WO2019011864A1 - Underwater breathing assembly - Google Patents

Underwater breathing assembly Download PDF

Info

Publication number
WO2019011864A1
WO2019011864A1 PCT/EP2018/068555 EP2018068555W WO2019011864A1 WO 2019011864 A1 WO2019011864 A1 WO 2019011864A1 EP 2018068555 W EP2018068555 W EP 2018068555W WO 2019011864 A1 WO2019011864 A1 WO 2019011864A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
ring
pulmonary
assembly according
cage
Prior art date
Application number
PCT/EP2018/068555
Other languages
French (fr)
Inventor
Pierre CLAEYSSEN
Original Assignee
Apa Productions Sprl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apa Productions Sprl filed Critical Apa Productions Sprl
Publication of WO2019011864A1 publication Critical patent/WO2019011864A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • B63C11/18Air supply
    • B63C11/184Artificial gills

Definitions

  • the invention relates to the field of respiratory equipment allowing one or more living beings to breathe underwater, either freshwater or saline non-stagnant environments, for example at sea, in the river or in a lake.
  • Underwater diving for example, recreational diving, diving rescue or search teams, lake or river, or diving technical personnel intervention on equipment submarines, is currently using a self-contained breathing apparatus comprising one or more compressed air cylinders, connected to a regulator allowing the diver to breathe air at ambient pressure.
  • the need for decompression stops is mainly explained by the behavior of the nitrous oxide breathed in the human biological tissue. Indeed, the air breathed on the surface of the earth, and therefore also contained in the compressed air bottles, contains around 80% of nitrogen. This nitrogen penetrates and remains longer in the biological tissue than oxygen, since it is neither metabolized nor "transported", that is to say adsorbed by proteins such as hemoglobin. During the ascent of the diver, the pressure to which his body is subjected gradually decreases, and the nitrogen contained in the cells, organs or arteries may then form bubbles that can lead to the damage of certain organs and be potentially fatal.
  • compressed air in the cylinders may be more concentrated in oxygen or contain added gases, such as rare gases, to form tri-gas mixtures such as heliox or trimix.
  • gases such as rare gases
  • the separator must also have a diameter of about twenty-five centimeters and a length of about fifty centimeters, not counting the volume of air storage, which makes the equipment at least as bulky as a scuba.
  • the use of a sensor electronics also decreases the reliability and longevity of such equipment, which presents a significant risk for a diver.
  • the present invention provides for this purpose an underwater breathing assembly comprising a circulation ring of an oxygen-carrying liquid, a branchial cage and a pulmonary chamber with a breathing mouth, said ring passing through the gill cage and the pulmonary chamber.
  • the inventive step involved in this invention lies in the audacity of having wanted to combine, in a mechanical, chemical and electronic way, living organ simulators of humans and fish.
  • the circulation ring is permeable to oxygen and the pulmonary chamber is arranged to cause pervaporation of oxygen, carried by the oxygen-carrying liquid, through the permeable ring.
  • the branchial cage is arranged to allow the diffusion of oxygen from the subaquatic medium to the oxygen-carrying liquid, through the permeable ring.
  • the applicant has had the inventive idea of applying his invention not only to diving equipment for an individual diver, but also to the supply of breathable air underwater spaces to accommodate aerobic life.
  • the invention therefore also relates to an underwater enclosure for natural life characterized in that it is connected to the breathing mouth of at least one assembly as claimed, to be supplied with breathable air.
  • Underwater enclosure for natural life means here an immersed residential enclosure, that is to say a volume separated in a sealed manner from the medium in which it is immersed and in which at least one living being, can live in conditions similar to terrestrial conditions, that is to say, breathing atmospheric air, the living being not immersed and having sufficient breathable air for its activities.
  • the notion of being alive here can be extended to humans, animals and plants. Natural life can also be called aerobic life or outdoor living.
  • the branchial cage, the pulmonary chamber and the circulation ring of an oxygen-carrying liquid passing through them form a real unit for extracting a breathable gas from the aquatic environment towards the enclosure for natural life.
  • a breathable gas that is to say containing proportions of nitrogen and oxygen that a human being can breathe without risk of hypoxia or hyperoxia
  • the circulation ring is also permeable to dinitrogen.
  • nitrogen and oxygen can firstly spread from the aquatic environment to the oxygen-carrying liquid, and secondly be pervaporized at the level of the pulmonary chamber.
  • oxygen-carrying liquid is meant a liquid, preferably an aqueous solution, in which the oxygen is not simply dissolved, but actively adsorbed by a substance having a strong interaction with oxygen, that is to say by a so-called “cooperative" mechanism.
  • An oxygen-carrying liquid may for example be blood or an aqueous solution comprising hemoglobin or any other protein capable of binding or adsorbing several oxygen molecules. Hemoglobin in the blood can transport 70 times more oxygen than the amount of oxygen simply dissolved in the blood.
  • Other substances, whether or not proteins, of natural or synthetic origin, are, for example, myoglobin, hemocyanin, erythrocruorine or perfluorodichlorooctane. More generally, the carrier liquid therefore comprises at least one component capable of adsorbing oxygen.
  • the oxygen-carrying liquid in the same way as blood, can also dissolve other gases such as nitrogen or carbon dioxide, and provide passive transport in dissolved form.
  • oxygen and oxygen here denote indifferently the molecule consisting of two oxygen atoms and 0 2 chemical formula.
  • nitrogen and diazote denote here indifferently the molecule consisting of two nitrogen atoms and chemical formula N 2 .
  • the circulation ring generally designates a closed circuit, without particular limitation of shape or material.
  • the circuit can be divided, on certain portions of its length, into several parallel channels or sub-circuits which then meet.
  • the branchial cage is a part of the assembly reproducing at least in part the features of a fish gill.
  • a gill is a member intended to be directly in contact with a stream of water from the underwater environment in which the fish is immersed and having, in a small volume, a large vascularized surface.
  • the blood of The vessels capture dissolved gases in the water and release carbon dioxide dissolved in the blood by osmotic diffusion through the permeable membrane formed by the vascular walls.
  • the osmotic diffusion refers to the phenomenon of element transfer between two solutions separated by a semi-permeable membrane, the elements diffusing from the most concentrated solution to the least concentrated solution until reaching an equilibrium.
  • permeable and semi-impervious are used here indifferently to designate the fact that the membrane allows only certain elements to pass, in this case gases such as oxygen or dinitrogen.
  • a pulmonary chamber here designates a sealed compartment that can have any shape, does not contain liquid water and at least partially mimics the functionalities of a lung.
  • the pulmonary chamber designated here is particularly related to a pulmonary cavity during its expiration phase.
  • a lung is characterized by a large alveolar surface presenting a very thin wall traversed by blood capillaries.
  • the alveolar wall and the walls of the capillaries play the role of permeable membrane allowing gaseous exchanges between the blood and the ambient air.
  • the ambient air pressure increases in the lung cavity, promoting the diffusion of gases through the permeable membrane and their dissolution in the blood.
  • the ambient air pressure decreases and favors the opposite phenomenon, that is to say the desorption of the gases through the permeable membrane to the pulmonary cavity.
  • the mouth of breathing is here to take in the broad sense of an opening.
  • the pulmonary chamber is arranged so that a human can suck the gaseous content. It can for example be connected to a hose having a nozzle that a plunger can place in his mouth, as a regulator used in self-contained suits. It can also be arranged to supply breathable air space where several people can reside without wearing on them special equipment, such as the cabin of a submarine or a research station or underwater capsule.
  • the connection between the pulmonary chamber and the natural living chamber can be likened to a vent, possibly provided with means for circulating the air to the enclosure.
  • the circulation of the oxygen-carrying liquid is provided by a pump.
