WO2024084537A1 - Blower device - Google Patents

Blower device Download PDF

Info

Publication number
WO2024084537A1
WO2024084537A1 PCT/JP2022/038502 JP2022038502W WO2024084537A1 WO 2024084537 A1 WO2024084537 A1 WO 2024084537A1 JP 2022038502 W JP2022038502 W JP 2022038502W WO 2024084537 A1 WO2024084537 A1 WO 2024084537A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
blade
fan
wings
blower device
Prior art date
Application number
PCT/JP2022/038502
Other languages
French (fr)
Japanese (ja)
Inventor
奈穂 安達
惇司 河野
拓矢 寺本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/038502 priority Critical patent/WO2024084537A1/en
Publication of WO2024084537A1 publication Critical patent/WO2024084537A1/en

Links

Images

Definitions

  • This disclosure relates to a blower device, and in particular to a blower device used in an air conditioner indoor unit, etc.
  • a cross-flow fan has multiple blades that are spaced apart from one another in the circumferential direction. The blades are sometimes called blades.
  • the camber line that indicates the center of thickness of the blade cross section is made up of two continuous arcs in the blade chord direction (see, for example, Patent Document 1).
  • the warp line includes two arcs, one on the outer circumference of the fan and one on the inner circumference of the fan, and the warp directions of the arcs on the outer circumference of the fan and the inner circumference of the fan are reversed.
  • Patent Document 1 aims to reduce turbulent sound caused by the fluid, resulting in low noise levels, and to save energy by increasing the air volume.
  • the warping direction of the arc on the outer circumference side of the fan is reversed to the warping direction of the arc on the inner circumference side of the fan.
  • the arc on the outer circumference side of the fan has the center of the circle constituting the arc arranged in the opposite direction to the rotation direction relative to the arc, and the central part of the arc is convex toward the rotation direction.
  • the arc on the inner circumference side of the fan has the center of the circle constituting the arc arranged in the rotation direction relative to the arc, and the central part of the arc is convex toward the opposite direction to the rotation direction.
  • the air inflow area which is the low air volume area
  • the warping direction on the outer circumference side of the fan is warped in the direction against the air flow. Therefore, the air flow cannot flow along the surface of the blade and is separated from the surface of the blade. As a result, there is a problem that abnormal noise is generated or the air flow stalls.
  • the present disclosure has been made to solve such problems, and aims to provide a blower that prevents the air flow from separating from the blade by changing the height of the warp without reversing the direction of the warp line on the outer and inner sides of the blade, thereby preventing the generation of abnormal noise and the stalling of the air flow.
  • the blower device is a blower device having a fan that rotates around a fan shaft, the fan having a plurality of blades arranged at intervals from one another in the circumferential direction, each of the blades having a cross-sectional shape that is curved like an arch in a cross section perpendicular to the axial direction of the fan shaft, each of the blades having a negative pressure surface that is one of the main surfaces arranged on the outside of the arch, a pressure surface that is the other main surface arranged on the inside of the arch, a blade outer peripheral end that is the end of the outer periphery of the blade that connects the negative pressure surface and the pressure surface, and a blade inner peripheral end that connects the negative pressure surface and the pressure surface.
  • the first region and the second region have the same warping direction and are warped concavely in the counter-rotation direction, and the warping height of at least the first region and the second region changes along the chord of the blade.
  • the warp height is changed on the warp line of the blade from the outer periphery of the fan to the inner periphery of the fan while keeping the warp direction the same on the outer periphery of the fan and the inner periphery of the fan. This makes it possible to prevent the flow of air flowing into the fan from the outer periphery of the fan from separating from the blade, improving blowing performance and preventing the air flow from stalling.
  • FIG. 1 is a cross-sectional view showing a configuration of a blower device 100 according to a first embodiment.
  • 1A and 1B are a perspective view and a side view showing a configuration of a fan 106 mounted on a blower device 100 according to a first embodiment.
  • 4 is a cross-sectional view showing the flow of air in a fan inlet region B in the blower device 100 according to the first embodiment.
  • FIG. 4 is a cross-sectional view showing the flow of air in a fan outflow area C in the blower device 100 according to the first embodiment.
  • FIG. FIG. 11 is a cross-sectional view showing a configuration of a comparative example for illustrating the effects of the first embodiment.
  • FIG. 10 is a diagram showing a change in warpage height H of a blade 12 used in a fan 106 mounted on a blower device 100 according to a second embodiment.
  • FIG. 10 is a cross-sectional view showing the air flow in a fan inlet region B in a blower device 100 according to embodiment 2.
  • FIG. 11 is a cross-sectional view showing the air flow in a fan outflow area C in a blower device 100 according to a second embodiment.
  • FIG. 10 is a partially enlarged cross-sectional view showing the configuration of a blade 12 provided in a blower device 100 according to embodiment 3.
  • the blower according to the present disclosure will be described with reference to the drawings.
  • the present disclosure is not limited to the following embodiment, and various modifications can be made without departing from the spirit of the present disclosure.
  • the present disclosure also includes all combinations of possible configurations among the configurations shown in the following embodiment and its modified examples.
  • the same reference numerals are used to denote the same or equivalent components, and this is common throughout the entire specification.
  • the relative dimensional relationship or shape of each component may differ from the actual one.
  • the width direction of the blower is the Y direction
  • the depth direction of the blower is the X direction
  • the height direction of the blower is the Z direction.
  • the X direction and the Y direction intersect with each other.
  • the X direction and the Y direction are, for example, horizontal directions.
  • the Z direction is a direction that intersects with the X direction and the Y direction.
  • the Z direction is, for example, a vertical direction, that is, an up-down direction.
  • the Z direction may be a vertical direction.
  • FIG. 1 is a cross-sectional view showing the configuration of the blower 100 according to the first embodiment.
  • FIG. 1 shows a cross-sectional configuration of the blower 100 cut in a direction perpendicular to the fan shaft 14 (see FIG. 2(a)) of the fan 106 mounted on the blower 100.
  • FIG. 2 is a perspective view and a side view showing the configuration of the fan 106 mounted on the blower 100 according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing the air flow in the fan inflow area B in the blower 100 according to the first embodiment.
  • FIGS. 3 and 4 are cross-sectional views showing the air flow in the fan outflow area C in the blower 100 according to the first embodiment.
  • FIGS. 3 and 4 show a cross-sectional configuration of the blower 100 cut in a direction perpendicular to the fan shaft 14 (see FIG. 2(a)) of the fan 106 mounted on the blower 100.
  • hatching is omitted in FIGS. 3 and 4 to simplify the drawings. For hatching, refer to FIG. 1.
  • FIGS. 5 and 6 are cross-sectional views showing the configuration of a comparative example to explain the effect of embodiment 1.
  • FIG. 5 shows, as a comparative example, the air flow in the fan inlet region B when a typical blade is used in a cross-flow fan.
  • FIG. 6 shows, as a comparative example, the air flow in the fan outlet region C when a typical blade is used in a cross-flow fan. Note that hatching has been omitted in FIGS. 5 and 6 to simplify the drawings. Please refer to FIG. 1 for hatching.
  • the blower device 100 is used, for example, as an indoor unit of an air conditioner.
  • the indoor unit of an air conditioner is sometimes called an air conditioning indoor unit.
  • the housing 101 of the blower device 100 has, as a whole, for example, a long rectangular parallelepiped shape extending in the Y direction (see FIG. 2). As shown in FIG. 1, the housing 101 has an upper surface portion 101a, a lower surface portion 101b, a front surface portion 101c, a rear surface portion 101d, and two side surfaces (not shown).
  • the rear surface portion 101d of the housing 101 is fixed to a mounting portion such as a wall of an indoor space.
  • the housing 101 has an intake port 102 provided on the top surface 101a for taking in air, and an exhaust port 103 from which conditioned air is blown out by the air conditioning device.
  • the exhaust port 103 is provided from the front surface 101c to the bottom surface 101b of the housing 101.
  • the exhaust port 103 extends in the Y direction over almost the entire length of the housing 101 in the Y direction.
  • the housing 101 has a filter 104 attached to the intake port 102.
  • the airflow flowing in from the intake port 102 passes through the filter 104, and fine particles such as dust or pollen contained in the airflow are removed by the filter 104.
  • the intake port 102 of the housing 101 may be provided not only on the top surface 101a, but also on the top surface 101a and the front surface 101c.
  • the housing 101 houses a heat exchanger 105 and a fan 106.
  • the heat exchanger 105 is disposed below the intake port 102.
  • the fan 106 is disposed below the heat exchanger 105.
  • the fan 106 rotates, an airflow is generated as shown by the arrow A in FIG. 1.
  • the fan 106 is disposed downstream of the heat exchanger 105 in the direction of the airflow.
  • the airflow flows into the housing 101 from the intake port 102 of the housing 101, passes through the inside of the housing 101, and flows out of the housing 101 from the exhaust port 103 of the housing 101.
  • the airflow passes through the heat exchanger 105 as shown by the arrow A in FIG. 1.
  • heat exchanger 105 heat exchange occurs between the air constituting the airflow and the refrigerant flowing inside the heat exchanger 105.
  • a casing 107 Downstream of the fan 106, as shown in FIG. 1, a casing 107 is provided on the rear portion 101d side of the housing 101.
  • the casing 107 has a cross-sectional shape formed of one or more arcs, as shown in FIG. 1, so that the airflow can easily flow along the casing 107.
  • the casing 107 is arranged at a certain distance from the rear portion 101d side of the fan 106.
  • a side wall 108 is provided on the lower side of the front portion 101c of the housing 101.
  • the side wall 108 is arranged, for example, below the lower end of the front portion 101c side of the heat exchanger 105.
  • the side wall 108 has a tongue portion 108a arranged on the lower side of the fan 106.
  • the tongue portion 108a is arranged opposite the casing 107 in the X direction.
  • the tongue portion 108a is arranged at a certain distance from the lower portion of the front portion 101c side of the fan 106, as shown in FIG. 1.
  • the tongue portion 108a is arranged parallel to the fan shaft 14.
  • the tongue portion 108a has a length equal to the length of the fan 106 in the Y direction and extends in the Y direction.
  • the tongue portion 108a is provided so that the blower device 100 can form a stable airflow.
  • a rear guide 109 is provided upstream of the fan 106 in the direction of the airflow indicated by the arrow A.
  • the rear guide 109 is arranged on the upper side of the casing 107.
  • the rear guide 109 and the casing 107 are smoothly connected.
  • the rear guide 109 is arranged near the end of the heat exchanger 105 on the rear portion 101d side.
  • the rear guide 109, the casing 107, and the side wall 108 form an air passage through which the airflow indicated by the arrow A flows.
  • the heat exchanger 105 may have a rectangular flat plate shape such as a rectangular parallelepiped, or may be bent into a lambda shape (i.e., ⁇ -shape) when viewed from the side as shown in FIG. 1.
  • the heat exchanger 105 is not limited to this case, and may also be bent into a U-shape or an L-shape.
  • the heat exchanger 105 is, for example, a fin-and-tube type heat exchanger having a heat transfer tube and fins. In this case, the heat exchanger 105 exchanges heat between the air taken in from the suction port 102 and the refrigerant flowing inside the heat transfer tube of the heat exchanger 105.
  • the fan 106 has a long cylindrical shape or a long annular shape as a whole, for example, as shown in FIG. 2(a).
  • the fan 106 has a plurality of blades 12 arranged at intervals from each other in the circumferential direction, as shown in FIG. 2(b).
  • the fan 106 is, for example, a cross-flow fan, and the example of FIG. 2 shows the case where the fan 106 is a cross-flow fan.
  • the fan 106 has a plurality of blades 12, a partition plate 13, a fan shaft 14, a bossed end face disk 15, and an end face disk 16.
  • the plurality of blades 12 are arranged at intervals from each other in the circumferential direction, as shown in FIG.
  • Each of the blades 12 has a cross-sectional shape along a bow, as shown in FIG. 2(b).
  • Each of the blades 12 is, for example, a flat plate shape warped in a bow shape.
  • the partition plate 13 has, for example, a disk shape or a ring shape.
  • the fan shaft 14 extends in the Y direction. For this reason, the Y direction is sometimes called the axial direction of the fan shaft 14.
  • the blades 12 are supported by partition plates 13 at both ends in the Y direction to form a series of fan blocks 17. As shown in FIG. 2(a), about 7 to 14 fan blocks 17 are connected in the Y direction.
  • the number of connected fan blocks 17 is not limited to these and can be any number.
  • a single fan 106 is formed by combining a plurality of fan blocks 17 in the Y direction.
  • the circumferential positions of the blades 12 of each fan block 17 may be aligned or nearly aligned as shown in FIG. 2(a), but are not limited to this case. That is, in each fan block 17, the circumferential positions of the blades 12 may be shifted by half a cycle with respect to the positions of the blades 12 of other fan blocks 17 adjacent in the Y direction. In this case, the blades 12 of each fan block 17 are positioned between the blades 12 of other fan blocks 17 adjacent in the Y direction in the circumferential direction.
  • a bossed end face disc 15 having a boss is attached to one end of the fan 106 in the Y direction, and an end face disc 16 without a boss is attached to the other end of the fan 106 in the Y direction.
  • the fan 106 rotates by placing the bossed end disk 15 on the motor shaft side of the motor (not shown) and connecting the fan shaft 14 to the motor (not shown).
  • the fan 106 rotates in a rotation direction R when driven by a motor (not shown).
  • a motor not shown
  • airflow is sucked into the fan 106 from between the blades 12 on the heat exchanger 105 side, and the airflow is blown out from between the blades 12 in the space between the vicinity of the casing 107 and the vicinity of the tongue 108a of the side wall 108.
  • the area of the fan 106 where the airflow is sucked in is referred to as the fan inlet area B (see FIG. 3), and the area where the airflow is blown out is referred to as the fan outlet area C (see FIG. 4).
  • FIG. 3(b) shows an enlarged view of the fan inflow area B shown in FIG. 3(a).
  • the blades 12 are arranged at intervals from each other in the circumferential direction.
  • the blade 12 is formed in a bow shape in a side view, and the center of the blade 12 is recessed toward the counter-rotation direction, which is the opposite direction to the rotation direction R. That is, in the blade 12, the inner peripheral blade end 12e and the outer peripheral blade end 12d are located forward in the rotation direction R than the center of the blade 12.
  • FIG. 3(b) shows an enlarged view of the fan inflow area B shown in FIG. 3(a).
  • the radial length of the blade 12 is smaller than the radius of the fan 106 (i.e., the radial length from the outer periphery of the fan 106 to the fan shaft 14). That is, the chord length Lc of the chord L (see FIG. 3) of the blade 12 described later is smaller than the radius of the fan 106.
  • the blade 12 has two main surfaces that make up the thickness of the blade 12. One main surface is a negative pressure surface 12g located on the outside of the arched shape. The other main surface is a pressure surface 12f located on the inside of the arched shape.
  • the blade 12 also has an outer peripheral blade end 12d, which is the end on the outer periphery of the blade 12, and an inner peripheral blade end 12e, which is the end on the inner periphery of the blade 12.
  • the outer peripheral blade end 12d is located on the outer periphery of the fan 106, and the inner peripheral blade end 12e is located on the fan shaft 14 side of the fan 106.
  • the outer peripheral blade end 12d and the inner peripheral blade end 12e each connect the negative pressure surface 12g and the pressure surface 12f in a smooth curved line.
  • the blade 12 is divided into three regions: a first region 12a on the outer peripheral end 12d side of the blade, a second region 12b on the inner peripheral end 12e side of the blade, and a third region 12c connecting the first region 12a and the second region 12b.
  • the warping direction of the first region 12a and the second region 12b is the same. That is, the first region 12a and the second region 12b are warped so as to be concave toward the counter-rotation direction, which is the opposite direction to the rotation direction R.
  • the third region 12c does not have to be warped in a curved shape. That is, the third region 12c may be formed in a straight line. In that case, the warping height of the third region 12c is maintained at a constant value or changes along the chord L of the blade 12 (see FIG. 3). In that case, the third region 12c may be formed in a straight line consisting of two or more straight lines.
  • the warping direction of the third region 12c is the same as the warping direction of the first region 12a and the second region 12b.
  • the pressure surface 12f and the negative pressure surface 12g in each of the first region 12a, the second region 12b, and the third region 12c are each formed with one or more arcs in a side view.
  • the pressure surface 12f and the negative pressure surface 12g constituting the third region 12c have the largest radius of curvature.
  • the arcs constituting the pressure surface 12f and the negative pressure surface 12g constituting the third region 12c are the closest to a straight line among the three regions. Therefore, the third region 12c is the flattest among the three regions.
  • the curved line indicating the center of thickness of the blade 12 is defined as the camber line W.
  • the straight line connecting the outer peripheral end 12d and the inner peripheral end 12e of the blade 12 is defined as the chord L.
  • the center point of the chord L is defined as the chord center P.
  • the length of the chord L is called the chord length Lc.
  • the chord length of the first region 12a is defined as the chord length L1
  • the chord length of the second region 12b is defined as the chord length L2
  • the chord length of the third region 12c is defined as the chord length L3.
  • the distance between the camber line W and the chord L is defined as the camber height H.
  • the camber height H is the length of a line segment perpendicular to the chord L from the camber line W.
  • the warp height H of the third region 12c is either maintained at a constant value or changes along the chord L.
  • the maximum warpage height of the first region 12a is equal to or greater than the maximum warpage height of the second region 12b.
  • the warpage height H of the first region 12a gradually increases from the outer circumferential edge 12d of the blade toward the third region 12c.
  • the warpage height H of the second region 12b gradually increases from the inner circumferential edge 12e of the blade toward the third region 12c.
  • the maximum warpage height of the first region 12a will be the same as the maximum warpage height of the second region 12b.
  • the maximum warpage height of the first region 12a will be greater than the maximum warpage height of the second region 12b. It is preferable that the maximum warpage height of the first region 12a be greater than the maximum warpage height of the second region 12b.
  • the third regions 12c have the same shape. That is, in all the blades 12, the third regions 12c are formed to have the same contour. Furthermore, in all the blades 12, the positions of the third regions 12c may be arranged so that they are equal to each other in the radial direction between the blade inner circumferential end 12e and the blade outer circumferential end 12d. In that case, the third regions 12c of each blade 12 are arranged in the circumferential direction at approximately equal intervals from each other. The third region 12c has the largest radius of curvature or is formed in a straight line. Therefore, in the third region 12c, the airflow is less likely to separate from the surface of the blade 12.
