WO2019012171A1 - Procedimiento para la producción y almacenamiento de hidrógeno mediante deshidrogenación catalítica, y uso de un catalizador de un metal de transición anclado sobre un soporte de un material de carbono para la obtención de hidrógeno mediante reacciones de deshidrogenación catalítica - Google Patents

Procedimiento para la producción y almacenamiento de hidrógeno mediante deshidrogenación catalítica, y uso de un catalizador de un metal de transición anclado sobre un soporte de un material de carbono para la obtención de hidrógeno mediante reacciones de deshidrogenación catalítica Download PDF

Info

Publication number
WO2019012171A1
WO2019012171A1 PCT/ES2018/070487 ES2018070487W WO2019012171A1 WO 2019012171 A1 WO2019012171 A1 WO 2019012171A1 ES 2018070487 W ES2018070487 W ES 2018070487W WO 2019012171 A1 WO2019012171 A1 WO 2019012171A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
hydrogen
carbon material
optionally substituted
process according
Prior art date
Application number
PCT/ES2018/070487
Other languages
English (en)
French (fr)
Inventor
José Antonio MATA MARTÍNEZ
David Ventura Espinosa
Alba Carretero Cerdán
Miguel Baya García
Hermenegildo GARCÍA GÓMEZ
Original Assignee
Universitat Jaume I
Universidad De Zaragoza
Universitat Politècnica De València
Consejo Superior De Investigaciones Cientificas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Jaume I, Universidad De Zaragoza, Universitat Politècnica De València, Consejo Superior De Investigaciones Cientificas (Csic) filed Critical Universitat Jaume I
Publication of WO2019012171A1 publication Critical patent/WO2019012171A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • B01J31/1625Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts immobilised by covalent linkages, i.e. pendant complexes with optional linking groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J32/00
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to the use of a transition metal catalyst anchored on a support of a carbon material for obtaining hydrogen by catalytic dehydrogenation reactions, preferably for the use of said hydrogen obtained in a fuel cell or a combustion engine. Additionally, the present invention also relates to a process for the production and storage of hydrogen by catalytic dehydrogenation based on the use of said transition metal catalyst anchored on a support of a carbon material.
  • Hydrogen ", based on the use of hydrogen as an energy vector, through its combination with oxygen, hydrogen allows energy to be obtained quickly and easily.
  • HSC Hydrogen storage capacity
  • Cycloalkanes were the first organic compounds applied in these LOHC systems due to their high hydrogen content. However, these compounds required high temperatures for the generation of hydrogen. Subsequently, the introduction of heteroatoms in these cycloalkanes allowed working at lower temperatures, facilitating dehydrogenation; Within these heterocycloalkanes, the V / heterocyclic compounds stand out especially as hydrogen carriers, which provide numerous advantages, among them the possibility of working at lower temperatures without decreasing their hydrogen storage capacity. However, the dehydrogenation of this type of compounds is also endothermic, which is why high reaction temperatures are required, or the use of catalysts is required.
  • amino-borane LOHC system which has a high HSC value due to its composition of light atoms, and requires relatively low reaction temperatures, is currently one of the most widely used options for the storage of hydrogen.
  • amino-borane systems present another attractive property, which consists in the electronegativity difference between boron (2.04) and nitrogen (3.04), which favors the reaction between BH and NH, and therefore, the formation of molecular hydrogen.
  • the amino-borane systems lead to the formation of extremely stable borates, from which it is difficult to regenerate the starting products, and therefore, to achieve a reversible system that allows to store-generate hydrogen according to the demand .
  • the alcoholysis or dehydrogenation reaction of hydrosilanes in LOHC silane alcohol systems is a catalytic process thermodynamically favored by the formation of Si-0 bonds in the resulting silyl ether compound, and entropically favored by the release of the gas. Therefore, the use of this silane-alcohol system as LOHC allows working with low temperatures to obtain hydrogen, and also has great versatility due to the different silanes and alcohols available today.
  • the silyl ether obtained as a result of this reaction can be transformed allowing the recovery of the initial silane or, alternatively, it can be used in the silicone industry.
  • An object of the present invention is to provide a process for the production and storage of hydrogen by catalytic dehydrogenation based on the use of a transition metal catalyst anchored on a support of a carbon material.
  • the production and storage of hydrogen is favored by the use of a heterogeneous catalyst formed by a transition metal anchored on a carbon support.
  • the main advantage of this type of catalysts is that it allows to stabilize the catalytically active species, and at the same time, facilitate the recovery of the catalyst, which allows its recycling and reuse in subsequent dehydrogenation reactions.
  • carbon aggregate is understood to be any carbon cluster of the fullerenes family (e.g. C60 molecule, C70 molecule), or fullerene type particles such as aggregates of ultrafine carbon particles.
  • carbon fibers is meant the set of filaments of approximately 5-10 micrometers in diameter, mainly composed of carbon atoms bonded together.
  • carbon nanotubes is meant in the present invention a group of carbon atoms linked together hexagonally, where each atom is covalently linked to three other carbon atoms, forming a sheet that bends on itself giving place to nano-sized tubes.
  • graphene is understood as a single sheet of carbon atoms packed together in a hexagonal pattern.
  • graphene derivatives any structure of graphene that has been functionalized by the addition of atoms other than carbon, such as for example hydrogen, oxygen or halogen, which can be bound to said carbon atoms by different types of bonds or interactions. , modifying its local structure and / or properties electronic Examples of graphene derivatives include, but are not limited to, hydrogenated graphene (ie graphene), fully fluorinated graphene (ie fluorografne or C1 F1), oxidized graphene (ie GO) or graphene oxide, and reduced graphene oxide (ie rGO ).
  • "about 100 ° C” should be interpreted as a range of 90 ° C to 1 10 ° C, preferably a range of 95 ° C to 105 ° C, more preferably a range of 98 ° C to 102 ° C, and still more preferably a range of 99 ° C to 101 ° C.
  • a process for the production and storage of hydrogen by catalytic dehydrogenation comprising contacting an amount of a transition metal catalyst anchored on a support of a carbon material selected from the group which consists of carbon aggregates, carbon fibers, carbon nanotubes, graphene and graphene derivatives, with an amount of at least one alcohol and an amount of at least one silane, wherein said at least one silane is converted to hydrogen and at least one silyl ether.
  • the contacting of the different elements participating in the catalytic dehydrogenation reaction, ie said transition metal catalyst anchored on a carbon material, said at least one silane, and said at least one alcohol can be produced simultaneously or sequentially, wherein the sequence and the rate of addition can be determined, for example, by the different properties of the silanes and alcohols that can be used as LOHC system.
  • said process for the production and storage of hydrogen by catalytic dehydrogenation comprises: a) arranging an amount of a transition metal catalyst anchored on a support of a carbon material selected from the group consisting of carbon aggregates, carbon fibers, carbon nanotubes, graphene and graphene derivatives, with an amount of at least one alcohol, and
  • step b) adding an amount of at least one silane to the mixture of step a), wherein as a result of said step b) said at least one silane is converted to hydrogen and at least one silyl ether.
  • silanes and alcohols which form different LOHC systems with a wide range of hydrogen storage capacities.
  • versatility of silanes can serve to greatly increase the storage capacity of hydrogen, and so, while the use of a primary silane results in the release of three moles of hydrogen per mole of this silane, it can be increased the generation of hydrogen through the use of, for example, disilanes, which can generate three moles of hydrogen per mole of silane.
  • the process of the present invention is carried out at a temperature between about -25 ° C and about 40 ° C. More preferably, the process of the present invention is carried out at a temperature between about -15 ° C and about 30 ° C, and still more preferably, the process of the present invention is carried out at a temperature of about 30. ° C.
  • said catalyst of a transition metal anchored on a support of a carbon material in a preferred embodiment of the present process of the invention it is present in a molar ratio with respect to said at least one silane equal to or less than 1.5. mmol: 100 mmol, respectively, wherein the moles of catalyst do not include the support of a carbon material. Even more preferably, said catalyst of a transition metal anchored on a support of a carbon material is present in a molar ratio to said at least one silane equal to or less than 0.5 mmol: 100 mmol, respectively, in where the moles of catalyst do not include the support of a carbon material.
  • said catalyst of a transition metal anchored on a support of a carbon material is present in a molar ratio to said at least one silane equal to or less than 0.1 mmol: 100 mmol, respectively, in where the moles of catalyst do not include the support of a carbon material. Still more preferably, said catalyst of a transition metal anchored on a support of a carbon material is present in a molar ratio with respect to said at least one silane equal to or less than 0.05 mmol: 100 mmol, respectively, wherein the moles of catalyst do not include the support of a carbon material.
  • the activity of said transition metal catalyst anchored on a support of a carbon material is important for optimal management of hydrogen production by means of the process described above.
  • the parameter TOF or "turnover frequency”, widely known in the field of catalysis, quantifies the specific activity of a catalytic center for a given reaction by the number of molecular reactions or catalytic cycles that occur in said catalytic center per unit of time .
  • the catalysts used in the process of the present invention have a TOF value for the catalytic dehydrogenation reaction of silanes comprised between 1.90 s “1 and 18.00 s " 1 , which shows that they are catalysts which present an excellent activity for this catalytic dehydrogenation reaction, which translates into a useful life of said catalysts of several months, which undoubtedly represents a great economic advantage for its industrial application.
  • the catalyst of a transition metal anchored on a support of a carbon material used in the present process comprises a compound of general formula (I): where: - A is a polycyclic aromatic hydrocarbon,
  • - X is a spacer fragment that is selected from the group consisting of [-CH 2 -] m , [-CH 2 -0-] m , [-ahlo-CH 2 -] m and [-CH 2 -NH-] m , where m has a value between 1 and 4,
  • B is a / V-heterocyclic group with a ring size comprised between 5 and 8 members, consisting of carbon atoms and at least one nitrogen atom
  • [ML] is a coordination compound, wherein M is a metal of transition, L is a coordination ligand, and n has a value between 1 and 6, and wherein said support of a carbon material and said compound of general formula (I) are linked by non-covalent bonds.
  • polycyclic aromatic hydrocarbon means any aromatic organic compound containing two or more benzene rings fused linearly, angularly or in a cluster.
  • said group A is selected from the group consisting of anthracene, benzopyrene, chrysene, coronene, naphthacene, pentacene, naphthalene, phenanthrene, pyrene and triphenylene. More preferably, said group A is benzopyrene.
  • Said group A advantageously allows the immobilization of the coordination compound [ML], to which it is linked through the spacer fragment X and the fragment / V-heterocyclic, on the support made of a carbon material, through TT-TT interactions. , also known in the sector as stacking ⁇ - ⁇ or "77-77 stacking". These interactions are non-covalent in nature and occur between the aromatic fragments of said group A and the support, through their ⁇ type bonds.
  • the function of the spacer fragment X is to act as a covalent binding bridge between the polycyclic aromatic hydrocarbon A and the fragment / V-heterocyclic B.
