the casing 1 from the front side of the casing body 1 a. At the tip of the stabilizer 9, a tongue 9a facing the impeller 8a is formed. The tongue 9a extends in a direction perpendicular to the paper surface of FIG. 2 along the rotation axis O of the impeller 8a. The lower surface of the stabilizer 9 constitutes an upper wall 9 b of the outlet 3. A drain pan 9 c for receiving the condensed water from the heat exchanger 7 is formed on the upper surface of the stabilizer 9.
 ガイドウォール10は、吹出側風路E2の後壁を構成するものである。ガイドウォール10は、羽根車8aから吹出口3にかけて傾斜している渦巻状の斜面を形成している。ガイドウォール10の下流側部分は、吹出口3を挟んで上部壁9bと対向している。 The guide wall 10 constitutes a rear wall of the outlet side air passage E2. The guide wall 10 forms a spiral slope which is inclined from the impeller 8 a to the air outlet 3. The downstream side portion of the guide wall 10 faces the upper wall 9 b with the blowout port 3 interposed therebetween.
 図3は、本実施の形態に係る空気調和機の室内機100における羽根車8a及びモータ12の構成を示す外観図である。図3では、羽根車8a及びモータ12の正面図と、羽根車8aの側面図とを併せて示している。図4は、本実施の形態に係る空気調和機の室内機100における羽根車単体8dの構成を示す外観斜視図である。図5は、本実施の形態に係る空気調和機の室内機100における羽根車単体8dの構成を示す側面図である。 FIG. 3 is an external view showing the configuration of the impeller 8 a and the motor 12 in the indoor unit 100 of the air conditioner according to the present embodiment. In FIG. 3, the front view of the impeller 8a and the motor 12 and the side view of the impeller 8a are shown together. FIG. 4 is an external perspective view showing a configuration of an impeller unit 8 d in the indoor unit 100 of the air conditioner according to the present embodiment. FIG. 5 is a side view showing a configuration of an impeller unit 8 d in the indoor unit 100 of the air conditioner according to the present embodiment.
 図3~図5に示すように、羽根車8aは、複数の羽根車単体8dが溶着等により回転軸O方向に連結された構成を有している。複数の羽根車単体8dのそれぞれは、複数の翼8cと、複数の翼8cのそれぞれの一端を支持する支持板8bと、を有している。 As shown in FIGS. 3 to 5, the impeller 8a has a configuration in which a plurality of impeller units 8d are connected in the direction of the rotation axis O by welding or the like. Each of the plurality of impeller units 8d has a plurality of wings 8c and a support plate 8b supporting one end of each of the plurality of wings 8c.
 複数の翼8cは、回転軸Oを中心とする円周上に所定の間隔で配置され、それぞれ概ね回転軸Oに沿って延びている。複数の翼8cのそれぞれは、回転軸Oに沿う方向の端部として、第1端部8caと第2端部8cbとを有している。第1端部8caは、支持板8bの一方の表面の外周部に支持されている。すなわち、羽根車単体8dにおいて、複数の翼8cのそれぞれは、支持板8bの一方の表面の外周部から当該表面に概ね垂直な方向に突出している。羽根車単体8dにおいて、第1端部8caは翼8cの付け根側の端部となり、第2端部8cbは翼8cの先端側の端部となる。 The plurality of wings 8 c are disposed at predetermined intervals on a circumference centered on the rotation axis O, and extend generally along the rotation axis O. Each of the plurality of wings 8 c has a first end 8 ca and a second end 8 cb as an end in a direction along the rotation axis O. The first end 8ca is supported by the outer periphery of one surface of the support plate 8b. That is, in the impeller unit 8d, each of the plurality of wings 8c protrudes from the outer peripheral portion of one surface of the support plate 8b in a direction substantially perpendicular to the surface. In the impeller unit 8d, the first end 8ca is an end of the root of the wing 8c, and the second end 8cb is an end of the tip of the wing 8c.
 また、複数の翼8cのそれぞれは、回転軸Oに沿う方向で第1端部8caと第2端部8cbとの間の中間に位置する中間部8ccを有している。隣り合う2つの支持板8bの間隔、すなわち、回転軸Oに沿う方向での第1端部8caと第2端部8cbとの距離をPとすると、回転軸Oに沿う方向での第1端部8caと中間部8ccとの距離はP/2となる。 Further, each of the plurality of wings 8c has an intermediate portion 8cc located in the middle between the first end 8ca and the second end 8cb in the direction along the rotation axis O. Assuming that the distance between two adjacent support plates 8b, that is, the distance between the first end 8ca and the second end 8cb in the direction along the rotation axis O is P, the first end in the direction along the rotation axis O The distance between the portion 8ca and the middle portion 8cc is P / 2.
 支持板8bは、回転軸Oを中心とする円板状の形状を有している。後述する図7~図9に示すように、支持板8bの半径はRrである。羽根車8aにおいて回転軸O方向の両端部以外に位置する支持板8bは、回転軸Oを中心とし中心部が開口したリング状の形状を有していてもよい。 The support plate 8 b has a disk-like shape centered on the rotation axis O. As shown in FIGS. 7 to 9 described later, the radius of the support plate 8b is Rr. The support plate 8b located in the impeller 8a other than the both ends in the direction of the rotational axis O may have a ring shape with the central axis opened with the rotational axis O as the center.
 羽根車8aの回転軸O方向の一方の端部は、モータシャフト12aを介してモータ12に接続されている。当該端部に位置する支持板8bには、ファンボス8eが設けられている。ファンボス8eは、回転軸Oに沿って羽根車8aの内部側に突出して形成されている。ファンボス8eは、ねじ等を用いてモータシャフト12aに固定されている。 One end of the impeller 8 a in the rotation axis O direction is connected to the motor 12 via the motor shaft 12 a. A fan boss 8e is provided on the support plate 8b located at the end. The fan boss 8 e is formed to project to the inside of the impeller 8 a along the rotation axis O. The fan boss 8e is fixed to the motor shaft 12a using a screw or the like.
 羽根車8aの回転軸O方向の他方の端部には、回転軸Oを中心とする円板状の形状を有する端板8fが設けられている。端板8fは、支持板8bと同一の半径を有している。端板8fには、回転軸Oに沿って羽根車8aの外側に延伸したファンシャフト8faが設けられている。ファンシャフト8faは、ケーシング本体1aに設けられる軸受部によって回転自在に支持される。 At the other end of the impeller 8a in the direction of the rotation axis O, an end plate 8f having a disk shape centered on the rotation axis O is provided. The end plate 8f has the same radius as the support plate 8b. The end plate 8 f is provided with a fan shaft 8 fa extending along the rotation axis O to the outside of the impeller 8 a. The fan shaft 8 fa is rotatably supported by a bearing provided on the casing body 1 a.
 モータ12に通電されると、モータ12の駆動力がモータシャフト12aを介して羽根車8aに伝達される。これにより、羽根車8aは、回転軸Oを中心として回転方向ROに回転する。羽根車8aが回転することにより、吸込グリル2の開口2aから室内空気が吸い込まれ、吹出口3から空調空気が吹き出される。 When the motor 12 is energized, the driving force of the motor 12 is transmitted to the impeller 8a via the motor shaft 12a. Thereby, the impeller 8a rotates in the rotation direction RO centering on the rotation axis O. As the impeller 8 a rotates, room air is sucked from the opening 2 a of the suction grille 2, and conditioned air is blown out from the blowout port 3.
 次に、翼8cの形状についてより詳細に説明する。図6は、図5のVI部を拡大して示す図である。図6に示すように、翼8cの第2端部8cbは、羽根車8aの回転方向ROにおいて、第1端部8caよりも回転変位角度θ2だけ前方に配置されている。これにより、翼8cは、回転軸Oに対して周方向に角度δだけ傾斜している(図3参照)。つまり、翼8cは、いわゆるスキュー型の翼となっている。翼8cの中間部8ccは、羽根車8aの回転方向ROにおいて、第1端部8caよりも回転変位角度θ1(θ1=θ2/2)だけ前方に配置されている。 Next, the shape of the wing 8c will be described in more detail. 6 is an enlarged view of a portion VI of FIG. As shown in FIG. 6, the second end 8cb of the wing 8c is disposed forward of the first end 8ca by a rotational displacement angle θ2 in the rotational direction RO of the impeller 8a. Thereby, the wing | blade 8c inclines only angle (delta) in the circumferential direction with respect to the rotating shaft O (refer FIG. 3). That is, the wing 8c is a so-called skewed wing. The intermediate portion 8cc of the wing 8c is disposed forward of the first end 8ca by a rotational displacement angle θ1 (θ1 = θ2 / 2) in the rotational direction RO of the impeller 8a.
 翼が回転軸に対して傾斜していない場合、吸込側風路と吹出側風路とを仕切る舌部を通過するタイミングが、翼の回転軸方向の各位置で同時になる。これに対し、本実施の形態では、翼8cが回転軸Oに対して傾斜しているため、翼8cの回転軸O方向の各位置で舌部9aを通過するタイミングがずれる。したがって、本実施の形態では、クロスフローファン8の回転音を低減できる。 When the blade is not inclined with respect to the rotation axis, the timing of passing through the tongue portion that divides the suction side air passage and the discharge side air passage is simultaneous at each position in the blade rotation axis direction. On the other hand, in the present embodiment, since the wing 8c is inclined with respect to the rotation axis O, the timing of passing through the tongue 9a deviates at each position in the rotation axis O direction of the wing 8c. Therefore, in the present embodiment, the rotational noise of the cross flow fan 8 can be reduced.
 また、翼8cは、回転軸Oを中心とする半径方向の端部として、羽根車単体8dの内周側に位置する内周側端部8hと、羽根車単体8dの外周側に位置する外周側端部8gと、を有している。回転方向RO側の翼8cの側面である圧力面8jは、内周側端部8hから外周側端部8gに向かうに従って回転方向RO側に湾曲している。回転方向ROとは逆側の翼8cの側面である負圧面8kも同様に、内周側端部8hから外周側端部8gに向かうに従って回転方向RO側に湾曲している。これにより、翼8cは、圧力面8j側が凹となり、かつ負圧面8k側が凸となるように湾曲している。 Further, the wing 8c is an end on the inner peripheral side of the impeller single unit 8d as an end in the radial direction about the rotation axis O, and an outer periphery on the outer peripheral side of the impeller single unit 8d And the side end 8g. The pressure surface 8j which is the side surface of the wing 8c on the rotational direction RO side is curved in the rotational direction RO as it goes from the inner peripheral end 8h to the outer peripheral end 8g. Similarly, the negative pressure surface 8k which is the side surface of the wing 8c opposite to the rotational direction RO is curved in the rotational direction RO as it goes from the inner end 8h to the outer end 8g. Thus, the wing 8c is curved so that the pressure surface 8j side is concave and the suction surface 8k side is convex.
 ここで、回転軸Oに垂直な断面において翼8cの内周側端部8hの中心を8hmとし、隣り合う2つの翼8cの中心8hmと回転軸Oとをそれぞれ結ぶ2つの線分のなす角度をピッチ角度とする(図5参照)。このとき、ある2つの翼8c間のピッチ角度α1と、ある別の2つの翼8c間のピッチ角度α2とは異なっている(α1≠α2)。すなわち、複数の翼8cは、全て均一なピッチ角度を有する等ピッチ翼ではなく、少なくとも2つの異なるピッチ角度を有する不等ピッチ翼である。これにより、各翼8cが舌部9a又はガイドウォール10に接近する際の周期的な圧力変動が緩和されるため、ピーク性の回転音であるNZ音を抑制でき、静音性の高い空気調和機の室内機100が得られる。 Here, in the cross section perpendicular to the rotation axis O, the center of the inner peripheral end 8h of the wing 8c is 8 hm, and the angle formed by the two line segments respectively connecting the center 8 hm of the two adjacent wings 8c and the rotation axis O Is the pitch angle (see FIG. 5). At this time, the pitch angle α1 between two given wings 8c is different from the pitch angle α2 between two other wings 8c (α1 ≠ α2). That is, the plurality of blades 8c are not equal pitch blades all having a uniform pitch angle, but are unequal pitch blades having at least two different pitch angles. Thereby, since the periodic pressure fluctuation when each wing 8c approaches the tongue 9a or the guide wall 10 is alleviated, it is possible to suppress the NZ sound which is the rotational sound of the peak nature, and the air conditioner having high noise reduction The indoor unit 100 is obtained.
 図7は、図3のVII-VII断面の一部を示す断面図である。図8は、図3のVIII-VIII断面の一部を示す断面図である。図9は、図3のIX-IX断面の一部を示す断面図である。図7、図8及び図9はそれぞれ、1つの翼8cの第1端部8ca、第2端部8cb及び中間部8ccを回転軸Oに垂直な平面で切断した断面を示している。なお、図面が煩雑になるのを防ぐため、図7~図9では第1端部8ca、第2端部8cb及び中間部8ccの断面ハッチングを省略している。 7 is a cross-sectional view showing a part of a VII-VII cross section of FIG. FIG. 8 is a cross-sectional view showing a part of a VIII-VIII cross section of FIG. FIG. 9 is a cross-sectional view showing a part of a cross section taken along the line IX-IX of FIG. 7, 8 and 9 respectively show cross sections of the first end 8ca, the second end 8cb and the middle part 8cc of one wing 8c taken along a plane perpendicular to the rotation axis O. In order to prevent the drawings from being complicated, cross-sectional hatching of the first end 8ca, the second end 8cb, and the middle portion 8cc is omitted in FIGS.
 図7~図9に関する説明では、原則として、第1端部8ca、第2端部8cb及び中間部8ccで共通の構成及び寸法については共通の符号を用いる。ただし、第1端部8ca、第2端部8cb及び中間部8ccのそれぞれで構成又は寸法を区別するため、共通の符号にそれぞれ「a」、「b」及び「c」を付加した個別の符号を用いる場合がある。図7~図9では、一部の共通の符号に対して、個別の符号を括弧書きで併記している。 In the description of FIGS. 7 to 9, in principle, the same reference numerals are used for the configuration and the dimension common to the first end 8ca, the second end 8cb and the middle portion 8cc. However, in order to distinguish the configuration or dimensions in each of the first end 8ca, the second end 8cb, and the middle portion 8cc, individual codes in which “a”, “b” and “c” are added to the common codes respectively May be used. In FIG. 7 to FIG. 9, individual reference numerals are shown in parentheses with some common reference numerals.
 図7~図9に示すように、第2端部8cbにおける回転軸Oと垂直な断面での断面積は、第1端部8caにおける回転軸Oと垂直な断面での断面積よりも小さくなっている。中間部8ccにおける回転軸Oと垂直な断面での断面積は、第2端部8cbの上記断面積よりも大きく、かつ第1端部8caの上記断面積よりも小さくなっている。すなわち、回転軸Oと垂直な断面での翼8cの断面積は、第1端部8caから第2端部8cbに向かって徐々に減少している。したがって、翼8cは、第1端部8caから第2端部8cbに向かって概ね回転軸O方向に先細りとなる形状を有している。 As shown in FIGS. 7 to 9, the cross-sectional area of the second end 8cb in a cross section perpendicular to the rotation axis O is smaller than the cross-sectional area of the first end 8ca in a cross section perpendicular to the rotation axis O. ing. The cross-sectional area of the intermediate portion 8cc in a cross section perpendicular to the rotation axis O is larger than the cross-sectional area of the second end 8cb and smaller than the cross-sectional area of the first end 8ca. That is, the cross-sectional area of the wing 8c in a cross section perpendicular to the rotation axis O gradually decreases from the first end 8ca to the second end 8cb. Accordingly, the wing 8c has a shape that is tapered in the direction of the rotation axis O generally from the first end 8ca to the second end 8cb.