  • FIG. 1 is a block diagram of the set of the invention
  • Figure 2 is a schematic top view of the gill cage of the assembly of the invention.
  • FIG. 3 is a schematic side view of the branchial cage of FIG.
  • Figure 4 is a schematic side view of the pulmonary chamber of the invention.
  • Figure 5 is a schematic top view of an embodiment of the enclosure of the invention connected to an assembly of the invention
  • Figure 6 is a top view of an enclosure of the invention connected to several sets of the invention.
  • FIG. 7 is a perspective view of a gas extraction unit of FIG. 6,
  • Figure 8 is a diagram of the assembly of the invention connected to an air recycler
  • FIG. 9 is an exploded perspective view of another embodiment of the assembly of the invention, and Figures 10a and 10b illustrate the operation of the assembly of Figure 9.
  • the underwater breathing assembly 1 comprises a ring 2 for circulating an oxygen-carrying liquid 3.
  • the ring 2 passes through a gill cage 4 and a pulmonary caisson 5 having a breathing mouth 6
  • the ring 2 also passes through a pump 7.
  • the pump 7 makes it possible to ensure the circulation of the oxygen-carrying liquid 3 in the ring 2.
  • the pump 7 may be any type of pump which is continuous, can operate under water or is sufficiently protected to operate under water at a wide range of pressures.
  • a small pump is sufficient, which can be powered by a low-power battery, such as a cardiac simulator.
  • the ring 2 is divided into two sub-circuits 2a and 2b outside the branchial cage 4, and meet at the same level after having each traversed a lobe of the branchial cage 4.
  • the circuits 2a and 2b divide and gather here outside the branchial cage. It is nevertheless conceivable that the division and / or the gathering are done inside the cage.
  • the oxygen-carrying liquid 3 flowing in the ring 2 then in the sub-circuits 2a and 2b, enters the branchial cage 4.
  • This cage being an open space on the aquatic medium, the circuits 2a and 2b are directly in contact with the aquatic environment.
  • Subcircuits 2a and 2b being made of a permeable or semi-permeable membrane, a diffusion of the dissolved gases in the aquatic medium to the oxygen-carrying liquid 3 takes place through the permeable membrane, if the carrier liquid Oxygen has a lower gas concentration than the aquatic environment.
  • the gases in question are mainly dinitrogen and oxygen. There may also be traces of other gases.
  • the oxygen carrier liquid comprises at least one component capable of adsorbing oxygen, for example hemoglobin.
  • the oxygen which has diffused and which has dissolved in the liquid 3 is adsorbed on the hemoglobin.
  • the concentration of oxygen simply dissolved in the liquid thus remains low and the oxygen diffusion balance across the membrane is less rapidly reached.
  • the presence of hemoglobin in the liquid 3 thus allows the circuit to carry a greater quantity of oxygen than would have been possible thanks to the simple phenomenon of dissolution of the gases, the oxygen being here transported both in the form of dissolved and adsorbed to hemoglobin. This also makes it possible to transport an oxygen / dinitrogen ratio a priori higher than the ratio present in the underwater medium, this ratio being thus similar to that transported by the blood.
  • the oxygen-carrying liquid 3 flowing in the ring 2 is charged with dissolved and / or adsorbed gases.
  • the circuits 2a and 2b are here represented arranged in coils, symmetrically.
  • the serpentine configuration makes it possible to have a large contact surface between the membrane and the aquatic environment, thus enabling optimization of the diffusion of the gases.
  • Other configurations are quite possible to achieve the same result, such as a spiral configuration.
  • the ring 2, and the sub-circuits 2a and 2b are at least partly constituted by a permeable or semi-permeable membrane hydrophobe arranged to envelop the oxygen carrier liquid.
  • Hydrophobic permeable or semi-permeable membrane means a thin wall, made from a natural material or a synthetic polymer, comprising pores selectively passing certain substances, according to its chemical nature and its physical structure, but not water molecules.
  • the pores of the membrane used here are such as to pass oxygen and nitrogen.
  • This type of membrane also makes it possible to prevent the passage of viruses or bacteria, ensuring the sterility of the transferred gases, or of particles, thus preventing the formation of foams or algae in the circuit. It is thus not necessary to use another filter in the circulation ring 2. Additional filters could have a negative effect on the liquid flow, especially if they become clogged gradually, with a negative impact on the equipment performance. Such filters would require regular maintenance.
  • the circuits formed by the membrane are a priori flexible and arranged so that there is no elbow formation that could have a detrimental effect on the flow of the liquid circulating there.
  • the branchial cage 4 is preferably made of a rigid structure, open to allow the circulation of water in the aquatic environment. This circulation is for example ensured by the natural current of the medium or by the displacement of the plunger equipped with all of the invention.
  • the exposed membrane surface of the portion of the ring 2 passing through the branchial cage 4 can be calculated as a function of several parameters, for example the nature of the membrane and / or its performance to allow the diffusion of gases or the purpose of the equipment, that is to say if it is intended for a single diver or an underwater capsule, a marine environment or water soft.
  • the ring 2 can be divided, at the level of the branchial cage 4, into a multitude of sub-circuits.
  • the sub-circuits can be "stacked".
  • the branchial cage 4 can comprise several stacked units 12i, here fifteen units represented horizontally, each unit 12i consisting, for example, of the sub-circuits 2a and 2b previously described.
  • the ring 2 divides, over a portion of its length, here the portion traversing the branchial cage, into several parallel sub-circuits, here thirty unrepresented sub-circuits, at a compartment 10 of anastomosis, c ' that is, division and reconnection of the subcircuits.
  • the rigidity of the structure is provided by amounts 11 to maintain a constant distance between the units. Two amounts of the same height as the stack are represented here, but their number may vary, as they may have a different height and / or be arranged in any other way. It is also conceivable to ensure the rigidity of the system without any amount.
  • each unit a lattice type separator, that is to say through which the water circulates easily, which can serve as a support and / or separator to the sub-circuits.
  • the distance between the units is calculated to optimize the flow of water and to allow each surface unit of the membrane to be sufficiently exposed to the current of the aquatic environment.
  • the oxygen-carrying liquid 3 of the ring 2 is conveyed, thanks to the flow generated by the pump 7, to the pulmonary caisson 5.
  • the pulmonary caisson 5 comprises a second compartment 13 of anastomosis entering the pulmonary chamber where the ring 2 divides, here again, in multiple parallel sub-circuits 15i, represented here in perspective. These sub-circuits, arranged here glomerularly, that is, as if passing around a sphere, traverse the pulmonary chamber 5 and then collect at a third outlet anastomosis compartment 15 of the pulmonary caisson.
  • a mouth 6 of breathing that is to say an orifice, is disposed on one of the surfaces of the pulmonary chamber 4.
  • the mouth 6 is here connected to the end of a pipe 16 whose other end is equipped with an expander 17 provided with a mouth 18.
  • a plunger having inserted the mouth 18 of the regulator 17 into its mouth, inspires, it creates in the box 5 a vacuum inducing a partial pressure difference of the gas between the dry interior of the box and the liquid oxygen carrier 3 traversing the sub-circuits 15i.
  • This difference in partial pressure causes the pervaporation of the gases, that is to say the passage of the gases, by diffusion through the semipermeable membrane, of their dissolved form and / or adsorbed in the liquid 3 to a gaseous form in the volume of the box 5.
  • the glomerular arrangement of the sub-circuits 15i here makes it possible to increase the exchange surface of the semipermeable membrane for a smaller volume of the pulmonary caisson and thus to favor the release of the gas molecules over a longer path. short. Any other provision allowing an effective pervaporation is nevertheless possible.