  • each blade 12 having the third region 12c that can suppress the separation of the airflow does not concentrate on the pressure surface 12f side of the adjacent blade 12-1. Furthermore, by each blade 12 having the third region 12c of the same shape, the distance between the blades 12 in the third region 12c portion can be made approximately equal. This further reduces the pressure loss of the airflow between the blades 12 and stabilizes the airflow. Furthermore, if each blade 12 has the same shaped third region 12c, the same mold can be used for the parts of the blades 12 that have a common shape when manufacturing the blades 12, which improves productivity.
  • the first maximum warp height position where the warp height H of the first region 12a is maximum is located on the outer periphery 12d side of the chord center P.
  • the first maximum warp height position may or may not coincide with the position of the first connecting portion connecting the first region 12a and the third region 12c. If the first maximum warp height position and the position of the first connecting portion do not coincide, the warp height H of the first region 12a gradually increases from the outer periphery 12d to the first maximum warp height position, and then gradually decreases from the first maximum warp height position to the position of the first connecting portion.
  • the relationship between the chord length L1 of the first region 12a, the chord length L2 of the second region 12b, and the chord length L3 of the third region 12c is as follows. That is, the chord length L1 of the first region 12a is longer than the chord length L2 of the second region 12b and the chord length L3 of the third region 12c.
  • chord length L1 chord length L2
  • chord length L1 chord length L3
  • the shape of the first region 12a and the shape of the second region 12b may each be the same shape in all of the blades 12, but this is not limited to the case. In other words, the shape of the first region 12a may be different for each blade 12. Similarly, the shape of the second region 12b may be different for each blade 12.
  • the determination method includes, for example, the following methods. Note that two determination methods may be combined, such as (1) and (3), or (2) and (3). Note that the first region 12a, the second region 12b, and the third region 12c are defined based on the determination method. (1) When the first region 12a, the second region 12b, and the third region 12c are each formed of one arc, the portion formed of the arc with the largest radius of curvature is defined as the third region 12c, and the regions at both ends of the third region 12c are defined as the first region 12a and the second region 12b, respectively.
  • the third region 12c is composed of one arc
  • the portion composed of the arc with the largest radius of curvature among all the arcs that compose the blade 12 is defined as the third region 12c.
  • the regions at both ends of the third region 12c are defined as the first region 12a and the second region 12b, respectively.
  • the first region 12a and the second region 12b are composed of two or more arcs.
  • the three regions are determined based on the warp height H of the warp line W. Specifically, the region including the part of the blade 12 where the warp height H is the highest is defined as the first region 12a.
  • the first region 12a, the second region 12b, and the third region 12c are appropriately determined so as to satisfy the conditions of blade chord length L1 > blade chord length L2 and blade chord length L1 > blade chord length L3.
  • the regions on both ends of the third region 12c are defined as the first region 12a and the second region 12b, respectively.
  • the first region 12a is determined from one or more circular arcs in consideration of the inflow to the blade in the inflow region B
  • the second region 12b is determined from one or more circular arcs in consideration of the inflow to the blade in the outflow region C.
  • the third region 12c is determined by a circular arc or a straight line so as to smoothly connect the first region 12a and the second region 12b.
  • Figures 3 and 4 show the first embodiment.
  • Figures 5 and 6 show a comparative example.
  • wing 12-1 when describing the operation of the second wing 12 from the left, the wing 12 on the left side adjacent to that wing 12 will be referred to as wing 12-1.
  • wing 120-1 when describing the operation of the second wing 120 from the left, the wing 120 on the left side adjacent to that wing 120 will be referred to as wing 120-1.
  • FIGs. 5 and 6 show a case where a general blade 120 is used in an air conditioning indoor unit.
  • the blade in Figs. 5 and 6 will be referred to as blade 120 to distinguish it from blade 12.
  • Blade 120 is, for example, the blade described in Patent Document 1 mentioned above.
  • Figs. 5 and 6 everything is the same except for the configuration of blade 12, in order to make a comparison with embodiment 1 shown in Figs. 3 and 4.
  • the airflow that flows out toward the circumferential direction of the fan 106 continues in the same direction, as shown by arrow A5 in Figure 6(a), and flows out of the fan 106 at the fan outflow region C. Therefore, in the fan outflow region C, as shown by the arrow A2 in FIG. 6(a), part of the airflow flows out toward the upstream direction of the casing 107. As a result, as shown by the arrow A2 in FIG. 6(a), the airflow flows back from the upstream of the casing 107 toward the rear guide 109, which causes the entire airflow to stall at least to that extent.
  • the airflow flowing in from the blade outer circumferential end 12d side is smoothly introduced between the blades 12 in the first region 12a where the warp height H is large, and then the airflow is sent to the third region 12c. Since the third region 12c has a large radius of curvature, the airflow is less likely to separate from the surface of the blade 12 in region F. Therefore, the flow can be guided along the negative pressure surface 12g side of the blade 12 without concentrating on the pressure surface 12f side of the adjacent blade 12-1.
  • the increase in speed on the pressure surface 12f side of the adjacent blade 12-1 can be suppressed in region K in FIG. 3(b), and the generation of abnormal noise can be suppressed.
  • the wind speed of the airflow between the blades 12 does not increase in the fan inlet region B as described above, so the pressure loss of the airflow passing between the blades 12 can be reduced, and the shaft power applied to the blades 12 can be reduced (see FIG. 3).
  • the blade 12 according to embodiment 1 when the airflow flows out toward the blade inner circumferential end 12e in the fan inlet region B, as described above, the increase in the speed of the airflow on the pressure surface 12f side of the adjacent blade 12-1 is suppressed. Therefore, as shown by arrow A3 in FIG. 3(b), the airflow flows out radially from the blade inner circumferential end 12e in region K. As a result, in the fan outlet region C (see FIG. 4), the amount of airflow flowing out toward the upstream direction of the casing 107 as shown by arrow A2 in FIG. 4(a) is less than in the comparative example shown in FIG. 6.
  • the backflow of the airflow from the upstream of the casing 107 toward the rear guide 109 is suppressed, and stalling of the entire airflow can be prevented.
  • the airflow flows out of the fan 106 near the middle of the casing 107, so that the backflow of the airflow from the upstream of the casing 107 toward the rear guide 109 is suppressed, and the stall resistance can be improved.
  • the maximum camber height position where the camber height H of the first region 12a is maximum is located closer to the outer circumferential blade end 12d than the chord center P of the blade chord L. Therefore, in the fan outflow region C, as shown in FIG. 4(b), the airflow from the inner circumferential blade end 12e can be smoothly introduced from the first region 12a, which has a large camber, to the second region 12b, which has a small camber. As a result, in the fan outflow region C, separation of the airflow on the pressure surface 12f of the blade 12 in region E can be reduced, reducing the pressure loss between the blades 12, reducing the axial power applied to the blades 12, and further reducing noise.
  • the blade chord length L1 of the first region 12a is greater than the blade chord lengths L2 and L3 of the second region 12b and the third region 12c, so that the airflow flowing in from the blade outer circumferential end 12d side can be introduced between the blades 12 more smoothly (see FIG. 3).
  • Embodiment 2 A blower device 100 according to the second embodiment will be described with reference to Figures 7 to 9.
  • the basic configuration of the blower device 100 according to the second embodiment is the same as that of the blower device 100 described in the first embodiment above, so differences from the first embodiment will be mainly described here.
  • FIG. 7 is a diagram showing the change in the warp height H of the blade 12 used in the fan 106 mounted on the blower 100 according to the second embodiment.
  • FIG. 7 shows the relationship between the position on the chord L in the chord direction of the blade 12 and the warp height H.
  • the maximum warp height position at which the warp height H of the first region 12a is maximum is called the first maximum warp height position Pmax1, or simply the position Pmax1.
  • the position Pmax1 is located on the blade outer peripheral end 12d side from the chord center P of the chord L.
  • the connection point between the first region 12a and the third region 12c is called the first connection part C1
  • the connection point between the second region 12b and the third region 12c is called the second connection part C2.
  • the first connection part C1 and the second connection part C2 are parts of the blade 12 as shown in FIG. 8(b) and are not points on the chord L, but are shown on the horizontal axis in FIG. 7 for the sake of explanation.
  • Figure 8 is a cross-sectional view showing the air flow in the fan inlet region B in the blower device 100 according to embodiment 2.
  • Figure 9 is a cross-sectional view showing the air flow in the fan outlet region C in the blower device 100 according to embodiment 2.
  • Figures 8 and 9 show the cross-sectional configuration when the blower device 100 is cut in a direction perpendicular to the fan shaft 14 (see Figure 2(a)) of the fan 106 mounted on the blower device 100.
  • the warp height H of the first region 12a first gradually increases as it moves from the outer periphery 12d toward the inner periphery 12e. Then, the warp height H of the first region 12a is maximum at position Pmax1 on the chord L. That is, the warp height H increases from the outer periphery 12d to position Pmax1. Then, in the first region 12a, the warp height H gradually decreases from position Pmax1 to the third region 12c (i.e., the first connecting portion C1).
  • the rate of change (absolute value) of the warp height H from the outer periphery 12d to position Pmax1 may be greater than or equal to the rate of change (absolute value) of the warp height H from position Pmax1 to the third region 12c (i.e., the first connecting portion C1).
  • the warp height H of the second region 12b gradually increases from the inner circumferential edge 12e of the blade toward the third region 12c.
  • the rate of change (absolute value) of the warp height H of the second region 12b is smaller than the rate of change (absolute value) of the warp height H from the outer circumferential edge 12d of the blade of the first region 12a to position Pmax1.
  • the rate of change (absolute value) of the warp height H of the second region 12b may be greater than or the same as the rate of change (absolute value) of the warp height H from position Pmax1 of the first region 12a to the third region 12c (i.e., the first connecting portion C1).
  • the warp height H of the third region 12c gradually increases in the direction from the inner blade end 12e toward the outer blade end 12d, or is maintained at a constant value.
  • the third region 12c is connected to the second region 12b at a position where the warp height H in the second region 12b is maximum.
  • the position where the warp height H in the second region 12b is maximum will be referred to as a second maximum warp height position Pmax2, or simply as position Pmax2.
  • the position Pmax2 corresponds to the second connecting portion C2.
  • the rate of change of the warp height H of the third region 12c is smaller than the rate of change of the warp height H of the second region 12b and the first region 12a.
  • the maximum warp height position Pmax1 of the first region 12a is located closer to the outer wing end 12d than the first connecting portion C1 that connects the third region 12c and the first region 12a.
  • the warp height H of the first region 12a is greater than the maximum warp height of the second region 12b throughout.
  • the warp height H of the third region 12c is maintained at a constant value, the warp height H of the first connecting portion C1 of the first region 12a will be the same as the warp height H of the second connecting portion C2 of the second region 12b.
  • the warp height H of the third region 12c gradually increases in the direction from the inner circumferential edge 12e to the outer circumferential edge 12d of the blade, the warp height H of the first connecting portion C1 of the first region 12a will be greater than the warp height H of the second connecting portion C2 of the second region 12b. It is preferable that the warp height H of the first region 12a is greater than the warp height H of the second region 12b throughout.
  • the relationship between the chord length L2 of the second region 12b and the chord length L3 of the third region 12c is as follows. That is, the chord length L2 of the second region 12b is greater than the chord length L3 of the third region 12c.
  • chord length L2 of second region 12b chord length L3 of third region 12c
  • chord length L1 of the first region 12a and the chord length L2 of the second region 12b is the same as in the first embodiment, with the chord length L1 of the first region 12a being greater than the chord length L2 of the second region 12b.
  • the tangent to the pressure surface 12f of the end on the third region 12c side, among both ends of the first region 12a in the chord L direction, is defined as tangent T. That is, tangent T is a tangent to the first connecting portion C1 that connects the first region 12a and the third region 12c.
  • the inner circumferential end portion 12e of the blade is positioned in the counter-rotation direction, which is the opposite direction of the rotation direction R, from tangent T. That is, the inner circumferential end portion 12e of the blade is positioned rearward of tangent T in the rotation direction R.
  • the maximum warp height position Pmax1 where the warp height H of the first region 12a is maximum is located closer to the blade outer circumferential end 12d than the chord center P of the chord L. Therefore, as shown in FIG. 8B, the direction of the airflow flowing in from the blade outer circumferential end 12d side is turned in the first region 12a where the warp height H is large in the region F. In this way, in the region F, the direction of the airflow is turned before the flow speed of the airflow is increased on the pressure surface 12f of the adjacent blade 12, thereby reducing the separation of the airflow between the entire blades 12.
  • the increase in the airflow speed on the pressure surface 12f of the adjacent blade 12 can be suppressed, and therefore the generation of abnormal sounds can be suppressed.
  • the increase in the airflow speed occurs in the region D (see FIG. 5), but in the second embodiment, the increase in the airflow speed can be suppressed, and therefore the generation of abnormal sounds can be suppressed.
  • the warp height H gradually increases from the blade inner circumferential end 12e side.
  • the third region 12c is connected to the maximum warp height position Pmax2 of the second region 12b by the second connecting portion C2.
  • the change rate (absolute value) of the warp height H of the third region 12c is smaller than the change rate (absolute value) of the warp height H of the second region 12b and the first region 12a. That is, as shown in FIG. 7, the warp height H smoothly decreases from the third region 12c to the blade inner circumferential end 12e.
  • the maximum warp height position Pmax1 of the first region 12a is located closer to the blade outer circumferential end 12d side than the first connecting portion C1 that connects the first region 12a and the third region 12c. Therefore, first, in the region F of FIG. 8(b), the direction of the airflow is redirected in the first region 12a. Next, as shown in region G in FIG. 8(b), the airflow flows along the pressure surface 12f in the range from the maximum warp height position Pmax1 of the pressure surface 12f of the adjacent blade 12-1 to the third region 12c, and in region K in FIG. 8(b), the airflow flows out in the radial direction. As shown in FIG. 8(a) and FIG.
  • the airflow continues to move in the radial direction within the fan 106.
  • the airflow flows out of the fan 106 toward the vicinity of the middle of the casing 107 in the fan outflow region C shown in FIG. 9. This suppresses the backflow upstream of the casing 107 as shown by the arrow A2, and improves the stall resistance.
  • the airflow separating from the first region 12a is reattached to the second region 12b, thereby further suppressing the separation of the airflow from the surface of the blade 12.
  • the warp height H of the second region 12b increases smoothly from the blade inner circumferential end 12e toward the third region 12c without decreasing.
  • the chord length L2 of the second region 12b is longer than the chord length L3 of the third region 12c. Therefore, as shown in FIG. 9(b), in the fan outflow region C, as shown in region J, when the airflow inside the fan 106 flows into the blade inner circumferential end 12e side, the airflow flows in smoothly, and separation of the airflow on the pressure surface 12f side in region E can be suppressed.
  • the airflow flows along the surface of the blade 12 without separating from the blade 12, so that the effective area between the blades 12 is expanded, the ventilation resistance can be reduced, and the axial output applied to the fan 106 can be reduced. Furthermore, the passing wind speed of the airflow is reduced, so that noise can be reduced.
  • the blade inner circumferential end 12e is disposed rearward in the direction of rotation R from the tangent line T at the pressure surface 12f of the end of the first region 12a on the third region 12c side.
  • the blade inner circumferential end 12e is disposed in the opposite direction of rotation from the tangent line T. Therefore, the airflow flows out radially from the blade inner circumferential end 12e side as shown in region K in FIG. 8(b) without being blocked by the second region 12b.
  • FIG. 9(a) in the fan outflow region C, the airflow flows out toward the middle of the casing 107, thereby suppressing the backflow toward the upstream of the casing 107 as shown by the arrow A2, and improving the stall resistance.
  • Embodiment 3 A blower device 100 according to embodiment 3 will be described with reference to Fig. 10.
  • the basic configuration of the blower device 100 according to embodiment 3 is the same as that of the blower device 100 described in embodiment 1 above, and therefore differences from embodiment 1 will be mainly described here.
  • FIG. 10 is a partially enlarged cross-sectional view showing the configuration of the blade 12 provided in the blower 100 according to embodiment 3.
  • FIG. 10 shows the cross-sectional configuration when the blade 12 is cut in a direction perpendicular to the axis of the fan 106 mounted on the blower 100.
  • a plurality of grooves 12h are provided on the negative pressure surface 12g of the first region 12a of the blade 12.
  • the grooves 12h are, for example, configured as grooves extending in a rib shape in the Y direction (see FIG. 2). As shown in FIG. 10, the grooves 12h are recessed from the surface of the negative pressure surface 12g of the first region 12a.
  • a plurality of grooves 12h are provided on the negative pressure surface 12g of the first region 12a of the blade 12.
  • the grooves 12h are provided on the blade outer circumferential end 12d side of the blade 12, and as shown by the arrow A in FIG. 10, when the airflow flows in from the blade outer circumferential end 12d side, minute airflow vortices A4 are formed by the grooves 12h.
  • the vortices A4 flow in the opposite direction to the flow direction of the airflow indicated by the arrow A near the surface of the negative pressure surface 12g.
  • the wind speed between the blades 12 does not increase, the pressure loss when passing between the blades 12 can be reduced, and the shaft output applied to the blade 12 can be reduced. Furthermore, when the airflow flows out to the blade inner circumferential end 12e side, the increase in the airflow speed on the pressure surface 12f side is suppressed, so the airflow flows out in the radial direction from the blade inner circumferential end 12e side. As a result, in the fan outflow region C, the airflow flows out from the middle of the casing 107, and the stall resistance can be improved.
  • the fan 106 is configured as a cross-flow fan and the blades 12 are applied to the cross-flow fan, but the fan 106 is not limited to a cross-flow fan.
  • the configuration of the fan 106 shown in the first to third embodiments can also be applied to a sirocco fan or other fans.