 回転軸Oと第2端部8cbでの外周側端部8gbとの距離Rtbは、回転軸Oと第1端部8caでの外周側端部8gaとの距離Rtaよりも短くなっている(Rtb<Rta)。回転軸Oと中間部8ccでの外周側端部8gcとの距離Rtcは、距離Rtbよりも長く距離Rtaよりも短くなっている(Rtb<Rtc<Rta)。すなわち、回転軸Oと外周側端部8gとの距離は、第1端部8caから第2端部8cbに向かって徐々に縮小している。ここで、回転軸Oと外周側端部8gとの距離Rtは、回転軸Oに垂直な断面において回転軸Oを中心として外周側端部8gに接する外接円の半径、と定義される。 The distance Rtb between the rotation axis O and the outer peripheral end 8gb at the second end 8cb is shorter than the distance Rta between the rotation axis O and the outer peripheral end 8ga at the first end 8ca (Rtb <Rta). The distance Rtc between the rotation axis O and the outer peripheral side end 8gc at the intermediate portion 8cc is longer than the distance Rtb and shorter than the distance Rta (Rtb <Rtc <Rta). That is, the distance between the rotation axis O and the outer peripheral side end 8g is gradually reduced from the first end 8ca to the second end 8cb. Here, a distance Rt between the rotation axis O and the outer peripheral side end 8g is defined as a radius of a circumscribed circle which is in contact with the outer peripheral side end 8g with the rotation axis O as a center in a cross section perpendicular to the rotation axis O.
 回転軸Oと第2端部8cbでの内周側端部8hbとの距離Ribは、回転軸Oと第1端部8caでの内周側端部8haとの距離Riaよりも長くなっている(Rib>Ria)。回転軸Oと中間部8ccでの内周側端部8hcとの距離Ricは、距離Ribよりも短く距離Riaよりも長くなっている(Rib>Ric>Ria)。すなわち、回転軸Oと内周側端部8hとの距離は、第1端部8caから第2端部8cbに向かって徐々に拡大している。ここで、回転軸Oと内周側端部8hとの距離Riは、回転軸Oを中心として内周側端部8hに接する内接円の半径、と定義される。 The distance Rib between the rotation axis O and the inner end 8hb at the second end 8cb is longer than the distance Ria between the rotation axis O and the inner end 8ha at the first end 8ca. (Rib> Ria). The distance Ric between the rotation axis O and the inner peripheral end 8hc at the intermediate portion 8cc is shorter than the distance Rib and longer than the distance Ria (Rib> Ric> Ria). That is, the distance between the rotation axis O and the inner peripheral end 8h gradually increases from the first end 8ca to the second end 8cb. Here, the distance Ri between the rotation axis O and the inner peripheral end 8 h is defined as the radius of the inscribed circle in contact with the inner peripheral end 8 h with the rotation axis O as a center.
 ここで、翼弦線Lo及び翼弦長Lについて説明する。翼弦線Loは、回転軸Oに垂直な断面において内周側端部8hの輪郭と外周側端部8gの輪郭との双方に接する直線、と定義される。翼弦長Lは、翼弦線Loに沿う方向での翼8cの長さ、と定義される。すなわち、翼弦長Lは、翼弦線Loと垂直でかつ内周側端部8hの輪郭に接する直線と、翼弦線Loと垂直でかつ外周側端部8gの輪郭に接する直線と、の距離に等しい。第2端部8cbの翼弦長Lbは、第1端部8caの翼弦長Laよりも短くなっている(Lb<La)。中間部8ccの翼弦長Lcは、第2端部8cbの翼弦長Lbよりも長く、かつ第1端部8caの翼弦長Laよりも短くなっている(Lb<Lc<La)。すなわち、翼弦長Lは、第1端部8caから第2端部8cbに向かって徐々に縮小している。 Here, the chord line Lo and the chord length L will be described. The chord line Lo is defined as a straight line in contact with both the contour of the inner peripheral end 8 h and the contour of the outer peripheral end 8 g in a cross section perpendicular to the rotation axis O. The chord length L is defined as the length of the wing 8 c in the direction along the chord line Lo. That is, the chord length L is a straight line perpendicular to the chord line Lo and in contact with the contour of the inner end 8h, and a straight line perpendicular to the chord line Lo and in contact with the contour of the outer end 8g Equal to the distance. The chord length Lb of the second end 8cb is shorter than the chord length La of the first end 8ca (Lb <La). The chord length Lc of the middle portion 8cc is longer than the chord length Lb of the second end 8cb and shorter than the chord length La of the first end 8ca (Lb <Lc <La). That is, the chord length L gradually reduces from the first end 8ca to the second end 8cb.
 図7~図9に示す各断面において、内周側端部8hの輪郭は、中心8hmを中心とした概ね半周分の1つの円弧で構成されている。当該円弧の一端は圧力面8jの内周端に接続されており、当該円弧の他端は負圧面8kの内周端に接続されている。内周側端部8hの肉厚はt1である。外周側端部8gの輪郭は、中心8gmを中心とした概ね半周分の1つの円弧で構成されている。当該円弧の一端は圧力面8jの外周端に接続されており、当該円弧の他端は負圧面8kの外周端に接続されている。外周側端部8gの肉厚はt2である。各断面において、内周側端部8hの肉厚t1と外周側端部8gの肉厚t2とを比較すると、肉厚t1は肉厚t2よりも大きくなっている(t1>t2、t1a>t2a、t1b>t2b、t1c>t2c)。また、翼8cが先細り形状を有することから、内周側端部8hの肉厚t1は、第1端部8caから第2端部8cbに向かって徐々に小さくなる(t1a>t1c>t1b)。同様に、外周側端部8gの肉厚t2は、第1端部8caから第2端部8cbに向かって徐々に小さくなる(t2a>t2c>t2b)。 In each of the cross sections shown in FIGS. 7 to 9, the contour of the inner peripheral end 8h is constituted by an arc of approximately half a circumference around the center 8 hm. One end of the arc is connected to the inner peripheral end of the pressure surface 8j, and the other end of the arc is connected to the inner peripheral end of the negative pressure surface 8k. The thickness of the inner peripheral end 8h is t1. The outline of the outer peripheral side end portion 8g is configured by an arc of approximately half a circumference around a center 8gm. One end of the arc is connected to the outer peripheral end of the pressure surface 8j, and the other end of the arc is connected to the outer peripheral end of the negative pressure surface 8k. The thickness of the outer peripheral end 8g is t2. In each cross section, when the thickness t1 of the inner peripheral end 8h and the thickness t2 of the outer peripheral end 8g are compared, the thickness t1 is larger than the thickness t2 (t1> t2, t1a> t2a , T1b> t2b, t1c> t2c). Further, since the wing 8c has a tapered shape, the thickness t1 of the inner peripheral end 8h gradually decreases from the first end 8ca to the second end 8cb (t1a> t1c> t1b). Similarly, the thickness t2 of the outer peripheral side end 8g gradually decreases from the first end 8ca to the second end 8cb (t2a> t2c> t2b).
 ここで、内周側端部8hの肉厚t1は、回転軸Oと垂直な断面において、内周側端部8hの輪郭線、圧力面8j及び負圧面8kに接する内接円の直径、と定義される。外周側端部8gの肉厚t2は、回転軸Oと垂直な断面において、外周側端部8gの輪郭線、圧力面8j及び負圧面8kに接する内接円の直径、と定義される。翼8cのその他の部分における肉厚は、回転軸Oと垂直な断面において圧力面8j及び負圧面8kに接する内接円の直径、と定義される。 Here, the thickness t1 of the inner peripheral end 8h is the contour of the inner peripheral end 8h, the diameter of the inscribed circle in contact with the pressure surface 8j and the negative pressure surface 8k in a cross section perpendicular to the rotation axis O, It is defined. The thickness t2 of the outer peripheral end 8g is defined as the contour of the outer peripheral end 8g, the diameter of the inscribed circle in contact with the pressure surface 8j and the negative pressure surface 8k in a cross section perpendicular to the rotation axis O. The thickness of the other portion of the wing 8c is defined as the diameter of the inscribed circle in contact with the pressure surface 8j and the suction surface 8k in a cross section perpendicular to the rotation axis O.
 また、翼8cは、図7~図9に示す各断面において、肉厚(すなわち、圧力面8j及び負圧面8kに接する内接円の直径)が最大となる最大肉厚部TMを有している。最大肉厚部TMは、翼弦線Loの中点Lo2を通り翼弦線Loに垂直な直線Lo3よりも、内周側端部8h側に位置している。また、最大肉厚部TMは、内周側端部8hよりも外周側に位置している。図7~図9に示す各断面において、翼8cの肉厚は、最大肉厚部TMから内周側端部8hに向かって徐々に小さくなるとともに、最大肉厚部TMから外周側端部8gに向かって徐々に小さくなる。第1端部8caでの最大肉厚部TMaの肉厚はtmaxaであり、第2端部8cbでの最大肉厚部TMbの肉厚はtmaxbであり、中間部8ccでの最大肉厚部TMcの肉厚はtmaxcである。翼8cが先細り形状を有することから、最大肉厚部TMの肉厚は、第1端部8caから第2端部8cbに向かって徐々に小さくなる(tmaxa>tmaxc>tmaxb)。 In each of the cross sections shown in FIGS. 7 to 9, the wing 8c has the largest thickness portion TM where the thickness (that is, the diameter of the inscribed circle in contact with the pressure surface 8j and the suction surface 8k) becomes maximum. There is. The largest thick portion TM is located closer to the inner peripheral end 8 h than a straight line Lo 3 which passes through the middle point Lo 2 of the chord line Lo and is perpendicular to the chord line Lo. In addition, the largest thickness portion TM is located on the outer peripheral side than the inner peripheral end 8 h. In each cross section shown in FIGS. 7 to 9, the thickness of the wing 8c gradually decreases from the largest thick portion TM toward the inner circumferential end 8h, and from the largest thick portion TM to the outer circumferential end 8g. Gradually decrease towards. The thickness of the largest thickness part TMa at the first end 8ca is tmaxa, the thickness of the largest thickness part TMb at the second end 8cb is tmaxb, and the largest thickness part TMc at the middle part 8cc Has a wall thickness of tmaxc. Since the wing 8c has a tapered shape, the thickness of the largest thickness portion TM gradually decreases from the first end 8ca to the second end 8cb (tmaxa> tmaxc> tmaxb).
 例えば、第2端部8cbにおいて、内周側端部8hbの肉厚t1bは0.60mmであり、外周側端部8gbの肉厚t2bは0.50mmであり、最大肉厚部TMbの肉厚tmaxbは0.62mmである。 For example, at the second end 8cb, the thickness t1b of the inner end 8hb is 0.60 mm, the thickness t2b of the outer end 8gb is 0.50 mm, and the thickness of the maximum thickness portion TMb tmaxb is 0.62 mm.
 図7に示す断面において、外周側端部8ga、圧力面8ja及び負圧面8kaに接する内接円の中心を8gmaとしたとき、中心8gmaと回転軸Oとの距離はRgaである。図8に示す断面において、外周側端部8gb、圧力面8jb及び負圧面8kbに接する内接円の中心を8gmbとしたとき、中心8gmbと回転軸Oとの距離はRgbである。図9に示す断面において、外周側端部8gc、圧力面8jc及び負圧面8kcに接する内接円の中心を8gmcとしたとき、中心8gmcと回転軸Oとの距離はRgcである。距離Rga、距離Rgb及び距離Rgcは等しくなっている(Rga=Rgb=Rgc)。距離Rga、距離Rgb及び距離Rgcをまとめて距離Rgという場合がある(Rga=Rgb=Rgc=Rg)。 In the cross section shown in FIG. 7, when the center of the inscribed circle in contact with the outer peripheral end 8ga, the pressure surface 8ja and the negative pressure surface 8ka is 8 gma, the distance between the center 8 gma and the rotation axis O is Rga. In the cross section shown in FIG. 8, when the center of the inscribed circle in contact with the outer peripheral end 8gb, the pressure surface 8jb and the negative pressure surface 8kb is 8gmb, the distance between the center 8gmb and the rotation axis O is Rgb. In the cross section shown in FIG. 9, when the center of the inscribed circle in contact with the outer peripheral end 8gc, the pressure surface 8jc and the negative pressure surface 8kc is 8gmc, the distance between the center 8gmc and the rotation axis O is Rgc. The distance Rga, the distance Rgb, and the distance Rgc are equal (Rga = Rgb = Rgc). The distance Rga, the distance Rgb, and the distance Rgc may be collectively referred to as a distance Rg (Rga = Rgb = Rgc = Rg).
 図7に示す断面において、内周側端部8ha、圧力面8ja及び負圧面8kaに接する内接円の中心を8hmaとしたとき、中心8hmaと回転軸Oとの距離はRhaである。図8に示す断面において、内周側端部8hb、圧力面8jb及び負圧面8kbに接する内接円の中心を8hmbとしたとき、中心8hmbと回転軸Oとの距離はRhbである。図9に示す断面において、内周側端部8hc、圧力面8jc及び負圧面8kcに接する内接円の中心を8hmcとしたとき、中心8hmcと回転軸Oとの距離はRhcである。距離Rha、距離Rhb及び距離Rhcは等しくなっている(Rha=Rhb=Rhc)。距離Rha、距離Rhb及び距離Rhcをまとめて距離Rhという場合がある(Rha=Rhb=Rhc=Rh)。また、図7に示す断面における中心8hmaと中心8gmaとの距離と、図8に示す断面における中心8hmbと中心8gmbとの距離と、図9に示す断面における中心8hmcと中心8gmcとの距離と、は等しくなっている。 In the cross section shown in FIG. 7, when the center of the inscribed circle in contact with the inner peripheral end 8ha, the pressure surface 8ja and the negative pressure surface 8ka is 8 hma, the distance between the center 8 hma and the rotation axis O is Rha. In the cross section shown in FIG. 8, when the center of the inscribed circle in contact with the inner peripheral end 8hb, the pressure surface 8jb and the negative pressure surface 8kb is 8 hmb, the distance between the center 8 hmb and the rotation axis O is Rhb. In the cross section shown in FIG. 9, when the center of the inscribed circle in contact with the inner peripheral end 8hc, the pressure surface 8jc and the negative pressure surface 8kc is 8 hmc, the distance between the center 8 hmc and the rotation axis O is Rhc. The distance Rha, the distance Rhb and the distance Rhc are equal (Rha = Rhb = Rhc). The distance Rha, the distance Rhb and the distance Rhc may be collectively referred to as a distance Rh (Rha = Rhb = Rhc = Rh). Further, the distance between the center 8hma and the center 8gma in the cross section shown in FIG. 7, the distance between the center 8hmb and the center 8gmb in the cross section shown in FIG. 8, and the distance between the center 8hmc and the center 8gmc in the cross section shown in FIG. Are equal.