  • the inlet anastomosis compartments 13, for the division of the circuits, and output 14, for their reconnection, also make it possible here to ensure the good distribution of the flow rate of the oxygen-carrying liquid 3 along the ring 2 It is of course conceivable that the inlet and outlet anastomosis compartments are arranged side by side or in any other manner, the sub-circuits then having to be adequately bent within the pulmonary caisson 5.
  • the expander 17 operates here as a non-return valve.
  • the air exhaled by the plunger does not return to the pulmonary casing 5.
  • the oxygen-carrying liquid 3 can not, at the pulmonary caisson 5, reabsorb gas.
  • the oxygen-carrying liquid 3 flowing in the ring 2 contains very few dissolved and / or adsorbed gases, according to the meaning recalled above. After having traveled through the pulmonary caisson 5, the oxygen-carrying liquid 3 of the ring 2 is redirected, thanks to the flow generated by the pump 7, towards the branchial cage 4.
  • the three anastomosis compartments 10, 13 and 14, described herein, are arranged to ensure a fluid passage of the oxygen-carrying liquid 3 along the circulation ring 2, in particular at the division and reconnection of the sub-circuits. . These compartments make it possible to avoid local overpressures that can damage the permeable membrane.
  • the whole of the invention can therefore continuously provide a breathable gas in the pulmonary chamber, allowing a diver to overcome the time constraints he would have with a conventional scuba.
  • the desorption of the gases is proportional to the depression created in the pulmonary chamber 5 during the inspiration of the diver, which is itself directly proportional to the amount of air inspired by the diver.
  • the system self-regulates, and no complex system of sensors is then necessary.
  • the life of the equipment is theoretically infinite, and in practice only limited by normal wear and tear. It is advantageous, for example, to provide an opening closable in the ring 2 to allow the emptying and filling of the oxygen carrier liquid 3.
  • This liquid is nevertheless prepared so as to have a long shelf life. If it is prepared with blood, it will be treated so that there is no possible coagulation and all its components are stable over time. Thanks to an "active" transport of oxygen in the oxygen-carrying liquid 3, the air released in the pulmonary chamber is enriched with oxygen, which makes it possible to reduce the compression levels during the ascent of the plunger.
  • the configuration parameters to be taken into account are at least the membrane surface in contact with the aquatic environment in the branchial cage, the membrane surface exposed in the pulmonary caisson, the diffusion capacity of the membrane, the flow rate of the pump, the concentration of components actively carrying oxygen or, more generally, the composition of the oxygen-carrying liquid. Blood and in particular hemoglobin is used here.
  • a liquid comprising, for example, perfluorodichlorooctane, a non-protein compound, may also be used.
  • the regulation of the oxygen content in the pervaporized air in the pulmonary chamber may also involve coupling the whole of the invention to a rebreather, ie a circuit for recycling the gases exhaled by the diver.
  • Recyclers are well known to diving specialists. Such systems may indeed be useful in the context of an underwater capsule whose residents can not exhale directly to the outside of the capsule.
  • the coupling of the equipment of the invention with a rebreather could also make it possible to further reduce the size of the assembly, the recycling making it possible to reduce the need to extract the gases from the medium. aquatic .
  • a rebreather 80 here a semi-closed rebreather, consists of a closed loop 83 comprising in series the following elements: an inspiratory airlock 87 connected to a purge 88, a first non-return valve 82 , a mouthpiece 98, a second non-return valve 92, an expiratory airlock 85 and a CO 2 filter 84.
  • the rebreather 80 is connected to a breathing mouth 86 of a breathing assembly 81 according to the invention between the CO 2 filter 84 and the inspiratory airlock 87.
  • a diluent 89 is also connected to the loop 83 at the same level.
  • the respiratory tip 98 is intended to be connected to the mouth of the plunger.
  • the first non-return valve 82 is arranged to open when the plunger is inhaling while the second non-return valve 92 is arranged to open when the plunger exhales.
  • exhaled air containing oxygen, nitrogen and CO 2 is supplied to the exhalation chamber 85 via valve 92 and then passes through the CO 2 filter 84.
  • a filter generally contains the soda lime makes it possible to separate the CO 2 from the exhaling air so as to leave in the loop 83 of the rebreather only the other gases.
  • the gas mixture leaving the CO 2 filter is then mixed with the air from the pulmonary cage of the breathing assembly 81 and a diluent 89, for example a gas such as nitrogen or helium, so that to ensure a nitrogen oxygen ratio appropriate to the diver's breathing.
  • a diluent 89 for example a gas such as nitrogen or helium
  • the ratio of the gases from the different sources can be adjusted manually or by electronic means to ensure a constant oxygen partial pressure for the duration of the dive, or adapted in according to the needs of the diver according to the depth for example.
  • the mixture thus obtained then enters the breathing chamber 87 and, when the plunger inspires, thus opening the valve 82, reaches the respiratory tip 98.
  • the purge 88 installed on the breathing chamber 87 can handle any overpressure.
  • the whole of the invention and the different elements can take many forms which are not limited to the forms described above.
  • ring 2 In the case of equipment for a diver, it is important that ring 2 is sufficient protected so that it does not deteriorate by contact with obstacles, such as rocks, or that it does not cling to the aquatic vegetation.
  • the pulmonary chamber can take any form, including ergonomic shapes that allow the diver to remain free of his movements.
  • the assembly of the invention In the case of an underwater capsule, the assembly of the invention can be judiciously arranged on the passenger compartment so that the branchial cage receives the current optimally when the capsule moves.
  • the assembly of the invention is not only intended for a diver but can also be used to extract breathable air for supplying a natural living chamber.
  • the subaqueous breathing assembly 101 comprising a ring 102 for the circulation of an oxygen-carrying liquid 103 passing through a gill cage 104 and a pulmonary caisson 105 provided with a breathing mouth 106. 101 together here is connected to a chamber 108 by an air vent 109. The air vent 109 and the breathing mouth 106 are connected by a sealed connector 110. Three individuals 111 are here represented in the enclosure 108. Obviously, elements are here represented on a fictitious scale, the enclosure 108 being in fact much larger than the other elements of the assembly.
  • an enclosure 118 is connected to four gas extraction modules 120, each module 120 comprising three units 125 each consisting of a ring 102 for circulating an oxygen-carrying liquid. , a branchial cage 104, a pulmonary box 105 and a connector 110 connecting the chamber 118 to the pulmonary chambers 105.
  • the ring 102 splits into a sub-circuit bundle 126, which collects at the from the outlet 122 of the gill cage 104.
  • the ring 102 is again divided into a bundle of sub-circuits (not shown) at the inlet 123 of the pulmonary chamber, and then collect at the level of the output 124 thereof.
  • the circuits 126 are represented here as a bundle of parallel capillaries arranged around cylinders, several of these cylinders being arranged parallel between the inlet 121 and the outlet 122 of the branchial cage 104.
  • the extraction of breathable gas is done according to the same principle as described above.
  • the oxygen-carrying liquid 103 flowing in the ring 102 makes it possible to extract the oxygen and the nitrogen from the subaquatic medium at the level of the gill cage 104 and to supply it to the pulmonary caisson 105 where they are pervaporized.
  • the connector 110 is sealed, that is to say that it does not let water from the subaquatic medium infiltrate inside the enclosure 108 or the pulmonary box 105. It can be equipped, at the level of of the air vent 109, or between the air vent 109 and the breathing mouth 106, a ventilation fan (not shown), creating a flow of air from the breathing chamber to the enclosure 108. Then there is created in the box 105 a depression inducing a partial pressure difference of the gases between the dry interior of the box and the oxygen-carrying liquid 103 flowing therethrough.
  • This difference in partial pressure causes the pervaporation of the gases, that is to say the passage of gases, by diffusion through the semipermeable membrane, of their dissolved and / or adsorbed form in the liquid 103 to a gaseous form in the volume of the box 105.