  • said bridge can be any organic group that provides stability to the union between A and B , such as an alkyl group [-CH 2 -] m , an ether group [-CH 2 -0-] m , an arylalkyl group [-aryl-CH 2 -] m or an amine [-CH 2 -NH-] m .
  • the spacer fragment X is [-CH 2 -] m , wherein m has a value between 1 and 4. Still more preferably, the spacer fragment X is
  • heterocyclic group / V is understood to mean a heterocycle with a ring size comprised between 3 and 15 members, consisting of carbon atoms and at least a nitrogen atom; more preferably, said heterocyclic group has a ring size comprised between 5 and 8 members, which consist of carbon atoms and at least one nitrogen atom.
  • said heterocyclic group may be, for example, monocyclic, bicyclic or tricyclic, and may additionally include fused ring systems.
  • both the carbon atoms and said at least one nitrogen atom may be optionally substituted by a C Ci 0 alkyl group, or by an aryl group.
  • Examples of such / V-heterocyclic groups include, but are not limited to, azepines, benzimidazole, benzothiazole, isothiazole, imidazole, indole, purine, pyridine, pyrimidine, quinoline, isoquinoline, thiadiazole, pyrrole, pyrazole, pyrazoline, oxazole, isoxazole, triazole and imidazole.
  • said group B is a / V-heterocyclic group selected from pyridine, pyrimidine, pyrazoline, quinoline, isoquinoline, pyrrole, indole, purine, imidazole, pyrazole and thiazole. More preferably, the group B is an imidazole group optionally substituted by an alkyl group C1-C1 0 or an aryl group. Still more preferably, said group B is / V-methylimidazole.
  • alkyl group is meant, in the context of the present invention, any straight or branched chain monovalent saturated hydrocarbon with a carbon atom number comprised between 1 and 10, which may optionally be cyclic or include cyclic groups, which may optionally include in its backbone one or more heteroatoms selected from nitrogen, oxygen or sulfur, and which may be optionally substituted by one or more substituents selected from halogen, hydroxyl, alkoxy, carboxyl, carbonyl, cyano, acyl, alkoxycarbonyl, amino, nitro , mercapto and alkylthio.
  • alkyl groups include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, te / f-butyl, n-pentyl, cyclopentyl, cyclohexyl or cycloheptyl.
  • aryl group is understood to mean an aromatic hydrocarbon which preferably contains a number of carbon atoms comprised between 3 and 12 carbon atoms, more preferably between 6 and 12 carbon atoms, such as, for example, cyclopropenyl, phenyl , tropyl, indenyl, naphthyl, azulenyl, biphenyl, fluorenyl or anthracenyl.
  • This aryl group may be optionally substituted by one or more substituents which are selected from alkyl, haloalkyl, aminoalkyl, dialkylamino, hydroxyl, alkoxide, phenyl, mercapto, halogen, nitro, cyano and alkoxycarbonyl.
  • substituents which are selected from alkyl, haloalkyl, aminoalkyl, dialkylamino, hydroxyl, alkoxide, phenyl, mercapto, halogen, nitro, cyano and alkoxycarbonyl.
  • said aryl group may include in its backbone one or more heteroatoms selected from nitrogen, oxygen or sulfur.
  • the group [ML n ] is a coordination compound, wherein M is a transition metal and L are coordination ligands, linked together by coordination bonds, weaker than covalent bonds.
  • the coordination compound may have one or more metal centers, i.e., transition metals.
  • transition metal is meant any element of block d (i.e. groups III-XII) of the periodic table of chemical elements.
  • the transition metal M is selected from the group consisting of ruthenium (Ru), osmium (Os), rhodium (Rh), iridium (Ir), palladium (Pd), platinum (Pt), silver (Ag) and gold (Au). More preferably, the transition metal M is ruthenium.
  • Said ligands L can be neutral, cationic or anionic, and can have a character or donor or ⁇ acceptor depending on the metal to which they coordinate and the oxidation state thereof, in addition to their own electronic nature. Additionally, said ligands can have different hapticities (ie number of atoms of a ligand linked to a metallic center), being able to behave, for example, as monohapto ligands (eg rj 1 -alyl), dihapto (eg rj 2 -butadiene), trihapto (eg or tetrahapto (egn 4 -butadiene).
  • monohapto ligands eg rj 1 -alyl
  • dihapto eg rj 2 -butadiene
  • trihapto eg or tetrahapto (egn 4 -butadiene).
  • n corresponding to the number of ligands bound to the central transition metal depends both on the hapticity of these and on the oxidation state of the metal.
  • n has a value between 1 and 4.
  • said n coordination ligands L can be the same or different.
  • Examples of groups [ML n ] include, but are not limited to, [RuCI 2 (p-cymene)] 2 , [RhCl (COD)] 2 , [lrCI (COD)] 2 , [PdCI (n 3 -alyl) ] 2 or [AUCI (SMe 2 )] .
  • the abbreviation "COD” corresponds to the ligand 1, 5-cyclooctadiene.
  • the support of a carbon material on which the catalyst of a transition metal is anchored is a graphene derivative selected from reduced graphene oxide (rGO) or oxidized graphene oxide. More preferably, said support of a carbon material is reduced graphene oxide (rGO).
  • the catalyst of a transition metal anchored on a support of a carbon material used in the present process comprises a compound of general formula (I): where:
  • - X is [-CH 2 -] m where m is equal to 1,
  • [ML] is a coordination compound, wherein M is ruthenium, n is equal to 3, and said 3 coordination ligands L are selected from the group consisting of Cl, Br, I, p-cymene, pyridine, cyclopentadienyl, 1, 5-cyclooctadiene, r-allyl, dimethylsulfide and dimethylsulfoxide and any combination thereof, wherein said support of a carbon material is reduced graphene oxide and said compound of general formula (I) are linked by non-covalent bonds.
  • this is preferably an alcohol with a number of carbon atoms comprised between 1 and 10; preferably, said at least one alcohol has a number of carbon atoms comprised between 1 and 8. More preferably, said alcohol is selected from methanol, ethanol, propanol, isopropanol and benzyl alcohol, and still more preferably, said alcohol is methanol.
  • silane in the context of the present invention, refers to any linear or branched organosilane, polysilane or silane, which may have one or more substituents.
  • silane refers to a radical corresponding to a silane, and is therefore considered to be included within the group of silanes.
  • said at least one silane is a compound of formula SiR 1 R 2 R 3 H, wherein R 1 , R 2 and R 3 are the same or different and are selected from the group consisting of hydrogen, optionally substituted alkyl, alkenyl optionally substituted, optionally substituted alkynyl, optionally substituted aryl, heteroaryl optionally substituted, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted silyl, and optionally substituted polysilyl.
  • Said one or more substituents are independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, acyl, carboxyl, halide, hydroxyl, ether, nitro, cyano, amido, amino, acylamido, acyloxide, thiol, thioether, sulfoxide, sulfonyl, thioamido, sulfonamido and silyl.
  • said at least one silane is a compound of formula SiR 1 R 2 R 3 H, wherein R 1 and R 2 are the same or different alkyl groups, optionally substituted, and R 3 is an aryl group, optionally substituted, in wherein said one or more substituents are independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, acyl, carboxyl, halide, hydroxyl, ether, nitro, cyano, amido, amino, acylamido, acyloxide , thiol, thioether, sulfoxide, sulfonyl, thioamido, sulfonamido and silyl.
  • the process for the production and storage of hydrogen by catalytic dehydrogenation can contain a further additional step, intended to recover the catalyst, and regenerate the initial hydrosilane from the silyl ether obtained as a result of the process of the invention by a reduction reaction with a reducing agent.
  • This regeneration of the initial hydrosilane also involves the storage of a new amount of hydrogen in the form of new chemical bonds, which may be released later when necessary, by means of the present process of catalytic dehydrogenation.
  • said method of the present invention comprises a subsequent additional step (ie after the completion of the catalytic dehydrogenation reaction), which comprises the following sub-steps: i) separating the catalyst from a transition metal anchored on a support of a carbon material of the crude resulting from stage b), and
  • step ii) subjecting the liquid fraction of the crude oil separated in step i) to a reduction reaction with at least one reducing agent.
  • the separation of the catalyst from sub-step i) can be carried out by filtration, decantation, or any other separation method known in this sector of the art suitable for this purpose. It has been observed that, surprisingly, the catalysts of a transition metal anchored on a support of a carbon material recovered through step (i) can be subsequently recycled and reused in at least 9 additional catalytic dehydrogenation reactions, without suffering any loss of catalytic activity. It is considered that this beneficial effect is influenced by the fact that, being supported heterogeneous catalysts, their deactivation processes are minimized, an aspect also favored by the fact that said catalytic hydrogenation reactions are carried out at low temperatures .
  • Fig. 1 shows high resolution transmission electron microscopy (HRTEM) images of a reduced graphene oxide support (rGO) used in the anchoring of one of the ruthenium catalysts used in the present process .
  • HRTEM transmission electron microscopy
  • rGO reduced graphene oxide support
  • Fig. 1a shows the morphology of said reduced graphene oxide before the use of the anchored catalyst in a catalytic dehydrogenation process
  • Fig. 1 b shows the morphology of the same graphene reduced oxide, after its use in catalytic cycles.
  • said at least one reducing agent of sub-step ii) is preferably selected from the group consisting of LiAIH 4 , LiH, NaBH 4 , DIBAL-H and any of its mixtures. More preferably, said reducing agent is LiAIH 4 .
  • a second aspect of the invention relates to the use of a transition metal catalyst anchored on a support of a carbon material to obtain hydrogen by catalytic dehydrogenation reactions.
  • said catalyst of a transition metal anchored on a support of a carbon material comprises a compound of general formula (I):
  • - A is a polycyclic aromatic hydrocarbon
  • - X is a spacer fragment selected from the group consisting of [-CH 2 -] m , [-CH 2 -0-] m , [-aryl-CH 2 -] m and [-CH 2 -NH-] m , where m has a value between 1 and 4,
  • B is a / V-heterocyclic group with a ring size comprised between 5 and 8 members, consisting of carbon atoms and at least one nitrogen atom
  • [ML] is a coordination compound, wherein M is a metal of transition, L is a coordination ligand, and n has a value between 1 and 6, and wherein said support of a carbon material and said compound of general formula (I) are linked by non-covalent bonds.
  • the hydrogen obtained by the use of the invention described herein can be used in a fuel cell or a combustion engine. It will be apparent to the person skilled in the art that there are numerous alternatives for supplying the hydrogen produced by the catalytic dehydrogenation reaction of the present invention to said fuel cell or said combustion engine, such as the connection via ducts and / or tubes, which may preferably contain valves to regulate the flow of hydrogen entering said cell or motor.
  • Fig. 1 High resolution transmission electron microscopy (HRTEM) images of a reduced graphene oxide support (rGO) used for the anchoring of one of the ruthenium catalysts of the present invention.
  • Fig. 1a shows the morphology of said reduced graphene oxide before the use of the anchored catalyst in a catalytic dehydrogenation process
  • Fig. 1 b shows the morphology of the same reduced graphene oxide, after its use in 10 catalytic cycles . Examples
  • rGO reduced graphene oxide
  • the process consists of adding the corresponding quantity of silane on a solution of the ruthenium catalyst in the alcohol ROH corresponding to 30 ° C, and maintaining the reaction for 10 minutes.
  • Table 1 shows the results obtained with the silanes and alcohols described above, where a practically quantitative conversion of the silane to the corresponding silyl ether was observed in all cases:
  • the yield of the product indicated in parentheses was determined by means of proton nuclear magnetic resonance (NMR - '/ - /), using 1, 3, 5-trimethoxy benzene as an external standard.
  • LiAIH 4 (79.9 mg, 2 mmol) is added to a solution of PhMe 2 SiOMe (200 ⁇ , 1 mmol) in diethyl ether, and the suspension is stirred for 16 hours at room temperature. The excess LiAIH 4 is then neutralized by the addition of 1 M HCl (10 ml), and extraction is carried out with dichloromethane. Subsequently, the set of organic phases is brought to dryness, thus isolating the PhMe 2 SiH silane (90% yield).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Nanotechnology (AREA)
  • Catalysts (AREA)