 図7に示す断面において、最大肉厚部TMaで圧力面8ja及び負圧面8kaに接する内接円の中心をTMmaとしたとき、中心TMmaと回転軸Oとの距離はRmaである。距離Rmaは、距離Rhaよりも長く距離Rgaよりも短い(Rha<Rma<Rga)。図8に示す断面において、最大肉厚部TMbで圧力面8jb及び負圧面8kbに接する内接円の中心をTMmbとしたとき、中心TMmbと回転軸Oとの距離はRmbである。距離Rmbは、距離Rhbよりも長く距離Rgbよりも短い(Rhb<Rmb<Rgb)。図9に示す断面において、最大肉厚部TMcで圧力面8jc及び負圧面8kcに接する内接円の中心をTMmcとしたとき、中心TMmcと回転軸Oとの距離はRmcである。距離Rmcは、距離Rhcよりも長く距離Rgcよりも短い(Rhc<Rmc<Rgc)。距離Rma、距離Rmb及び距離Rmcは等しくなっている(Rma=Rmb=Rmc)。距離Rma、距離Rmb及び距離Rmcをまとめて距離Rmという場合がある(Rma=Rmb=Rmc=Rm)。また、図7に示す断面における中心8hmaと中心TMmaとの距離と、図8に示す断面における中心8hmbと中心TMmbとの距離と、図9に示す断面における中心8hmcと中心TMmcとの距離と、は等しくなっている。さらに、図7に示す断面における中心8gmaと中心TMmaとの距離と、図8に示す断面における中心8gmbと中心TMmbとの距離と、図9に示す断面における中心8gmcと中心TMmcとの距離と、は等しくなっている。 In the cross section shown in FIG. 7, when the center of the inscribed circle in contact with the pressure surface 8ja and the suction surface 8ka at the thickest portion TMa is TMma, the distance between the center TMma and the rotation axis O is Rma. The distance Rma is longer than the distance Rha and shorter than the distance Rga (Rha <Rma <Rga). In the cross section shown in FIG. 8, when the center of the inscribed circle in contact with the pressure surface 8jb and the suction surface 8kb at the thickest portion TMb is TMmb, the distance between the center TMmb and the rotation axis O is Rmb. The distance Rmb is longer than the distance Rhb and shorter than the distance Rgb (Rhb <Rmb <Rgb). In the cross section shown in FIG. 9, when the center of the inscribed circle in contact with the pressure surface 8jc and the suction surface 8kc at the thickest portion TMc is TMmc, the distance between the center TMmc and the rotation axis O is Rmc. The distance Rmc is longer than the distance Rhc and shorter than the distance Rgc (Rhc <Rmc <Rgc). The distance Rma, the distance Rmb and the distance Rmc are equal (Rma = Rmb = Rmc). The distance Rma, the distance Rmb and the distance Rmc may be collectively referred to as a distance Rm (Rma = Rmb = Rmc = Rm). Further, the distance between the center 8hma and the center TMma in the cross section shown in FIG. 7, the distance between the center 8hmb and the center TMmb in the cross section shown in FIG. 8, the distance between the center 8hmc and the center TMmc in the cross section shown in FIG. Are equal. Furthermore, the distance between the center 8gma and the center TMma in the cross section shown in FIG. 7, the distance between the center 8gmb and the center TMmb in the cross section shown in FIG. 8, and the distance between the center 8gmc and the center TMmc in the cross section shown in FIG. Are equal.
 回転軸Oと第1端部8caの外周側端部8gaとの距離Rta、回転軸Oと第2端部8cbの外周側端部8gbとの距離Rtb、回転軸Oと第1端部8caの内周側端部8haとの距離Ria、回転軸Oと第2端部8cbの内周側端部8hbとの距離Rib、及び、回転軸Oに沿う方向での第1端部8caと第2端部8cbとの距離Pは、以下の関係を満たしている。
 (Rta-Rtb)/P=(Rib-Ria)/P
A distance Rta between the rotation axis O and the outer peripheral end 8ga of the first end 8ca, a distance Rtb between the rotation axis O and the outer peripheral end 8gb of the second end 8cb, the rotation axis O with the first end 8ca The distance Ria with the inner peripheral end 8ha, the distance Rib between the rotation axis O and the inner peripheral end 8hb of the second end 8cb, and the first end 8ca with the second end in the direction along the rotational axis O The distance P with the end 8cb satisfies the following relationship.
(Rta-Rtb) / P = (Rib-Ria) / P
 図10は、本実施の形態に係る空気調和機の室内機100の羽根車単体8dにおいて、第1端部8ca、第2端部8cb及び中間部8ccの各断面を、中心8gma、8gmb及び8gmcが一致し、かつ中心8hma、8hmb及び8hmcが一致するように同一平面上で重ね合わせた仮想の状態を示す図である。図10は、作図上、図7に示す第1端部8caの断面、図8に示す第2端部8cbの断面、及び図9に示す中間部8ccの断面を、それぞれ回転軸Oを中心として相対的に回転させて重ね合わせることによって得られる。図10では、各断面の最大肉厚部TMの中心TMma、TMmb及びTMmcも一致している。 FIG. 10 shows cross sections of the first end 8ca, the second end 8cb, and the middle 8cc in the impeller unit 8d of the indoor unit 100 of the air conditioner according to the present embodiment, with centers 8gma, 8gmb and 8gmc. Is a virtual state of being superimposed on the same plane so that centers 8 hma, 8 hmb and 8 hmc coincide. 10 is a drawing, the cross section of the first end 8ca shown in FIG. 7, the cross section of the second end 8cb shown in FIG. 8 and the cross section of the intermediate part 8 cc shown in FIG. It is obtained by relative rotation and superposition. In FIG. 10, the centers TMma, TMmb and TMmc of the largest thick part TM in each cross section also coincide.
 図10に示すように、第1端部8caの断面の輪郭線と第2端部8cbの断面の輪郭線との距離ΔLeは、翼8cの全周に亘って一定である。また、第1端部8caの断面の輪郭線と中間部8ccの断面の輪郭線との距離ΔLeacは、翼8cの全周に亘って一定であり、中間部8ccの断面の輪郭線と第2端部8cbの断面の輪郭線との距離ΔLebcは、翼8cの全周に亘って一定である。距離ΔLeac及び距離ΔLebcは、いずれも距離ΔLeの半分に等しい(ΔLeac=ΔLebc=ΔLe/2)。 As shown in FIG. 10, the distance ΔLe between the contour of the cross section of the first end 8ca and the contour of the cross section of the second end 8cb is constant over the entire circumference of the wing 8c. Further, the distance ΔLeac between the contour of the cross section of the first end 8ca and the contour of the cross section of the intermediate portion 8cc is constant over the entire circumference of the wing 8c, and the contour of the cross section of the intermediate portion 8cc and the second The distance ΔLebc to the contour of the cross section of the end 8cb is constant over the entire circumference of the wing 8c. The distances ΔLeac and ΔLebc are both equal to half the distance ΔLe (ΔLeac = ΔLebc = ΔLe / 2).
 各断面における圧力面8jは、内周側端部8hに隣接した第1直線部8Ljを有している。また、各断面における負圧面8kは、内周側端部8hに隣接した第2直線部8Lkを有している。 The pressure surface 8j in each cross section has a first straight portion 8Lj adjacent to the inner peripheral end 8h. Further, the negative pressure surface 8k in each cross section has a second linear portion 8Lk adjacent to the inner peripheral end 8h.
 具体的には、図7に示す断面における圧力面8jaは、圧力面8ja側が凹となる曲線で構成された第1曲線部8Cjaと、直線で構成された第1直線部8Ljaと、を有している。第1曲線部8Cjaの一端は、外周側端部8gaの輪郭を構成する円弧の圧力面側端部に接続されている。第1曲線部8Cjaの他端は、第1直線部8Ljaの一端に接続されている。第1直線部8Ljaの他端は、内周側端部8haの輪郭を構成する円弧の圧力面側端部に接続されている。第1曲線部8Cjaは、半径の異なる2つ以上の円弧で構成された多重円弧曲線である。外周側端部8ga側の円弧の半径Rja1は、内周側端部8ha側の円弧の半径Rja2よりも大きくなっている。 Specifically, the pressure surface 8ja in the cross section shown in FIG. 7 has a first curve portion 8Cja formed of a curve in which the pressure surface 8ja side is concave and a first straight portion 8Lja formed of a straight line. ing. One end of the first curved portion 8Cja is connected to the pressure surface side end of the arc that constitutes the outline of the outer peripheral side end 8ga. The other end of the first curved portion 8Cja is connected to one end of the first straight portion 8Lja. The other end of the first straight portion 8Lja is connected to the pressure surface side end of an arc that constitutes the contour of the inner peripheral side end 8ha. The first curved portion 8Cja is a multiple arc curve formed of two or more arcs different in radius. The radius Rja1 of the arc on the outer peripheral end 8ga side is larger than the radius Rja2 of the arc on the inner peripheral end 8ha side.
 負圧面8kaは、負圧面8ka側が凸となる曲線で構成された第2曲線部8Ckaと、直線で構成された第2直線部8Lkaと、を有している。第2曲線部8Ckaの一端は、外周側端部8gaの輪郭を構成する円弧の負圧面側端部に接続されている。第2曲線部8Ckaの他端は、第2直線部8Lkaの一端に接続されている。第2直線部8Lkaの他端は、内周側端部8haの輪郭を構成する円弧の負圧面側端部に接続されている。第2直線部8Lkaは、第1直線部8Ljaと平行になっている。第2曲線部8Ckaは、半径の異なる2つ以上の円弧で構成された多重円弧曲線である。外周側端部8ga側の円弧の半径Rka1は、内周側端部8ha側の円弧の半径Rka2よりも大きくなっている。 The negative pressure surface 8ka has a second curved portion 8Cka which is formed of a curve which is convex on the negative pressure surface 8ka side, and a second straight portion 8Lka which is formed of a straight line. One end of the second curved portion 8Cka is connected to the negative pressure surface side end of an arc that constitutes the outline of the outer peripheral side end 8ga. The other end of the second curved portion 8Cka is connected to one end of the second straight portion 8Lka. The other end of the second straight portion 8Lka is connected to the negative pressure surface side end of an arc that constitutes the contour of the inner peripheral side end 8ha. The second straight portion 8Lka is parallel to the first straight portion 8Lja. The second curved portion 8Cka is a multiple arc curve formed of two or more arcs different in radius. The radius Rka1 of the arc on the outer peripheral end 8ga side is larger than the radius Rka2 of the arc on the inner peripheral end 8ha side.
 図8に示す断面における圧力面8jbは、圧力面8jb側が凹となる曲線で構成された第1曲線部8Cjbと、直線で構成された第1直線部8Ljbと、を有している。第1曲線部8Cjbの一端は、外周側端部8gbの輪郭を構成する円弧の圧力面側端部に接続されている。第1曲線部8Cjbの他端は、第1直線部8Ljbの一端に接続されている。第1直線部8Ljbの他端は、内周側端部8hbの輪郭を構成する円弧の圧力面側端部に接続されている。第1曲線部8Cjbは、半径の異なる2つ以上の円弧で構成された多重円弧曲線である。外周側端部8gb側の円弧の半径Rjb1は、内周側端部8hb側の円弧の半径Rjb2よりも大きくなっている。 The pressure surface 8jb in the cross section shown in FIG. 8 has a first curved portion 8Cjb formed of a curve which is concave on the pressure surface 8jb side, and a first straight portion 8Ljb formed of a straight line. One end of the first curved portion 8Cjb is connected to the pressure surface side end of an arc that constitutes the outline of the outer peripheral side end 8gb. The other end of the first curved portion 8Cjb is connected to one end of the first straight portion 8Ljb. The other end of the first straight portion 8Ljb is connected to the pressure surface side end of an arc that constitutes the contour of the inner peripheral side end 8hb. The first curved portion 8Cjb is a multiple arc curve formed of two or more arcs different in radius. The radius Rjb1 of the arc on the outer peripheral end 8gb side is larger than the radius Rjb2 of the arc on the inner peripheral end 8hb side.
 負圧面8kbは、負圧面8kb側が凸となる曲線で構成された第2曲線部8Ckbと、直線で構成された第2直線部8Lkbと、を有している。第2曲線部8Ckbの一端は、外周側端部8gbの輪郭を構成する円弧の負圧面側端部に接続されている。第2曲線部8Ckbの他端は、第2直線部8Lkbの一端に接続されている。第2直線部8Lkbの他端は、内周側端部8hbの輪郭を構成する円弧の負圧面側端部に接続されている。第2直線部8Lkbは、第1直線部8Ljbと平行になっている。第2曲線部8Ckbは、半径の異なる2つ以上の円弧で構成された多重円弧曲線である。外周側端部8gb側の円弧の半径Rkb1は、内周側端部8hb側の円弧の半径Rkb2よりも大きくなっている。 The negative pressure surface 8 kb has a second curved portion 8 Ckb formed of a curve which is convex on the negative pressure surface 8 kb side, and a second straight portion 8 Lkb formed of a straight line. One end of the second curved portion 8Ckb is connected to the negative pressure surface side end of an arc that constitutes the outline of the outer peripheral side end 8gb. The other end of the second curved portion 8Ckb is connected to one end of the second straight portion 8Lkb. The other end of the second straight portion 8Lkb is connected to the negative pressure surface side end of an arc that constitutes the contour of the inner peripheral side end 8hb. The second straight portion 8Lkb is parallel to the first straight portion 8Ljb. The second curved portion 8Ckb is a multiple arc curve formed of two or more arcs different in radius. The radius Rkb1 of the arc on the outer peripheral end 8gb side is larger than the radius Rkb2 of the arc on the inner peripheral end 8hb side.
 図9に示す断面における圧力面8jcは、圧力面8jc側が凹となる曲線で構成された第1曲線部8Cjcと、直線で構成された第1直線部8Ljcと、を有している。第1曲線部8Cjcの一端は、外周側端部8gcの輪郭を構成する円弧の圧力面側端部に接続されている。第1曲線部8Cjcの他端は、第1直線部8Ljcの一端に接続されている。第1直線部8Ljcの他端は、内周側端部8hcの輪郭を構成する円弧の圧力面側端部に接続されている。第1曲線部8Cjcは、半径の異なる2つ以上の円弧で構成された多重円弧曲線である。外周側端部8gc側の円弧の半径Rjc1は、内周側端部8hc側の円弧の半径Rjc2よりも大きくなっている。 The pressure surface 8jc in the cross section shown in FIG. 9 has a first curved portion 8Cjc formed of a curve which is concave on the pressure surface 8jc side, and a first straight portion 8Ljc formed of a straight line. One end of the first curved portion 8Cjc is connected to the pressure surface side end of the arc that constitutes the outline of the outer peripheral side end 8gc. The other end of the first curved portion 8Cjc is connected to one end of the first straight portion 8Ljc. The other end of the first straight portion 8Ljc is connected to the pressure surface side end of an arc that constitutes the contour of the inner peripheral side end 8hc. The first curved portion 8Cjc is a multiple arc curve formed of two or more arcs different in radius. The radius Rjc1 of the arc on the outer peripheral end 8gc side is larger than the radius Rjc2 of the arc on the inner peripheral end 8hc side.
 負圧面8kcは、負圧面8kc側が凸となる曲線で構成された第2曲線部8Ckcと、直線で構成された第2直線部8Lkcと、を有している。第2曲線部8Ckcの一端は、外周側端部8gcの輪郭を構成する円弧の負圧面側端部に接続されている。第2曲線部8Ckcの他端は、第2直線部8Lkcの一端に接続されている。第2直線部8Lkcの他端は、内周側端部8hcの輪郭を構成する円弧の負圧面側端部に接続されている。第2直線部8Lkcは、第1直線部8Ljcと平行になっている。第2曲線部8Ckcは、半径の異なる2つ以上の円弧で構成された多重円弧曲線である。外周側端部8gc側の円弧の半径Rkc1は、内周側端部8hc側の円弧の半径Rkc2よりも大きくなっている。 The negative pressure surface 8kc has a second curved portion 8Ckc formed of a curve which is convex on the negative pressure surface 8kc side, and a second straight portion 8Lkc formed of a straight line. One end of the second curved portion 8Ckc is connected to the negative pressure surface side end of an arc that constitutes the outline of the outer peripheral side end 8gc. The other end of the second curved portion 8Ckc is connected to one end of the second straight portion 8Lkc. The other end of the second straight portion 8Lkc is connected to the negative pressure surface side end of an arc that constitutes the contour of the inner peripheral side end 8hc. The second straight portion 8Lkc is parallel to the first straight portion 8Ljc. The second curved portion 8Ckc is a multiple arc curve formed of two or more arcs different in radius. The radius Rkc1 of the arc on the outer peripheral end 8gc side is larger than the radius Rkc2 of the arc on the inner peripheral end 8hc side.