  • This depression can also be provided by any means known to those skilled in the art other than a ventilation fan.
  • the number of gas extraction modules 120, or the number of units 125 per module, is variable and must be adapted to the size of the enclosure 108 to supply breathable gas.
  • the configuration parameters to be taken into account are at least the membrane surface in contact with the aquatic environment in the gill cage, the membrane surface exposed in the pulmonary caisson, the capacity diffusion of the membrane, the flow rate of the pump, the concentration of components actively carrying oxygen or, more generally, the composition of the oxygen-carrying liquid.
  • the air that is displaced from the pulmonary caisson 105 to the enclosure 108 may also optionally be, for example, filtered, dried, heated or cooled as required.
  • the enclosure 108 could be delimited by a double wall. Different technical installations could be inserted between the two walls, such as pumps to generate the necessary depression in the pulmonary chamber or cables and electrical equipment.
  • An air recirculation system may also be provided to maintain a constant breathable atmosphere in the enclosure.
  • the supply of energy, for the operation of the whole of the invention, as well as to supply other equipment used by the individuals inside the enclosure, can be done by means of tidal turbines. placed outside, near the enclosure.
  • the lung of the invention can take any form adapted to the use that is made of it.
  • the lung may be configured with a variable volume, as illustrated in assembly 90 of Figure 9 and with reference to Figures 10a and 10b.
  • the assembly 90 comprises a cylindrical gill structure 91 supporting hollow membranes for the circulation of the oxygen-carrying liquid (not shown) inside which a structure 92 for supporting the hollow membranes and a bellows 93 forming the pulmonary portion may be inserted, the hollow membranes (not shown) successively browsing the gill and lung parts, as described above.
  • the pulmonary portion is provided with a breathing mouth 96.
  • a rigid cylinder 94, at negative pressure, is placed around the bellows 93.
  • the gases dissolved in the water in which the gill portion is dipped dissolve / adsorb, at this point, into the oxygen-carrying liquid flowing through the permeable membranes containing the liquid.
  • the oxygen-carrying liquid conveys the dissolved / adsorbed gases towards the pulmonary portion at the level of the support structure 92, here a portion of dry cylinder, that is to say one containing no water.
  • the bellows 93 here defines a variable volume for the pervaporation of gases.
  • This bellows 93 is itself included in a cylinder 94. Underpressure is applied to the volume between the cylinder 94 and the outer wall of the bellows. This underpressure allows the bellows to remain in extended or extended position ( Figure 10a) when no suction is applied to the breathing mouth (the diver does not breathe). This also makes it possible to have an underpressure in the bellows 93 which favors the pervaporation of the gases in this bellows.
  • the bellows 93 is here represented in the form of a cylinder having folds in accordion but any other configuration having a variable volume can be envisaged.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The invention relates to an innovative underwater breathing apparatus allowing a breathable gas to be extracted from the underwater environment, thereby providing a solution to the problems of autonomy, bulkiness and energy consumption of existing techniques. The apparatus is an underwater breathing assembly comprising a ring for the circulation of an oxygen-transporting liquid passing through a branchial cage and a pulmonary chamber with a respiration opening.

Description

Ensemble de respiration subaquatique Underwater breathing set
L'invention concerne le domaine des équipements respiratoires permettant à un ou plusieurs êtres vivant de respirer sous l'eau, que ce soit des eaux douces ou salines des milieux non stagnants, par exemple en mer, en rivière ou dans un lac. The invention relates to the field of respiratory equipment allowing one or more living beings to breathe underwater, either freshwater or saline non-stagnant environments, for example at sea, in the river or in a lake.
La plongée subaquatique, c'est-à-dire, par exemple, la plongée sous-marine récréationelle, la plongée des équipes de sauvetage ou de recherche, en lac ou en rivière, ou la plongée de personnel technique d' intervention sur des équipements sous- marins, se fait actuellement à l'aide d'un scaphandre autonome comprenant une ou plusieurs bouteilles d'air comprimé, reliées à un détendeur permettant au plongeur de respirer de l'air à pression ambiante. Underwater diving, for example, recreational diving, diving rescue or search teams, lake or river, or diving technical personnel intervention on equipment submarines, is currently using a self-contained breathing apparatus comprising one or more compressed air cylinders, connected to a regulator allowing the diver to breathe air at ambient pressure.
La principale limitation à l'utilisation des scaphandres autonomes est leur autonomie. La quantité d'air contenue dans les bouteilles permet à un plongeur de ne rester immergé que quelques heures. Selon la profondeur de plongée, il faut prévoir du temps pour les paliers de décompression, ce qui limite encore plus le temps de plongée « efficace ».  The main limitation to the use of autonomous scuba is their autonomy. The amount of air contained in the bottles allows a diver to remain immersed only a few hours. Depending on the depth of the dive, time is required for the decompression stops, which further limits the "effective" dive time.
La nécessité des paliers de décompression s'explique principalement par le comportement du diazote respiré dans le tissu biologique humain. En effet, l'air respiré à la surface de la terre, et donc également contenu dans les bouteilles d'air comprimé, contient autour de 80% de diazote. Ce diazote pénètre et demeure plus longtemps dans le tissu biologique que l'oxygène, vu qu'il n'est ni métabolisé ni « transporté », c'est-à-dire adsorbé par des protéines comme l'hémoglobine. Lors de la remontée du plongeur, la pression à laquelle son organisme est soumis diminue progressivement, et le diazote contenu dans les cellules, organes ou artères risque alors de former des bulles pouvant conduire à 1 ' endommagement de certains organes et être potentiellement fatales.  The need for decompression stops is mainly explained by the behavior of the nitrous oxide breathed in the human biological tissue. Indeed, the air breathed on the surface of the earth, and therefore also contained in the compressed air bottles, contains around 80% of nitrogen. This nitrogen penetrates and remains longer in the biological tissue than oxygen, since it is neither metabolized nor "transported", that is to say adsorbed by proteins such as hemoglobin. During the ascent of the diver, the pressure to which his body is subjected gradually decreases, and the nitrogen contained in the cells, organs or arteries may then form bubbles that can lead to the damage of certain organs and be potentially fatal.
Pour réduire les risques liés à la décompression, l'air comprimé dans les bouteilles peut être plus concentré en oxygène ou contenir des gaz ajoutés, comme des gaz rares, pour former des mélanges tri-gaz comme par exemple l'héliox ou le trimix. Ces mélanges permettent de réduire la durée des paliers de décompression ou d'allonger l'intervalle de profondeur entre deux paliers, et permettent d'atteindre de plus grandes profondeurs. Ils ne permettent cependant pas de rallonger la durée totale d'une plongée. To reduce the risk of decompression, compressed air in the cylinders may be more concentrated in oxygen or contain added gases, such as rare gases, to form tri-gas mixtures such as heliox or trimix. These mixtures make it possible to reduce the duration of the decompression stops or to lengthen the depth interval between two stages, and make it possible to reach greater depths. However, they do not allow to lengthen the total duration of a dive.
Des solutions pour permettre à l'homme de rester sous l'eau durant de longues périodes ont été mises au point, par exemple dans les sous-marins. L' électrolyse de l'eau permet de générer de l'oxygène pour permettre aux résidents du sous-marin de respirer. Cette technique nécessite cependant beaucoup d'énergie, qui provient généralement de batteries, moteurs thermiques ou de piles à combustible, énergie qui doit d'une façon ou d'une autre être régénérée par des remontées en surface . Solutions to allow man to remain under water for long periods have been developed, for example in submarines. The electrolysis of the water generates oxygen to allow the submarine's residents to breathe. This technique, however, requires a lot of energy, which usually comes from batteries, heat engines or fuel cells, energy that must somehow be regenerated by surface lifts.