Abstract

La presente invención se refiere a un procedimiento para la producción y almacenamiento de hidrógeno mediante deshidrogenación catalítica basado en el uso de un catalizador de un metal de transición anclado sobre un soporte de un material de carbono. Adicionalmente, la presente invención también se refiere al uso de un catalizador de un metal de transición anclado sobre un soporte de un material de carbono para la obtención de hidrógeno mediante reacciones de deshidrogenación catalítica, preferiblemente, para el uso de dicho hidrógeno obtenido en una celda de combustible o un motor de combustión.

Description

Procedimiento para la producción y almacenamiento de hidrógeno mediante deshidrogenación catalítica, y uso de un catalizador de un metal de transición anclado sobre un soporte de un material de carbono para la obtención de hidrógeno mediante reacciones de deshidrogenación catalítica
DESCRIPCIÓN
La presente invención se refiere al uso de un catalizador de un metal de transición anclado sobre un soporte de un material de carbono para la obtención de hidrógeno mediante reacciones de deshidrogenación catalítica, preferiblemente, para el uso de dicho hidrógeno obtenido en una celda de combustible o un motor de combustión. Adicionalmente, la presente invención también se refiere a un procedimiento para la producción y almacenamiento de hidrógeno mediante deshidrogenación catalítica basado en el uso de dicho catalizador de un metal de transición anclado sobre un soporte de un material de carbono.
Antecedentes de la invención
Existe una necesidad creciente de conseguir un abastecimiento energético estable a partir de fuentes de energía alternativas, que permita frenar el incremento exponencial de la contaminación, especialmente las emisiones de C02, y que a medio plazo pueda representar una solución viable frente al agotamiento de los combustibles fósiles.
En la actualidad, algunas formas alternativas de producción de energía basadas en la captación de recursos naturales están cobrando un papel destacado, como puede ser la energía eólica o la energía solar (V. Blagojevic, D. Minie, J. G. Novakovic and D. Minie Hydrog. Energy - Challenges Perspect. 2012, 3-28). Sin embargo, el principal problema que presentan estas fuentes de energía renovable es su carácter intermitente, ligado a su dependencia de factores metereológicos. Por ello, en los últimos años se han dedicado numerosos esfuerzos tanto a la búsqueda de sistemas de generación de energía seguros y sostenibles, como al desarrollo de sistemas de almacenamiento de esta energía para mejorar su aprovechamiento.
El almacenamiento de energía en forma de enlaces químicos resulta especialmente prometedor, y en este contexto, destaca especialmente la llamada "Economía de
Hidrógeno", basada en el uso de hidrógeno como vector energético. Mediante su combinación con oxígeno, el hidrógeno permite obtener energía de forma rápida y
l sostenible, generando únicamente agua como subproducto. Sin embargo, el hidrógeno no se encuentra en la corteza terrestre, y por lo tanto es necesaria su producción. No obstante, se conoce que dicha producción no resulta sostenible, salvo que esta se lleve a cabo mediante la utilización de energía eólica o solar, en cuyo caso sería además especialmente ventajoso poder almacenar el exceso de hidrógeno para su posterior utilización. Existen diferentes procesos de almacenamiento de hidrógeno, aunque muchos de ellos no son eficientes o bien suponen un riesgo elevado para los usuarios. Adicionalmente, el almacenamiento de hidrógeno implica una serie de requisitos desde el punto de vista de la infraestructura, especialmente a nivel industrial, dada la necesidad de evitar posibles sobrepresiones durante su almacenamiento y su carácter extremadamente inflamable y reactivo.
La tecnología basada en la utilización de líquidos orgánicos como portadores de hidrógeno (i.e. Liquid Organic Hydrogen Carríers o LOHC) para su almacenamiento y transporte está adquiriendo especial relevancia en los últimos años, ya que además hace posible el almacenamiento del exceso de energía producida por métodos sostenibles, mejorando así su aprovechamiento. Por ello, esta estrategia basada en LOHCs empieza a despuntar como una posible vía, altamente versátil, hacia un sistema energético sostenible y libre de emisiones de dióxido de carbono, que además permite un proceso cíclico de hidrogenación y deshidrogenación, lo que se traduce en la posibilidad de producir y almacenar cantidades significativas de hidrógeno en función de las necesidades (P. Preuster, C. Papp Acc. Chem. Res. 2017, 50(1), 74-85).
Esta tecnología se basa en una reacción catalítica de deshidrogenación (R. H. Crabtree Energy Environ. Sci. 2008, 7, 134-138), por medio de las cual se puede producir hidrógeno de forma rápida en función de las necesidades. Al mismo tiempo, los sistemas LOHC permiten un almacenamiento seguro de hidrógeno, facilitando incluso su transporte hasta el lugar en el que se necesita dicha energía, tal como se resume en la siguiente figura: Líquido hidrogenado [catalizador]
Líquido deshidrogenado Obtención H, (LOHC)
H 1
2 '*'
Líquido hidrogenado I Transporte H2
Líquido deshidrogenado
(LOHC)
Líquido hidrogenado [catalizador]
Líquido deshidrogenado
(LOHC)
N¾ H, Almacenamiento
H2
Fuentes de energía renovables
(nuclear, solar, etc.)
Existen diferentes parámetros que determinan la eficiencia de estos sistemas de almacenamiento de hidrógeno LOHC, siendo uno de los más utilizados la capacidad de almacenaje de hidrógeno (i.e. Hydrogen storage capacity o HSC), que se basa en determinar la relación másica de hidrógeno contenida. Así, cuanto mayor sea el valor de este parámetro, mayor será la eficacia del sistema LOHC debido a que este es capaz de almacenar una mayor cantidad de hidrógeno en un volumen menor. Un segundo parámetro de interés es la capacidad de almacenamiento de hidrógeno efectiva, que hace referencia a la cantidad de hidrógeno molecular obtenida en un determinado proceso, sin considerar los átomos de hidrógeno que no participan activamente en la generación de hidrógeno.
Los cicloalcanos fueron los primeros compuestos orgánicos aplicados en estos sistemas LOHC debido a su elevado contenido de hidrógeno. Sin embargo, estos compuestos requerían elevadas temperaturas para la generación de hidrógeno. Posteriormente, la introducción de heteroátomos en estos cicloalcanos permitió trabajar a temperaturas menores, facilitando la deshidrogenación; dentro de estos heterocicloalcanos, destacan especiamente los compuestos /V-heterocíclicos como portadores de hidrógeno, que proporcionan numerosas ventajas, entre ellas la posibilidad de trabajar a temperaturas menores sin que disminuya su capacidad de almacenamiento de hidrógeno. Sin embargo, la deshidrogenación de este tipo de compuestos también es endotérmica, por lo que se requieren temperaturas de reacción elevadas, o bien el uso de catalizadores.
Posteriormente, se han desarrollado otros sistemas LOHC, como por ejemplo el basado en ácido fórmico. Este sistema presenta la ventaja de su fácil obtención a nivel industrial y un coste relativamente bajo, pero su uso conduce a la formación de cantidades estequiométricas de dióxido de carbono.
El sistema LOHC amino-borano, que presenta un valor elevado de HSC debido a su composición de átomos ligeros, y requiere temperaturas de reacción relativamente bajas, constituye en la actualidad una de las opciones más utilizadas para el almacenamiento de hidrógeno. Además, los sistemas amino-borano presentan otra propiedad atractiva, que consiste en la diferencia de electronegatividad entre boro (2,04) y nitrógeno (3,04), que favorece la reacción entre B-H y N-H, y por lo tanto, la formación de hidrógeno molecular. Sin embargo, los sistemas amino-borano conducen a la formación de boratos extremadamente estables, a partir de los cuales es complicado regenerar los productos de partida, y por lo tanto, conseguir un sistema reversible que permita almacenar-generar hidrógeno en función de la demanda.
La alcohólisis o reacción de deshidrogenación de hidrosilanos en sistemas LOHC silano- alcohol (D. Wechsler, Y. Cui, D. Dean, B. Davis, P. G. Jessop J. Am. Chem. Soc. 2008, 130, 17195-17203) es un proceso catalítico termodinámicamente favorecido por la formación de enlaces Si-0 en el compuesto silil-éter resultante, y entrópicamente favorecido por la liberación del gas. Por ello, el uso de este sistema silano-alcohol como LOHC permite trabajar con bajas temperaturas para la obtención de hidrógeno, y presenta además una gran versatilidad debido a los diferentes silanos y alcoholes disponibles en la actualidad. Además, el silil-éter obtenido como consecuencia de esta reacción se puede transformar permitiendo la recuperación del silano inicial o, alternativamente, puede ser utilizado en la industria de siliconas.
Esta última vía de obtención de hidrógeno, sin embargo, aunque resulta especialmente prometedora, presenta todavía ciertas limitaciones en cuanto a la posibilidad de regenerar los productos de partida, especialmente el catalizador, que a menudo se desactiva, o bien se pierde en el propio medio de reacción, dando lugar a un fenómeno conocido como "leaching", que acaba con la pérdida de parte del catalizador.