 第2直線部8Lka、8Lkb及び8Lkcがそれぞれ第1直線部8Lja、8Ljb及び8Ljcと平行になっているため、翼8cの内周側端部8h側には、平板状の平板部が形成されている。この平板部は、回転軸Oに垂直な断面では一定の厚さを有する。 Since the second straight portions 8Lka, 8Lkb and 8Lkc are parallel to the first straight portions 8Lja, 8Ljb and 8Ljc, respectively, a flat plate portion is formed on the inner peripheral end 8h side of the wing 8c. There is. The flat plate portion has a constant thickness in a cross section perpendicular to the rotation axis O.
 図7~図9に示す各断面において、翼8cは、直線Lo3よりも内周側端部8h側に、それぞれ最大反り高さhsa、hsb及びhscをとる最大反り部を有している。ここで、最大反り高さは、翼弦線Loから負圧面8kまでの距離のうちの最大値、と定義される。翼弦線Loに沿う方向での内周側端部8hから最大反り部までの距離Lsは、翼弦長Lの半分よりも短くなっている(Ls<L/2)。 In each of the cross sections shown in FIGS. 7 to 9, the wing 8c has a maximum warpage portion having the maximum warpage heights hsa, hsb and hsc on the inner peripheral side end 8h side of the straight line Lo3. Here, the maximum warpage height is defined as the maximum value of the distance from the chord line Lo to the suction surface 8k. The distance Ls from the inner circumferential end 8h to the maximum warpage in the direction along the chord line Lo is shorter than half the chord length L (Ls <L / 2).
 図11は、本実施の形態に係る空気調和機の室内機100のクロスフローファン8において、翼8cの回転変位角度比Aとモータ入力比との関係を示すグラフである。グラフの横軸は翼8cの回転変位角度比A[deg/mm]を表しており、縦軸はクロスフローファン8のモータ入力比(%)を表している。ここで、回転変位角度比Aは、θ2/P[deg/mm]で表される。θ2[deg]は、回転軸Oを中心とする第2端部8cbの第1端部8caに対する回転変位角度である(図6参照)。P[mm]は、回転軸Oに沿う方向での第1端部8caと第2端部8cbとの距離である(図3参照)。 FIG. 11 is a graph showing the relationship between the rotational displacement angle ratio A of the wing 8c and the motor input ratio in the cross flow fan 8 of the indoor unit 100 of the air conditioner according to the present embodiment. The horizontal axis of the graph represents the rotational displacement angle ratio A [deg / mm] of the wing 8c, and the vertical axis represents the motor input ratio (%) of the cross flow fan 8. Here, the rotational displacement angle ratio A is represented by θ 2 / P [deg / mm]. θ2 [deg] is a rotational displacement angle with respect to the first end 8ca of the second end 8cb around the rotation axis O (see FIG. 6). P [mm] is the distance between the first end 8 ca and the second end 8 cb in the direction along the rotation axis O (see FIG. 3).
 図11に示すように、翼8cの回転変位角度比Aが0.02[deg/mm]≦A≦0.05[deg/mm]の関係を満たす場合、それ以外の場合と比較してモータ入力比を低減できることが分かる。 As shown in FIG. 11, when the rotational displacement angle ratio A of the wing 8 c satisfies the relationship of 0.02 [deg / mm] ≦ A ≦ 0.05 [deg / mm], the motor is compared with the other cases. It can be seen that the input ratio can be reduced.
 図12は、本実施の形態に係る空気調和機の室内機100のクロスフローファン8において、tmax/Lとモータ入力比との関係を示すグラフである。グラフの横軸はtmax/Lを表しており、縦軸はクロスフローファン8のモータ入力比(%)を表している。ここで、tmax[mm]は、回転軸Oに垂直な断面における翼8cの最大肉厚部TMの肉厚である(図7~図9参照)。L[mm]は、同断面における翼8cの翼弦長である(図7~図9参照)。 FIG. 12 is a graph showing the relationship between tmax / L and the motor input ratio in the cross flow fan 8 of the indoor unit 100 of the air conditioner according to the present embodiment. The horizontal axis of the graph represents tmax / L, and the vertical axis represents the motor input ratio (%) of the cross flow fan 8. Here, tmax [mm] is the thickness of the largest thickness portion TM of the wing 8c in a cross section perpendicular to the rotation axis O (see FIGS. 7 to 9). L [mm] is the chord length of the wing 8c in the same cross section (see FIGS. 7 to 9).
 図12に示すように、モータ入力比を低減できるのは、tmax/Lが0.045≦tmax/L≦0.080の関係を満たす場合であることが分かる。ただし、tmax/Lが0.045≦tmax/L≦0.080の関係を満たす場合であっても、モータ入力比の高い低減効果が得られる場合(グラフ中の四角で表す点)と、モータ入力比の高い低減効果が得られない場合(グラフ中の丸で表す点)とがある。 As shown in FIG. 12, it can be seen that the motor input ratio can be reduced when tmax / L satisfies the relationship 0.045 ≦ tmax / L ≦ 0.080. However, even when tmax / L satisfies the relationship 0.045 ≦ tmax / L ≦ 0.080, a high reduction effect of the motor input ratio can be obtained (a point represented by a square in the graph), and the motor There are cases where a high reduction effect of the input ratio can not be obtained (a point represented by a circle in the graph).
 図13は、0.045≦tmax/L≦0.080の関係を満たすクロスフローファン8において、tmax/t2とモータ入力比との関係を示すグラフである。グラフの横軸はtmax/t2を表しており、縦軸はクロスフローファン8のモータ入力比(%)を表している。ここで、tmax[mm]は、回転軸Oに垂直な断面における翼8cの最大肉厚部TMの肉厚である(図7~図9参照)。t2[mm]は、同断面における翼8cの外周側端部8gの肉厚である(図7~図9参照)。 FIG. 13 is a graph showing the relation between tmax / t2 and the motor input ratio in the cross flow fan 8 satisfying the relation of 0.045 ≦ tmax / L ≦ 0.080. The horizontal axis of the graph represents tmax / t 2, and the vertical axis represents the motor input ratio (%) of the cross flow fan 8. Here, tmax [mm] is the thickness of the largest thickness portion TM of the wing 8c in a cross section perpendicular to the rotation axis O (see FIGS. 7 to 9). t2 [mm] is the thickness of the outer peripheral side end 8g of the wing 8c in the same cross section (see FIGS. 7 to 9).
 図13に示すように、tmax/t2が1.1≦tmax/t2≦2.0の関係を満たす場合、それ以外の場合と比較してモータ入力比を低減できることが分かる。すなわち、図12及び図13によれば、tmax/Lが0.045≦tmax/L≦0.080の関係を満たし、かつ、tmax/t2が1.1≦tmax/t2≦2.0の関係を満たす場合には、モータ入力比の高い低減効果が得られることが分かる。上記の関係は、第1端部8caの断面及び第2端部8cbの断面の両方で満たされるのが望ましい。 As shown in FIG. 13, it can be seen that when tmax / t2 satisfies the relationship of 1.1 ≦ tmax / t2 ≦ 2.0, the motor input ratio can be reduced compared to the other cases. That is, according to FIGS. 12 and 13, tmax / L satisfies the relation 0.045 ≦ tmax / L ≦ 0.080, and the relation tmax / t2 satisfies 1.1 ≦ tmax / t2 ≦ 2.0. In the case where the above condition is satisfied, it is understood that a high reduction effect of the motor input ratio can be obtained. The above relationship is preferably satisfied in both the cross section of the first end 8ca and the cross section of the second end 8cb.
 図14は、本実施の形態に係る空気調和機の室内機100のクロスフローファン8において、P/(2×Rt)とモータ入力比との関係を示すグラフである。グラフの横軸はP/(2×Rt)を表しており、縦軸はクロスフローファン8のモータ入力比(%)を表している。ここで、P[mm]は、回転軸Oに沿う方向での第1端部8caと第2端部8cbとの距離である(図3参照)。Rt[mm]は、回転軸Oに垂直な断面において回転軸Oと外周側端部8gとの距離である(図7~図9参照)。上述の通り、距離Rtは、回転軸Oに垂直な断面において回転軸Oを中心として外周側端部8gに接する外接円の半径と定義されるため、(2×Rt)は、回転軸Oに垂直な断面において回転軸Oを中心として外周側端部8gに接する外接円の直径に等しい。 FIG. 14 is a graph showing the relationship between P / (2 × Rt) and motor input ratio in the cross flow fan 8 of the indoor unit 100 of the air conditioner according to the present embodiment. The horizontal axis of the graph represents P / (2 × Rt), and the vertical axis represents the motor input ratio (%) of the cross flow fan 8. Here, P [mm] is the distance between the first end 8 ca and the second end 8 cb in the direction along the rotation axis O (see FIG. 3). Rt [mm] is a distance between the rotation axis O and the outer peripheral end 8g in a cross section perpendicular to the rotation axis O (see FIGS. 7 to 9). As described above, since the distance Rt is defined as the radius of the circumscribed circle in contact with the outer peripheral end 8g around the rotation axis O in a cross section perpendicular to the rotation axis O, (2 × Rt) is the rotation axis O It is equal to the diameter of the circumscribed circle in contact with the outer peripheral end 8g about the rotation axis O in the vertical cross section.
 図14に示すように、P/(2×Rt)が0.45≦P/(2×Rt)≦0.80の関係を満たす場合、それ以外の場合と比較してモータ入力比を低減できることが分かる。上記の関係は、第1端部8caの断面及び第2端部8cbの断面の両方で満たされるのが望ましい。 As shown in FIG. 14, when P / (2 × Rt) satisfies the relationship of 0.45 ≦ P / (2 × Rt) ≦ 0.80, the motor input ratio can be reduced compared to the other cases. I understand. The above relationship is preferably satisfied in both the cross section of the first end 8ca and the cross section of the second end 8cb.
 以上説明したように、本実施の形態に係る空気調和機の室内機100は、開口2a及び吹出口3が形成されたケーシング1と、ケーシング1に収容されたクロスフローファン8と、を備えている。クロスフローファン8は、ケーシング1内に形成された風路に配置された羽根車8aと、風路を吸込側風路E1と吹出側風路E2とに区画するスタビライザー9と、羽根車8aから吹出側風路E2に吹き出された空気を吹出口3に導くガイドウォール10と、を有している。羽根車8aは、羽根車8aの回転軸Oを中心とする円周上にそれぞれ配置され、回転軸Oに沿う方向の端部として第1端部8ca及び第2端部8cbをそれぞれ有する複数の翼8cと、複数の翼8cのそれぞれの第1端部8caを支持する支持板8bと、を有している。第2端部8cbは、第1端部8caよりも羽根車8aの回転方向ROで前方に配置されている。複数の翼8cのそれぞれは、回転軸Oを中心とする半径方向の端部として内周側端部8h及び外周側端部8gを有している。第2端部8cbの回転軸Oと垂直な断面での断面積は、第1端部8caの回転軸Oと垂直な断面での断面積よりも小さくなっている。回転軸Oと第2端部8cbでの外周側端部8gとの距離Rtbは、回転軸Oと第1端部8caでの外周側端部8gとの距離Rtaよりも短くなっている。回転軸Oと第2端部8cbでの内周側端部8hとの距離Ribは、回転軸Oと第1端部8caでの内周側端部8hとの距離Riaよりも長くなっている。回転軸Oと垂直な断面において、内周側端部8hの肉厚t1は、外周側端部8gの肉厚t2よりも大きくなっている。回転軸Oと垂直な断面において、複数の翼8cのそれぞれは、複数の翼8cのそれぞれの翼弦線Loの中点Lo2を通り翼弦線Loに垂直な直線Lo3よりも内周側端部8h側に、肉厚が最大となる最大肉厚部TMを有している。ここで、開口2aは吸込口の一例である。 As described above, the indoor unit 100 of the air conditioner according to the present embodiment includes the casing 1 in which the opening 2 a and the outlet 3 are formed, and the cross flow fan 8 housed in the casing 1. There is. The cross flow fan 8 includes an impeller 8a disposed in an air passage formed in the casing 1, a stabilizer 9 dividing the air passage into a suction side air passage E1 and an outlet side air passage E2, and an impeller 8a. And a guide wall 10 for guiding the air blown out to the outlet side air path E2 to the outlet 3. The impellers 8a are respectively disposed on a circumference centered on the rotation axis O of the impeller 8a, and have a plurality of first ends 8ca and second ends 8cb as ends in a direction along the rotation axis O. It has a wing 8c and a support plate 8b for supporting the first end 8ca of each of the wings 8c. The second end 8cb is disposed forward of the first end 8ca in the rotational direction RO of the impeller 8a. Each of the plurality of wings 8 c has an inner peripheral end 8 h and an outer peripheral end 8 g as radial ends centered on the rotation axis O. The cross-sectional area of the second end 8cb in a cross section perpendicular to the rotation axis O is smaller than the cross-sectional area of the first end 8ca in a cross section perpendicular to the rotation axis O. The distance Rtb between the rotation axis O and the outer peripheral end 8g at the second end 8cb is shorter than the distance Rta between the rotation axis O and the outer peripheral end 8g at the first end 8ca. The distance Rib between the rotation axis O and the inner end 8h at the second end 8cb is longer than the distance Ria between the rotation axis O and the inner end 8h at the first end 8ca. . In a cross section perpendicular to the rotation axis O, the thickness t1 of the inner end 8h is larger than the thickness t2 of the outer end 8g. In a cross section perpendicular to the rotation axis O, each of the plurality of wings 8c passes the middle point Lo2 of the chord line Lo of each of the plurality of wings 8c, and the inner circumferential end than the straight line Lo3 perpendicular to the chord line Lo On the 8h side, there is the largest thickness part TM where the thickness is the largest. Here, the opening 2a is an example of a suction port.
 翼8cの外周側端部8gとスタビライザー9の舌部9aとの間の最小隙間をファンギャップG1とし、翼8cの外周側端部8gとガイドウォール10との間の最小隙間をファンギャップG2とする(図2参照)。本実施の形態では、ファンギャップG1及びG2はいずれも、翼8cの第1端部8caから第2端部8cbに向かって徐々に拡大している。第1端部8caでは、ファンギャップG1及びG2が相対的に狭いため、吸込側風路E1から吹出側風路E2で空気の流れが急激に変動する。しかしながら、本実施の形態では、第1端部8caが第2端部8cbと比較して相対的に厚肉となるため、空気の流れの変動による角度変化が生じても、剥離が生じにくくなる。一方、第2端部8cbでは、ファンギャップG1及びG2が相対的に広くなる。このため、第2端部8cbは相対的に薄肉となるものの、第2端部8cbでは、吸込側風路E1から吹出側風路E2での空気の流れの変動が相対的に小さくなるため、剥離が生じにくくなる。したがって、本実施の形態によれば、剥離による渦の生成を抑制することができるため、隣り合う翼8c間を空気が通過する際の有効通過面積を拡大することができ、クロスフローファン8の効率を向上させることができる。 A minimum gap between the outer peripheral end 8g of the wing 8c and the tongue 9a of the stabilizer 9 is a fan gap G1, and a minimum clearance between the outer peripheral end 8g of the wing 8c and the guide wall 10 is the fan gap G2. (See Figure 2). In the present embodiment, the fan gaps G1 and G2 both gradually increase from the first end 8ca of the wing 8c toward the second end 8cb. At the first end 8ca, since the fan gaps G1 and G2 are relatively narrow, the flow of air changes rapidly from the suction side air passage E1 to the blowout side air passage E2. However, in the present embodiment, since the first end 8ca is relatively thick compared to the second end 8cb, peeling is less likely to occur even if an angle change occurs due to a change in air flow. . On the other hand, at the second end 8cb, the fan gaps G1 and G2 become relatively wide. Therefore, although the second end 8cb is relatively thin, the fluctuation of the flow of air from the suction side air passage E1 to the blowout side air passage E2 is relatively small at the second end 8cb, Peeling is less likely to occur. Therefore, according to the present embodiment, since generation of a vortex due to separation can be suppressed, the effective passage area when air passes between adjacent wings 8c can be expanded. Efficiency can be improved.