Abstract

This blower device comprises a fan that rotates about a fan shaft. The fan has a plurality of blades arranged with space therebetween in the circumferential direction. Each of the blades has, in a cross section perpendicular to the axial direction of the fan shaft, a cross-sectional shape that curves in an arch shape. Each of the blades comprises: a suction surface that is one main surface of the blade and is disposed on the outer side of the arch; a pressure surface that is the other main surface of the blade and is disposed on the inner side of the arch; a blade outer circumferential end portion that is an end portion on the outer circumferential side of the blade that connects the suction surface and the pressure surface; and a blade inner circumferential end portion that is an end portion on the inner circumferential side of the blade that connects the suction surface and the pressure surface. When at least one of the plurality of blades or all of the blades are divided into three regions in a cross section perpendicular to the axial direction of the fan shaft, said three regions being a first region disposed on the blade outer circumferential end side, a second region disposed on the blade inner circumferential end side, and a third region connecting the first region and the second region, the first region and the second region have the same camber direction and are cambered so as to be concaved towards the counter-rotation direction, and the camber height of at least the first region and the second region changes along the chord of the blade.

Description

送風装置Blower
 本開示は、送風装置に関し、特に、空調室内機などに用いられる送風装置に関する。 This disclosure relates to a blower device, and in particular to a blower device used in an air conditioner indoor unit, etc.
 送風装置に搭載されるファンの一種として、貫流ファンがある。貫流ファンは、周方向に互いに間隔を空けて配置された複数の羽根を有する。羽根は、翼と呼ばれることがある。従来の貫流ファンにおいて、羽根断面の肉厚中心を示す反り線が、翼弦方向に連続する二つの円弧から構成されているものがある(例えば、特許文献1参照)。 One type of fan that is installed in a blower is a cross-flow fan. A cross-flow fan has multiple blades that are spaced apart from one another in the circumferential direction. The blades are sometimes called blades. In some conventional cross-flow fans, the camber line that indicates the center of thickness of the blade cross section is made up of two continuous arcs in the blade chord direction (see, for example, Patent Document 1).
 特許文献1の羽根では、上記反り線が、ファン外周側の円弧と、ファン内周側の円弧と、の2つの円弧を含んでおり、ファン外周側とファン内周側の円弧の反り方向を互いに反転させている。特許文献1では、当該構成により、流体による乱流音を低減して低騒音にし、高風量化によって省電力化を図ることを目的としている。 In the blades of Patent Document 1, the warp line includes two arcs, one on the outer circumference of the fan and one on the inner circumference of the fan, and the warp directions of the arcs on the outer circumference of the fan and the inner circumference of the fan are reversed. With this configuration, Patent Document 1 aims to reduce turbulent sound caused by the fluid, resulting in low noise levels, and to save energy by increasing the air volume.
特開2007-255426号公報JP 2007-255426 A
 特許文献1においては、上述したように、ファン外周側の円弧の反り方向は、ファン内周側の円弧の反り方向に対して反転している。具体的には、ファンの外周側の円弧は、円弧を構成する円の中心が円弧に対して回転方向と逆方向に配置され、円弧の中央部が回転方向に向かって凸になっている。一方、ファンの内周側の円弧は、円弧を構成する円の中心が円弧に対して回転方向に配置され、円弧の中央部が回転方向と逆方向に向かって凸になっている。その場合、低風量域である空気の流入領域において、ファン外周からの空気の流れが羽根に流入する際、ファン外周側の反り方向は、当該空気の流れに逆らう方向の反りである。そのため、空気の流れは羽根の表面に沿って流れることができず、羽根の表面から剥離する。その結果、異常音が発生する、あるいは、空気の流れが失速状態になる、という課題がある。 In Patent Document 1, as described above, the warping direction of the arc on the outer circumference side of the fan is reversed to the warping direction of the arc on the inner circumference side of the fan. Specifically, the arc on the outer circumference side of the fan has the center of the circle constituting the arc arranged in the opposite direction to the rotation direction relative to the arc, and the central part of the arc is convex toward the rotation direction. On the other hand, the arc on the inner circumference side of the fan has the center of the circle constituting the arc arranged in the rotation direction relative to the arc, and the central part of the arc is convex toward the opposite direction to the rotation direction. In that case, in the air inflow area, which is the low air volume area, when the air flow from the outer circumference of the fan flows into the blades, the warping direction on the outer circumference side of the fan is warped in the direction against the air flow. Therefore, the air flow cannot flow along the surface of the blade and is separated from the surface of the blade. As a result, there is a problem that abnormal noise is generated or the air flow stalls.
 本開示は、かかる課題を解決するためになされたものであり、翼の外周側と内周側とで反り線の反り方向を反転させることなく、反り高さの変化により、空気の流れの翼からの剥離を抑制し、異常音の発生と空気の流れの失速とを抑制する、送風装置を得ることを目的とする。 The present disclosure has been made to solve such problems, and aims to provide a blower that prevents the air flow from separating from the blade by changing the height of the warp without reversing the direction of the warp line on the outer and inner sides of the blade, thereby preventing the generation of abnormal noise and the stalling of the air flow.
 本開示に係る送風装置は、ファン軸を中心にして回転するファンを有する送風装置であって、前記ファンは、周方向に互いに間隔を空けて配置された複数の翼を有し、前記翼の各々は、前記ファン軸の軸方向に垂直な断面において弓なりに反った断面形状を有し、前記翼の各々は、前記弓なりの外側に配置された一方の主面である負圧面と、前記弓なりの内側に配置された他方の主面である圧力面と、前記負圧面と前記圧力面とを連結する前記翼の外周側の端部である翼外周端部と、前記負圧面と前記圧力面とを連結する前記翼の内周側の端部である翼内周端部と、を有し、複数の前記翼のうちの少なくとも1つ、または、すべての前記翼は、前記ファン軸の軸方向に垂直な断面において、前記翼外周端部側に配置された第一領域と、前記翼内周端部側に配置された第二領域と、前記第一領域と前記第二領域とを連結する第三領域と、の3つの領域に分割したときに、前記第一領域および前記第二領域の反り方向は同じで、反回転方向に向かって凹むように反っており、且つ、少なくとも前記第一領域および前記第二領域の反り高さは、前記翼の翼弦に沿って変化するものである。 The blower device according to the present disclosure is a blower device having a fan that rotates around a fan shaft, the fan having a plurality of blades arranged at intervals from one another in the circumferential direction, each of the blades having a cross-sectional shape that is curved like an arch in a cross section perpendicular to the axial direction of the fan shaft, each of the blades having a negative pressure surface that is one of the main surfaces arranged on the outside of the arch, a pressure surface that is the other main surface arranged on the inside of the arch, a blade outer peripheral end that is the end of the outer periphery of the blade that connects the negative pressure surface and the pressure surface, and a blade inner peripheral end that connects the negative pressure surface and the pressure surface. and an inner circumferential blade end portion, which is the end portion of the blade. When at least one of the blades, or all of the blades, is divided into three regions in a cross section perpendicular to the axial direction of the fan shaft, the first region and the second region have the same warping direction and are warped concavely in the counter-rotation direction, and the warping height of at least the first region and the second region changes along the chord of the blade.
 本開示に係る送風装置によれば、ファン外周側からファン内周側にかけての翼の反り線において、ファン外周側とファン内周側の反り方向を同じにしたまま、反り高さを変化させている。これにより、ファン外周側からファンに流入する空気の流れが翼から剥離することを抑制し、送風性能を向上させ、空気の流れの失速を抑制することができる。 In the blower device disclosed herein, the warp height is changed on the warp line of the blade from the outer periphery of the fan to the inner periphery of the fan while keeping the warp direction the same on the outer periphery of the fan and the inner periphery of the fan. This makes it possible to prevent the flow of air flowing into the fan from the outer periphery of the fan from separating from the blade, improving blowing performance and preventing the air flow from stalling.
実施の形態1に係る送風装置100の構成を示す断面図である。1 is a cross-sectional view showing a configuration of a blower device 100 according to a first embodiment. 実施の形態1に係る送風装置100に搭載されるファン106の構成を示す斜視図および側面図である。1A and 1B are a perspective view and a side view showing a configuration of a fan 106 mounted on a blower device 100 according to a first embodiment. 実施の形態1に係る送風装置100において、ファン流入領域Bにおける空気の流れを示す断面図である。4 is a cross-sectional view showing the flow of air in a fan inlet region B in the blower device 100 according to the first embodiment. FIG. 実施の形態1に係る送風装置100において、ファン流出領域Cにおける空気の流れを示す断面図である。4 is a cross-sectional view showing the flow of air in a fan outflow area C in the blower device 100 according to the first embodiment. FIG. 実施の形態1の効果を説明するための比較例の構成を示す断面図である。FIG. 11 is a cross-sectional view showing a configuration of a comparative example for illustrating the effects of the first embodiment. 実施の形態1の効果を説明するための比較例の構成を示す断面図である。FIG. 11 is a cross-sectional view showing a configuration of a comparative example for illustrating the effects of the first embodiment. 実施の形態2に係る送風装置100に搭載されるファン106に用いられる翼12の反り高さHの変化を示す図である。10 is a diagram showing a change in warpage height H of a blade 12 used in a fan 106 mounted on a blower device 100 according to a second embodiment. FIG. 実施の形態2に係る送風装置100において、ファン流入領域Bにおける空気の流れを示す断面図である。10 is a cross-sectional view showing the air flow in a fan inlet region B in a blower device 100 according to embodiment 2. FIG. 実施の形態2に係る送風装置100において、ファン流出領域Cにおける空気の流れを示す断面図である。11 is a cross-sectional view showing the air flow in a fan outflow area C in a blower device 100 according to a second embodiment. FIG. 実施の形態3に係る送風装置100に設けられた翼12の構成を示す部分拡大断面図である。10 is a partially enlarged cross-sectional view showing the configuration of a blade 12 provided in a blower device 100 according to embodiment 3. FIG.
 以下、本開示に係る送風装置の実施の形態について図面を参照して説明する。本開示は、以下の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。また、本開示は、以下の実施の形態およびその変形例に示す構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含むものである。また、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。なお、各図面では、各構成部材の相対的な寸法関係または形状等が実際のものとは異なる場合がある。また、各図面において、送風装置の幅方向をY方向とし、送風装置の奥行き方向をX方向とし、送風装置の高さ方向をZ方向とする。X方向およびY方向は、互いに交差している。X方向およびY方向は、例えば、水平方向である。Z方向は、X方向およびY方向に交差する方向である。Z方向は、例えば、垂直方向、すなわち、上下方向である。Z方向は、鉛直方向の場合がある。 Below, an embodiment of the blower according to the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the following embodiment, and various modifications can be made without departing from the spirit of the present disclosure. The present disclosure also includes all combinations of possible configurations among the configurations shown in the following embodiment and its modified examples. In each drawing, the same reference numerals are used to denote the same or equivalent components, and this is common throughout the entire specification. In each drawing, the relative dimensional relationship or shape of each component may differ from the actual one. In each drawing, the width direction of the blower is the Y direction, the depth direction of the blower is the X direction, and the height direction of the blower is the Z direction. The X direction and the Y direction intersect with each other. The X direction and the Y direction are, for example, horizontal directions. The Z direction is a direction that intersects with the X direction and the Y direction. The Z direction is, for example, a vertical direction, that is, an up-down direction. The Z direction may be a vertical direction.
 実施の形態1.
 以下、図1~図6を用いて、実施の形態1に係る送風装置の構成について説明する。図1は、実施の形態1に係る送風装置100の構成を示す断面図である。図1においては、送風装置100に搭載されたファン106のファン軸14(図2(a)参照)と直交する方向に送風装置100を切断した場合の断面構成を示している。図2は、実施の形態1に係る送風装置100に搭載されるファン106の構成を示す斜視図および側面図である。図3は、実施の形態1に係る送風装置100において、ファン流入領域Bにおける空気の流れを示す断面図である。図4は、実施の形態1に係る送風装置100において、ファン流出領域Cにおける空気の流れを示す断面図である。図3および図4においては、送風装置100に搭載されたファン106のファン軸14(図2(a)参照)と直交する方向に送風装置100を切断した場合の断面構成を示している。なお、図3~図4では、図の簡略化のため、ハッチングを省略している。ハッチングについては、図1を参照されたい。
Embodiment 1.
The configuration of the blower according to the first embodiment will be described below with reference to FIGS. 1 to 6. FIG. 1 is a cross-sectional view showing the configuration of the blower 100 according to the first embodiment. FIG. 1 shows a cross-sectional configuration of the blower 100 cut in a direction perpendicular to the fan shaft 14 (see FIG. 2(a)) of the fan 106 mounted on the blower 100. FIG. 2 is a perspective view and a side view showing the configuration of the fan 106 mounted on the blower 100 according to the first embodiment. FIG. 3 is a cross-sectional view showing the air flow in the fan inflow area B in the blower 100 according to the first embodiment. FIG. 4 is a cross-sectional view showing the air flow in the fan outflow area C in the blower 100 according to the first embodiment. FIGS. 3 and 4 show a cross-sectional configuration of the blower 100 cut in a direction perpendicular to the fan shaft 14 (see FIG. 2(a)) of the fan 106 mounted on the blower 100. In addition, hatching is omitted in FIGS. 3 and 4 to simplify the drawings. For hatching, refer to FIG. 1.
 図5および図6は、実施の形態1の効果を説明するための比較例の構成を示す断面図である。図5においては、比較例として、一般的な翼を貫流ファンに使用した場合のファン流入領域Bにおける空気の流れを示している。図6においては、比較例として、一般的な翼を貫流ファンに使用した場合のファン流出領域Cにおける空気の流れを示している。なお、図5~図6では、図の簡略化のため、ハッチングを省略している。ハッチングについては、図1を参照されたい。 FIGS. 5 and 6 are cross-sectional views showing the configuration of a comparative example to explain the effect of embodiment 1. FIG. 5 shows, as a comparative example, the air flow in the fan inlet region B when a typical blade is used in a cross-flow fan. FIG. 6 shows, as a comparative example, the air flow in the fan outlet region C when a typical blade is used in a cross-flow fan. Note that hatching has been omitted in FIGS. 5 and 6 to simplify the drawings. Please refer to FIG. 1 for hatching.
 (送風装置100)
 実施の形態1に係る送風装置100は、例えば、空気調和装置の室内機として使用される。空気調和装置の室内機は、空調室内機と呼ばれることがある。送風装置100の筐体101は、全体として、例えば、Y方向(図2参照)に延びた長尺の直方体の形状を有している。筐体101は、図1に示すように、上面部101a、下面部101b、正面部101c、背面部101d、および、2つの側面部(図示せず)を有している。筐体101の背面部101dは、室内空間の壁等の被取付部に固定される。
(Blower device 100)
The blower device 100 according to the first embodiment is used, for example, as an indoor unit of an air conditioner. The indoor unit of an air conditioner is sometimes called an air conditioning indoor unit. The housing 101 of the blower device 100 has, as a whole, for example, a long rectangular parallelepiped shape extending in the Y direction (see FIG. 2). As shown in FIG. 1, the housing 101 has an upper surface portion 101a, a lower surface portion 101b, a front surface portion 101c, a rear surface portion 101d, and two side surfaces (not shown). The rear surface portion 101d of the housing 101 is fixed to a mounting portion such as a wall of an indoor space.
 図1に示すように、筐体101は、上面部101aに設けられた空気を取り込む吸込口102と、空気調和装置によって空調された空気が吹き出される吹出口103と、を有している。吹出口103は、筐体101の正面部101cから下面部101bにかけて設けられている。吹出口103は、筐体101のY方向のほぼ全長に亘って、Y方向に延びている。さらに、筐体101は、吸込口102に対して取り付けられたフィルタ104を有している。吸込口102から流入する気流は、フィルタ104を通過することで、当該気流に含まれている埃または花粉などの微粒子がフィルタ104により取り除かれる。なお、筐体101の吸込口102は、上面部101aだけでなく、上面部101aと正面部101cとに設けられていてもよい。 As shown in FIG. 1, the housing 101 has an intake port 102 provided on the top surface 101a for taking in air, and an exhaust port 103 from which conditioned air is blown out by the air conditioning device. The exhaust port 103 is provided from the front surface 101c to the bottom surface 101b of the housing 101. The exhaust port 103 extends in the Y direction over almost the entire length of the housing 101 in the Y direction. Furthermore, the housing 101 has a filter 104 attached to the intake port 102. The airflow flowing in from the intake port 102 passes through the filter 104, and fine particles such as dust or pollen contained in the airflow are removed by the filter 104. The intake port 102 of the housing 101 may be provided not only on the top surface 101a, but also on the top surface 101a and the front surface 101c.
 図1に示すように、筐体101の内部には、熱交換器105と、ファン106と、が収容されている。熱交換器105は、吸込口102の下側に配置されている。ファン106は、熱交換器105の下側に配置されている。ファン106が回転することにより、図1の矢印Aで示すように、気流が発生する。ファン106は、当該気流の方向において、熱交換器105の下流側に配置されている。当該気流は、筐体101の吸込口102から、筐体101の内部に流入し、筐体101の内部を通って、筐体101の吹出口103から筐体101の外部に流出する。このときに気流は、図1の矢印Aで示すように、熱交換器105を通過する。これにより、熱交換器105において、気流を構成する空気と、熱交換器105の内部を流れる冷媒と、の間で熱交換が行われる。 1, the housing 101 houses a heat exchanger 105 and a fan 106. The heat exchanger 105 is disposed below the intake port 102. The fan 106 is disposed below the heat exchanger 105. When the fan 106 rotates, an airflow is generated as shown by the arrow A in FIG. 1. The fan 106 is disposed downstream of the heat exchanger 105 in the direction of the airflow. The airflow flows into the housing 101 from the intake port 102 of the housing 101, passes through the inside of the housing 101, and flows out of the housing 101 from the exhaust port 103 of the housing 101. At this time, the airflow passes through the heat exchanger 105 as shown by the arrow A in FIG. 1. As a result, in the heat exchanger 105, heat exchange occurs between the air constituting the airflow and the refrigerant flowing inside the heat exchanger 105.
 ファン106の下流には、図1に示すように、筐体101の背面部101d側に形成されたケーシング107が設けられている。ケーシング107は、気流がケーシング107に沿って流れやすいように、図1に示すように、1以上の円弧から構成された断面形状を有している。ケーシング107は、図1に示すように、ファン106の背面部101d側の部分に対して、一定の距離だけ離間して配置されている。また、筐体101の正面部101cの下側には、側壁108が設けられている。側壁108は、例えば、熱交換器105の正面部101c側の下端部の下方に配置されている。側壁108は、ファン106の下側に配置された舌部108aを有している。舌部108aは、X方向に、ケーシング107に対向して配置されている。舌部108aは、図1に示すように、ファン106の正面部101c側の下部に対して、一定の距離だけ離間して配置されている。舌部108aは、ファン軸14に平行して配置されている。舌部108aは、ファン106のY方向の長さと同等の長さを有しており、Y方向に延びている。舌部108aは、送風装置100が、安定した気流を形成するために設けられている。また、矢印Aで示す気流の流れる方向において、ファン106の上流には、リアガイド109が設けられている。リアガイド109は、ケーシング107の上側に配置されている。リアガイド109とケーシング107とは滑らかに連結されている。リアガイド109は、熱交換器105の背面部101d側の端部の近傍に配置されている。リアガイド109、ケーシング107、および、側壁108によって、矢印Aで示す気流が流れる風路が形成されている。 Downstream of the fan 106, as shown in FIG. 1, a casing 107 is provided on the rear portion 101d side of the housing 101. The casing 107 has a cross-sectional shape formed of one or more arcs, as shown in FIG. 1, so that the airflow can easily flow along the casing 107. As shown in FIG. 1, the casing 107 is arranged at a certain distance from the rear portion 101d side of the fan 106. In addition, a side wall 108 is provided on the lower side of the front portion 101c of the housing 101. The side wall 108 is arranged, for example, below the lower end of the front portion 101c side of the heat exchanger 105. The side wall 108 has a tongue portion 108a arranged on the lower side of the fan 106. The tongue portion 108a is arranged opposite the casing 107 in the X direction. The tongue portion 108a is arranged at a certain distance from the lower portion of the front portion 101c side of the fan 106, as shown in FIG. 1. The tongue portion 108a is arranged parallel to the fan shaft 14. The tongue portion 108a has a length equal to the length of the fan 106 in the Y direction and extends in the Y direction. The tongue portion 108a is provided so that the blower device 100 can form a stable airflow. In addition, a rear guide 109 is provided upstream of the fan 106 in the direction of the airflow indicated by the arrow A. The rear guide 109 is arranged on the upper side of the casing 107. The rear guide 109 and the casing 107 are smoothly connected. The rear guide 109 is arranged near the end of the heat exchanger 105 on the rear portion 101d side. The rear guide 109, the casing 107, and the side wall 108 form an air passage through which the airflow indicated by the arrow A flows.