Por ello, existe una necesidad en el sector de encontrar nuevas soluciones que permitan llevar a cabo el proceso de alcohólisis o deshidrogenación catalítica para la obtención de hidrógeno de forma altamente eficiente, con una buena estabilización del catalizador, y preferiblemente, con una buena capacidad de recuperación de este, lo que permitirá su reciclaje.
Descripción detallada de la invención
Un objetivo de la presente invención consiste en proporcionar un procedimiento para la producción y almacenamiento de hidrógeno mediante deshidrogenación catalítica basado en el uso de un catalizador de un metal de transición anclado sobre un soporte de un material de carbono.
La producción y el almacenamiento de hidrógeno esta favorecida por el uso de un catalizador heterogéneo formado por un metal de transición anclado sobre un soporte de carbono. La principal ventaja de este tipo de catalizadores es que permite estabilizar las especies catalíticamente activas, y al mismo tiempo, facilitar la recuperación del catalizador, lo que permite su reciclaje y reutilización en posteriores reacciones de deshidrogenación.
En la presente invención, se entiende por "agregado de carbono" cualquier clúster de carbono de la familia de los fullerenos (e.g. molécula C60, molécula C70), o partículas de tipo fullereno tales como agregados de partículas de carbono ultrafinas.
Por "fibras de carbono" se entiende el conjunto de filamentos de aproximadamente 5-10 micrómetros de diámetro, principalmente compuestos por átomos de carbono enlazados entre sí.
Por "nanotubos de carbono" se entiende en la presente invención una agrupación de átomos de carbono vinculados entre sí de forma hexagonal, donde cada átomo se enlaza de forma covalente a otros tres átomos de carbono, formando una lámina que se dobla sobre sí misma dando lugar a tubos de tamaño nanométrico.
En la presente invención, se entiende por "grafeno" una lámina única de átomos de carbono empaquetados entre sí siguiendo un patrón hexagonal.
Por "derivados de grafeno" se entiende cualquier estructura de grafeno que ha sido funcionalizada mediante la adición de átomos distintos al carbono, como por ejemplo hidrógeno, oxígeno o halógeno, que se pueden unir a dichos átomos de carbono mediante diferentes tipos de enlaces o interacciones, modificando su estructura local y/o propiedades electrónicas. Ejemplos de derivados de grafeno incluyen, pero no se limitan a, grafeno hidrogenado (i.e. grafano), grafeno totalmente fluorado (i.e. fluorografeno o C1 F1), grafeno oxidado (i.e. GO) u óxido de grafeno, y óxido de grafeno reducido (i.e. rGO).
El término "aproximadamente", tal como se utiliza en la presente invención cuando precede a un valor de temperatura y se refiere al mismo, pretende designar cualquier valor de temperatura comprendido en un rango correspondiente al ±10% de su valor numérico, preferiblemente un rango correspondiente al ±5% de su valor numérico, más preferiblemente un rango correspondiente al ±2% de su valor numérico, y todavía más preferiblemente un rango correspondiente al ±1 % de su valor numérico. Por ejemplo, "aproximadamente 100°C" debe interpretarse como un rango de 90°C a 1 10°C, preferiblemente un rango de 95°C a 105°C, más preferiblemente un rango de 98°C a 102°C, y todavía más preferiblemente un rango de 99°C a 101°C.
En un primer aspecto de la invención, se proporciona un procedimiento para la producción y almacenamiento de hidrógeno mediante deshidrogenación catalítica que comprende poner en contacto una cantidad de un catalizador de un metal de transición anclado sobre un soporte de un material de carbono seleccionado entre el grupo que consiste en agregados de carbono, fibras de carbono, nanotubos de carbono, grafeno y derivados de grafeno, con una cantidad de al menos un alcohol y una cantidad de al menos un silano, en donde dicho al menos un silano se convierte en hidrógeno y al menos un silil-éter.
Resultará evidente para el experto en la materia que la puesta en contacto de los diferentes elementos que participan en la reacción de deshidrogenación catalítica, es decir, dicho catalizador de un metal de transición anclado sobre un material de carbono, dichos al menos un silano, y dicho al menos un alcohol, se puede producir de forma simultánea o secuencial, en donde la secuencia y el ritmo de adición puede venir determinada, por ejemplo, por las diferentes propiedades de los silanos y alcoholes que se pueden utilizar como sistema LOHC.
En una realización preferida, dicho procedimiento para la producción y almacenamiento de hidrógeno mediante deshidrogenación catalítica comprende: a) disponer una cantidad de un catalizador de un metal de transición anclado sobre un soporte de un material de carbono seleccionado entre el grupo que consiste en agregados de carbono, fibras de carbono, nanotubos de carbono, grafeno y derivados de grafeno, con una cantidad de al menos un alcohol, y
b) añadir una cantidad de al menos un silano sobre la mezcla de la etapa a), en donde como resultado de dicha etapa b) dicho al menos un silano se convierte en hidrógeno y al menos un silil-éter.
Este procedimiento resulta aplicable a una gran variedad de silanos y alcoholes, que forman diferentes sistemas LOHC con un amplio rango de capacidades de almacenamiento de hidrógeno. De hecho, la versatilidad de los silanos puede servir para incrementar considerablemente la capacidad de almacenamiento de hidrógeno, y así, mientras que el uso de un silano primario resulta en la liberación de tres moles de hidrógeno por cada mol de este silano, se puede incrementar la generación de hidrógeno mediante la utilización de, por ejemplo, disilanos, que pueden generar tres moles de hidrógeno por cada mol de silano.
En una realización preferida, el procedimiento de la presente invención se lleva a cabo a una temperatura comprendida entre aproximadamente -25°C y aproximadamente 40°C. Más preferiblemente, el procedimiento de la presente invención se lleva a cabo a una temperatura comprendida entre aproximadamente -15°C y aproximadamente 30°C, y todavía más preferiblemente, el procedimiento de la presente invención se lleva a cabo a una temperatura de aproximadamente 30°C.
Respecto a dicho catalizador de un metal de transición anclado sobre un soporte de un material de carbono, en una realización preferida del presente procedimiento de la invención este está presente en una relación molar respecto a dicho al menos un silano igual o inferior a 1 ,5 mmol : 100 mmol, respectivamente, en donde los moles de catalizador no incluyen el soporte de un material de carbono. De forma todavía más preferida, dicho catalizador de un metal de transición anclado sobre un soporte de un material de carbono está presente en una relación molar respecto a dicho al menos un silano igual o inferior a 0,5 mmol : 100 mmol, respectivamente, en donde los moles de catalizador no incluyen el soporte de un material de carbono. De manera incluso más preferida, dicho catalizador de un metal de transición anclado sobre un soporte de un material de carbono está presente en una relación molar respecto a dicho al menos un silano igual o inferior a 0,1 mmol : 100 mmol, respectivamente, en donde los moles de catalizador no incluyen el soporte de un material de carbono. Todavía más preferiblemente, dicho catalizador de un metal de transición anclado sobre un soporte de un material de carbono está presente en una relación molar respecto a dicho al menos un silano igual o inferior a 0,05 mmol : 100 mmol, respectivamente, en donde los moles de catalizador no incluyen el soporte de un material de carbono.
La actividad de dicho catalizador de un metal de transición anclado sobre un soporte de un material de carbono resulta importante para una gestión óptima de la producción de hidrógeno por medio del procedimiento arriba descrito. El parámetro TOF o "turnover frequency", ampliamente conocido en el sector de la catálisis, cuantifica la actividad específica de un centro catalítico para una reacción determinada mediante el número de reacciones moleculares o de ciclos catalíticos que suceden en dicho centro catalítico por unidad de tiempo. Así, los catalizadores utilizados en el procedimiento de la presente invención presentan un valor de TOF para la reacción de deshidrogenación catalítica de silanos comprendido entre 1 ,90 s"1 y 18,00 s"1 , lo cual demuestra que se trata de unos catalizadores que presentan una excelente actividad para esta reacción de deshidrogenación catalítica, que se traduce en una vida útil de dichos catalizadores de varios meses, lo que sin duda supone una gran ventaja económica para su aplicación a nivel industrial.
Además, diversos ensayos catalíticos comparativos realizados con algunos de los catalizadores heterogéneos (i.e. catalizadores de un metal de transición anclado sobre un soporte de un material de carbono) utilizados en el procedimiento de la presente invención, y sus análogos homogéneos (i.e. complejos moleculares del mismo metal de transición, con ligandos de coordinación similares, sin anclaje en un soporte sólido), pusieron de manifiesto la superioridad de los catalizadores del primer tipo en cuanto a actividad catalítica.
Se postula, de manera no limitativa, que el uso de un catalizador soportado sobre un material de carbono contribuye a una estabilización adicional de las especies catalíticamente activas formadas durante el procedimiento de la presente invención, mejorando así la actividad del catalizador.
Preferiblemente, el catalizador de un metal de transición anclado sobre un soporte de un material de carbono utilizado en el presente procedimiento comprende un compuesto de fórmula general (I):