 隣り合う翼8c間の翼間距離は、厚肉である第1端部8ca側の方が、薄肉である第2端部8cb側よりも小さい。第1端部8caの翼弦長Laは、第2端部8cbの翼弦長Lbよりも長い。これにより、翼間距離は、第1端部8caから第2端部8cbに向かって徐々に大きくなる。また、翼間通過風速は、第1端部8caから第2端部8cbに向かって徐々に遅くなる。このため、第1端部8caから第2端部8cbに向かう方向で、圧力勾配を生成することができる。したがって、本実施の形態によれば、第1端部8ca側で空気の流れが不安定になりかけたとしても圧力勾配によって流れが抑えられるため、流れの安定を維持できる。 The inter-blade distance between adjacent wings 8c is smaller on the thick first end 8ca side than on the thin second end 8cb side. The chord length La of the first end 8ca is longer than the chord length Lb of the second end 8cb. Thereby, the inter-blade distance gradually increases from the first end 8ca to the second end 8cb. In addition, the inter-blade passing wind speed gradually decreases from the first end 8ca to the second end 8cb. Thus, a pressure gradient can be generated in the direction from the first end 8ca to the second end 8cb. Therefore, according to the present embodiment, even if the flow of air becomes unstable on the side of the first end 8ca, the flow is suppressed by the pressure gradient, so that the flow can be stabilized.
 羽根車8aの吸込側では、翼8cの外周側端部8gから内周側端部8hに向かって空気が流れる。本実施の形態では、最大肉厚部TMが翼8cの内周側に形成されているため、翼8cの外周側で空気の流れが翼面から剥離しそうになっても、翼間距離が小さくなる翼8cの最大肉厚部TMで剥離を抑えることができる。一方、羽根車8aの吹出側では、翼8cの内周側端部8hから外周側端部8gに向かって空気が流れる。羽根車8aの吹出側では、流れの変動によって翼8cに対する空気の流入角度が羽根車8aの吸込側よりも変化しやすい。本実施の形態では、前縁となる内周側端部8hの肉厚t1が外周側端部8gの肉厚t2よりも大きくなっているため、空気の流入角度が変化しても、剥離が生じるのを抑えることができる。したがって、本実施の形態によれば、剥離による渦の生成を抑制することができるため、隣り合う翼8c間での有効通過面積を拡大することができ、クロスフローファン8の効率を向上させることができる。 On the suction side of the impeller 8a, air flows from the outer peripheral end 8g of the wing 8c toward the inner peripheral end 8h. In the present embodiment, since the largest thick portion TM is formed on the inner peripheral side of the wing 8c, the distance between the wings is small even if the flow of air tends to separate from the wing surface on the outer peripheral side of the wing 8c. Peeling can be suppressed by the largest thick part TM of the wing 8c. On the other hand, on the outlet side of the impeller 8a, air flows from the inner peripheral end 8h of the wing 8c toward the outer peripheral end 8g. At the outlet side of the impeller 8a, the inflow angle of air to the wing 8c is more likely to change than the inlet side of the impeller 8a due to the fluctuation of the flow. In the present embodiment, since the thickness t1 of the inner peripheral end 8h which is the front edge is larger than the thickness t2 of the outer peripheral end 8g, separation is caused even if the inflow angle of air changes. It can be suppressed to occur. Therefore, according to the present embodiment, the generation of a vortex due to separation can be suppressed, so the effective passage area between adjacent wings 8c can be expanded, and the efficiency of the cross flow fan 8 can be improved. Can.
 また、本実施の形態では、翼8cの内周側端部8hが相対的に厚肉であり、かつ翼8cが回転軸Oに対して傾斜している。このため、羽根車8aの吹出側において、空気の流れと翼8cの翼面との角度差により翼面の一部領域で流れが剥離しそうになったとしても、その流れと、ずれたタイミングで当該一部領域に流入してくる別の流れとが混合されることによって剥離が抑制される。したがって、クロスフローファン8の回転音を低減することができる。また、隣り合う翼8c間での有効通過面積を拡大することができるため、クロスフローファン8の効率を向上させることができる。 Further, in the present embodiment, the inner peripheral end 8 h of the wing 8 c is relatively thick, and the wing 8 c is inclined with respect to the rotation axis O. For this reason, even if the flow is likely to be separated in a partial region of the blade surface due to the angular difference between the air flow and the blade surface of the blade 8c on the outlet side of the impeller 8a, the flow is deviated from the flow timing. Peeling is suppressed by mixing with another flow flowing into the partial region. Therefore, the rotational noise of the cross flow fan 8 can be reduced. Moreover, since the effective passage area between the adjacent wing | blades 8c can be expanded, the efficiency of the crossflow fan 8 can be improved.
 さらに、本実施の形態では翼8cが回転軸Oに対して傾斜しているため、羽根車8aの吸込側において舌部9a通過後の外周側端部8gで流れの剥離が生じたとしても、剥離によって生成された渦の一部は、翼8cの傾斜に従って下流側すなわち第1端部8ca側に移行する。これにより、渦の形状を翼8cの翼面に沿って偏平化することができるため、翼面上での渦の厚さを薄くできる。したがって、隣り合う翼8c間での有効通過面積を拡大することができるため、クロスフローファン8の効率を向上させることができる。 Furthermore, since the wing 8c is inclined with respect to the rotation axis O in the present embodiment, even if separation of the flow occurs at the outer peripheral end 8g after passing through the tongue 9a on the suction side of the impeller 8a, A part of the vortex generated by the separation moves to the downstream side, that is, the first end 8ca side according to the inclination of the wing 8c. Thereby, the shape of the vortex can be flattened along the wing surface of the wing 8c, and therefore, the thickness of the vortex on the wing surface can be reduced. Therefore, the effective passage area between the adjacent wings 8c can be expanded, so the efficiency of the cross flow fan 8 can be improved.
 以上のように、本実施の形態によれば、クロスフローファン8の効率を向上させることができるとともにクロスフローファン8の回転音を低減できる。したがって、省エネルギー性に優れかつ高品質な空気調和機の室内機100が得られる。 As described above, according to the present embodiment, the efficiency of the cross flow fan 8 can be improved, and the rotational noise of the cross flow fan 8 can be reduced. Therefore, the indoor unit 100 of the air conditioner excellent in energy saving performance and high in quality can be obtained.
 また、本実施の形態に係る空気調和機の室内機100において、第1端部8caにおける回転軸Oと垂直な断面を複数の翼8cのそれぞれの第1断面とし、第2端部8cbにおける回転軸Oと垂直な断面を複数の翼8cのそれぞれの第2断面とする。第1断面において、外周側端部8ga、圧力面8ja及び負圧面8kaに接する内接円を第1内接円とし、第2断面において、外周側端部8gb、圧力面8jb及び負圧面8kbに接する内接円を第2内接円とする。第1断面において、内周側端部8ha、圧力面8ja及び負圧面8kaに接する内接円を第3内接円とし、第2断面において、内周側端部8hb、圧力面8jb及び負圧面8kbに接する内接円を第4内接円とする。このとき、回転軸Oと第1内接円の中心8gmaとの距離Rgaと、回転軸Oと第2内接円の中心8gmbとの距離Rgbとは等しい。また、回転軸Oと第3内接円の中心8hmaとの距離Rhaと、回転軸Oと第4内接円の中心8hmbとの距離Rhbとは等しい。 In the indoor unit 100 of the air conditioner according to the present embodiment, the cross section perpendicular to the rotation axis O at the first end 8ca is taken as the first cross section of each of the plurality of wings 8c, and the rotation at the second end 8cb A cross section perpendicular to the axis O is taken as a second cross section of each of the plurality of wings 8c. In the first cross section, the inscribed circle in contact with the outer peripheral end 8ga, the pressure surface 8ja and the negative pressure surface 8ka is a first inscribed circle, and in the second cross section, the outer peripheral end 8gb, the pressure surface 8jb and the negative pressure surface 8kb Let the inscribed circle in contact be the second inscribed circle. In the first cross section, an inscribed circle in contact with the inner peripheral end 8ha, the pressure surface 8ja and the negative pressure surface 8ka is a third inscribed circle, and in the second cross section, the inner peripheral end 8hb, the pressure surface 8jb and the negative pressure surface Let the inscribed circle in contact with 8 kb be the fourth inscribed circle. At this time, the distance Rga between the rotation axis O and the center 8gma of the first inscribed circle and the distance Rgb between the rotation axis O and the center 8gmb of the second inscribed circle are equal. Further, the distance Rha between the rotation axis O and the center 8hma of the third inscribed circle and the distance Rhb between the rotation axis O and the center 8hmb of the fourth inscribed circle are equal.
 この構成によれば、翼8cの形状に大きな歪みが存在しないため、回転軸Oに垂直な各断面間での流れの差異が小さくなる。したがって、翼8cの回転軸O方向の各位置において部分的な剥離又は乱れが生じにくくなるため、クロスフローファン8の効率を向上させることができる。 According to this configuration, since there is no large distortion in the shape of the wing 8c, the difference in flow between the cross sections perpendicular to the rotation axis O is reduced. Therefore, partial peeling or disturbance is unlikely to occur at each position in the direction of the rotation axis O of the wing 8c, so the efficiency of the cross flow fan 8 can be improved.
 特許文献1に記載のクロスフローファンでは、翼の断面中心が付け根部から先端部に向かって羽根車の径方向外側に変位している。このようなクロスフローファンでは、翼の先端部にかかる遠心力は、翼の付け根部にかかる遠心力と比較して大きくなる。これにより、負荷変動によって翼の変形が生じやすくなるため、クロスフローファンの騒音が増大するとともに効率が低下してしまう場合があった。これに対し、本実施の形態では、回転軸Oと外周側端部8gの中心8gmとの距離、及び回転軸Oと内周側端部8hの中心8hmとの距離がいずれも、第1端部8caと第2端部8cbとの間で一定となっている。したがって、負荷変動による翼8cの変形を抑制できるため、クロスフローファン8の低騒音化及び高効率化を実現できる。 In the cross flow fan described in Patent Document 1, the cross-sectional center of the blade is displaced radially outward of the impeller from the root toward the tip. In such a cross flow fan, the centrifugal force applied to the tip of the wing is greater than the centrifugal force applied to the base of the wing. As a result, deformation of the blade is apt to occur due to load fluctuation, so that the noise of the cross flow fan may increase and the efficiency may decrease. On the other hand, in the present embodiment, the distance between the rotation axis O and the center 8 gm of the outer peripheral end 8 g and the distance between the rotation axis O and the center 8 hm of the inner peripheral end 8 h are all first ends. It is constant between the portion 8ca and the second end 8cb. Therefore, since deformation of the wing 8c due to load fluctuation can be suppressed, noise reduction and high efficiency of the cross flow fan 8 can be realized.
 また、本実施の形態に係る空気調和機の室内機100において、第1断面の最大肉厚部TMaで圧力面8ja及び負圧面8kaに接する内接円を第5内接円とし、第2断面の最大肉厚部TMbで圧力面8jb及び負圧面8kbに接する内接円を第6内接円とする。このとき、回転軸Oと第5内接円の中心TMmaとの距離Rmaと、回転軸Oと第6内接円の中心TMmbとの距離Rmbとは等しい。 Further, in the indoor unit 100 of the air conditioner according to the present embodiment, the inscribed circle in contact with the pressure surface 8ja and the negative pressure surface 8ka at the largest thick portion TMa of the first cross section is taken as a fifth inscribed circle. Let the inscribed circle in contact with the pressure surface 8 j b and the suction surface 8 kb at the largest thick portion TMb be a sixth inscribed circle. At this time, the distance Rma between the rotation axis O and the center TMma of the fifth inscribed circle and the distance Rmb between the rotation axis O and the center TMmb of the sixth inscribed circle are equal.
 この構成によれば、複数の羽根車単体8dを回転軸O方向に連結する際に翼8cのねじれが生じにくくなるため、羽根車8aの組立作業性が向上する。 According to this configuration, when connecting the plurality of single impellers 8d in the direction of the rotation axis O, twisting of the wings 8c is less likely to occur, so the assembling workability of the impeller 8a is improved.
 また、本実施の形態に係る空気調和機の室内機100において、第1内接円の中心8gmaと第2内接円の中心8gmbとが一致し、かつ第3内接円の中心8hmaと第4内接円の中心8hmbとが一致するように第1断面と第2断面とを同一平面上で重ね合わせたとき、第1断面の輪郭線と第2断面の輪郭線との距離ΔLeは、複数の翼のそれぞれの全周で一定である。 Further, in the indoor unit 100 of the air conditioner according to the present embodiment, the center 8gma of the first inscribed circle and the center 8gmb of the second inscribed circle coincide, and the center 8hma of the third inscribed circle and the third When the first cross section and the second cross section are superimposed on the same plane so that the center 8 hmb of the inscribed circle 4 coincides, the distance ΔLe between the contour of the first cross section and the contour of the second cross section is It is constant all around each of the multiple wings.
 また、本実施の形態に係る空気調和機の室内機100において、回転軸Oと第1端部8caでの外周側端部8gaとの距離をRtaとし、回転軸Oと第2端部8cbでの外周側端部8gbとの距離をRtbとし、回転軸Oと第1端部8caでの内周側端部8haとの距離をRiaとし、回転軸Oと第2端部8cbでの内周側端部8hbとの距離をRibとし、回転軸Oに沿う方向での第1端部8caと第2端部8cbとの距離をPとしたとき、
 (Rta-Rtb)/P=(Rib-Ria)/P
 の関係が満たされる。
Further, in the indoor unit 100 of the air conditioner according to the present embodiment, a distance between the rotation axis O and the outer peripheral end 8ga at the first end 8ca is Rta, and the rotation axis O and the second end 8cb The distance between the rotation axis O and the inner peripheral end 8ha at the first end 8ca is Ria. The inner circumference at the rotation axis O and the second end 8cb is Rtb. Assuming that the distance to the side end 8 hb is Rib, and the distance between the first end 8 ca and the second end 8 cb in the direction along the rotation axis O is P,