L'alimentation en gaz respirables, et en particulier en oxygène, d'enceintes qui resteraient constamment immergées, fixées ou construites par exemple directement sur le fond sous-marin, reste un frein majeur au développement de telles enceintes.  The supply of breathable gases, and in particular oxygen, pregnant that would remain constantly immersed, fixed or built for example directly on the seabed, remains a major brake to the development of such speakers.
Un appareil respiratoire subaquatique autonome pour un plongeur est décrit dans la demande de brevet WO 02/40343. Dans cet appareil, de l'eau du milieu subaquatique est pompée vers un séparateur air/eau. L'air y est séparé de l'eau par cavitation, augmentation volumétrique ou force centrifuge, puis envoyé vers une poche de stockage. Le débit d'extraction d'air peut être supérieur au besoin du plongeur. Un détecteur placé au niveau de la poche de stockage pilote la pompe du séparateur, éteignant la pompe lorsqu'une pression seuil est atteinte. Pour fournir un débit d'air suffisant au plongeur, la pompe doit brasser deux mille litres d'eau de mer par minute, ce qui nécessite une énergie considérable. Le séparateur doit en outre avoir un diamètre d'environ vingt-cinq centimètres et une longueur d'environ cinquante centimètres, sans compter le volume de stockage d'air, ce qui rend l'équipement au moins aussi encombrant qu'un scaphandre autonome. L'utilisation d'un capteur électronique diminue également la fiabilité et la longévité de tels équipements, ce qui présente un risque non-négligeable pour un plongeur. An autonomous underwater breathing apparatus for a plunger is described in patent application WO 02/40343. In this unit, water from the underwater environment is pumped to an air / water separator. The air is separated from the water by cavitation, volumetric increase or centrifugal force, then sent to a storage pocket. The air extraction rate may be greater than the diver's need. A sensor at the storage pocket drives the separator pump, turning off the pump when a threshold pressure is reached. To provide sufficient air flow to the diver, the pump must stir two thousand liters of seawater per minute, which requires considerable energy. The separator must also have a diameter of about twenty-five centimeters and a length of about fifty centimeters, not counting the volume of air storage, which makes the equipment at least as bulky as a scuba. The use of a sensor electronics also decreases the reliability and longevity of such equipment, which presents a significant risk for a diver.
Il a donc été jugé nécessaire par la demanderesse d'apporter une solution aux problèmes d'autonomie, d'encombrement et de consommation énergétique des techniques existantes. It was therefore considered necessary by the plaintiff to provide a solution to the problems of autonomy, congestion and energy consumption of existing techniques.
C'est l'objet de la présente invention de proposer un équipement innovant de respiration subaquatique permettant d'extraire du milieu subaquatique un gaz respirable. It is the object of the present invention to provide an innovative underwater breathing equipment for extracting a breathable gas from the underwater environment.
Solution de l'invention Solution of the invention
La présente invention propose à cet effet un ensemble de respiration subaquatique comprenant un anneau de circulation d'un liquide transporteur d'oxygène, une cage branchiale et un caisson pulmonaire avec une bouche de respiration, ledit anneau traversant la cage branchiale et le caisson pulmonaire. The present invention provides for this purpose an underwater breathing assembly comprising a circulation ring of an oxygen-carrying liquid, a branchial cage and a pulmonary chamber with a breathing mouth, said ring passing through the gill cage and the pulmonary chamber.
L'activité inventive impliquée dans cette invention réside dans l'audace d'avoir voulu combiner, de manière mécanique, chimique et électronique, des simulateurs d'organes vivants des humains et des poissons. The inventive step involved in this invention lies in the audacity of having wanted to combine, in a mechanical, chemical and electronic way, living organ simulators of humans and fish.
Avantageusement, l'anneau de circulation est perméable l'oxygène et le caisson pulmonaire est agencé pour provoquer pervaporisation d'oxygène, transporté par le liqui transporteur d'oxygène, à travers l'anneau perméable. Advantageously, the circulation ring is permeable to oxygen and the pulmonary chamber is arranged to cause pervaporation of oxygen, carried by the oxygen-carrying liquid, through the permeable ring.
Avantageusement encore, la cage branchiale est agencée pour permettre la diffusion d'oxygène, du milieu subaquatique vers le liquide transporteur d'oxygène, à travers l'anneau perméable. Advantageously, the branchial cage is arranged to allow the diffusion of oxygen from the subaquatic medium to the oxygen-carrying liquid, through the permeable ring.
La demanderesse a eu l'idée inventive d'appliquer son invention non seulement à un équipement de plongée pour un plongeur individuel, mais également à l'alimentation en air respirable d'espaces subaquatiques destinés à accueillir de la vie aérobie. L'invention concerne donc également une enceinte subaquatique pour vie naturelle caractérisée par le fait qu'elle est reliée à la bouche de respiration d'au moins un ensemble tel que revendiqué, pour être alimentée en air respirable. The applicant has had the inventive idea of applying his invention not only to diving equipment for an individual diver, but also to the supply of breathable air underwater spaces to accommodate aerobic life. The invention therefore also relates to an underwater enclosure for natural life characterized in that it is connected to the breathing mouth of at least one assembly as claimed, to be supplied with breathable air.
Par enceinte subaquatique pour vie naturelle, on entend ici une enceinte résidentielle immergée, c'est à dire un volume séparé de façon étanche du milieu dans lequel il est immergé et dans lequel au moins un être vivant, peut vivre dans des conditions semblables à des conditions terrestres, c'est-à-dire respirant de l'air atmosphérique, l'être vivant n'étant pas immergé et disposant d'air respirable en quantité suffisante pour ses activités. La notion d'être vivant peut ici être étendue à des humains, des animaux et des végétaux. La vie naturelle peut aussi être appelée vie aérobie ou vie à l'air libre. Underwater enclosure for natural life means here an immersed residential enclosure, that is to say a volume separated in a sealed manner from the medium in which it is immersed and in which at least one living being, can live in conditions similar to terrestrial conditions, that is to say, breathing atmospheric air, the living being not immersed and having sufficient breathable air for its activities. The notion of being alive here can be extended to humans, animals and plants. Natural life can also be called aerobic life or outdoor living.
La cage branchiale, le caisson pulmonaire et l'anneau de circulation d'un liquide transporteur d'oxygène les traversant forment véritablement une unité d'extraction d'un gaz respirable du milieu aquatique vers l'enceinte pour vie naturelle. The branchial cage, the pulmonary chamber and the circulation ring of an oxygen-carrying liquid passing through them form a real unit for extracting a breathable gas from the aquatic environment towards the enclosure for natural life.
Il est évident que, selon la taille, la forme et la localisation de l'enceinte pour vie naturelle, celle-ci peut être connectée à plusieurs ensembles d'extraction tels que décrits ci-dessus. It is obvious that, depending on the size, shape and location of the enclosure for natural life, it can be connected to several extraction assemblies as described above.
Pour permettre la pervaporisation d'un gaz respirable, c'est-à- dire contenant des proportions de diazote et d'oxygène qu'un être humain peut respirer sans risque d'hypoxie ou d'hyperoxie, au niveau du caisson pulmonaire, il est intéressant que l'anneau de circulation soit également perméable au diazote. Ainsi, l'azote et l'oxygène peuvent d'une part diffuser du milieu aquatique vers le liquide transporteur d'oxygène, et d'autre part être pervaporisés au niveau du caisson pulmonaire. To allow the pervaporation of a breathable gas, that is to say containing proportions of nitrogen and oxygen that a human being can breathe without risk of hypoxia or hyperoxia, at the pulmonary chamber, he It is interesting that the circulation ring is also permeable to dinitrogen. Thus, nitrogen and oxygen can firstly spread from the aquatic environment to the oxygen-carrying liquid, and secondly be pervaporized at the level of the pulmonary chamber.