 熱交換器105は、直方体などの矩形の平板形状であってもよいが、図1に示すように、側面視で、ラムダ形状(すなわち、Λ型)に折り曲げられていてもよい。熱交換器105は、その場合に限らず、U字形状、または、L字形状に折り曲げられていてもよい。熱交換器105は、例えば伝熱管とフィンとを有するフィンアンドチューブ型熱交換器である。その場合、熱交換器105は、吸込口102から取り込まれた空気と、熱交換器105の伝熱管の内部を流れる冷媒と、の間で熱交換を行う。 The heat exchanger 105 may have a rectangular flat plate shape such as a rectangular parallelepiped, or may be bent into a lambda shape (i.e., Λ-shape) when viewed from the side as shown in FIG. 1. The heat exchanger 105 is not limited to this case, and may also be bent into a U-shape or an L-shape. The heat exchanger 105 is, for example, a fin-and-tube type heat exchanger having a heat transfer tube and fins. In this case, the heat exchanger 105 exchanges heat between the air taken in from the suction port 102 and the refrigerant flowing inside the heat transfer tube of the heat exchanger 105.
 ファン106は、例えば図2(a)に示すように、全体として、長尺の円柱形状または長尺の円環形状を有している。ファン106は、図2(b)に示すように、周方向に互いに間隔を空けて配置された複数の翼12を有している。ファン106は、例えば、貫流ファンであり、図2の例では、ファン106が貫流ファンの場合を示している。ファン106が貫流ファンの場合、ファン106は、複数の翼12と、仕切板13と、ファン軸14と、ボス付端面円板15と、端面円板16と、を有している。複数の翼12は、図2(b)に示すように、周方向に互いに間隔を空けて配置されている。翼12の各々は、図2(b)に示すように、弓なりに沿った断面形状を有している。翼12の各々は、例えば、弓なりに反った平板形状である。仕切板13は、例えば、円板状またはリング状の形状を有している。ファン軸14は、Y方向に延びている。そのため、Y方向は、ファン軸14の軸方向と呼ばれることがある。複数の翼12は、Y方向両端において、仕切板13で支持されて、1連のファンブロック17を構成している。ファンブロック17は、図2(a)に示すように、Y方向に7~14連程度が連なっている。連結されるファンブロック17の個数は、これらに限定されず、任意の個数でよい。 The fan 106 has a long cylindrical shape or a long annular shape as a whole, for example, as shown in FIG. 2(a). The fan 106 has a plurality of blades 12 arranged at intervals from each other in the circumferential direction, as shown in FIG. 2(b). The fan 106 is, for example, a cross-flow fan, and the example of FIG. 2 shows the case where the fan 106 is a cross-flow fan. When the fan 106 is a cross-flow fan, the fan 106 has a plurality of blades 12, a partition plate 13, a fan shaft 14, a bossed end face disk 15, and an end face disk 16. The plurality of blades 12 are arranged at intervals from each other in the circumferential direction, as shown in FIG. 2(b). Each of the blades 12 has a cross-sectional shape along a bow, as shown in FIG. 2(b). Each of the blades 12 is, for example, a flat plate shape warped in a bow shape. The partition plate 13 has, for example, a disk shape or a ring shape. The fan shaft 14 extends in the Y direction. For this reason, the Y direction is sometimes called the axial direction of the fan shaft 14. The blades 12 are supported by partition plates 13 at both ends in the Y direction to form a series of fan blocks 17. As shown in FIG. 2(a), about 7 to 14 fan blocks 17 are connected in the Y direction. The number of connected fan blocks 17 is not limited to these and can be any number.
 このように、複数のファンブロック17をY方向に複数組み合わせることで、1つのファン106が構成される。なお、各ファンブロック17の翼12の周方向の位置は、図2(a)に示すように、互いに一致またはほぼ一致していてもよいが、その場合に限定されない。すなわち、各ファンブロック17において、翼12の周方向の位置を、Y方向に隣り合う他のファンブロック17の翼12の位置に対して、半サイクルずらして配置するようにしてもよい。その場合、各ファンブロック17の翼12は、周方向において、Y方向に隣り合う他のファンブロック17の翼12間に配置される。このようにファンブロック17を半サイクルずらして配置した場合、翼12から発生する異常音(笛音)を抑制することができる。また、ファン106のY方向の一方の端部には、ボスを備えたボス付端面円板15が取り付けられ、ファン106のY方向の他方の端部には、ボスを有さない端面円板16が取り付けられている。ファン106は、ボス付端面円板15をモータ(図示せず)のモータ軸側に配置して、ファン軸14をモータ(図示せず)に接続することで回転する。 In this way, a single fan 106 is formed by combining a plurality of fan blocks 17 in the Y direction. The circumferential positions of the blades 12 of each fan block 17 may be aligned or nearly aligned as shown in FIG. 2(a), but are not limited to this case. That is, in each fan block 17, the circumferential positions of the blades 12 may be shifted by half a cycle with respect to the positions of the blades 12 of other fan blocks 17 adjacent in the Y direction. In this case, the blades 12 of each fan block 17 are positioned between the blades 12 of other fan blocks 17 adjacent in the Y direction in the circumferential direction. When the fan blocks 17 are shifted by half a cycle in this way, abnormal sounds (whistle sounds) generated from the blades 12 can be suppressed. In addition, a bossed end face disc 15 having a boss is attached to one end of the fan 106 in the Y direction, and an end face disc 16 without a boss is attached to the other end of the fan 106 in the Y direction. The fan 106 rotates by placing the bossed end disk 15 on the motor shaft side of the motor (not shown) and connecting the fan shaft 14 to the motor (not shown).
 図1および図2に示すように、モータ(図示せず)の駆動によって、回転方向Rの向きにファン106が回転する。それにより、図1の矢印Aに示すように、熱交換器105側の翼12間からファン106内に気流が吸込まれ、ケーシング107近傍から側壁108の舌部108a近傍までの間の空間において、翼12間から気流が吹出す。以下では、ファン106において、気流が吸い込まれる領域をファン流入領域B(図3参照)と呼び、気流が吹き出される領域をファン流出領域C(図4参照)と呼ぶ。 1 and 2, the fan 106 rotates in a rotation direction R when driven by a motor (not shown). As a result, as shown by arrow A in FIG. 1, airflow is sucked into the fan 106 from between the blades 12 on the heat exchanger 105 side, and the airflow is blown out from between the blades 12 in the space between the vicinity of the casing 107 and the vicinity of the tongue 108a of the side wall 108. Hereinafter, the area of the fan 106 where the airflow is sucked in is referred to as the fan inlet area B (see FIG. 3), and the area where the airflow is blown out is referred to as the fan outlet area C (see FIG. 4).
 (翼12)
 次に、図3を用いて、実施の形態1に係る翼12の構成について説明する。図3(b)においては、図3(a)に示すファン流入領域Bの部分を拡大した拡大図を示している。上述したように、複数の翼12は、周方向に互いに間隔を空けて配置されている。翼12は、図3(b)に示すように、側面視で弓なりに形成されており、回転方向Rの逆方向である反回転方向に向かって翼12の中央部が凹んでいる。すなわち、翼12において、翼内周端部12eおよび翼外周端部12dが、翼12の中央部よりも、回転方向Rの前方に位置している。図2に示すように、翼12の径方向の長さは、ファン106の半径(すなわち、ファン106の外周からファン軸14までの径方向の長さ)より小さい。すなわち、翼12の後述する翼弦L(図3参照)の翼弦長Lcは、ファン106の半径より小さい。
(Wing 12)
Next, the configuration of the blade 12 according to the first embodiment will be described with reference to FIG. 3. FIG. 3(b) shows an enlarged view of the fan inflow area B shown in FIG. 3(a). As described above, the blades 12 are arranged at intervals from each other in the circumferential direction. As shown in FIG. 3(b), the blade 12 is formed in a bow shape in a side view, and the center of the blade 12 is recessed toward the counter-rotation direction, which is the opposite direction to the rotation direction R. That is, in the blade 12, the inner peripheral blade end 12e and the outer peripheral blade end 12d are located forward in the rotation direction R than the center of the blade 12. As shown in FIG. 2, the radial length of the blade 12 is smaller than the radius of the fan 106 (i.e., the radial length from the outer periphery of the fan 106 to the fan shaft 14). That is, the chord length Lc of the chord L (see FIG. 3) of the blade 12 described later is smaller than the radius of the fan 106.
 翼12は、翼12の肉厚を構成する2つの主面を有している。一方の主面は、弓なり形状の外側に配置された負圧面12gである。他方の主面は、弓なり形状の内側に配置された圧力面12fである。また、翼12は、翼12の外周側の端部である翼外周端部12dと、翼12の内周側端部である翼内周端部12eと、を有している。翼外周端部12dは、ファン106の外周側に位置し、翼内周端部12eは、ファン106のファン軸14側に配置されている。翼外周端部12dおよび翼内周端部12eは、それぞれ、負圧面12gと圧力面12fとを滑らかに曲線状に連結している。 The blade 12 has two main surfaces that make up the thickness of the blade 12. One main surface is a negative pressure surface 12g located on the outside of the arched shape. The other main surface is a pressure surface 12f located on the inside of the arched shape. The blade 12 also has an outer peripheral blade end 12d, which is the end on the outer periphery of the blade 12, and an inner peripheral blade end 12e, which is the end on the inner periphery of the blade 12. The outer peripheral blade end 12d is located on the outer periphery of the fan 106, and the inner peripheral blade end 12e is located on the fan shaft 14 side of the fan 106. The outer peripheral blade end 12d and the inner peripheral blade end 12e each connect the negative pressure surface 12g and the pressure surface 12f in a smooth curved line.
 また、翼12は、図3(b)に示すように、翼外周端部12d側の第一領域12aと、翼内周端部12e側の第二領域12bと、第一領域12aと第二領域12bとを連結する第三領域12cと、の3つの領域に分割されている。図3(b)に示すように、第一領域12aおよび第二領域12bの反り方向は、同じである。すなわち、第一領域12aおよび第二領域12bは、回転方向Rの逆方向である反回転方向に向かって凹むように反っている。一方、第三領域12cは、曲線状に反っていなくてもよい。すなわち、第三領域12cは、直線状に形成されていてもよい。その場合、第三領域12cの反り高さは、一定値に維持されるか、あるいは、翼12の翼弦L(図3参照)に沿って変化する。なお、その場合、第三領域12cは、2以上の直線からなる直線状に形成されていてもよい。 As shown in FIG. 3(b), the blade 12 is divided into three regions: a first region 12a on the outer peripheral end 12d side of the blade, a second region 12b on the inner peripheral end 12e side of the blade, and a third region 12c connecting the first region 12a and the second region 12b. As shown in FIG. 3(b), the warping direction of the first region 12a and the second region 12b is the same. That is, the first region 12a and the second region 12b are warped so as to be concave toward the counter-rotation direction, which is the opposite direction to the rotation direction R. On the other hand, the third region 12c does not have to be warped in a curved shape. That is, the third region 12c may be formed in a straight line. In that case, the warping height of the third region 12c is maintained at a constant value or changes along the chord L of the blade 12 (see FIG. 3). In that case, the third region 12c may be formed in a straight line consisting of two or more straight lines.
 また、第三領域12cが沿っている場合には、第三領域12cの反り方向は、第一領域12aおよび第二領域12bの反り方向と同じである。また、その場合、第一領域12a、第二領域12b、および、第三領域12cの各領域における圧力面12fおよび負圧面12gは、それぞれ、側面視で、1つもしくは複数の円弧で形成されている。第一領域12a、第二領域12b、および、第三領域12cのうち、第三領域12cを構成する圧力面12fおよび負圧面12gの曲率半径が最も大きい。すなわち、第三領域12cを構成する圧力面12fおよび負圧面12gを構成する円弧は、3つの領域の中で、最も直線に近い形状である。そのため、第三領域12cは、3つの領域の中で、最も平坦である。 When the third region 12c is aligned, the warping direction of the third region 12c is the same as the warping direction of the first region 12a and the second region 12b. In this case, the pressure surface 12f and the negative pressure surface 12g in each of the first region 12a, the second region 12b, and the third region 12c are each formed with one or more arcs in a side view. Among the first region 12a, the second region 12b, and the third region 12c, the pressure surface 12f and the negative pressure surface 12g constituting the third region 12c have the largest radius of curvature. In other words, the arcs constituting the pressure surface 12f and the negative pressure surface 12g constituting the third region 12c are the closest to a straight line among the three regions. Therefore, the third region 12c is the flattest among the three regions.
 また、図3(b)に示すように、翼12の肉厚中心を示す曲線を、反り線Wとする。また、翼12の翼外周端部12dと翼内周端部12eとを結ぶ直線を、翼弦Lとする。翼弦Lの中心点を翼弦中心Pとする。また、翼弦Lの長さを、翼弦長Lcとよぶ。さらに、第一領域12a部分の翼弦長を翼弦長L1とし、第二領域12b部分の翼弦長を翼弦長L2とし、第三領域12c部分の翼弦長を翼弦長L3とする。さらに、反り線Wと翼弦Lとの間の距離を、反り高さHとする。すなわち、反り高さHは、反り線Wから翼弦Lに対して垂直に下ろした線分の長さである。 As shown in FIG. 3(b), the curved line indicating the center of thickness of the blade 12 is defined as the camber line W. The straight line connecting the outer peripheral end 12d and the inner peripheral end 12e of the blade 12 is defined as the chord L. The center point of the chord L is defined as the chord center P. The length of the chord L is called the chord length Lc. The chord length of the first region 12a is defined as the chord length L1, the chord length of the second region 12b is defined as the chord length L2, and the chord length of the third region 12c is defined as the chord length L3. The distance between the camber line W and the chord L is defined as the camber height H. In other words, the camber height H is the length of a line segment perpendicular to the chord L from the camber line W.
 上述したように、3つの領域のうち、少なくとも第一領域12aおよび第二領域12bの2つの領域の反り高さHは、翼弦Lに沿って常に変化する。一方、第三領域12cの反り高さHは、一定値に維持されるか、あるいは、翼弦Lに沿って変化する。 As described above, the warp height H of at least two of the three regions, the first region 12a and the second region 12b, constantly changes along the chord L. On the other hand, the warp height H of the third region 12c is either maintained at a constant value or changes along the chord L.
 このとき、第一領域12aの最大反り高さは、第二領域12bの最大反り高さ以上である。第一領域12aの反り高さHは、翼外周端部12dから第三領域12cに向かうにつれて徐々に増加する。第二領域12bの反り高さHは、翼内周端部12eから第三領域12cに向かうにつれて徐々に増加する。このとき、第三領域12cの反り高さHが一定値に維持されていれば、第一領域12aの最大反り高さは、第二領域12bの最大反り高さと同じになる。一方、第三領域12cの反り高さHが、翼内周端部12eから翼外周端部12dに向かう方向に進むにつれて徐々に増加する場合は、第一領域12aの最大反り高さは、第二領域12bの最大反り高さより大きくなる。なお、第一領域12aの最大反り高さは、第二領域12bの最大反り高さより大きい方が望ましい。 At this time, the maximum warpage height of the first region 12a is equal to or greater than the maximum warpage height of the second region 12b. The warpage height H of the first region 12a gradually increases from the outer circumferential edge 12d of the blade toward the third region 12c. The warpage height H of the second region 12b gradually increases from the inner circumferential edge 12e of the blade toward the third region 12c. At this time, if the warpage height H of the third region 12c is maintained at a constant value, the maximum warpage height of the first region 12a will be the same as the maximum warpage height of the second region 12b. On the other hand, if the warpage height H of the third region 12c gradually increases in the direction from the inner circumferential edge 12e of the blade toward the outer circumferential edge 12d of the blade, the maximum warpage height of the first region 12a will be greater than the maximum warpage height of the second region 12b. It is preferable that the maximum warpage height of the first region 12a be greater than the maximum warpage height of the second region 12b.
 また、すべての翼12において、第三領域12cが互いに同一形状となっている。すなわち、すべての翼12において、第三領域12cは互いに等しい輪郭となるように形成されている。さらに、すべての翼12において、径方向において、翼内周端部12eと翼外周端部12dとの間で、第三領域12cの位置が、互いに等しくなるように配置してもよい。その場合、各翼12の第三領域12cが、周方向に並んで、互いにほぼ等間隔を空けて配置されることになる。第三領域12cは、曲率半径が最も大きいか、あるいは、直線状に形成されている。そのため、第三領域12cにおいては、気流が翼12の表面から剥離しにくい。このように、気流の剥離を抑制できる第三領域12cを各翼12が有することで、隣接する翼12-1の圧力面12f側に気流が集中することがない。また、各翼12が、同一の形状の第三領域12cを有することで、第三領域12c部分の翼12間の距離をほぼ均等にすることができる。これにより、さらに、気流の翼12間の圧力損失を小さくすることができ、且つ、気流の流れを安定させることができる。さらに、各翼12が、同一の形状の第三領域12cを有する場合、翼12の製造時に、翼12における形状が共通する部分については同じ金型が流用でき、生産性が向上するという効果も得られる。 Furthermore, in all the blades 12, the third regions 12c have the same shape. That is, in all the blades 12, the third regions 12c are formed to have the same contour. Furthermore, in all the blades 12, the positions of the third regions 12c may be arranged so that they are equal to each other in the radial direction between the blade inner circumferential end 12e and the blade outer circumferential end 12d. In that case, the third regions 12c of each blade 12 are arranged in the circumferential direction at approximately equal intervals from each other. The third region 12c has the largest radius of curvature or is formed in a straight line. Therefore, in the third region 12c, the airflow is less likely to separate from the surface of the blade 12. In this way, by each blade 12 having the third region 12c that can suppress the separation of the airflow, the airflow does not concentrate on the pressure surface 12f side of the adjacent blade 12-1. Furthermore, by each blade 12 having the third region 12c of the same shape, the distance between the blades 12 in the third region 12c portion can be made approximately equal. This further reduces the pressure loss of the airflow between the blades 12 and stabilizes the airflow. Furthermore, if each blade 12 has the same shaped third region 12c, the same mold can be used for the parts of the blades 12 that have a common shape when manufacturing the blades 12, which improves productivity.
 また、第一領域12aの反り高さHが最大となる第1最大反り高さ位置は、翼弦中心Pよりも翼外周端部12d側に設けられている。なお、第1最大反り高さ位置は、第一領域12aと第三領域12cとを連結する第1連結部の位置と一致していてもよく、あるいは、一致していなくてもよい。第1最大反り高さ位置と第1連結部の位置とが一致していない場合、第一領域12aの反り高さHは、翼外周端部12dから第1最大反り高さ位置まで徐々に増加し、その後、第1最大反り高さ位置から第1連結部の位置まで徐々に減少する。また、第一領域12aの翼弦長L1、第二領域12bの翼弦長L2、および、第三領域12cの翼弦長L3の関係は、下記の通りとなる。すなわち、第一領域12aの翼弦長L1は、第二領域12bの翼弦長L2および第三領域12cの翼弦長L3よりも長い。 The first maximum warp height position where the warp height H of the first region 12a is maximum is located on the outer periphery 12d side of the chord center P. The first maximum warp height position may or may not coincide with the position of the first connecting portion connecting the first region 12a and the third region 12c. If the first maximum warp height position and the position of the first connecting portion do not coincide, the warp height H of the first region 12a gradually increases from the outer periphery 12d to the first maximum warp height position, and then gradually decreases from the first maximum warp height position to the position of the first connecting portion. The relationship between the chord length L1 of the first region 12a, the chord length L2 of the second region 12b, and the chord length L3 of the third region 12c is as follows. That is, the chord length L1 of the first region 12a is longer than the chord length L2 of the second region 12b and the chord length L3 of the third region 12c.
   翼弦長L1>翼弦長L2、且つ、翼弦長L1>翼弦長L3  Chord length L1 > chord length L2, and chord length L1 > chord length L3