(Rta-Rtb) / P = (Rib-Ria) / P
Relationship is satisfied.
 これらの構成によれば、距離ΔLeを翼8cの全周で一定にすることができるとともに、回転軸Oと外周側端部8gとの距離の回転軸O方向での変化率と、回転軸Oと内周側端部8hとの距離の回転軸O方向での変化率とをそれぞれ一定にすることができる。したがって、翼8cの回転軸O方向の各位置において流れが不安定にならず、剥離又は乱れが生じにくくなるため、クロスフローファン8の効率を向上させることができる。これにより、省エネルギー性に優れた空気調和機の室内機100が得られる。 According to these configurations, the distance ΔLe can be made constant over the entire circumference of the wing 8c, and the rate of change of the distance between the rotation axis O and the outer peripheral end 8g in the rotation axis O direction, and the rotation axis O And the rate of change in the direction of the rotation axis O of the distance between the inner circumferential end 8 h and the inner circumferential end 8 h can be made constant. Therefore, the flow does not become unstable at each position in the direction of the rotation axis O of the wing 8c, and separation or disturbance does not easily occur, so that the efficiency of the cross flow fan 8 can be improved. Thereby, the indoor unit 100 of the air conditioner excellent in energy saving property is obtained.
 また、本実施の形態に係る空気調和機の室内機100において、回転軸Oを中心とする第2端部8cbの第1端部8caに対する回転変位角度をθ2[deg]とし、回転軸Oに沿う方向での第1端部8caと第2端部8cbとの距離をP[mm]としたとき、
 0.02[deg/mm]≦θ2/P≦0.05[deg/mm]
 の関係が満たされる。
Further, in the indoor unit 100 of the air conditioner according to the present embodiment, the rotational displacement angle with respect to the first end 8 ca of the second end 8 cb about the rotational axis O is θ 2 [deg], and When the distance between the first end 8ca and the second end 8cb in the direction along is P [mm],
0.02 [deg / mm] ≦ θ2 / P ≦ 0.05 [deg / mm]
Relationship is satisfied.
 θ2/Pが小さすぎると、スキュー型の翼としての効果が小さくなる。一方、θ2/Pが大きすぎると、翼8cのそれぞれにおいて、回転方向で前方に位置する第2端部8cbから後方に位置する第1端部8caに向かって、翼8cの前縁を伝う流れが生じる。これにより、第1端部8ca側に流れが集中し、回転軸Oに沿う方向で風速分布ができてしまうため、騒音の悪化及び剥離が生じてしまう。 If θ 2 / P is too small, the effect as a skewed wing will be small. On the other hand, when θ2 / P is too large, in each of the wings 8c, the flow from the second end 8cb located forward in the rotational direction toward the first end 8ca located aft, along the front edge of the wing 8c Will occur. As a result, the flow is concentrated on the side of the first end 8ca, and the wind speed distribution is formed in the direction along the rotation axis O, so that the noise is aggravated and separation occurs.
 θ2/Pが上記の関係を満たしていれば、吹出方向が回転軸Oにほぼ直交する方向になる。このため、負荷変動が生じても、室内機100の吹出口3における回転軸O方向の端部で風速が局所的に遅くなるような風速分布が形成されにくくなる。したがって、負荷変動による送風特性の変動を抑えられるため、クロスフローファン8の騒音を低減できるとともに、クロスフローファン8の効率を向上させることができる。したがって、品質が高く省エネルギー性に優れた空気調和機の室内機100が得られる。 If θ 2 / P satisfies the above relationship, the blow-off direction is substantially orthogonal to the rotation axis O. For this reason, even if load fluctuation occurs, it becomes difficult to form a wind speed distribution such that the wind speed is locally slowed at the end in the direction of the rotation axis O in the outlet 3 of the indoor unit 100. Therefore, since the fluctuation of the air flow characteristic due to the load fluctuation can be suppressed, the noise of the cross flow fan 8 can be reduced and the efficiency of the cross flow fan 8 can be improved. Therefore, the indoor unit 100 of the air conditioner having high quality and excellent energy saving can be obtained.
 また、本実施の形態に係る空気調和機の室内機100では、回転軸Oに垂直な断面において、複数の翼8cのそれぞれの翼弦長をLとし、外周側端部8gの肉厚をt2とし、最大肉厚部TMの肉厚をtmaxとしたとき、
 0.045≦tmax/L≦0.080、かつ
 1.1≦tmax/t2≦2.0
 の関係が満たされる。
Further, in the indoor unit 100 of the air conditioner according to the present embodiment, in the cross section perpendicular to the rotation axis O, the chord length of each of the plurality of wings 8c is L, and the thickness of the outer peripheral end 8g is t2. When the thickness of the largest thickness portion TM is tmax,
0.045 ≦ tmax / L ≦ 0.080 and 1.1 ≦ tmax / t2 ≦ 2.0
Relationship is satisfied.
 0.045≦tmax/L≦0.080の関係を満たすような薄肉の翼8cにおいて、tmax/t2が1.1よりも小さい場合には、外周側端部8gから最大肉厚部TMまでの間で翼間距離の変化が小さくなる。これにより、空気の流れに一旦剥離が生じてしまうと再付着しにくくなってしまう。一方、tmax/t2が2.0よりも大きい場合には、外周側端部8gから最大肉厚部TMまでの間で翼間距離の変化が大きくなる。これにより、最大肉厚部TMでの翼間の流路幅が狭くなるため、摩擦損失が増大してしまう。0.045≦tmax/L≦0.080の関係を満たすような薄肉の翼8cにおいて、tmax/t2が上記の関係を満たしていれば、剥離を抑制しつつ摩擦損失を低減できるため、クロスフローファン8の効率を向上させることができる。したがって、省エネルギー性に優れた空気調和機の室内機100が得られる。 In the thin-walled blade 8c satisfying the relationship 0.045 ≦ tmax / L ≦ 0.080, when tmax / t2 is smaller than 1.1, the distance from the outer peripheral end 8g to the maximum thickness portion TM is The change in the distance between wings becomes smaller between the two. As a result, once exfoliation occurs in the air flow, it becomes difficult to reattach. On the other hand, when tmax / t2 is larger than 2.0, the change in the inter-blade distance becomes large from the outer peripheral end 8g to the maximum thickness part TM. As a result, the width of the flow passage between the blades at the thickest portion TM becomes narrow, and the friction loss increases. In the thin-walled blade 8c satisfying the relation 0.045 ≦ tmax / L ≦ 0.080, if tmax / t2 satisfies the above relation, friction loss can be reduced while suppressing separation, so cross flow The efficiency of the fan 8 can be improved. Therefore, the indoor unit 100 of the air conditioner excellent in energy saving property is obtained.
 また、本実施の形態に係る空気調和機の室内機100では、回転軸Oに垂直な断面において、複数の翼8cのそれぞれの圧力面8jは、圧力面8j側が凹となる第1曲線部(例えば、第1曲線部8Cja、8Cjb又は8Cjc)と、一端が第1曲線部に接続され他端が内周側端部8hに接続された第1直線部(例えば、第1直線部8Lja、8Ljb又は8Ljc)と、を有している。回転軸Oに垂直な断面において、複数の翼8cのそれぞれの負圧面8kは、負圧面8k側が凸となる第2曲線部(例えば、第2曲線部8Cka、8Ckb又は8Ckc)と、一端が第2曲線部に接続され他端が内周側端部8hに接続された第2直線部(例えば、第2直線部8Lka、8Lkb又は8Lkc)と、を有している。 Further, in the indoor unit 100 of the air conditioner according to the present embodiment, in the cross section perpendicular to the rotation axis O, the pressure surface 8j of each of the plurality of wings 8c has a first For example, a first curve portion 8Cja, 8Cjb or 8Cjc) and a first straight portion connected at one end to the first curve portion and the other end to the inner end 8h (for example, the first straight portion 8Lja, 8Ljb) Or 8Ljc). In the cross section perpendicular to the rotation axis O, each negative pressure surface 8k of the plurality of blades 8c has a second curved portion (for example, the second curved portion 8Cka, 8Ckb or 8Ckc) in which the negative pressure surface 8k side is convex, And a second straight portion (for example, a second straight portion 8Lka, 8Lkb or 8Lkc) connected to the two curve portions and having the other end connected to the inner circumferential end 8h.
 この構成によれば、羽根車8aの吸込側では、上流側の第1曲線部又は第2曲線部で剥離しそうになった流れを下流側の第1直線部又は第2直線部で再付着させることができる。したがって、局所的な剥離による流体異常音を抑制できる。これにより、流体異常音が抑制された高品質な空気調和機の室内機が得られる。 According to this configuration, on the suction side of the impeller 8a, the flow which is likely to be separated in the upstream first curve portion or the second curve portion is reattached on the downstream first straight portion or the second straight portion. be able to. Therefore, the fluid abnormal sound due to the local peeling can be suppressed. Thereby, the indoor unit of the high quality air conditioner in which the fluid abnormal noise was suppressed is obtained.
 また、本実施の形態に係る空気調和機の室内機100において、回転軸Oと第1端部8caでの外周側端部8gとの距離をRtaとし、回転軸Oに沿う方向での第1端部8caと第2端部8cbとの距離をPとしたとき、
 0.45≦P/(2×Rta)≦0.80
 の関係が満たされる。
In the indoor unit 100 of the air conditioner according to the present embodiment, the distance between the rotation axis O and the outer peripheral end 8g at the first end 8ca is Rta, and the first in the direction along the rotation axis O When the distance between the end 8ca and the second end 8cb is P,
0.45 ≦ P / (2 × Rta) ≦ 0.80
Relationship is satisfied.
 この構成によれば、支持板8bが適切な間隔で配置されるため、羽根車8aの吸込側における翼8cの第2端部8cbで剥離が生じたとしても、支持板8bによって流れの不安定化を抑制することができる。これにより、フィルタ5に塵埃が堆積しても空気の流れが失速しにくく、かつ低負荷時の効率が高いクロスフローファン8が得られる。 According to this configuration, since the support plate 8b is disposed at an appropriate interval, even if separation occurs at the second end 8cb of the wing 8c on the suction side of the impeller 8a, the flow is unstable due to the support plate 8b Can be suppressed. As a result, even if dust accumulates on the filter 5, the air flow is unlikely to stall and a cross flow fan 8 with high efficiency at low load can be obtained.
 また、薄肉の翼8cを備えた羽根車8aにおいて支持板8b間の間隔が広すぎると、羽根車8aを組み立てる際に翼8cが変形してしまい、クロスフローファン8の効率が低下してしまう場合がある。これに対し、上記構成によれば、翼8cの変形による送風特性の変化を防ぐことができるため、高品質な空気調和機の室内機100が得られる。 Further, if the distance between the support plates 8b is too wide in the impeller 8a having the thin wing 8c, the wing 8c is deformed when assembling the impeller 8a, and the efficiency of the cross flow fan 8 is lowered. There is a case. On the other hand, according to the above configuration, it is possible to prevent the change of the air blowing characteristic due to the deformation of the wing 8c, so that the indoor unit 100 of the high quality air conditioner can be obtained.
 また、本実施の形態に係る空気調和機の室内機100では、回転軸Oに垂直な断面において、複数の翼8cのそれぞれの圧力面8jは、半径の異なる複数の円弧を有している。さらに、回転軸Oに垂直な断面において、複数の翼8cのそれぞれの負圧面8kは、半径の異なる複数の円弧を有している。 Further, in the indoor unit 100 of the air conditioner according to the present embodiment, in the cross section perpendicular to the rotation axis O, the pressure surfaces 8 j of the plurality of wings 8 c have a plurality of arcs with different radii. Furthermore, in a cross section perpendicular to the rotation axis O, each suction surface 8k of the plurality of wings 8c has a plurality of arcs with different radii.
 負圧面8kが半径の異なる複数の円弧を有することにより、負圧面8kの一部で流れが剥離しかけたとしても、半径の異なる別の円弧部分で流れを再付着させることができるため、クロスフローファン8の損失を低減できる。また、圧力面8jが半径の異なる複数の円弧を有することにより、圧力面8j側で圧力を徐々に上昇させることができるため、摩擦損失を低減できる。これにより、クロスフローファン8の効率を高めつつ翼8cを薄肉化できるため、羽根車8aを軽量化できる。したがって、省エネルギー性に優れかつ軽量な空気調和機の室内機100が得られる。 Since the suction surface 8k has a plurality of arcs with different radii, even if the flow starts to separate on a part of the suction surface 8k, the flow can be reattached in another arc portion with a different radius, so cross flow The loss of the fan 8 can be reduced. In addition, since the pressure surface 8j has a plurality of arcs with different radii, the pressure can be gradually increased on the pressure surface 8j side, so that the friction loss can be reduced. As a result, the wing 8 c can be thinned while the efficiency of the cross flow fan 8 can be enhanced, so that the impeller 8 a can be reduced in weight. Therefore, the indoor unit 100 of the air conditioner excellent in energy saving property and lightweight can be obtained.
 1 ケーシング、1a ケーシング本体、1b 前面パネル、1c 天面部、2 吸込グリル、2a 開口、3 吹出口、4a 上下風向ベーン、4b 左右風向ベーン、5 フィルタ、7 熱交換器、8 クロスフローファン、8a 羽根車、8b 支持板、8c 翼、8ca 第1端部、8cb 第2端部、8cc 中間部、8d 羽根車単体、8e ファンボス、8f 端板、8fa ファンシャフト、8g 外周側端部、8gm 中心、8h 内周側端部、8hm 中心、8j 圧力面、8k 負圧面、8Lj 第1直線部、8Lk 第2直線部、9 スタビライザー、9a 舌部、9b 上部壁、9c ドレンパン、10 ガイドウォール、11 部屋、11a 壁、12 モータ、12a モータシャフト、100 室内機、A 回転変位角度比、E1 吸込側風路、E2 吹出側風路、G1、G2 ファンギャップ、L 翼弦長、Lo 翼弦線、Lo2 中点、Lo3 直線、O 回転軸、P、Rg、Rh、Ri、Rm、Rt 距離、RO 回転方向、t1、t2、tmax 肉厚、TM 最大肉厚部、TMm 中心、ΔLe、ΔLeac、ΔLebc 距離、α1、α2 ピッチ角度、δ 角度、θ1、θ2 回転変位角度。 Reference Signs List 1 casing, 1a casing body, 1b front panel, 1c top panel, 2 suction grille, 2a opening, 3 outlet, 4a vertical wind direction vane, 4b left and right wind direction vane, 5 filter, 7 heat exchanger, 8 cross flow fan, 8a Impeller, 8b support plate, 8c wing, 8ca first end, 8cb second end, 8cc middle part, 8d impeller alone, 8e fan boss, 8f end plate, 8fa fan shaft, 8g outer peripheral end, 8gm Center, 8h inner circumferential end, 8hm center, 8j pressure surface, 8k negative pressure surface, 8Lj first straight section, 8Lk second straight section, 9 stabilizer, 9a tongue, 9b top wall, 9c drain pan, 10 guide wall, 10 guide wall 11 rooms, 11a wall, 12 motors, 12a motor shaft, 100 indoor units, Rotational displacement angle ratio, E1 suction side air path, E2 outlet side air path, G1, G2 fan gap, L chord length, Lo chord line, Lo2 middle point, Lo3 straight line, O rotation axis, P, Rg, Rh, Ri, Rm, Rt distance, RO rotation direction, t1, t2, tmax thickness, TM maximum thickness part, TMm center, ΔLe, ΔLeac, ΔLebc distance, α1, α2 pitch angle, δ angle, θ1, θ2 rotational displacement angle .