Par liquide transporteur d'oxygène, on entend un liquide, de préférence une solution aqueuse, dans lequel l'oxygène n'est pas simplement dissout, mais activement adsorbé par une substance ayant une interaction forte avec l'oxygène, c'est-à-dire par un mécanisme dit « coopératif ». Un liquide transporteur d'oxygène peut par exemple être du sang ou une solution aqueuse comprenant de l'hémoglobine ou toute autre protéine pouvant fixer ou adsorber plusieurs molécules d'oxygène. L'hémoglobine du sang permet en effet de transporter 70 fois plus d'oxygène que la quantité d'oxygène simplement dissoute dans le sang. D'autres substances, protéiques ou non, d'origine naturelle ou synthétique, sont par exemple la myoglobine, l' hémocyanine, 1 ' érythrocruorine ou le perfluorodichlorooctane . De façon plus générale, le liquide transporteur comprend donc au moins un composant pouvant adsorber l'oxygène. By oxygen-carrying liquid is meant a liquid, preferably an aqueous solution, in which the oxygen is not simply dissolved, but actively adsorbed by a substance having a strong interaction with oxygen, that is to say by a so-called "cooperative" mechanism. An oxygen-carrying liquid may for example be blood or an aqueous solution comprising hemoglobin or any other protein capable of binding or adsorbing several oxygen molecules. Hemoglobin in the blood can transport 70 times more oxygen than the amount of oxygen simply dissolved in the blood. Other substances, whether or not proteins, of natural or synthetic origin, are, for example, myoglobin, hemocyanin, erythrocruorine or perfluorodichlorooctane. More generally, the carrier liquid therefore comprises at least one component capable of adsorbing oxygen.
Le liquide transporteur d'oxygène, de la même façon que le sang, peut également dissoudre d'autres gaz comme le diazote ou le dioxyde de carbone, et en assurer le transport passif sous forme dissoute . The oxygen-carrying liquid, in the same way as blood, can also dissolve other gases such as nitrogen or carbon dioxide, and provide passive transport in dissolved form.
Les termes oxygène et dioxygène désignent ici indifféremment la molécule constituée de deux atomes d'oxygène et de formule chimique 02. De même, les termes azote et diazote désignent indifféremment ici la molécule constituée de deux atomes d'azote et de formule chimique N2. The terms oxygen and oxygen here denote indifferently the molecule consisting of two oxygen atoms and 0 2 chemical formula. Likewise, the terms nitrogen and diazote denote here indifferently the molecule consisting of two nitrogen atoms and chemical formula N 2 .
L'anneau de circulation désigne ici de façon générale un circuit fermé, sans limitation particulière indispensable de forme, ni de matériau. Le circuit peut être divisé, sur certaines portions de sa longueur, en plusieurs canaux ou sous-circuits parallèles qui se rejoignent ensuite. The circulation ring generally designates a closed circuit, without particular limitation of shape or material. The circuit can be divided, on certain portions of its length, into several parallel channels or sub-circuits which then meet.
La cage branchiale est une partie de l'ensemble reproduisant au moins en partie les fonctionnalités d'une branchie de poisson. Une branchie est un organe destiné à être directement en contact avec un courant d'eau de l'environnement subaquatique dans lequel est plongé le poisson et présentant, dans un volume restreint, une grande surface vascularisée . Le sang des vaisseaux y capte des gaz dissouts dans l'eau et y rejette du dioxyde de carbone dissout dans le sang, par diffusion osmotique à travers la membrane perméable constituée par les parois vasculaires. La diffusion osmotique fait référence au phénomène de transfert d'éléments entre deux solutions séparées par une membrane semi-perméable, les éléments diffusant de la solution la plus concentrée vers la solution la moins concentrée jusqu'à atteindre un équilibre. The branchial cage is a part of the assembly reproducing at least in part the features of a fish gill. A gill is a member intended to be directly in contact with a stream of water from the underwater environment in which the fish is immersed and having, in a small volume, a large vascularized surface. The blood of The vessels capture dissolved gases in the water and release carbon dioxide dissolved in the blood by osmotic diffusion through the permeable membrane formed by the vascular walls. The osmotic diffusion refers to the phenomenon of element transfer between two solutions separated by a semi-permeable membrane, the elements diffusing from the most concentrated solution to the least concentrated solution until reaching an equilibrium.
Les termes perméable et semi -perméable sont ici utilisés indifféremment pour désigner le fait que la membrane ne laisse passer que certains éléments, en l'occurrence ici des gaz comme l'oxygène ou le diazote. The terms permeable and semi-impervious are used here indifferently to designate the fact that the membrane allows only certain elements to pass, in this case gases such as oxygen or dinitrogen.
Un caisson pulmonaire désigne ici un compartiment scellé pouvant avoir n'importe quelle forme, ne contenant pas d'eau liquide et mimant au moins en partie les fonctionnalités d'un poumon. Le caisson pulmonaire désigné ici s'apparente en particulier à une cavité pulmonaire lors de sa phase d'expiration. Chez l'homme, un poumon est caractérisé par une grande surface alvéolaire présentant une paroi très fine parcourue par des capillaires sanguins. La paroi alvéolaire et les parois des capillaires jouent le rôle de membrane perméable permettant les échanges gazeux entre le sang et l'air ambiant. Lors de l'inspiration, la pression d'air ambiant augmente dans la cavité pulmonaire, favorisant la diffusion des gaz à travers la membrane perméable et leur dissolution dans le sang. Lors de l'expiration, la pression d'air ambiant diminue et favorise le phénomène inverse, c'est-à-dire la désorbtion des gaz à travers la membrane perméable vers la cavité pulmonaire. Les gaz passant ici d'une phase liquide, ou dissoute, à une phase gazeuse, on parle de phénomène de pervaporisation. A pulmonary chamber here designates a sealed compartment that can have any shape, does not contain liquid water and at least partially mimics the functionalities of a lung. The pulmonary chamber designated here is particularly related to a pulmonary cavity during its expiration phase. In humans, a lung is characterized by a large alveolar surface presenting a very thin wall traversed by blood capillaries. The alveolar wall and the walls of the capillaries play the role of permeable membrane allowing gaseous exchanges between the blood and the ambient air. During inspiration, the ambient air pressure increases in the lung cavity, promoting the diffusion of gases through the permeable membrane and their dissolution in the blood. During the expiration, the ambient air pressure decreases and favors the opposite phenomenon, that is to say the desorption of the gases through the permeable membrane to the pulmonary cavity. The gases passing here from a liquid phase, or dissolved, to a gaseous phase, we speak of pervaporation phenomenon.
La bouche de respiration est ici à prendre au sens large d'une ouverture. Le caisson pulmonaire est agencé de façon à ce qu'un humain puisse en aspirer le contenu gazeux. Il peut par exemple être connecté à un tuyau ayant un embout qu'un plongeur peut placer dans sa bouche, comme un détendeur utilisé dans les scaphandres autonomes. Il peut aussi être agencé de façon à alimenter en air respirable un espace où plusieurs personnes peuvent résider sans porter sur eux d'équipement particulier, comme par exemple la cabine d'un sous-marin ou une station de recherche ou une capsule subaquatique. La connexion entre le caisson pulmonaire et l'enceinte de vie naturelle peut être assimilée à une bouche d'aération, éventuellement munie de moyens pour faire circuler l'air vers l'enceinte. The mouth of breathing is here to take in the broad sense of an opening. The pulmonary chamber is arranged so that a human can suck the gaseous content. It can for example be connected to a hose having a nozzle that a plunger can place in his mouth, as a regulator used in self-contained suits. It can also be arranged to supply breathable air space where several people can reside without wearing on them special equipment, such as the cabin of a submarine or a research station or underwater capsule. The connection between the pulmonary chamber and the natural living chamber can be likened to a vent, possibly provided with means for circulating the air to the enclosure.