 なお、すべての翼12において第三領域12cは互いに同一形状となっていると説明したが、第一領域12aの形状並びに第二領域12bの形状については、それぞれ、すべての翼12において同一形状でもよいが、その場合に限定されない。すなわち、第一領域12aの形状は、翼12ごとに互いに異なっていてもよい。また、同様に、第二領域12bの形状は、翼12ごとに互いに異なっていてもよい。 Although it has been described that the third region 12c has the same shape in all of the blades 12, the shape of the first region 12a and the shape of the second region 12b may each be the same shape in all of the blades 12, but this is not limited to the case. In other words, the shape of the first region 12a may be different for each blade 12. Similarly, the shape of the second region 12b may be different for each blade 12.
 ここで、第一領域12a、第二領域12b、および、第三領域12cの決定方法について説明する。決定方法としては、例えば、以下の方法がある。なお、(1)と(3)、また、(2)と(3)のように、2つの決定方法を組み合わせてもよい。なお、第一領域12a、第二領域12b、および、第三領域12cは、当該決定方法に基づいて定義される。
(1)第一領域12a、第二領域12b、および、第三領域12cがそれぞれ1つの円弧から構成されているとき、最も曲率半径の大きい円弧から構成されている部分を第三領域12cとする。そして、第三領域12cの両端の領域をそれぞれ第一領域12aおよび第二領域12bとする。
(2)第三領域12cが1つの円弧から構成されているとき、翼12を構成するすべての円弧の中で最も曲率半径の大きい円弧から構成されている部分を第三領域12cとする。そして、第三領域12cの両端の領域をそれぞれ第一領域12aおよび第二領域12bとする。この場合、第一領域12aおよび第二領域12bは2以上の円弧から構成されている。
(3)3つの領域を、反り線Wの反り高さHに基づいて決める。具体的には、翼12の中で反り高さHが最も高くなる部分を含む領域を第一領域12aとする。また、翼弦長L1>翼弦長L2、且つ、翼弦長L1>翼弦長L3の条件を満たすように、第一領域12a、第二領域12b、および、第三領域12cを適宜決定する。
(4)第三領域12cが直線から構成されているとき、第三領域12cの両端の領域をそれぞれ第一領域12aおよび第二領域12bとする。
(5)流入領域Bにおける翼に対する流入を考慮して第一領域12aを1つまたは複数の円弧から決定し、流出領域Cにおける翼に対する流入を考慮して第二領域12bを1つまたは複数の円弧から決定する。そして、第一領域12aと第二領域12bとを滑らかに連結するよう、円弧または直線により第三領域12cを決定する。
Here, a method for determining the first region 12a, the second region 12b, and the third region 12c will be described. The determination method includes, for example, the following methods. Note that two determination methods may be combined, such as (1) and (3), or (2) and (3). Note that the first region 12a, the second region 12b, and the third region 12c are defined based on the determination method.
(1) When the first region 12a, the second region 12b, and the third region 12c are each formed of one arc, the portion formed of the arc with the largest radius of curvature is defined as the third region 12c, and the regions at both ends of the third region 12c are defined as the first region 12a and the second region 12b, respectively.
(2) When the third region 12c is composed of one arc, the portion composed of the arc with the largest radius of curvature among all the arcs that compose the blade 12 is defined as the third region 12c. The regions at both ends of the third region 12c are defined as the first region 12a and the second region 12b, respectively. In this case, the first region 12a and the second region 12b are composed of two or more arcs.
(3) The three regions are determined based on the warp height H of the warp line W. Specifically, the region including the part of the blade 12 where the warp height H is the highest is defined as the first region 12a. The first region 12a, the second region 12b, and the third region 12c are appropriately determined so as to satisfy the conditions of blade chord length L1 > blade chord length L2 and blade chord length L1 > blade chord length L3.
(4) When the third region 12c is formed of straight lines, the regions on both ends of the third region 12c are defined as the first region 12a and the second region 12b, respectively.
(5) The first region 12a is determined from one or more circular arcs in consideration of the inflow to the blade in the inflow region B, and the second region 12b is determined from one or more circular arcs in consideration of the inflow to the blade in the outflow region C. Then, the third region 12c is determined by a circular arc or a straight line so as to smoothly connect the first region 12a and the second region 12b.
 (実施の形態1の効果)
 図3~図6を用いて、実施の形態1の効果について説明する。図3および図4は、実施の形態1を示している。一方、図5および図6は、比較例を示している。なお、図3(b)の説明において、左から2番目の翼12の動作について説明する場合、当該翼12に隣接する左側の翼12を、翼12-1と呼ぶこととする。また、同様に、図5(b)の説明において、左から2番目の翼120の動作について説明する場合、当該翼120に隣接する左側の翼120を、翼120-1と呼ぶこととする。
(Effects of the First Embodiment)
The effects of the first embodiment will be described with reference to Figures 3 to 6. Figures 3 and 4 show the first embodiment. Meanwhile, Figures 5 and 6 show a comparative example. In the description of Figure 3(b), when describing the operation of the second wing 12 from the left, the wing 12 on the left side adjacent to that wing 12 will be referred to as wing 12-1. Similarly, in the description of Figure 5(b), when describing the operation of the second wing 120 from the left, the wing 120 on the left side adjacent to that wing 120 will be referred to as wing 120-1.
 はじめに、図5及び図6の比較例について説明する。図5及び図6は、一般的な翼120を空調室内機に用いた場合を示している。図5および図6の翼は、翼12と区別するために、翼120と呼ぶこととする。翼120は、例えば、上述した特許文献1に記載の羽根である。図5および図6においては、図3および図4に示す実施の形態1と比較するために、翼12の構成以外は、すべて同一にしている。 First, a comparative example of Figs. 5 and 6 will be described. Figs. 5 and 6 show a case where a general blade 120 is used in an air conditioning indoor unit. The blade in Figs. 5 and 6 will be referred to as blade 120 to distinguish it from blade 12. Blade 120 is, for example, the blade described in Patent Document 1 mentioned above. In Figs. 5 and 6, everything is the same except for the configuration of blade 12, in order to make a comparison with embodiment 1 shown in Figs. 3 and 4.
 比較例においては、図5(a)および図5(b)に示すように、リアガイド109付近の翼120間では、周方向からの気流の流入が支配的になり、翼外周端部120d側で気流が翼120の負圧面120gから剥離する。そして、隣接する翼120-1の圧力面120fに沿って気流が流れるようになり、図5(b)の領域Dにおいて、隣接する翼120-1の圧力面120fで流れが増速され、異常音の原因となる。また、隣接する翼120-1の圧力面120fで増速した流れは、図5(b)の矢印A3で示すように、翼内周端部120e側から、ファン106の周方向に向かって流出する。ファン106の周方向に向かって流出した気流は、図6(a)の矢印A5に示すように、そのままの方向に進み、ファン流出領域Cで、当該気流がファン106から流出する。そのため、ファン流出領域Cでは、図6(a)の矢印A2で示すように、気流の一部が、ケーシング107の上流方向に向かって流出する。その結果、図6(a)の矢印A2で示すように、ケーシング107の上流からリアガイド109に向かう方向へ気流が逆流し、少なくとも、その分だけ、気流全体の失速に繋がるという課題があった。 In the comparative example, as shown in Figures 5(a) and 5(b), between the blades 120 near the rear guide 109, the inflow of airflow from the circumferential direction becomes dominant, and the airflow separates from the negative pressure surface 120g of the blade 120 at the blade outer circumferential end 120d side. Then, the airflow flows along the pressure surface 120f of the adjacent blade 120-1, and in region D of Figure 5(b), the flow is accelerated at the pressure surface 120f of the adjacent blade 120-1, causing abnormal noise. In addition, the flow accelerated at the pressure surface 120f of the adjacent blade 120-1 flows out from the blade inner circumferential end 120e side toward the circumferential direction of the fan 106, as shown by arrow A3 in Figure 5(b). The airflow that flows out toward the circumferential direction of the fan 106 continues in the same direction, as shown by arrow A5 in Figure 6(a), and flows out of the fan 106 at the fan outflow region C. Therefore, in the fan outflow region C, as shown by the arrow A2 in FIG. 6(a), part of the airflow flows out toward the upstream direction of the casing 107. As a result, as shown by the arrow A2 in FIG. 6(a), the airflow flows back from the upstream of the casing 107 toward the rear guide 109, which causes the entire airflow to stall at least to that extent.
 また、比較例においては、図6(a)および図6(b)に示すように、ファン流出領域C側では、翼120の圧力面120f側の領域Eで気流が圧力面120fから剥離して、気流の風速が増加する。その結果、翼120間の圧力損失が大きくなり、騒音が増大するという課題があった。 In the comparative example, as shown in Fig. 6(a) and Fig. 6(b), in the fan outflow area C, the airflow separates from the pressure surface 120f in area E on the pressure surface 120f side of the blade 120, and the wind speed of the airflow increases. As a result, there is a problem that the pressure loss between the blades 120 increases and the noise increases.
 これに対して、実施の形態1に係る翼12では、図3に示すように、ファン流入領域Bにおいて、翼外周端部12d側から流入した気流を、反り高さHが大きい第一領域12aで滑らかに翼12間に導入し、その後、当該気流を第三領域12cに送る。第三領域12cは、曲率半径が大きいため、領域Fにおいて、翼12の表面から気流が剥離することが少ない。そのため、隣接する翼12-1の圧力面12f側に流れが集中することなく、翼12の負圧面12g側に沿わせることができる。その結果、実施の形態1においては、図5に示す比較例とは異なり、図3(b)の領域Kにおいて、隣接する翼12-1の圧力面12f側の増速を抑制することができ、異常音の発生を抑制することができる。 In contrast, in the blade 12 according to the first embodiment, as shown in FIG. 3, in the fan inlet region B, the airflow flowing in from the blade outer circumferential end 12d side is smoothly introduced between the blades 12 in the first region 12a where the warp height H is large, and then the airflow is sent to the third region 12c. Since the third region 12c has a large radius of curvature, the airflow is less likely to separate from the surface of the blade 12 in region F. Therefore, the flow can be guided along the negative pressure surface 12g side of the blade 12 without concentrating on the pressure surface 12f side of the adjacent blade 12-1. As a result, in the first embodiment, unlike the comparative example shown in FIG. 5, the increase in speed on the pressure surface 12f side of the adjacent blade 12-1 can be suppressed in region K in FIG. 3(b), and the generation of abnormal noise can be suppressed.
 また、実施の形態1に係る翼12では、ファン流入領域Bにおいて、上記のように翼12間の気流の風速が増速しないため、翼12間を通過する際の気流の圧力損失を低減することができ、翼12にかかる軸出力を低減することができる(図3参照)。 Furthermore, in the blades 12 according to embodiment 1, the wind speed of the airflow between the blades 12 does not increase in the fan inlet region B as described above, so the pressure loss of the airflow passing between the blades 12 can be reduced, and the shaft power applied to the blades 12 can be reduced (see FIG. 3).
 さらに、実施の形態1に係る翼12では、ファン流入領域Bにおいて、翼内周端部12e側に気流が流出する際、上記のように、隣接する翼12-1の圧力面12f側での気流の増速が抑制される。そのため、図3(b)の矢印A3で示すように、領域Kにおいて、翼内周端部12e側から径方向に気流が流出する。その結果、ファン流出領域C(図4参照)では、図4(a)の矢印A2で示すようなケーシング107の上流方向に向かって流出する気流の風量が、図6に示す比較例よりも少なくなる。その結果、ケーシング107の上流からリアガイド109に向かう方向への気流の逆流が抑えられ、気流全体の失速を防止することができる。実施の形態1では、ファン流出領域Cでは、図4に示すように、ケーシング107の中腹の近傍で、気流がファン106から流出するため、ケーシング107の上流からリアガイド109に向かう方向への気流の逆流が抑えられ、失速耐力を向上させることができる。 Furthermore, in the blade 12 according to embodiment 1, when the airflow flows out toward the blade inner circumferential end 12e in the fan inlet region B, as described above, the increase in the speed of the airflow on the pressure surface 12f side of the adjacent blade 12-1 is suppressed. Therefore, as shown by arrow A3 in FIG. 3(b), the airflow flows out radially from the blade inner circumferential end 12e in region K. As a result, in the fan outlet region C (see FIG. 4), the amount of airflow flowing out toward the upstream direction of the casing 107 as shown by arrow A2 in FIG. 4(a) is less than in the comparative example shown in FIG. 6. As a result, the backflow of the airflow from the upstream of the casing 107 toward the rear guide 109 is suppressed, and stalling of the entire airflow can be prevented. In the first embodiment, in the fan outflow region C, as shown in FIG. 4, the airflow flows out of the fan 106 near the middle of the casing 107, so that the backflow of the airflow from the upstream of the casing 107 toward the rear guide 109 is suppressed, and the stall resistance can be improved.
 また、実施の形態1に係る翼12では、第一領域12aの反り高さHが最大になる最大反り高さ位置は、翼弦Lの翼弦中心Pよりも翼外周端部12d側に設けられている。そのため、ファン流出領域Cにおいて、図4(b)に示すように、翼内周端部12e側からの気流の流れを、反りが大きい第一領域12aから、反りが小さい第二領域12bに対して、滑らかに導入させることができる。その結果、ファン流出領域Cにおいて、領域Eでの翼12の圧力面12fにおける気流の剥離を低減することができ、翼12間の圧力損失を低減し、翼12にかかる軸出力を低減させ、さらに騒音を低減することができる。 Furthermore, in the blade 12 according to the first embodiment, the maximum camber height position where the camber height H of the first region 12a is maximum is located closer to the outer circumferential blade end 12d than the chord center P of the blade chord L. Therefore, in the fan outflow region C, as shown in FIG. 4(b), the airflow from the inner circumferential blade end 12e can be smoothly introduced from the first region 12a, which has a large camber, to the second region 12b, which has a small camber. As a result, in the fan outflow region C, separation of the airflow on the pressure surface 12f of the blade 12 in region E can be reduced, reducing the pressure loss between the blades 12, reducing the axial power applied to the blades 12, and further reducing noise.
 また、実施の形態1に係る翼12では、第一領域12aの翼弦長L1は、第二領域12bおよび第三領域12cの翼弦長L2およびL3よりも大きいため、翼外周端部12d側から流入した気流を、さらに滑らかに、翼12間に導入することができる(図3参照)。 Furthermore, in the blade 12 according to embodiment 1, the blade chord length L1 of the first region 12a is greater than the blade chord lengths L2 and L3 of the second region 12b and the third region 12c, so that the airflow flowing in from the blade outer circumferential end 12d side can be introduced between the blades 12 more smoothly (see FIG. 3).
 実施の形態2.
 図7~図9を用いて、実施の形態2に係る送風装置100について説明する。実施の形態2に係る送風装置100の基本的な構成は、上記の実施の形態1で説明した送風装置100と同じであるため、ここでは、実施の形態1と異なる点について主に説明する。なお、図8~図9では、図の簡略化のため、ハッチングを省略している。ハッチングについては、図1を参照されたい。
Embodiment 2.
A blower device 100 according to the second embodiment will be described with reference to Figures 7 to 9. The basic configuration of the blower device 100 according to the second embodiment is the same as that of the blower device 100 described in the first embodiment above, so differences from the first embodiment will be mainly described here. Note that hatching has been omitted in Figures 8 to 9 to simplify the drawings. For details about hatching, please refer to Figure 1.
 図7は、実施の形態2に係る送風装置100に搭載されるファン106に用いられる翼12の反り高さHの変化を示す図である。図7においては、翼12の翼弦方向の翼弦L上の位置と反り高さHとの関係を示している。図7において、第一領域12aの反り高さHが最大になる最大反り高さ位置を、第1最大反り高さ位置Pmax1、あるいは、単に、位置Pmax1と呼ぶ。位置Pmax1は、翼弦Lの翼弦中心Pより、翼外周端部12d側に位置している。また、第一領域12aと第三領域12cとの連結点を、第1連結部C1と呼び、第二領域12bと第三領域12cとの連結点を、第2連結部C2と呼ぶ。第1連結部C1および第2連結部C2は、図8(b)に示すように翼12の一部分であり、翼弦L上の点ではないが、図7においては、説明のため、横軸上に記載している。 FIG. 7 is a diagram showing the change in the warp height H of the blade 12 used in the fan 106 mounted on the blower 100 according to the second embodiment. FIG. 7 shows the relationship between the position on the chord L in the chord direction of the blade 12 and the warp height H. In FIG. 7, the maximum warp height position at which the warp height H of the first region 12a is maximum is called the first maximum warp height position Pmax1, or simply the position Pmax1. The position Pmax1 is located on the blade outer peripheral end 12d side from the chord center P of the chord L. In addition, the connection point between the first region 12a and the third region 12c is called the first connection part C1, and the connection point between the second region 12b and the third region 12c is called the second connection part C2. The first connection part C1 and the second connection part C2 are parts of the blade 12 as shown in FIG. 8(b) and are not points on the chord L, but are shown on the horizontal axis in FIG. 7 for the sake of explanation.
 図8は、実施の形態2に係る送風装置100において、ファン流入領域Bにおける空気の流れを示す断面図である。図9は、実施の形態2に係る送風装置100において、ファン流出領域Cにおける空気の流れを示す断面図である。図8および図9においては、送風装置100に搭載されたファン106のファン軸14(図2(a)参照)と直交する方向に送風装置100を切断した場合の断面構成を示している。 Figure 8 is a cross-sectional view showing the air flow in the fan inlet region B in the blower device 100 according to embodiment 2. Figure 9 is a cross-sectional view showing the air flow in the fan outlet region C in the blower device 100 according to embodiment 2. Figures 8 and 9 show the cross-sectional configuration when the blower device 100 is cut in a direction perpendicular to the fan shaft 14 (see Figure 2(a)) of the fan 106 mounted on the blower device 100.
 実施の形態2においては、図7に示すように、第一領域12aの反り高さHは、まず、翼外周端部12dから翼内周端部12eに向かう方向に進むにつれて徐々に大きくなる。そして、翼弦L上の位置Pmax1で、第一領域12aの反り高さHが最大となる。すなわち、翼外周端部12dから位置Pmax1までの間は、反り高さHが増加する。その後、第一領域12aにおいて、位置Pmax1から第三領域12c(すなわち第1連結部C1)までの間は、反り高さHは徐々に減少する。なお、この場合、翼外周端部12dから位置Pmax1までの間の反り高さHの変化率(の絶対値)が、位置Pmax1から第三領域12c(すなわち第1連結部C1)までの間の反り高さHの変化率(の絶対値)よりも大きくてもよいが、同じであってもよい。 In the second embodiment, as shown in FIG. 7, the warp height H of the first region 12a first gradually increases as it moves from the outer periphery 12d toward the inner periphery 12e. Then, the warp height H of the first region 12a is maximum at position Pmax1 on the chord L. That is, the warp height H increases from the outer periphery 12d to position Pmax1. Then, in the first region 12a, the warp height H gradually decreases from position Pmax1 to the third region 12c (i.e., the first connecting portion C1). In this case, the rate of change (absolute value) of the warp height H from the outer periphery 12d to position Pmax1 may be greater than or equal to the rate of change (absolute value) of the warp height H from position Pmax1 to the third region 12c (i.e., the first connecting portion C1).
 また、実施の形態2においては、図7に示すように、第二領域12bの反り高さHは、翼内周端部12eから第三領域12cに向かうにつれて、徐々に増加する。なお、第二領域12bの反り高さHの変化率(の絶対値)は、第一領域12aの翼外周端部12dから位置Pmax1までの間の反り高さHの変化率(の絶対値)より小さい。但し、第二領域12bの反り高さHの変化率(の絶対値)は、第一領域12aの位置Pmax1から第三領域12c(すなわち第1連結部C1)までの間の反り高さHの変化率(の絶対値)よりも大きくてもよいし、同じであってもよい。 In addition, in the second embodiment, as shown in FIG. 7, the warp height H of the second region 12b gradually increases from the inner circumferential edge 12e of the blade toward the third region 12c. The rate of change (absolute value) of the warp height H of the second region 12b is smaller than the rate of change (absolute value) of the warp height H from the outer circumferential edge 12d of the blade of the first region 12a to position Pmax1. However, the rate of change (absolute value) of the warp height H of the second region 12b may be greater than or the same as the rate of change (absolute value) of the warp height H from position Pmax1 of the first region 12a to the third region 12c (i.e., the first connecting portion C1).
 また、実施の形態2においては、図7に示すように、第三領域12cの反り高さHは、翼内周端部12eから翼外周端部12dに向かう方向に進むにつれて徐々に増加するか、あるいは、一定値に維持される。 In addition, in the second embodiment, as shown in FIG. 7, the warp height H of the third region 12c gradually increases in the direction from the inner blade end 12e toward the outer blade end 12d, or is maintained at a constant value.
 第三領域12cは、第二領域12bにおける反り高さHが最大となる位置で、第二領域12bに連結されている。以下では、第二領域12bにおける反り高さHが最大となる位置を、第2最大反り高さ位置Pmax2、あるいは、単に、位置Pmax2と呼ぶ。
位置Pmax2は、第2連結部C2に対応している。
The third region 12c is connected to the second region 12b at a position where the warp height H in the second region 12b is maximum. Hereinafter, the position where the warp height H in the second region 12b is maximum will be referred to as a second maximum warp height position Pmax2, or simply as position Pmax2.
The position Pmax2 corresponds to the second connecting portion C2.