Figure imgf000009_0001
en donde: - A es un hidrocarburo aromático policíclico,
- X es un fragmento espaciador que se selecciona entre el grupo que consiste en [-CH2-]m, [-CH2-0-]m, [-ahlo-CH2-]m y [-CH2-NH-]m, en donde m tiene un valor comprendido entre 1 y 4,
B es un grupo /V-heterocíclico con un tamaño de anillo comprendido entre 5 y 8 miembros, que consisten en átomos de carbono y al menos un átomo de nitrógeno, [ML] es un compuesto de coordinación, en donde M es un metal de transición, L es un ligando de coordinación, y n tiene un valor comprendido entre 1 y 6, y en donde dicho soporte de un material de carbono y dicho compuesto de fórmula general (I) están unidos mediante enlaces no covalentes.
Respecto al grupo A del compuesto de fórmula general (I), se entiende por "hidrocarburo aromático policíclico" cualquier compuesto orgánico aromático que contenga dos o más anillos de benceno fusionados de forma linear, angular o en clúster. Preferiblemente, dicho grupo A se selecciona entre el grupo que consiste en antraceno, benzopireno, criseno, coroneno, naftaceno, pentaceno, naftaleno, fenantreno, pireno y trifenileno. Más preferiblemente, dicho grupo A es benzopireno.
Dicho grupo A permite ventajosamente la inmovilización del compuesto de coordinación [ML], al que está vinculado a través del fragmento espaciador X y el fragmento /V-heterocíclico, sobre el soporte hecho de un material de carbono, a través de interacciones TT-TT, también conocidas en el sector como apilamientos ττ-π o "77-77 stacking". Dichas interacciones son de naturaleza no covalente y se producen entre los fragmentos aromáticos de dicho grupo A y el soporte, a través de sus enlaces de tipo ττ.
La función del fragmento espaciador X es actuar como puente de unión covalente entre el hidrocarburo aromático policíclico A y el fragmento /V-heterocíclico B. De acuerdo con esto, dicho puente puede ser cualquier grupo orgánico que aporte estabilidad a la unión entre A y B, tal como un grupo alquílico [-CH2-]m, un grupo éter [-CH2-0-]m, un grupo arilalquílico [-arilo-CH2-]m o una amina [-CH2-NH-]m.
En una realización preferida, el fragmento espaciador X es [-CH2-]m, en donde m tiene un valor comprendido entre 1 y 4. Todavía más preferiblemente, el fragmento espaciador X es
[-CH2-], es decir, X es [-CH2-]m en donde m tiene un valor igual a 1. Respecto al grupo B del compuesto de fórmula general (I), en la presente invención se entiende por "grupo /V-heterocíclico" un heterociclo con un tamaño de anillo comprendido entre 3 y 15 miembros, que consiste en átomos de carbono y al menos un átomo de nitrógeno; más preferiblemente, dicho grupo heterocíclico tiene un tamaño de anillo comprendido entre 5 y 8 miembros, que consisten en átomos de carbono y al menos un átomo de nitrógeno. En función del número de anillos, dicho grupo heterocíclico puede ser, por ejemplo, monocíclico, bicíclico o tricíclico, y adicionalmente puede incluir sistemas de anillos condensados. Además, tanto los átomos de carbono como dicho al menos un átomo de nitrógeno pueden estar opcionalmente sustituidos por un grupo alquilo C Ci0, o por un grupo arilo. Ejemplos de tales grupos /V-heterocíclicos incluyen, pero no se limitan a, azepinas, benzimidazol, benzotiazol, isotiazol, imidazol, indol, purina, piridina, pirimidina, quinolina, isoquinolina, tiadiazol, pirrol, pirazol, pirazolina, oxazol, isoxazol, triazol e imidazol.
En una realización preferida, dicho grupo B es un grupo /V-heterocíclico seleccionado entre piridina, pirimidina, pirazolina, quinolina, isoquinolina, pirrol, indol, purina, imidazol, pirazol y tiazol. Más preferiblemente, dicho grupo B es un grupo imidazol opcionalmente sustituido por un grupo alquilo C1-C10 o por un grupo arilo. Todavía más preferiblemente, dicho grupo B es /V-metilimidazol.
Se entiende por "grupo alquilo", en el contexto de la presente invención, cualquier hidrocarburo saturado monovalente de cadena lineal o ramificado con un número de átomos de carbono comprendido entre 1 y 10, que opcionalmente puede ser cíclico o bien incluir grupos cíclicos, que puede incluir opcionalmente en su esqueleto uno o más heteroátomos seleccionados entre nitrógeno, oxígeno o azufre, y que puede estar opcionalmente sustituido por uno o más sustituyentes seleccionados entre halógeno, hidroxilo, alcoxilo, carboxilo, carbonilo, ciano, acilo, alcoxicarbonilo, amino, nitro, mercapto y alquiltio. Ejemplos de grupos alquilo incluyen, pero no se limitan a, metilo, etilo, n-propilo, isopropilo, n-butilo, isobutilo, te/f-butilo, n-pentilo, ciclopentilo, ciclohexilo o cicloheptilo.
En la presente invención, se entiende por "grupo arilo" un hidrocarburo aromático que preferiblemente contiene un número de átomos de carbono comprendido entre 3 y 12 átomos de carbono, más preferiblemente entre 6 y 12 átomos de carbono, tal como por ejemplo ciclopropenilo, fenilo, tropilo, indenilo, naftilo, azulenilo, bifenilo, fluorenilo o antracenilo. Este grupo arilo puede estar opcionalmente sustituido por uno o más sustituyentes que se seleccionan entre alquilo, haloalquilo, aminoalquilo, dialquilamino, hidroxilo, alcóxido, fenilo, mercapto, halógeno, nitro, ciano y alcoxicarbonilo. Opcionalmente, dicho grupo arilo puede incluir en su esqueleto uno o más heteroátomos seleccionados entre nitrógeno, oxígeno o azufre.
En la presente invención, el grupo [MLn] es un compuesto de coordinación, en donde M es un metal de transición y L son ligandos de coordinación, enlazados entre sí mediante enlaces de coordinación, más débiles que los enlaces covalentes. El compuesto de coordinación puede tener uno o más centros metálicos, es decir, metales de transición.
Se entiende por "metal de transición" cualquier elemento del bloque d (i.e. grupos lll-XII) de la tabla periódica de los elementos químicos. Preferiblemente, el metal de transición M se selecciona entre el grupo que consiste en rutenio (Ru), osmio (Os), rodio (Rh), iridio (Ir), paladio (Pd), platino (Pt), plata (Ag) y oro (Au). Más preferiblemente, el metal de transición M es rutenio.
Dichos ligandos L pueden ser neutros, catiónicos o aniónicos, y pueden presentar un carácter o dador o π aceptor en función del metal al que se coordinan y el estado de oxidación de este, además de por su propia naturaleza electrónica. Adicionalmente, dichos ligandos pueden presentar diferentes hapticidades (i.e. número de átomos de un ligando enlazados a un centro metálico), pudiendo comportarse, por ejemplo, como ligandos monohapto (e.g. rj1-alilo), dihapto (e.g. rj2-butadieno), trihapto (e.g.
Figure imgf000012_0001
o tetrahapto (e.g. n.4-butadieno).
El valor n correspondiente al número de ligandos enlazados al metal de transición central depende tanto de la hapticidad de estos, como del estado de oxidación del metal. Preferiblemente, n tiene un valor comprendido entre 1 y 4. De manera particular, cuando n es superior a 1 , dichos n ligandos de coordinación L pueden ser iguales o diferentes.
Ejemplos de grupos [MLn] incluyen, pero no se limitan a, [RuCI2(p-cimeno)]2, [RhCI(COD)]2, [lrCI(COD)]2, [PdCI(n3-alilo)]2 o [AuCI(SMe2)]. La abreviatura "COD" corresponde al ligando 1 ,5-ciclooctadieno.
En una realización preferida, el soporte de un material de carbono sobre el que se ancla el catalizador de un metal de transición es un derivado de grafeno que se selecciona entre óxido de grafeno reducido (rGO) u óxido de grafeno oxidado. Más preferiblemente, dicho soporte de un material de carbono es óxido de grafeno reducido (rGO). De forma particular, el catalizador de un metal de transición anclado sobre un soporte de un material de carbono utilizado en el presente procedimiento comprende un compuesto de fórmula general (I):
Figure imgf000013_0001
en donde:
- A es benzopireno,
- X es [-CH2-]m en donde m es igual a 1 ,
B es /V-metilimidazol, y
[ML] es un compuesto de coordinación, en donde M es rutenio, n es igual a 3, y dichos 3 ligandos de coordinación L se seleccionan entre el grupo que consiste en Cl, Br, I, p-cimeno, piridina, ciclopentadienilo, 1 ,5-ciclooctadieno, r -alilo, dimetilsulfuro y dimetilsulfóxido y cualquiera de sus combinaciones, en donde dicho soporte de un material de carbono es óxido de grafeno reducido y dicho compuesto de fórmula general (I) están unidos mediante enlaces no covalentes.
Respecto a dicho al menos un alcohol utilizado en la etapa a) del procedimiento de la invención para la producción y almacenamiento de hidrógeno mediante deshidrogenación catalítica, este es preferiblemente un alcohol con un número de átomos de carbono comprendido entre 1 y 10; preferiblemente, dicho al menos un alcohol tiene un número de átomos de carbono comprendido entre 1 y 8. Más preferiblemente, dicho alcohol se selecciona entre metanol, etanol, propanol, isopropanol y alcohol bencílico, y todavía más preferiblemente, dicho alcohol es metanol.
El término "silano", en el contexto de la presente invención, hace referencia a cualquier organosilano, polisilano o silano lineal o ramificado, que puede presentar uno o más sustituyentes. Así mismo, el término "silil" hace referencia a un radical correspondiente a un silano, y por lo tanto, se considera que está incluido dentro del grupo de los silanos.