Avantageusement, la circulation du liquide transporteur d'oxygène est assurée par une pompe. Advantageously, the circulation of the oxygen-carrying liquid is provided by a pump.
L'invention sera mieux comprise à l'aide de la description suivante de plusieurs formes de réalisation de l'ensemble de l'invention, en référence au dessin en annexe, sur lequel : la figure 1 est un schéma fonctionnel de l'ensemble de l'invention ; The invention will be better understood with the aid of the following description of several embodiments of the assembly of the invention, with reference to the drawing in the appendix, in which: FIG. 1 is a block diagram of the set of the invention;
la figure 2 est une vue schématique de dessus de la cage branchiale de l'ensemble de l'invention ; Figure 2 is a schematic top view of the gill cage of the assembly of the invention;
la figure 3 est une vue schématique latérale de la cage branchiale de la figure 2 et FIG. 3 is a schematic side view of the branchial cage of FIG.
la figure 4 est une vue schématique latérale du caisson pulmonaire de l'invention ; Figure 4 is a schematic side view of the pulmonary chamber of the invention;
la figure 5 est une vue schématique de dessus d'une forme de réalisation de l'enceinte de l'invention reliée à un ensemble de l'invention ; Figure 5 is a schematic top view of an embodiment of the enclosure of the invention connected to an assembly of the invention;
la figure 6 est une vue de dessus d'une enceinte de l'invention reliée à plusieurs ensembles de l'invention ; Figure 6 is a top view of an enclosure of the invention connected to several sets of the invention;
la figure 7 est une vue en perspective d'une unité d'extraction de gaz de la figure 6, FIG. 7 is a perspective view of a gas extraction unit of FIG. 6,
la figure 8 est un schéma de l'ensemble de l'invention relié à un recycleur d'air ; Figure 8 is a diagram of the assembly of the invention connected to an air recycler;
la figure 9 est une vue éclatée en perspective d'une autre forme de réalisation de l'ensemble de l'invention, et les figures 10a et 10b illustrent le fonctionnement de l'ensemble de la figure 9. FIG. 9 is an exploded perspective view of another embodiment of the assembly of the invention, and Figures 10a and 10b illustrate the operation of the assembly of Figure 9.
En référence à la figure 1, l'ensemble de respiration subaquatique 1 comprend un anneau 2 de circulation d'un liquide transporteur d'oxygène 3. L'anneau 2 traverse une cage branchiale 4 et un caisson pulmonaire 5 ayant une bouche de respiration 6. L'anneau 2 traverse également une pompe 7. With reference to FIG. 1, the underwater breathing assembly 1 comprises a ring 2 for circulating an oxygen-carrying liquid 3. The ring 2 passes through a gill cage 4 and a pulmonary caisson 5 having a breathing mouth 6 The ring 2 also passes through a pump 7.
La pompe 7 permet d'assurer la circulation du liquide transporteur d'oxygène 3 dans l'anneau 2. La pompe 7 peut être n'importe quel type de pompe en continu, pouvant fonctionner sous l'eau ou étant suffisamment protégée pour fonctionner sous l'eau à une large gamme de pressions. Pour assurer la respiration d'un plongeur, une pompe de petite taille suffit, qui peut être alimentée par une batterie de faible puissance, comme par exemple un simulateur cardiaque. The pump 7 makes it possible to ensure the circulation of the oxygen-carrying liquid 3 in the ring 2. The pump 7 may be any type of pump which is continuous, can operate under water or is sufficiently protected to operate under water at a wide range of pressures. To ensure the breathing of a plunger, a small pump is sufficient, which can be powered by a low-power battery, such as a cardiac simulator.
En référence à la figure 2, au niveau de l'entrée 8 de la cage, l'anneau 2 se divise en deux sous-circuits 2a et 2b à l'extérieur de la cage branchiale 4, et se rassemblent au même niveau après avoir chacun parcouru un lobe de la cage branchiale 4. Les circuits 2a et 2b se divisent et se rassemblent ici à l'extérieur de la cage branchiale. Il est néanmoins envisageable que la division et/ou le rassemblement se fassent à l'intérieur de la cage. Referring to Figure 2, at the inlet 8 of the cage, the ring 2 is divided into two sub-circuits 2a and 2b outside the branchial cage 4, and meet at the same level after having each traversed a lobe of the branchial cage 4. The circuits 2a and 2b divide and gather here outside the branchial cage. It is nevertheless conceivable that the division and / or the gathering are done inside the cage.
En pratique, le liquide transporteur d'oxygène 3 circulant dans l'anneau 2, puis dans les sous-circuits 2a et 2b, pénètre dans la cage branchiale 4. Cette cage étant un espace ouvert sur le milieu aquatique, les circuits 2a et 2b sont directement en contact avec le milieu aquatique. Les sous-circuits 2a et 2b étant constitués d'une membrane perméable ou semi-perméable, une diffusion des gaz dissouts dans le milieu aquatique vers le liquide transporteur d'oxygène 3 s'opère à travers la membrane perméable, si le liquide transporteur d'oxygène a une concentration en gaz inférieure au milieu aquatique. Les gaz en question sont principalement le diazote et l'oxygène. Il peut y avoir également des traces d'autres gaz. In practice, the oxygen-carrying liquid 3 flowing in the ring 2, then in the sub-circuits 2a and 2b, enters the branchial cage 4. This cage being an open space on the aquatic medium, the circuits 2a and 2b are directly in contact with the aquatic environment. Subcircuits 2a and 2b being made of a permeable or semi-permeable membrane, a diffusion of the dissolved gases in the aquatic medium to the oxygen-carrying liquid 3 takes place through the permeable membrane, if the carrier liquid Oxygen has a lower gas concentration than the aquatic environment. The gases in question are mainly dinitrogen and oxygen. There may also be traces of other gases.
Le liquide transporteur d'oxygène comprend au moins un composant pouvant adsorber l'oxygène, par exemple de l'hémoglobine. L'oxygène qui a diffusé et qui s'est dissout dans le liquide 3 s'adsorbe sur l'hémoglobine. La concentration d'oxygène simplement dissout dans le liquide reste ainsi faible et l'équilibre de diffusion de l'oxygène à travers la membrane est moins rapidement atteint. La présence d'hémoglobine dans le liquide 3 permet ainsi au circuit de transporter une plus grande quantité d'oxygène qu'il n'aurait été possible grâce au simple phénomène de dissolution des gaz, l'oxygène étant ici transporté à la fois sous forme dissoute et sous forme adsorbée à l'hémoglobine. Ceci permet également de transporter un ratio oxygène/diazote a priori plus élevé que le ratio présent dans le milieu subaquatique, ce ratio s ' apparentant ainsi à celui transporté par le sang. The oxygen carrier liquid comprises at least one component capable of adsorbing oxygen, for example hemoglobin. The oxygen which has diffused and which has dissolved in the liquid 3 is adsorbed on the hemoglobin. The concentration of oxygen simply dissolved in the liquid thus remains low and the oxygen diffusion balance across the membrane is less rapidly reached. The presence of hemoglobin in the liquid 3 thus allows the circuit to carry a greater quantity of oxygen than would have been possible thanks to the simple phenomenon of dissolution of the gases, the oxygen being here transported both in the form of dissolved and adsorbed to hemoglobin. This also makes it possible to transport an oxygen / dinitrogen ratio a priori higher than the ratio present in the underwater medium, this ratio being thus similar to that transported by the blood.