 第三領域12cの反り高さHの変化率は、第二領域12bおよび第一領域12aの反り高さHの変化率より小さい。また、第一領域12aの最大反り高さ位置Pmax1は、第三領域12cと第一領域12aとを連結している第1連結部C1よりも、翼外周端部12d側に設けられている。 The rate of change of the warp height H of the third region 12c is smaller than the rate of change of the warp height H of the second region 12b and the first region 12a. In addition, the maximum warp height position Pmax1 of the first region 12a is located closer to the outer wing end 12d than the first connecting portion C1 that connects the third region 12c and the first region 12a.
 図7の例においては、第一領域12aの反り高さHは、全体に亘って、第二領域12bの最大反り高さより大きい。このとき、第三領域12cの反り高さHが一定値に維持されていれば、第一領域12aの第1連結部C1における反り高さHは、第二領域12bにおける第2連結部C2の反り高さHと同じになる。一方、第三領域12cの反り高さHが、翼内周端部12eから翼外周端部12dに向かう方向に進むにつれて徐々に増加する場合は、第一領域12aの第1連結部C1における反り高さHは、第二領域12bの第2連結部C2における反り高さHより大きくなる。なお、第一領域12aの反り高さHは、全体に亘って、第二領域12bの反り高さHより大きい方が望ましい。 In the example of FIG. 7, the warp height H of the first region 12a is greater than the maximum warp height of the second region 12b throughout. In this case, if the warp height H of the third region 12c is maintained at a constant value, the warp height H of the first connecting portion C1 of the first region 12a will be the same as the warp height H of the second connecting portion C2 of the second region 12b. On the other hand, if the warp height H of the third region 12c gradually increases in the direction from the inner circumferential edge 12e to the outer circumferential edge 12d of the blade, the warp height H of the first connecting portion C1 of the first region 12a will be greater than the warp height H of the second connecting portion C2 of the second region 12b. It is preferable that the warp height H of the first region 12a is greater than the warp height H of the second region 12b throughout.
 また、実施の形態2においては、第二領域12bの翼弦長L2と、第三領域12cの翼弦長L3との関係は、以下の通りである。すなわち、第二領域12bの翼弦長L2は、第三領域12cの翼弦長L3より大きい。 In addition, in the second embodiment, the relationship between the chord length L2 of the second region 12b and the chord length L3 of the third region 12c is as follows. That is, the chord length L2 of the second region 12b is greater than the chord length L3 of the third region 12c.
   第二領域12bの翼弦長L2>第三領域12cの翼弦長L3  Chord length L2 of second region 12b > chord length L3 of third region 12c
 なお、実施の形態2において、第一領域12aの翼弦長L1と、第二領域12bの翼弦長L2との関係は、実施の形態1と同様に、第一領域12aの翼弦長L1が、第二領域12bの翼弦長L2より大きい。 In the second embodiment, the relationship between the chord length L1 of the first region 12a and the chord length L2 of the second region 12b is the same as in the first embodiment, with the chord length L1 of the first region 12a being greater than the chord length L2 of the second region 12b.
 実施の形態2において、図8(b)に示すように、第一領域12aの翼弦L方向の両端部のうち、第三領域12c側の端部の圧力面12fにおける接線を、接線Tとする。すなわち、接線Tは、第一領域12aと第三領域12cとを連結している第1連結部C1における接線である。このとき、接線Tよりも回転方向Rの逆方向である反回転方向に、翼内周端部12eが配置されている。すなわち、翼内周端部12eは、接線Tよりも、回転方向Rに向かって後方に配置されている。 In the second embodiment, as shown in FIG. 8(b), the tangent to the pressure surface 12f of the end on the third region 12c side, among both ends of the first region 12a in the chord L direction, is defined as tangent T. That is, tangent T is a tangent to the first connecting portion C1 that connects the first region 12a and the third region 12c. At this time, the inner circumferential end portion 12e of the blade is positioned in the counter-rotation direction, which is the opposite direction of the rotation direction R, from tangent T. That is, the inner circumferential end portion 12e of the blade is positioned rearward of tangent T in the rotation direction R.
 (実施の形態2の効果)
 実施の形態2に係る翼12においては、第一領域12aの反り高さHが最大となる最大反り高さ位置Pmax1が、翼弦Lの翼弦中心Pよりも翼外周端部12d側に配置されている。そのため、図8(b)に示すように、翼外周端部12d側から流入した気流の向きを、領域Fにおいて、反り高さHの大きい第一領域12aで転向させる。このように、領域Fにおいて、隣接する翼12の圧力面12fで気流の流速が増速される前に、気流の向きを転向させることにより、翼12間全体での気流の剥離を低減する。これにより、実施の形態2においては、隣接する翼12の圧力面12fでの気流の増速を抑制できるため、異常音の発生を抑制することができる。上述した図5の比較例では、領域D(図5参照)において気流の増速が発生していたが、実施の形態2においては、気流の増速を抑制できるため、異常音の発生を抑制することができる。
(Effects of the Second Embodiment)
In the blade 12 according to the second embodiment, the maximum warp height position Pmax1 where the warp height H of the first region 12a is maximum is located closer to the blade outer circumferential end 12d than the chord center P of the chord L. Therefore, as shown in FIG. 8B, the direction of the airflow flowing in from the blade outer circumferential end 12d side is turned in the first region 12a where the warp height H is large in the region F. In this way, in the region F, the direction of the airflow is turned before the flow speed of the airflow is increased on the pressure surface 12f of the adjacent blade 12, thereby reducing the separation of the airflow between the entire blades 12. As a result, in the second embodiment, the increase in the airflow speed on the pressure surface 12f of the adjacent blade 12 can be suppressed, and therefore the generation of abnormal sounds can be suppressed. In the comparative example of FIG. 5 described above, the increase in the airflow speed occurs in the region D (see FIG. 5), but in the second embodiment, the increase in the airflow speed can be suppressed, and therefore the generation of abnormal sounds can be suppressed.
 また、実施の形態2においては、第二領域12bおよび第三領域12cにおいては、図7に示すように、翼内周端部12e側から徐々に反り高さHが拡大する。第三領域12cは、第2連結部C2で、第二領域12bの最大反り高さ位置Pmax2と連結されている。また、第三領域12cの反り高さHの変化率(の絶対値)は、第二領域12bおよび第一領域12aの反り高さHの変化率(の絶対値)より小さい。すなわち、図7に示すように、第三領域12cから翼内周端部12eまでの間は、反り高さHが滑らかに減少していく。第一領域12aの最大反り高さ位置Pmax1は、第一領域12aと第三領域12cとを連結している第1連結部C1よりも、翼外周端部12d側に設けられている。そのため、まず、図8(b)の領域Fで、第一領域12aで、気流の流れの向きは転向される。次に、図8(b)の領域Gに示すように、隣接する翼12-1の圧力面12fの最大反り高さ位置Pmax1から、第三領域12cまで、の範囲の圧力面12fに沿って気流が流れ、図8(b)の領域Kにおいて、気流が径方向に流出する。当該気流は、図8(a)および図9(a)に示すように、ファン106内をそのまま径方向に進む。その結果、実施の形態2においては、図9に示すファン流出領域Cにおいて、ケーシング107の中腹の近傍に向けて、気流がファン106から流出する。これにより、矢印A2で示すケーシング107の上流への逆流を抑制し、失速耐力を向上させることができる。 In the second embodiment, as shown in FIG. 7, in the second region 12b and the third region 12c, the warp height H gradually increases from the blade inner circumferential end 12e side. The third region 12c is connected to the maximum warp height position Pmax2 of the second region 12b by the second connecting portion C2. The change rate (absolute value) of the warp height H of the third region 12c is smaller than the change rate (absolute value) of the warp height H of the second region 12b and the first region 12a. That is, as shown in FIG. 7, the warp height H smoothly decreases from the third region 12c to the blade inner circumferential end 12e. The maximum warp height position Pmax1 of the first region 12a is located closer to the blade outer circumferential end 12d side than the first connecting portion C1 that connects the first region 12a and the third region 12c. Therefore, first, in the region F of FIG. 8(b), the direction of the airflow is redirected in the first region 12a. Next, as shown in region G in FIG. 8(b), the airflow flows along the pressure surface 12f in the range from the maximum warp height position Pmax1 of the pressure surface 12f of the adjacent blade 12-1 to the third region 12c, and in region K in FIG. 8(b), the airflow flows out in the radial direction. As shown in FIG. 8(a) and FIG. 9(a), the airflow continues to move in the radial direction within the fan 106. As a result, in the second embodiment, the airflow flows out of the fan 106 toward the vicinity of the middle of the casing 107 in the fan outflow region C shown in FIG. 9. This suppresses the backflow upstream of the casing 107 as shown by the arrow A2, and improves the stall resistance.
 また、実施の形態2においては、翼12の負圧面12gでは、図8(b)の領域Iに示すように、第一領域12aから剥離する気流を、第二領域12bに再付着させることにより、翼12表面からの気流の剥離をさらに抑制することができる。 Furthermore, in the second embodiment, on the negative pressure surface 12g of the blade 12, as shown in region I of FIG. 8(b), the airflow separating from the first region 12a is reattached to the second region 12b, thereby further suppressing the separation of the airflow from the surface of the blade 12.
 また、実施の形態2においては、図7に示すように、翼内周端部12eから第三領域12cに向かって、第二領域12bの反り高さHは減少することなく滑らかに増加している。また、第二領域12bの翼弦の長さL2を、第三領域12cの翼弦の長さL3より長くしている。そのため、図9(b)に示すように、ファン流出領域Cでは、領域Jに示すように、ファン106内部の気流が翼内周端部12e側に流入する際に、当該気流は滑らかに流入され、領域Eにおける圧力面12f側での気流の剥離を抑制することができる。その結果、気流が翼12から剥離せずに翼12の表面に沿って流れるので、翼12間の有効面積が拡大し、通風抵抗を低減することができ、ファン106にかかる軸出力を低減することができる。さらに、気流の通過風速が低下するため、騒音を低減することができる。 In the second embodiment, as shown in FIG. 7, the warp height H of the second region 12b increases smoothly from the blade inner circumferential end 12e toward the third region 12c without decreasing. The chord length L2 of the second region 12b is longer than the chord length L3 of the third region 12c. Therefore, as shown in FIG. 9(b), in the fan outflow region C, as shown in region J, when the airflow inside the fan 106 flows into the blade inner circumferential end 12e side, the airflow flows in smoothly, and separation of the airflow on the pressure surface 12f side in region E can be suppressed. As a result, the airflow flows along the surface of the blade 12 without separating from the blade 12, so that the effective area between the blades 12 is expanded, the ventilation resistance can be reduced, and the axial output applied to the fan 106 can be reduced. Furthermore, the passing wind speed of the airflow is reduced, so that noise can be reduced.
 また、実施の形態2では、図8(b)に示すように、翼内周端部12eが、第一領域12aの第三領域12c側の端部の圧力面12fにおける接線Tよりも、回転方向Rに向かって後方に配置されている。言い換えると、翼内周端部12eは、接線Tより反回転方向に配置されている。そのため、第二領域12bに阻まれることなく、図8(b)の領域Kに示すように、気流が翼内周端部12e側から径方向に流出する。その結果、図9(a)に示すように、ファン流出領域Cでは、ケーシング107の中腹に向けて流出することにより、矢印A2で示すケーシング107上流への逆流を抑制し、失速耐力を向上させることができる。 In addition, in the second embodiment, as shown in FIG. 8(b), the blade inner circumferential end 12e is disposed rearward in the direction of rotation R from the tangent line T at the pressure surface 12f of the end of the first region 12a on the third region 12c side. In other words, the blade inner circumferential end 12e is disposed in the opposite direction of rotation from the tangent line T. Therefore, the airflow flows out radially from the blade inner circumferential end 12e side as shown in region K in FIG. 8(b) without being blocked by the second region 12b. As a result, as shown in FIG. 9(a), in the fan outflow region C, the airflow flows out toward the middle of the casing 107, thereby suppressing the backflow toward the upstream of the casing 107 as shown by the arrow A2, and improving the stall resistance.
 実施の形態3.
 図10を用いて、実施の形態3に係る送風装置100について説明する。実施の形態3に係る送風装置100の基本的な構成は、上記の実施の形態1で説明した送風装置100と同じであるため、ここでは、実施の形態1と異なる点について主に説明する。
Embodiment 3.
A blower device 100 according to embodiment 3 will be described with reference to Fig. 10. The basic configuration of the blower device 100 according to embodiment 3 is the same as that of the blower device 100 described in embodiment 1 above, and therefore differences from embodiment 1 will be mainly described here.
 図10は、実施の形態3に係る送風装置100に設けられた翼12の構成を示す部分拡大断面図である。図10においては、送風装置100に搭載されたファン106の軸と直交する方向に翼12を切断した場合の断面構成を示している。 FIG. 10 is a partially enlarged cross-sectional view showing the configuration of the blade 12 provided in the blower 100 according to embodiment 3. FIG. 10 shows the cross-sectional configuration when the blade 12 is cut in a direction perpendicular to the axis of the fan 106 mounted on the blower 100.
 図10に示すように、実施の形態3においては、翼12の第一領域12aの負圧面12gに複数の溝部12hが設けられている。溝部12hは、例えば、Y方向(図2参照)にリブ状に延びた溝から構成されている。溝部12hは、図10に示すように、第一領域12aの負圧面12gの表面から凹んでいる。 As shown in FIG. 10, in the third embodiment, a plurality of grooves 12h are provided on the negative pressure surface 12g of the first region 12a of the blade 12. The grooves 12h are, for example, configured as grooves extending in a rib shape in the Y direction (see FIG. 2). As shown in FIG. 10, the grooves 12h are recessed from the surface of the negative pressure surface 12g of the first region 12a.
 (実施の形態3の効果)
 実施の形態3では、図10に示すように、翼12の第一領域12aの負圧面12gに複数の溝部12hを設けている。このように、実施の形態3では、翼12の翼外周端部12d側に溝部12hを設けることで、図10の矢印Aで示すように、翼外周端部12d側から気流が流入する際、溝部12hによって微小な気流の渦A4が形成される。渦A4は、負圧面12gの表面近傍において、矢印Aで示される気流の流れる方向と逆向きの流れとなる。これらの微小な渦A4で、矢印Aで示す気流の主流を翼12に向かって誘引することにより、負圧面12gでの気流の剥離をさらに抑制することができる。このように、実施の形態3では、翼12の表面から気流が剥離することが少ないため、隣接する翼12-1の圧力面12f側に流れが集中することなく、翼12の負圧面12g側に気流を沿わせることができる。その結果、隣接する翼12-1の圧力面12f側の気流の速度の増速を抑制できるため、異常音の発生を抑制することができる。また、翼12間の風速が増速しないため、翼12間を通過する際の圧力損失を低減することができ、翼12にかかる軸出力を低減することができる。さらに、翼内周端部12e側に気流が流出する際、圧力面12f側での増速が抑制されるので、翼内周端部12e側から気流が径方向に流出する。その結果、ファン流出領域Cでは、ケーシング107の中腹から気流が流出し、失速耐力を向上させることができる。
(Effects of the Third Embodiment)
In the third embodiment, as shown in FIG. 10, a plurality of grooves 12h are provided on the negative pressure surface 12g of the first region 12a of the blade 12. In this way, in the third embodiment, the grooves 12h are provided on the blade outer circumferential end 12d side of the blade 12, and as shown by the arrow A in FIG. 10, when the airflow flows in from the blade outer circumferential end 12d side, minute airflow vortices A4 are formed by the grooves 12h. The vortices A4 flow in the opposite direction to the flow direction of the airflow indicated by the arrow A near the surface of the negative pressure surface 12g. These minute vortices A4 attract the main flow of the airflow indicated by the arrow A toward the blade 12, thereby further suppressing the separation of the airflow on the negative pressure surface 12g. In this way, in the third embodiment, the airflow is less likely to separate from the surface of the blade 12, so that the airflow can be made to follow the negative pressure surface 12g side of the blade 12 without concentrating on the pressure surface 12f side of the adjacent blade 12-1. As a result, the increase in the airflow speed on the pressure surface 12f side of the adjacent blade 12-1 can be suppressed, and the occurrence of abnormal noise can be suppressed. In addition, since the wind speed between the blades 12 does not increase, the pressure loss when passing between the blades 12 can be reduced, and the shaft output applied to the blade 12 can be reduced. Furthermore, when the airflow flows out to the blade inner circumferential end 12e side, the increase in the airflow speed on the pressure surface 12f side is suppressed, so the airflow flows out in the radial direction from the blade inner circumferential end 12e side. As a result, in the fan outflow region C, the airflow flows out from the middle of the casing 107, and the stall resistance can be improved.
 なお、実施の形態1~3では、ファン106を貫流ファンで構成し、翼12を貫流ファンに適用した場合を説明したが、ファン106は貫流ファンに限定されない。すなわち、実施の形態1~3で示したファン106の構成は、シロッコファンあるいは他のファンにも適用することができる。 In the first to third embodiments, the fan 106 is configured as a cross-flow fan and the blades 12 are applied to the cross-flow fan, but the fan 106 is not limited to a cross-flow fan. In other words, the configuration of the fan 106 shown in the first to third embodiments can also be applied to a sirocco fan or other fans.
 また、実施の形態1~3で説明した翼12の第一領域12a、第二領域12b、および、第三領域12cに関する特徴のうち、すべての特徴がすべての翼12で成り立つ必要はない。すなわち、実施の形態1~3で説明した翼12の第一領域12a、第二領域12b、および、第三領域12cに関する特徴のうち、少なくとも1つの特徴のみが、すべての翼12で共通して成り立っていてもよい。そして、その場合、他の特徴については翼12ごとに異なっていてもよい。従って、例えば、各請求項または各実施の形態に記載された構成のうち、少なくとも1つの構成が、すべての翼12で成り立つ。具体的な例を挙げると、例えば、或る1つの請求項に記載の構成がすべての翼12で共通して成り立つ。あるいは、2以上の請求項に記載の構成が、同時に、すべての翼12で共通して成り立つ。このように、1つの請求項の構成のみが、すべての翼12で成り立っていてもよいし、あるいは、2以上の請求項の任意の組み合わせが、すべての翼12で成り立っていてもよい。さらに、本開示は、すべての翼12の形状が同一形状である場合も含む。 Furthermore, it is not necessary that all of the features relating to the first region 12a, the second region 12b, and the third region 12c of the wing 12 described in the first to third embodiments are true for all the wing 12. In other words, at least one of the features relating to the first region 12a, the second region 12b, and the third region 12c of the wing 12 described in the first to third embodiments may be true for all the wing 12. In that case, the other features may differ for each wing 12. Therefore, for example, at least one of the features described in each claim or each embodiment is true for all the wing 12. To give a specific example, for example, the feature described in one claim is true for all the wing 12. Or, the features described in two or more claims are true for all the wing 12 at the same time. In this way, only the feature of one claim may be true for all the wing 12, or any combination of two or more claims may be true for all the wing 12. Furthermore, this disclosure also includes cases where all of the wings 12 have the same shape.
 12 翼、12-1 翼、12a 第一領域、12b 第二領域、12c 第三領域、12d 翼外周端部、12e 翼内周端部、12f 圧力面、12g 負圧面、12h 溝部、13 仕切板、14 ファン軸、15 ボス付端面円板、16 端面円板、17 ファンブロック、100 送風装置、101 筐体、101a 上面部、101b 下面部、101c 正面部、101d 背面部、102 吸込口、103 吹出口、104 フィルタ、105 熱交換器、106 ファン、107 ケーシング、108 側壁、108a 舌部、109 リアガイド、120 翼、120-1 翼、120d 翼外周端部、120e 翼内周端部、120f 圧力面、120g 負圧面、A 矢印、A2 矢印、A3 矢印、A4 渦、A5 矢印、B ファン流入領域、C ファン流出領域、C1 第1連結部、C2 第2連結部、D 領域、E 領域、F 領域、G 領域、H 反り高さ、I 領域、J 領域、K 領域、L 翼弦、L1 翼弦長、L2 翼弦長、L3 翼弦長、Lc 翼弦長、P 翼弦中心、Pmax1 第1最大反り高さ位置、Pmax2 第2最大反り高さ位置、R 回転方向、T 接線、W 反り線。 12 Blade, 12-1 Blade, 12a First region, 12b Second region, 12c Third region, 12d Blade outer peripheral end, 12e Blade inner peripheral end, 12f Pressure surface, 12g Negative pressure surface, 12h Groove, 13 Partition plate, 14 Fan shaft, 15 End face disc with boss, 16 End face disc, 17 Fan block, 100 Blower, 101 Housing, 101a Top portion, 101b Bottom portion, 101c Front portion, 101d Rear portion, 102 Intake port, 103 Outlet port, 104 Filter, 105 Heat exchanger, 106 Fan, 107 Casing, 108 Side wall, 108a Tongue portion, 109 Rear guy , 120 blade, 120-1 blade, 120d outer periphery of blade, 120e inner periphery of blade, 120f pressure surface, 120g suction surface, A arrow, A2 arrow, A3 arrow, A4 vortex, A5 arrow, B fan inlet area, C fan outlet area, C1 first connection, C2 second connection, D area, E area, F area, G area, H camber height, I area, J area, K area, L chord, L1 chord length, L2 chord length, L3 chord length, Lc chord length, P chord center, Pmax1 first maximum camber height position, Pmax2 second maximum camber height position, R rotation direction, T tangent, W camber line.