Preferiblemente, dicho al menos un silano es un compuesto de fórmula SiR1 R2R3H, en donde R1 , R2 y R3 son iguales o diferentes y se seleccionan entre el grupo que consiste en hidrógeno, alquilo opcionalmente sustituido, alquenilo opcionalmente sustituido, alquinilo opcionalmente sustituido, arilo opcionalmente sustituido, heteroarilo opcionalmente sustituido, cicloalquilo opcionalmente sustituido, heterocicloalquilo opcionalmente sustituido, sililo opcionalmente sustituido y polisililo opcionalmente sustituido. Dichos uno o más sustituyentes se seleccionan independientemente entre el grupo que consiste en alquilo, alquenilo, alquinilo, arilo, heteroarilo, cicloalquilo, heterocicloalquilo, acilo, carboxilo, haluro, hidroxilo, éter, nitro, ciano, amido, amino, acilamido, acilóxido, tiol, tioéter, sulfóxido, sulfonilo, tioamido, sulfonamido y sililo.
Más preferiblemente, dicho al menos un silano es un compuesto de fórmula SiR1 R2R3H, en donde R1 y R2 son grupos alquilo iguales o diferentes, opcionalmente sustituidos, y R3 es un grupo arilo, opcionalmente sustituido, en donde dichos uno o más sustituyentes se seleccionan indepedientemente entre el grupo que consiste en alquillo, alquenilo, alquinilo, arilo, heteroarilo, cicloalquilo, heterocicloalquilo, acilo, carboxilo, haluro, hidroxilo, éter, nitro, ciano, amido, amino, acilamido, acilóxido, tiol, tioéter, sulfóxido, sulfonilo, tioamido, sulfonamido y sililo.
El procedimiento para la producción y almacenamiento de hidrógeno mediante deshidrogenación catalítica puede contener una etapa adicional posterior, destinada a recuperar el catalizador, y regenerar el hidrosilano inicial a partir del silil-éter obtenido como resultado del procedimiento de la invención mediante una reacción de reducción con un agente reductor. Esta regeneración del hidrosilano inicial supone también el almacenamiento de una nueva cantidad de hidrógeno en forma de nuevos enlaces químicos, que se podrá liberar posteriormente cuando sea necesario, por medio del presente procedimiento de deshidrogenación catalítica.
Preferiblemente, dicho procedimiento de la presente invención comprende una etapa adicional posterior (i.e. tras la finalización de la reacción de deshidrogenación catalítica), que comprende las siguientes sub-etapas: i) separar el catalizador de un metal de transición anclado sobre un soporte de un material de carbono del crudo resultante de la etapa b), y
ii) someter la fracción líquida del crudo separada en la etapa i) a una reacción de reducción con al menos un agente reductor.
La separación del catalizador de la subetapa i) puede llevarse a cabo mediante filtración, decantación, o cualquier otro método de separación conocido en este sector de la técnica adecuado para este fin. Se ha observado que, sorprendentemente, los catalizadores de un metal de transición anclado sobre un soporte de un material de carbono recuperados a través de la etapa (i) se pueden reciclar y reutilizar posteriormente en al menos 9 reacciones de deshidrogenación catalítica adicionales, sin sufrir ninguna pérdida de actividad catalítica. Se considera que este efecto beneficioso se ve influido por el hecho de que, al tratarse de catalizadores heterogéneos soportados, se minimizan sus procesos de desactivación, un aspecto también favorecido por el hecho de que dichas reacciones de hidrogenación catalítica se llevan a cabo a temperaturas bajas.
Además, se ha confirmado que las condiciones experimentales suaves de la deshidrogenación catalítica tampoco afectan a las propiedades del soporte de material de carbono al que se encuentra anclado el catalizador de un metal de transición. A modo ilustrativo, en la Fig. 1 se muestran imágenes de microscopía electrónica de transmisión de alta resolución (HRTEM) de un soporte de óxido de grafeno reducido (rGO) utilizado en el anclaje de uno de los catalizadores de rutenio utilizados en el presente procedimiento. Concretamente, la Fig. 1a muestra la morfología de dicho óxido de grafeno reducido antes del uso del catalizador anclado en un proceso de deshidrogenación catalítica, mientras que la Fig. 1 b muestra la morfología del mismo óxido de grafeno reducido, tras su uso en 10 ciclos catalíticos. Estas imágenes de microscopía confirman que no existe ningún cambio en la morfología de dicho óxido de grafeno reducido.
Por otro lado, dicho al menos un agente reductor de la subetapa ii) se selecciona, preferiblemente, entre el grupo que consiste en LiAIH4, LiH, NaBH4, DIBAL-H y cualquiera de sus mezclas. Más preferiblemente, dicho agente reductor es LiAIH4.
Un segundo aspecto de la invención se refiere al uso de un catalizador de un metal de transición anclado sobre un soporte de un material de carbono para la obtención de hidrógeno mediante reacciones de deshidrogenación catalítica.
Preferiblemente, en dicho uso, dicho catalizador de un metal de transición anclado sobre un soporte de un material de carbono comprende un compuesto de fórmula general (I):
Figure imgf000015_0001
en donde:
- A es un hidrocarburo aromático policíclico, - X es un fragmento espaciador que se selecciona entre el grupo que consiste en [-CH2-]m, [-CH2-0-]m, [-arilo-CH2-]m y [-CH2-NH-]m, en donde m tiene un valor comprendido entre 1 y 4,
B es un grupo /V-heterocíclico con un tamaño de anillo comprendido entre 5 y 8 miembros, que consisten en átomos de carbono y al menos un átomo de nitrógeno, [ML] es un compuesto de coordinación, en donde M es un metal de transición, L es un ligando de coordinación, y n tiene un valor comprendido entre 1 y 6, y en donde dicho soporte de un material de carbono y dicho compuesto de fórmula general (I) están unidos mediante enlaces no covalentes.
De forma todavía más preferida, el hidrógeno obtenido por medio del uso de la invención aquí descrito se puede utilizar en una celda de combustible o un motor de combustión. Resultará evidente para el experto en la materia que existen numerosas alternativas para suministrar el hidrógeno producido mediante la reacción de deshidrogenación catalítica de la presente invención a dicha celda de combustible o dicho motor de combustión, como por ejemplo la conexión mediante conductos y/o tubos, que preferiblemente pueden contener válvulas para regular el flujo de hidrógeno que entra en dicha celda o motor.
A lo largo de la descripción y de las reivindicaciones, la palabra "comprende" y las variaciones de la palabra no pretenden excluir otras características técnicas, aditivos, componentes o etapas. Los objetos, ventajas y características adicionales de la invención serán evidentes para los expertos en la materia tras el análisis de la descripción, o se pueden aprender a partir de los ejemplos de la invención. Los siguientes ejemplos y dibujos se proporcionan de modo ilustrativo y no pretenden en ningún caso ser limitantes de la presente invención. Adicionalmente, la invención cubre todas las posibles combinaciones de las formas de realización particulares y preferidas del presente documento.
Breve descripción de los dibujos
Fig. 1 - Imágenes de microscopía electrónica de transmisión de alta resolución (HRTEM) de un soporte de óxido de grafeno reducido (rGO) utilizado para el anclaje de uno de los catalizadores de rutenio de la presente invención. La Fig. 1a muestra la morfología de dicho óxido de grafeno reducido antes del uso del catalizador anclado en un proceso de deshidrogenación catalítica, mientras que la Fig. 1 b muestra la morfología del mismo óxido de grafeno reducido, tras su uso en 10 ciclos catalíticos. Ejemplos
Evaluación de deshidrogenación catalítica de silanos y alcoholes utilizando un catalizador de rutenio soportado sobre óxido de grafeno reducido (sistema Ru-rGO)
Condiciones de reacción:
- 1 ,0 mmol de silano (PhMe2SiH, PhSiH3 o Ph2SiH2)
- 0,05% molar de catalizador de rutenio soportado sobre óxido de grafeno reducido (rGO) con la siguiente estructura:
Figure imgf000017_0001
rGO-Ru-NHC
en donde los moles de catalizador considerados no incluyen el soporte de óxido de grafeno reducido.
- 1 mi de alcohol ROH (MeOH, EtOH o n-BuOH)
- T = 30°C
- t = 10 minutos
El procedimiento consiste en añadir la cantidad correspondiente de silano sobre una disolución del catalizador de rutenio en el alcohol ROH correspondiente a 30°C, y mantener la reacción durante 10 minutos.
En la Tabla 1 se indican a continuación los resultados obtenidos con los silanos y alcoholes arriba descritos, en donde se observó una conversión prácticamente cuantitativa del silano al correspondiente silil-éter en todos los casos:
Figure imgf000018_0001
Tabla 1
Figure imgf000018_0002
El rendimiento del producto indicado en paréntesis se determinó mediante resonancia magnética nuclear de protón (RMN-'/-/), utilizando 1 ,3, 5-trimetoxi benceno como estándar externo.
Procedimiento de recuperación del silano PhMe2SiH mediante hidrogenación/reducción
A continuación se ilustra un ejemplo de reacción de hidrogenación/reducción para la regeneración del silano utilizado como producto de partida (i.e. LOHC silano-alcohol) en el procedimiento de la presente invención. Dicha reacción se basa en la reducción del silil-éter formado durante la deshidrogenación catalítica.
Me ,-. Me
i Et20 i
Ph— Si-OMe + LiAlhL Ph— Si- H + MeOH
I 4 16 h I
Me 25°C Me
Se añade LiAIH4 (79,9 mg, 2 mmol) sobre una disolución de PhMe2SiOMe (200 μΙ, 1 mmol) en dietiléter, y se agita la suspensión durante 16 horas a temperatura ambiente. A continuación, se neutraliza el exceso de LiAIH4 mediante la adición de HCI 1 M (10 mi), y se lleva a cabo una extracción con diclorometano. Posteriormente, el conjunto de fases orgánicas se lleva a sequedad, aislando así el silano PhMe2SiH (90% rendimiento).