Claims (10)

  1.  吸込口及び吹出口が形成されたケーシングと、
     前記ケーシングに収容されたクロスフローファンと、を備えた空気調和機の室内機であって、
     前記クロスフローファンは、
     前記ケーシング内に形成された風路に配置された羽根車と、
     前記風路を吸込側風路と吹出側風路とに区画するスタビライザーと、
     前記羽根車から前記吹出側風路に吹き出された空気を前記吹出口に導くガイドウォールと、
     を有しており、
     前記羽根車は、
     前記羽根車の回転軸を中心とする円周上にそれぞれ配置され、前記回転軸に沿う方向の端部として第1端部及び第2端部をそれぞれ有する複数の翼と、
     前記複数の翼のそれぞれの前記第1端部を支持する支持板と、
     を有しており、
     前記第2端部は、前記第1端部よりも前記羽根車の回転方向で前方に配置されており、
     前記複数の翼のそれぞれは、前記回転軸を中心とする半径方向の端部として内周側端部及び外周側端部を有しており、
     前記第2端部の前記回転軸と垂直な断面での断面積は、前記第1端部の前記回転軸と垂直な断面での断面積よりも小さくなっており、
     前記回転軸と前記第2端部での前記外周側端部との距離は、前記回転軸と前記第1端部での前記外周側端部との距離よりも短くなっており、
     前記回転軸と前記第2端部での前記内周側端部との距離は、前記回転軸と前記第1端部での前記内周側端部との距離よりも長くなっており、
     前記回転軸と垂直な断面において、前記内周側端部の肉厚は、前記外周側端部の肉厚よりも大きくなっており、
     前記回転軸と垂直な断面において、前記複数の翼のそれぞれは、前記複数の翼のそれぞれの翼弦線の中点を通り前記翼弦線に垂直な直線よりも前記内周側端部側に、肉厚が最大となる最大肉厚部を有している空気調和機の室内機。
    A casing having an inlet and an outlet formed therein;
    An indoor unit of an air conditioner comprising: a cross flow fan housed in the casing;
    The cross flow fan is
    An impeller disposed in an air passage formed in the casing;
    A stabilizer that divides the air passage into a suction side air passage and a discharge side air passage;
    A guide wall for guiding the air blown out from the impeller to the outlet side air path to the outlet;
    And have
    The impeller is
    A plurality of wings respectively disposed on a circumference centered on the rotation axis of the impeller, and having a first end and a second end as ends in a direction along the rotation axis;
    A support plate supporting the first end of each of the plurality of wings;
    And have
    The second end is disposed forward of the first end in the rotational direction of the impeller,
    Each of the plurality of wings has an inner peripheral end and an outer peripheral end as radial ends centered on the rotation axis,
    The cross-sectional area of the second end in a cross section perpendicular to the rotation axis is smaller than the cross-sectional area of the first end in a cross section perpendicular to the rotation axis,
    The distance between the rotation axis and the outer peripheral end at the second end is shorter than the distance between the rotation axis and the outer peripheral end at the first end,
    The distance between the rotation axis and the inner circumferential end at the second end is longer than the distance between the rotation axis and the inner circumferential end at the first end,
    In the cross section perpendicular to the rotation axis, the thickness of the inner peripheral end is larger than the thickness of the outer peripheral end,
    In a cross section perpendicular to the rotation axis, each of the plurality of wings passes through a midpoint of a chord line of each of the plurality of wings and is closer to the inner circumferential end than a straight line perpendicular to the chord line. , The indoor unit of the air conditioner that has the largest thickness part where the thickness is the largest.
  2.  前記第1端部における前記回転軸と垂直な断面を前記複数の翼のそれぞれの第1断面とし、
     前記第2端部における前記回転軸と垂直な断面を前記複数の翼のそれぞれの第2断面とし、
     前記第1断面において、前記外周側端部、前記複数の翼のそれぞれの圧力面及び前記複数の翼のそれぞれの負圧面に接する内接円を第1内接円とし、
     前記第2断面において、前記外周側端部、前記圧力面及び前記負圧面に接する内接円を第2内接円とし、
     前記第1断面において、前記内周側端部、前記圧力面及び前記負圧面に接する内接円を第3内接円とし、
     前記第2断面において、前記内周側端部、前記圧力面及び前記負圧面に接する内接円を第4内接円としたとき、
     前記回転軸と前記第1内接円の中心との距離と、前記回転軸と前記第2内接円の中心との距離とは等しく、
     前記回転軸と前記第3内接円の中心との距離と、前記回転軸と前記第4内接円の中心との距離とは等しい請求項1に記載の空気調和機の室内機。
    A cross section perpendicular to the rotation axis at the first end is taken as a first cross section of each of the plurality of wings,
    A cross section perpendicular to the rotation axis at the second end is a second cross section of each of the plurality of wings,
    In the first cross section, an inscribed circle in contact with the outer peripheral side end, the pressure surface of each of the plurality of wings, and the negative pressure surface of each of the plurality of wings is a first inscribed circle,
    In the second cross section, an inscribed circle in contact with the outer peripheral end, the pressure surface and the negative pressure surface is taken as a second inscribed circle,
    In the first cross section, an inscribed circle in contact with the inner peripheral end portion, the pressure surface, and the suction surface is a third inscribed circle,
    In the second cross section, when an inscribed circle in contact with the inner peripheral end portion, the pressure surface and the negative pressure surface is a fourth inscribed circle,
    The distance between the rotation axis and the center of the first inscribed circle is equal to the distance between the rotation axis and the center of the second inscribed circle,
    The indoor unit of the air conditioner according to claim 1, wherein the distance between the rotation axis and the center of the third inscribed circle and the distance between the rotation axis and the center of the fourth inscribed circle are equal.
  3.  前記第1断面の前記最大肉厚部で前記圧力面及び前記負圧面に接する内接円を第5内接円とし、
     前記第2断面の前記最大肉厚部で前記圧力面及び前記負圧面に接する内接円を第6内接円としたとき、
     前記回転軸と前記第5内接円の中心との距離と、前記回転軸と前記第6内接円の中心との距離とは等しい請求項2に記載の空気調和機の室内機。
    Let an inscribed circle in contact with the pressure surface and the negative pressure surface at the maximum thickness portion of the first cross section be a fifth inscribed circle,
    When an inscribed circle in contact with the pressure surface and the negative pressure surface in the largest thickness portion of the second cross section is a sixth inscribed circle,
    The indoor unit of the air conditioner according to claim 2, wherein the distance between the rotation axis and the center of the fifth inscribed circle and the distance between the rotation axis and the center of the sixth inscribed circle are equal.
  4.  前記第1内接円の中心と前記第2内接円の中心とが一致し、かつ前記第3内接円の中心と前記第4内接円の中心とが一致するように前記第1断面と前記第2断面とを同一平面上で重ね合わせたとき、
     前記第1断面の輪郭線と前記第2断面の輪郭線との距離は、前記複数の翼のそれぞれの全周で一定である請求項2又は請求項3に記載の空気調和機の室内機。
    The first cross section so that the center of the first inscribed circle coincides with the center of the second inscribed circle, and the center of the third inscribed circle coincides with the center of the fourth inscribed circle And when the second cross section is superimposed on the same plane,
    The indoor unit of the air conditioner according to claim 2 or 3, wherein a distance between an outline of the first cross section and an outline of the second cross section is constant all around each of the plurality of wings.
  5.  前記回転軸と前記第1端部での前記外周側端部との距離をRtaとし、
     前記回転軸と前記第2端部での前記外周側端部との距離をRtbとし、
     前記回転軸と前記第1端部での前記内周側端部との距離をRiaとし、
     前記回転軸と前記第2端部での前記内周側端部との距離をRibとし、
     前記回転軸に沿う方向での前記第1端部と前記第2端部との距離をPとしたとき、
     (Rta-Rtb)/P=(Rib-Ria)/P
     の関係が満たされる請求項1~請求項4のいずれか一項に記載の空気調和機の室内機。
    The distance between the rotation axis and the outer peripheral end at the first end is Rta,
    Let the distance between the rotation axis and the outer peripheral end at the second end be Rtb,
    The distance between the rotation axis and the inner peripheral end at the first end is Ria,
    The distance between the rotation axis and the inner circumferential end at the second end is taken as Rib,
    When a distance between the first end and the second end in a direction along the rotation axis is P,
    (Rta-Rtb) / P = (Rib-Ria) / P
    The indoor unit of the air conditioner according to any one of claims 1 to 4, wherein the following relationship is satisfied.
  6.  前記回転軸を中心とする前記第2端部の前記第1端部に対する回転変位角度をθ2[deg]とし、
     前記回転軸に沿う方向での前記第1端部と前記第2端部との距離をP[mm]としたとき、
     0.02[deg/mm]≦θ2/P≦0.05[deg/mm]
     の関係が満たされる請求項1~請求項5のいずれか一項に記載の空気調和機の室内機。
    The rotational displacement angle of the second end with respect to the first end centering on the rotation axis is θ 2 [deg],
    When the distance between the first end and the second end in the direction along the rotation axis is P [mm],
    0.02 [deg / mm] ≦ θ2 / P ≦ 0.05 [deg / mm]
    The indoor unit of the air conditioner according to any one of claims 1 to 5, wherein the following relationship is satisfied.
  7.  前記回転軸に垂直な断面において、前記複数の翼のそれぞれの翼弦長をLとし、前記外周側端部の肉厚をt2とし、前記最大肉厚部の肉厚をtmaxとしたとき、
     0.045≦tmax/L≦0.080、かつ
     1.1≦tmax/t2≦2.0
     の関係が満たされる請求項1~請求項6のいずれか一項に記載の空気調和機の室内機。
    In a cross section perpendicular to the rotation axis, when a chord length of each of the plurality of wings is L, a thickness of the outer peripheral end is t2, and a thickness of the largest thickness portion is tmax,
    0.045 ≦ tmax / L ≦ 0.080 and 1.1 ≦ tmax / t2 ≦ 2.0
    The indoor unit of the air conditioner according to any one of claims 1 to 6, wherein the following relationship is satisfied.
  8.  前記回転軸に垂直な断面において、前記複数の翼のそれぞれの圧力面は、前記圧力面側が凹となる第1曲線部と、一端が前記第1曲線部に接続され他端が前記内周側端部に接続された第1直線部と、を有しており、
     前記回転軸に垂直な断面において、前記複数の翼のそれぞれの負圧面は、前記負圧面側が凸となる第2曲線部と、一端が前記第2曲線部に接続され他端が前記内周側端部に接続された第2直線部と、を有している請求項1~請求項7のいずれか一項に記載の空気調和機の室内機。
    In a cross section perpendicular to the rotation axis, the pressure surface of each of the plurality of blades has a first curve portion in which the pressure surface side is concave, one end is connected to the first curve portion, and the other end is the inner circumferential side And a first straight portion connected to the end portion,
    In a cross section perpendicular to the rotation axis, each negative pressure surface of the plurality of blades has a second curved portion whose convex surface side is convex, one end is connected to the second curved portion, and the other end is the inner peripheral side The indoor unit of the air conditioner according to any one of claims 1 to 7, further comprising: a second straight portion connected to the end.
  9.  前記回転軸と前記第1端部での前記外周側端部との距離をRtaとし、
     前記回転軸に沿う方向での前記第1端部と前記第2端部との距離をPとしたとき、
     0.45≦P/(2×Rta)≦0.80
     の関係が満たされる請求項1~請求項8のいずれか一項に記載の空気調和機の室内機。
    The distance between the rotation axis and the outer peripheral end at the first end is Rta,
    When a distance between the first end and the second end in a direction along the rotation axis is P,
    0.45 ≦ P / (2 × Rta) ≦ 0.80
    The indoor unit of the air conditioner according to any one of claims 1 to 8, wherein the following relationship is satisfied.
  10.  前記回転軸に垂直な断面において、前記複数の翼のそれぞれの圧力面は、半径の異なる複数の円弧を有しており、
     前記回転軸に垂直な断面において、前記複数の翼のそれぞれの負圧面は、半径の異なる複数の円弧を有している請求項1~請求項9のいずれか一項に記載の空気調和機の室内機。
    In a cross section perpendicular to the rotation axis, each pressure surface of the plurality of wings has a plurality of arcs of different radii,
    The air conditioner according to any one of claims 1 to 9, wherein each suction surface of the plurality of blades has a plurality of arcs with different radii in a cross section perpendicular to the rotation axis. Indoor unit.
PCT/JP2017/025133 2017-07-10 2017-07-10 Indoor unit for air conditioner WO2019012578A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/025133 WO2019012578A1 (en) 2017-07-10 2017-07-10 Indoor unit for air conditioner
JP2019529331A JP6811863B2 (en) 2017-07-10 2017-07-10 Indoor unit of air conditioner
CN201780091508.9A CN110914550B (en) 2017-07-10 2017-07-10 Indoor unit of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/025133 WO2019012578A1 (en) 2017-07-10 2017-07-10 Indoor unit for air conditioner