Claims (12)

  1.  ファン軸を中心にして回転するファンを有する送風装置であって、
     前記ファンは、周方向に互いに間隔を空けて配置された複数の翼を有し、
     前記翼の各々は、前記ファン軸の軸方向に垂直な断面において弓なりに反った断面形状を有し、
     前記翼の各々は、
      前記弓なりの外側に配置された一方の主面である負圧面と、
      前記弓なりの内側に配置された他方の主面である圧力面と、
      前記負圧面と前記圧力面とを連結する前記翼の外周側の端部である翼外周端部と、
      前記負圧面と前記圧力面とを連結する前記翼の内周側の端部である翼内周端部と、
     を有し、
     複数の前記翼のうちの少なくとも1つ、または、すべての前記翼は、
      前記ファン軸の軸方向に垂直な断面において、
      前記翼外周端部側に配置された第一領域と、前記翼内周端部側に配置された第二領域と、前記第一領域と前記第二領域とを連結する第三領域と、の3つの領域に分割したときに、
      前記第一領域および前記第二領域の反り方向は同じで、反回転方向に向かって凹むように反っており、且つ、少なくとも前記第一領域および前記第二領域の反り高さは、前記翼の翼弦に沿って変化する、
     送風装置。
    A blower having a fan that rotates around a fan shaft,
    The fan has a plurality of blades spaced apart from one another in a circumferential direction;
    Each of the blades has a cross-sectional shape that is bowed in a cross section perpendicular to the axial direction of the fan shaft,
    Each of the wings comprises:
    A suction surface which is one of the main surfaces arranged on the outside of the bow;
    A pressure surface which is the other main surface arranged inside the bow;
    a blade outer peripheral end portion which is an end portion on an outer peripheral side of the blade connecting the suction surface and the pressure surface;
    a blade inner peripheral end portion which is an end portion on an inner peripheral side of the blade connecting the suction surface and the pressure surface;
    having
    At least one or all of the wings of the plurality of wings include:
    In a cross section perpendicular to the axial direction of the fan shaft,
    When the blade is divided into three regions, that is, a first region arranged on the outer circumferential end side of the blade, a second region arranged on the inner circumferential end side of the blade, and a third region connecting the first region and the second region,
    The warpage direction of the first region and the second region is the same, the warpage is concave toward the counter-rotation direction, and the warpage height of at least the first region and the second region varies along the chord of the blade.
    Blower device.
  2.  複数の前記翼のうちの少なくとも1つ、または、すべての前記翼において、
     前記第三領域の反り高さは、一定値に維持されるか、あるいは、前記翼の前記翼弦に沿って変化する、
     請求項1に記載の送風装置。
    At least one or all of the plurality of wings,
    The camber height of the third region may be maintained at a constant value or may vary along the chord of the wing.
    The blower device according to claim 1 .
  3.  すべての前記翼において、前記第三領域は互いに同一形状を有している、
     請求項1または2に記載の送風装置。
    In all of the wings, the third regions have the same shape.
    The blower device according to claim 1 or 2.
  4.  複数の前記翼のうちの少なくとも1つ、または、すべての前記翼において、
     前記第三領域が反っているとき、
     前記第三領域の反り方向は、前記第一領域および前記第二領域の反り方向と同じである、
     請求項1~3のいずれか1項に記載の送風装置。
    At least one or all of the plurality of wings,
    When the third region is warped,
    The warping direction of the third region is the same as the warping direction of the first region and the second region.
    The blower device according to any one of claims 1 to 3.
  5.  複数の前記翼のうちの少なくとも1つ、または、すべての前記翼は、
      前記ファン軸の軸方向に垂直な断面において、
      前記第一領域、前記第二領域、および、前記第三領域の、3つの領域の前記圧力面および前記負圧面のそれぞれが、1つもしくは複数の円弧で形成され、
      前記第一領域、前記第二領域、および、前記第三領域の、3つの領域のうち、前記第三領域における前記圧力面および前記負圧面の曲率半径が最も大きい、
     請求項1~4のいずれか1項に記載の送風装置。
    At least one or all of the wings of the plurality of wings include:
    In a cross section perpendicular to the axial direction of the fan shaft,
    The pressure surface and the negative pressure surface of each of the three regions, i.e., the first region, the second region, and the third region, are formed by one or more circular arcs;
    Among the first region, the second region, and the third region, the radius of curvature of the pressure surface and the negative pressure surface in the third region is the largest.
    The blower device according to any one of claims 1 to 4.
  6.  複数の前記翼のうちの少なくとも1つ、または、すべての前記翼において、
     前記第一領域の最大反り高さは、前記第二領域の最大反り高さより大きい、
     請求項1~5のいずれか1項に記載の送風装置。
    At least one or all of the plurality of wings,
    The maximum warpage height of the first region is greater than the maximum warpage height of the second region.
    The blower device according to any one of claims 1 to 5.
  7.  複数の前記翼のうちの少なくとも1つ、または、すべての前記翼において、
     前記第一領域における前記反り高さが最大となる第1最大反り高さ位置は、前記翼弦の中心である翼弦中心より前記翼外周端部側に配置されている、
     請求項1~6のいずれか1項に記載の送風装置。
    At least one or all of the plurality of wings,
    A first maximum warp height position where the warp height in the first region is maximum is located closer to the outer circumferential end portion of the blade than the chord center, which is the center of the chord.
    The blower device according to any one of claims 1 to 6.
  8.  複数の前記翼のうちの少なくとも1つ、または、すべての前記翼において、
     前記第一領域の翼弦長は、前記第二領域の翼弦長および前記第三領域の翼弦長より大きい、
     請求項1~7のいずれか1項に記載の送風装置。
    At least one or all of the plurality of wings,
    The chord length of the first region is greater than the chord length of the second region and the chord length of the third region.
    The blower device according to any one of claims 1 to 7.
  9.  複数の前記翼のうちの少なくとも1つ、または、すべての前記翼において、
     前記第二領域および前記第三領域は、前記翼内周端部側から徐々に反り高さが増加あるいは維持され、
     前記第三領域は、前記第二領域の反り高さが最大となる第2最大反り高さ位置と連結され、
     前記第三領域の反り高さの変化率は、前記第二領域および前記第一領域の反り高さの変化率より小さく、
     前記第一領域の前記反り高さが最大となる第1最大反り高さ位置は、前記第一領域と前記第三領域との連結部よりも前記翼外周端部側に配置されている、
     請求項1~8のいずれか1項に記載の送風装置。
    At least one or all of the plurality of wings,
    In the second region and the third region, the camber height is gradually increased or maintained from the inner circumferential end side of the blade,
    The third region is connected to a second maximum warp height position where the warp height of the second region is maximum,
    a rate of change in the warp height in the third region is smaller than rates of change in the warp height in the second region and the first region;
    a first maximum warp height position where the warp height of the first region is maximum is located closer to the outer circumferential end portion of the blade than a connecting portion between the first region and the third region;
    The blower device according to any one of claims 1 to 8.
  10.  複数の前記翼のうちの少なくとも1つ、または、すべての前記翼において、
     前記第二領域の翼弦長は、前記第三領域の翼弦長より大きい、
     請求項1~9のいずれか1項に記載の送風装置。
    At least one or all of the plurality of wings,
    The chord length of the second region is greater than the chord length of the third region.
    The blower device according to any one of claims 1 to 9.
  11.  複数の前記翼のうちの少なくとも1つ、または、すべての前記翼において、
     前記翼内周端部は、前記第一領域と前記第三領域とを連結している第1連結部の前記圧力面における接線より反回転方向に配置されている、
     請求項1~10のいずれか1項に記載の送風装置。
    At least one or all of the plurality of wings,
    The blade inner circumferential end portion is disposed in a counter-rotational direction from a tangent line on the pressure surface of a first connecting portion connecting the first region and the third region.
    The blower device according to any one of claims 1 to 10.
  12.  複数の前記翼のうちの少なくとも1つ、または、すべての前記翼は、
     前記第一領域の前記負圧面に形成された複数の溝を有している、
     請求項1~11のいずれか1項に記載の送風装置。
    At least one or all of the wings of the plurality of wings include:
    a plurality of grooves formed on the suction surface of the first region;
    The blower device according to any one of claims 1 to 11.
PCT/JP2022/038502 2022-10-17 2022-10-17 Blower device WO2024084537A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038502 WO2024084537A1 (en) 2022-10-17 2022-10-17 Blower device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038502 WO2024084537A1 (en) 2022-10-17 2022-10-17 Blower device