Claims

REIVINDICACIONES
1. Procedimiento para la producción y almacenamiento de hidrógeno mediante deshidrogenación catalítica que comprende: a) poner en contacto una cantidad de un catalizador de un metal de transición anclado sobre un soporte de un material de carbono seleccionado entre el grupo que consiste en agregados de carbono, fibras de carbono, nanotubos de carbono, grafeno y derivados de grafeno, con una cantidad de al menos un alcohol, y b) añadir una cantidad de al menos un silano sobre la mezcla de la etapa a), en donde como resultado de dicha etapa b) dicho al menos un silano se convierte en hidrógeno y al menos un silil-éter, caracterizado por que el catalizador de un metal de transición anclado sobre un soporte de un material de carbono comprende un compuesto de fórmula general (I):
Figure imgf000019_0001
en donde:
- A es un hidrocarburo aromático policíclico,
- X es un fragmento espaciador que se selecciona entre el grupo que consiste en [-CH2-]m, [-CH2-0-]m, [-arilo-CH2-]m y [-CH2-NH-]m, en donde m tiene un valor comprendido entre 1 y 4,
B es un grupo /V-heterocíclico con un tamaño de anillo comprendido entre 5 y 8 miembros, que consisten en átomos de carbono y al menos un átomo de nitrógeno, [ML] es un compuesto de coordinación, en donde M es un metal de transición, L es un ligando de coordinación, y n tiene un valor comprendido entre 1 y 6, y en donde dicho soporte de un material de carbono y dicho compuesto de fórmula general (I) están unidos mediante enlaces no covalentes.
2. Procedimiento de acuerdo con la reivindicación 1 , en donde dicho grupo A se selecciona entre el grupo que consiste en antraceno, benzopireno, criseno, coroneno, naftaceno, pentaceno, naftaleno, fenantreno, pireno y trifenileno.
3. Procedimiento de acuerdo con cualquiera de las reivindicaciones 1 -2, en donde X es [- CH2-]m, en donde m tiene un valor comprendido entre 1 y 4.
4. Procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, en donde el grupo B es un grupo /V-heterocíclico seleccionado entre piridina, pirimidina, pirazolina, quinolina, isoquinolina, pirrol, indol, purina, imidazol, pirazol y tiazol.
5. Procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, en donde el grupo B es un grupo imidazol opcionalmente sustituido por un grupo alquilo C Ci0, o por un grupo arilo.
6. Procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, en donde M es un metal de transición seleccionado entre el grupo que consiste en rutenio, osmio, rodio, iridio, paladio, platino, plata y oro.
7. Procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, en donde M es rutenio.
8. Procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, en donde cuando n es superior a 1 , dichos n ligandos de coordinación L son iguales o diferentes.
9. Procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, en donde:
- A es benzopireno,
- X es [-CH2-]m, en donde m es igual a 1 ,
B es /V-metilimidazol, y
[ML] es un compuesto de coordinación en donde M es rutenio, n es igual a 3, y dichos 3 ligandos de coordinación L se seleccionan entre el grupo que consiste en Cl, Br, I, p-cimeno, piridina, ciclopentadienilo, 1 ,5-ciclooctadieno, r -alilo, dimetilsulfuro, dimetilsulfóxido y cualquiera de sus combinaciones,
10. Procedimiento de acuerdo cualquiera de las reivindicaciones anteriores, en donde dicho soporte de un material de carbono es un derivado de grafeno seleccionado entre óxido de grafeno reducido u óxido de grafeno oxidado.
1 1. Procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, en donde dicho soporte de un material de carbono es óxido de grafeno reducido.
12. Procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, en donde dicho al menos un silano es un compuesto de fórmula SiR1 R2R3H, en donde R1 , R2 y R3 son iguales o diferentes y se seleccionan entre el grupo que consiste en hidrógeno, alquilo opcionalmente sustituido, alquenilo opcionalmente sustituido, alquinilo opcionalmente sustituido, arilo opcionalmente sustituido, heteroarilo opcionalmente sustituido, cicloalquilo opcionalmente sustituido, heterocicloalquilo opcionalmente sustituido, sililo opcionalmente sustituido y polisililo opcionalmente sustituido, en donde dichos uno o más sustituyentes se seleccionan indepedientemente entre el grupo que consiste en alquilo, alquenilo, alquinilo, arilo, heteroarilo, cicloalquilo, heterocicloalquilo, acilo, carboxilo, haluro, hidroxilo, éter, nitro, ciano, amido, amino, acilamido, acilóxido, tiol, tioéter, sulfóxido, sulfonilo, tioamido, sulfonamido y sililo.
13. Procedimiento de acuerdo con las reivindicaciones anteriores, en donde dicho al menos un silano es un compuesto de fórmula SiR1 R2R3H, en donde R1 y R2 son grupos alquilo iguales o diferentes, opcionalmente sustituidos, y R3 es un grupo arilo, opcionalmente sustituido, en donde dichos uno o más sustituyentes se seleccionan indepedientemente entre el grupo que consiste en alquillo, alquenilo, alquinilo, arilo, heteroarilo, cicloalquilo, heterocicloalquilo, acilo, carboxilo, haluro, hidroxilo, éter, nitro, ciano, amido, amino, acilamido, acilóxido, tiol, tioéter, sulfóxido, sulfonilo, tioamido, sulfonamido y sililo.
14. Procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, en donde dicho al menos un alcohol es metanol.
15. Procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, que comprende una etapa adicional posterior, que comprende: i) separar el catalizador de un metal de transición anclado sobre un soporte de un material de carbono del crudo resultante de la etapa b), y
ii) someter la fracción líquida del crudo separada en la etapa i) a una reacción de reducción con al menos un agente reductor.
16. Procedimiento de acuerdo con la reivindicación 15, en donde dicho al menos un agente reductor se selecciona entre el grupo que consiste en LiAIH4, LiH, NaBH4, DIBAL-H y cualquiera de sus mezclas.
17. Procedimiento de acuerdo con reivindicaciones anteriores, que se lleva a cabo a una temperatura comprendida entre aproximadamente -25°C y aproximadamente 40°C.
18. Procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, en donde dicho catalizador de un metal de transición anclado sobre un soporte de un material de carbono está presente en una relación molar respecto a dicho al menos un silano igual o inferior a 1 ,5 mmol : 100 mmol, respectivamente, en donde los moles de catalizador no incluyen el soporte de un material de carbono.
19. Procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, en donde dicho catalizador de un metal de transición anclado sobre un soporte de un material de carbono tiene un valor de TOF para la reacción de deshidrogenacion catalítica de silanos comprendido entre 1 ,90 s"1 y 18,00 s'
PCT/ES2018/070487 2017-07-11 2018-07-06 Procedimiento para la producción y almacenamiento de hidrógeno mediante deshidrogenación catalítica, y uso de un catalizador de un metal de transición anclado sobre un soporte de un material de carbono para la obtención de hidrógeno mediante reacciones de deshidrogenación catalítica WO2019012171A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201730918 2017-07-11
ES201730918A ES2651161B2 (es) 2017-07-11 2017-07-11 Procedimiento para la producción y almacenamiento de hidrógeno mediante deshidrogenación catalítica, y uso de un catalizador de un metal de transición anclado sobre un soporte de un material de carbono para la obtención de hidrógeno mediante reacciones de deshidrogenación catalítica