Publications (1)

Publication Number Publication Date
WO2019012578A1 true WO2019012578A1 (en) 2019-01-17

Family

ID=65001881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025133 WO2019012578A1 (en) 2017-07-10 2017-07-10 Indoor unit for air conditioner

Country Status (3)

Country Link
JP (1) JP6811863B2 (en)
CN (1) CN110914550B (en)
WO (1) WO2019012578A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065079A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Cross flow fan blade, cross flow fan, and air conditioner indoor unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101222A (en) * 2008-10-22 2010-05-06 Sharp Corp Cross-flow fan, blower, and molding machine for blade wheel
WO2013150569A1 (en) * 2012-04-06 2013-10-10 三菱電機株式会社 Indoor unit for air conditioning device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4054777B2 (en) * 2004-03-22 2008-03-05 東芝キヤリア株式会社 Cross current fan
CN1587713A (en) * 2004-10-13 2005-03-02 吴劲松 Interference noise reducing type centrifugal fan and cross flow fan
JP4993791B2 (en) * 2010-06-28 2012-08-08 シャープ株式会社 Fan, molding die and fluid feeder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101222A (en) * 2008-10-22 2010-05-06 Sharp Corp Cross-flow fan, blower, and molding machine for blade wheel
WO2013150569A1 (en) * 2012-04-06 2013-10-10 三菱電機株式会社 Indoor unit for air conditioning device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065079A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Cross flow fan blade, cross flow fan, and air conditioner indoor unit
CN114502842A (en) * 2019-09-30 2022-05-13 大金工业株式会社 Blade of cross flow fan, cross flow fan and air conditioner indoor unit
AU2020359245B2 (en) * 2019-09-30 2022-06-16 Daikin Industries, Ltd. Cross flow fan blade, cross flow fan, and air conditioner indoor unit
US11466871B2 (en) 2019-09-30 2022-10-11 Daikin Industries, Ltd. Cross flow fan blade, cross flow fan, and air conditioner indoor unit
EP4027018A4 (en) * 2019-09-30 2022-11-09 Daikin Industries, Ltd. Cross flow fan blade, cross flow fan, and air conditioner indoor unit

Also Published As

Publication number Publication date
JPWO2019012578A1 (en) 2020-01-23
CN110914550B (en) 2021-03-12
JP6811863B2 (en) 2021-01-13
CN110914550A (en) 2020-03-24

Similar Documents

Publication Publication Date Title
EP3626974B1 (en) Outdoor unit for an air conditioner
JP6415741B2 (en) Blower and air conditioner equipped with the same
WO2012169100A1 (en) Air conditioner
JP6381811B2 (en) Blower and air conditioner
EP3591236B1 (en) Propeller fan, air-sending device and air-conditioning apparatus
JP5879363B2 (en) Multi-blade fan and air conditioner equipped with the same
JP6945739B2 (en) Multi-blade blower and air conditioner
WO2017077564A1 (en) Axial fan and air-conditioning device having said axial fan
WO2019012578A1 (en) Indoor unit for air conditioner
JP2001280288A (en) Impeller structure of multiblade blower
JP7378611B2 (en) Axial fans, blowers, and refrigeration cycle equipment
JP6044165B2 (en) Multi-blade fan and air conditioner indoor unit including the same
WO2015064617A1 (en) Cross-flow fan and air conditioner
TWI664381B (en) Air conditioner
JP2002357194A (en) Cross-flow fan
WO2023223383A1 (en) Cross flow fan, blowing device, and refrigeration cycle device
WO2024084537A1 (en) Blower device
US20220325905A1 (en) Air handling unit and fan therefor
JP6625213B2 (en) Multi-blade fan and air conditioner
WO2023084652A1 (en) Cross-flow fan, blowing device, and refrigeration cycle device
WO2024089808A1 (en) Axial flow fan, air blower, and air conditioner
JP7282215B2 (en) Blowers and air conditioners
JP3139447B2 (en) Cross flow fan
US20230417249A1 (en) Propeller fan and refrigeration apparatus
JP7360823B2 (en) air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917388

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019529331

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917388

Country of ref document: EP

Kind code of ref document: A1