Publications (1)

Publication Number Publication Date
WO2024084537A1 true WO2024084537A1 (en) 2024-04-25

Family

ID=90737310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038502 WO2024084537A1 (en) 2022-10-17 2022-10-17 Blower device

Country Status (1)

Country Link
WO (1) WO2024084537A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280288A (en) * 2000-03-31 2001-10-10 Daikin Ind Ltd Impeller structure of multiblade blower
JP2010174852A (en) * 2009-02-02 2010-08-12 Daikin Ind Ltd Cross flow fan and air conditioner with the same
CN104196756A (en) * 2014-07-07 2014-12-10 珠海格力电器股份有限公司 Cross-flow fan blade and air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280288A (en) * 2000-03-31 2001-10-10 Daikin Ind Ltd Impeller structure of multiblade blower
JP2010174852A (en) * 2009-02-02 2010-08-12 Daikin Ind Ltd Cross flow fan and air conditioner with the same
CN104196756A (en) * 2014-07-07 2014-12-10 珠海格力电器股份有限公司 Cross-flow fan blade and air conditioner

Similar Documents

Publication Publication Date Title
AU2003207098B2 (en) Fan
US10436496B2 (en) Indoor unit for air-conditioning apparatus
WO2017026150A1 (en) Air blower and air conditioning device equipped with air blower
JP5879363B2 (en) Multi-blade fan and air conditioner equipped with the same
JP6029738B2 (en) Outdoor cooling unit for vehicle air conditioner
WO2017026143A1 (en) Blower and air-conditioning device
AU2012333534A1 (en) Cross flow fan
US9303649B2 (en) Cross flow fan and air-conditioning apparatus including same
JP2008223741A (en) Centrifugal blower
KR102321173B1 (en) Fan and air conditioner indoor unit having same
JP2003184792A (en) Blower
CN110914553B (en) Impeller, blower and air conditioner
WO2024084537A1 (en) Blower device
JP2001280288A (en) Impeller structure of multiblade blower
US20220205650A1 (en) Air conditioner including a centrifugal fan
WO2009136585A1 (en) Cross‑flow fan and air conditioner equipped with same
CN110914550B (en) Indoor unit of air conditioner
WO2015063850A1 (en) Cross-flow fan and air conditioner
US11466871B2 (en) Cross flow fan blade, cross flow fan, and air conditioner indoor unit
JP6330738B2 (en) Centrifugal blower and air conditioner using the same
JP2005016457A (en) Blower and heat exchange unit equipped with blower
JP2002357194A (en) Cross-flow fan
JP6625213B2 (en) Multi-blade fan and air conditioner
JP6625291B1 (en) Impeller, blower and air conditioner
JP7374344B2 (en) air conditioner