Publications (1)

Publication Number Publication Date
WO2019012171A1 true WO2019012171A1 (es) 2019-01-17

Family

ID=60993200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070487 WO2019012171A1 (es) 2017-07-11 2018-07-06 Procedimiento para la producción y almacenamiento de hidrógeno mediante deshidrogenación catalítica, y uso de un catalizador de un metal de transición anclado sobre un soporte de un material de carbono para la obtención de hidrógeno mediante reacciones de deshidrogenación catalítica

Country Status (2)

Country Link
ES (1) ES2651161B2 (es)
WO (1) WO2019012171A1 (es)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011098614A1 (en) * 2010-02-15 2011-08-18 Universite De La Mediterranee Aix-Marseille Ii Phosphine-oxide catalyzed process of production of hydrogen from silylated derivatives as hydrogen carrier
KR20120119438A (ko) * 2011-04-21 2012-10-31 고려대학교 산학협력단 연료전지적용을 위한 실란기반 수소저장물질 및 이를 이용한 수소의 발생 및 재생 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700072B2 (en) * 2005-08-23 2010-04-20 Purdue Research Foundation Catalytic hydrogen production from hydrolytic oxidation of organosilanes
ES2538407B1 (es) * 2013-11-18 2016-04-13 Universitat Jaume I De Castelló Soporte de catalizadores en derivados de grafeno

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011098614A1 (en) * 2010-02-15 2011-08-18 Universite De La Mediterranee Aix-Marseille Ii Phosphine-oxide catalyzed process of production of hydrogen from silylated derivatives as hydrogen carrier
KR20120119438A (ko) * 2011-04-21 2012-10-31 고려대학교 산학협력단 연료전지적용을 위한 실란기반 수소저장물질 및 이를 이용한 수소의 발생 및 재생 방법

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
D. WECHSLER; Y. CUI; D. DEAN; B. DAVIS; P. G. JESSOP, J. AM. CHEM. SOC., vol. 130, 2008, pages 17195 - 17203
DATABASE WPI Section Ch Week 201318, Derwent World Patents Index; Class E11, AN 2012-P68907, XP002786836 *
DAVID VENTURA-ESPINOSA ET AL: "Catalytic Dehydrogenative Coupling of Hydrosilanes with Alcohols for the Production of Hydrogen On-demand: Application of a Silane/Alcohol Pair as a Liquid Organic Hydrogen Carrier", CHEMISTRY - A EUROPEAN JOURNAL, vol. 23, no. 45, 10 August 2017 (2017-08-10), DE, pages 10815 - 10821, XP055529873, ISSN: 0947-6539, DOI: 10.1002/chem.201700243 *
DAVID VENTURA-ESPINOSA ET AL: "Catalytic Hydrogen Production by Ruthenium Complexes from the Conversion of Primary Amines to Nitriles: Potential Application as a Liquid Organic Hydrogen Carrier", CHEMISTRY - A EUROPEAN JOURNAL, vol. 22, no. 49, 5 December 2016 (2016-12-05), DE, pages 17758 - 17766, XP055529875, ISSN: 0947-6539, DOI: 10.1002/chem.201603423 *
JUAN F. BLANDEZ ET AL: "Copper Nanoparticles Supported on Doped Graphenes as Catalyst for the Dehydrogenative Coupling of Silanes and Alcohols", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, 5 September 2014 (2014-09-05), DE, pages n/a - n/a, XP055527210, ISSN: 1433-7851, DOI: 10.1002/anie.201405669 *
P. PREUSTER; C. PAPP, ACC. CHEM. RES., vol. 50, no. 1, 2017, pages 74 - 85
R. H. CRABTREE, ENERGY ENVIRON. SCI., vol. 1, 2008, pages 134 - 138
V. BLAGOJEVIC; D. MINIB; J. G. NOVAKOVIC; D. MINIÉ, HYDROG. ENERGY- CHALLENGES PERSPECT., 2012, pages 3 - 28
WENMIN WANG ET AL: "Mechanistic insights into hydrogen generation for catalytic hydrolysis and alcoholysis of silanes with high-valent oxorhenium (v) complexes", CATALYSIS SCIENCE & TECHNOLOGY, vol. 5, no. 4, 7 January 2015 (2015-01-07), United Kingdom, pages 2157 - 2166, XP055527246, ISSN: 2044-4753, DOI: 10.1039/C4CY01259C *

Also Published As

Publication number Publication date
ES2651161B2 (es) 2018-08-13
ES2651161A1 (es) 2018-01-24

Similar Documents

Publication Publication Date Title
Ji et al. Oxygen vacancy‐rich Ni/NiO@ NC nanosheets with Schottky heterointerface for efficient urea oxidation reaction
Shah et al. Exploring Fe‐Nx for peroxide reduction: template‐free synthesis of Fe‐Nx traumatized mesoporous carbon nanotubes as an ORR catalyst in acidic and alkaline solutions
Li et al. Nitrogen‐doped cobalt oxide nanostructures derived from cobalt–alanine complexes for high‐performance oxygen evolution reactions
Chen et al. Catalyzed hydrolysis of tetrahydroxydiboron by graphene quantum dot-stabilized transition-metal nanoparticles for hydrogen evolution
Niu et al. Construction of Ni‐Co‐Fe hydr (oxy) oxide@ Ni‐Co layered double hydroxide yolk‐shelled microrods for enhanced oxygen evolution
Li et al. Efficient Solar‐Driven Nitrogen Fixation over Carbon–Tungstic‐Acid Hybrids
Qiu et al. Favorable amorphous− crystalline Iron oxyhydroxide phase boundaries for boosted alkaline water oxidation
KR20080045683A (ko) 수소 원료로서의 실란 화합물
Zhang et al. A feasible synthesis of Mn3 (PO4) 2@ BSA nanoflowers and its application as the support nanomaterial for Pt catalyst
CN102231449B (zh) 一种基于量子点、二氧化钛和酶的光电化学生物燃料电池的制备方法
Desalegn et al. Highly Efficient g‐C3N4 Nanorods with Dual Active Sites as an Electrocatalyst for the Oxygen Evolution Reaction
CN110010911B (zh) 一种双掺杂多孔石墨烯阴极非铂催化剂及其制备方法
CN103111311A (zh) 一种复合纳米材料及其制备方法
KR20130051434A (ko) 수소 캐리어로서 실릴화된 유도체로부터의 수소의 산화 포스핀 촉매된 제조 방법
Fonseca et al. Electro-and photoelectro-catalysts derived from bimetallic amorphous metal–organic frameworks
Wang et al. Facile Conversion of Radish to Nitrogen‐Doped Mesoporous Carbon as Effective Metal‐Free Oxygen Reduction Electrocatalysts
Li et al. Single-atom-like B-N3 sites in ordered macroporous carbon for efficient oxygen reduction reaction
CN105884745B (zh) 镍-卡宾双核配合物及其制备方法和应用
Wang et al. Optimizing electronic and geometrical structure of vanadium doped cobalt phosphides for enhanced electrocatalytic hydrogen evolution
ES2651161B2 (es) Procedimiento para la producción y almacenamiento de hidrógeno mediante deshidrogenación catalítica, y uso de un catalizador de un metal de transición anclado sobre un soporte de un material de carbono para la obtención de hidrógeno mediante reacciones de deshidrogenación catalítica
Dong et al. Immobilization of iron phthalocyanine on MOF-derived N-doped carbon for promoting oxygen reduction in zinc-air battery
Zhou et al. Flower‐like Mesoporous Carbon with Cobalt Sulfide Nanocrystalline as Efficient Bifunctional Electrocatalysts for Zn‐Air Batteries
CN108842160A (zh) 一种电解水制氢能源用钌掺杂铁镍合金催化剂及制备方法
Li et al. Pt Decorated Ni− Ni (OH) 2 Nanotube Arrays for Efficient Hydrogen Evolution Reaction
CN102723503A (zh) 直接甲醇燃料电池阳极催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18792409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18792409

Country of ref document: EP

Kind code of ref document: A1