A la sortie de la cage branchiale 4, les sous-circuits 2a et 2b se rejoignent. At the outlet of the branchial cage 4, the sub-circuits 2a and 2b meet.
Ainsi, en sortie de la cage branchiale 4, le liquide transporteur d'oxygène 3 circulant dans l'anneau 2 est chargé en gaz dissouts et/ou adsorbés. Thus, at the outlet of the branchial cage 4, the oxygen-carrying liquid 3 flowing in the ring 2 is charged with dissolved and / or adsorbed gases.
Les circuits 2a et 2b sont ici représentés disposés en serpentins, de façon symétrique. La configuration en serpentin permet d' avoir une grande surface de contact entre la membrane et le milieu aquatique, permettant ainsi une optimisation de la diffusion des gaz. D'autres configurations sont tout à fait possible pour obtenir le même résultat, comme par exemple une configuration en spirale. The circuits 2a and 2b are here represented arranged in coils, symmetrically. The serpentine configuration makes it possible to have a large contact surface between the membrane and the aquatic environment, thus enabling optimization of the diffusion of the gases. Other configurations are quite possible to achieve the same result, such as a spiral configuration.
L'anneau 2, et les sous-circuits 2a et 2b sont au moins en partie constitués par une membrane perméable ou semi-perméable hydrophobe agencée pour envelopper le liquide transporteur d' oxygène . The ring 2, and the sub-circuits 2a and 2b are at least partly constituted by a permeable or semi-permeable membrane hydrophobe arranged to envelop the oxygen carrier liquid.
Par membrane perméable ou semi-perméable hydrophobe, on désigne une paroi de faible épaisseur, fabriquée à partir d'un matériau naturel ou d'un polymère synthétique, comprenant des pores laissant passer sélectivement certaines substances, selon sa nature chimique et sa structure physique, mais pas des molécules d'eau. Les pores de la membrane utilisée ici sont de nature à laisser passer l'oxygène et l'azote. Ce type de membrane permet également d'empêcher le passage de virus ou bactéries, assurant la stérilité des gaz transférés, ou de particules, prévenant ainsi la formation de mousses ou d'algues dans le circuit. Il n'est ainsi pas nécessaire d'utiliser d'autre filtre dans l'anneau 2 de circulation. Des filtres supplémentaires pourraient avoir un effet négatif sur le débit de liquide, en particulier si ils se bouchent progressivement, avec un impact négatif sur le rendement de l'équipement. De tels filtres nécessiteraient un entretien régulier. Hydrophobic permeable or semi-permeable membrane means a thin wall, made from a natural material or a synthetic polymer, comprising pores selectively passing certain substances, according to its chemical nature and its physical structure, but not water molecules. The pores of the membrane used here are such as to pass oxygen and nitrogen. This type of membrane also makes it possible to prevent the passage of viruses or bacteria, ensuring the sterility of the transferred gases, or of particles, thus preventing the formation of foams or algae in the circuit. It is thus not necessary to use another filter in the circulation ring 2. Additional filters could have a negative effect on the liquid flow, especially if they become clogged gradually, with a negative impact on the equipment performance. Such filters would require regular maintenance.
Les circuits formés par la membrane sont a priori souples et disposés de façon à ce qu'il n'y ait pas de formation de coude qui pourrait avoir un effet néfaste sur le débit du liquide y circulant. Afin de les maintenir, soutenir et/ou protéger, la cage branchiale 4 est préférablement constituée d'une structure rigide, ouverte de façon à permettre la circulation d'eau du milieu aquatique. Cette circulation est par exemple assurée par le courant naturel du milieu ou par le déplacement du plongeur équipé avec l'ensemble de l'invention. The circuits formed by the membrane are a priori flexible and arranged so that there is no elbow formation that could have a detrimental effect on the flow of the liquid circulating there. In order to maintain, support and / or protect, the branchial cage 4 is preferably made of a rigid structure, open to allow the circulation of water in the aquatic environment. This circulation is for example ensured by the natural current of the medium or by the displacement of the plunger equipped with all of the invention.
Afin d'optimiser l'efficacité de l'ensemble, la surface de membrane exposée de la partie de l'anneau 2 parcourant la cage branchiale 4 peut être calculée en fonction de plusieurs paramètres, comme par exemple la nature de la membrane et/ou sa performance à permettre la diffusion des gaz ou la finalité de l'équipement, c'est-à-dire s'il est destiné à un plongeur unique ou à une capsule subaquatique, un milieu marin ou de l'eau douce. Pour atteindre la surface de contact optimale entre la membrane et le milieu aquatique, l'anneau 2 peut être divisé, au niveau de la cage branchiale 4, en une multitude de sous circuits. Afin d'optimiser la compacité de l'équipement en fonction de la surface désirée, les sous-circuits peuvent être « empilés ». In order to optimize the efficiency of the assembly, the exposed membrane surface of the portion of the ring 2 passing through the branchial cage 4 can be calculated as a function of several parameters, for example the nature of the membrane and / or its performance to allow the diffusion of gases or the purpose of the equipment, that is to say if it is intended for a single diver or an underwater capsule, a marine environment or water soft. To reach the optimal contact surface between the membrane and the aquatic medium, the ring 2 can be divided, at the level of the branchial cage 4, into a multitude of sub-circuits. To optimize the compactness of the equipment according to the desired surface, the sub-circuits can be "stacked".
Comme illustré sur la figure 3, la cage branchiale 4 peut comprendre plusieurs unités 12i empilées, ici quinze unités représentées horizontalement, chaque unité 12i étant par exemple constituée des sous-circuits 2a et 2b décrits précédemment. L'anneau 2 se divise, sur une portion de sa longueur, ici la portion parcourant la cage branchiale, en plusieurs sous- circuits parallèles, ici trente sous-circuits non représentés, au niveau d'un compartiment 10 d'anastomose, c'est-à-dire de division et de reconnexion des sous-circuits. La rigidité de la structure est assurée par des montants 11 permettant de maintenir une distance constante entre les unités. Deux montants de même hauteur que l'empilement sont ici représentés, mais leur nombre peut varier, de même qu'ils peuvent avoir une hauteur différente et/ou être agencés de toute autre façon. Il est également envisageable d'assurer la rigidité du système sans aucun montant. As illustrated in FIG. 3, the branchial cage 4 can comprise several stacked units 12i, here fifteen units represented horizontally, each unit 12i consisting, for example, of the sub-circuits 2a and 2b previously described. The ring 2 divides, over a portion of its length, here the portion traversing the branchial cage, into several parallel sub-circuits, here thirty unrepresented sub-circuits, at a compartment 10 of anastomosis, c ' that is, division and reconnection of the subcircuits. The rigidity of the structure is provided by amounts 11 to maintain a constant distance between the units. Two amounts of the same height as the stack are represented here, but their number may vary, as they may have a different height and / or be arranged in any other way. It is also conceivable to ensure the rigidity of the system without any amount.
Il est possible d'intercaler entre chaque unité un séparateur de type treillis, c'est-à-dire à travers lequel l'eau circule aisément, pouvant servir de support et/ou de séparateur aux sous-circuits .  It is possible to insert between each unit a lattice type separator, that is to say through which the water circulates easily, which can serve as a support and / or separator to the sub-circuits.
La distance entre les unités est calculée de façon à optimiser le flux aquatique et de permettre à chaque unité de surface de la membrane d'être suffisamment exposée au courant du milieu aquatique . The distance between the units is calculated to optimize the flow of water and to allow each surface unit of the membrane to be sufficiently exposed to the current of the aquatic environment.
De la même façon que l'eau circule à travers les branchies d' un poisson, soit grâce au courant, soit grâce au déplacement du poisson, un courant du milieu subaquatique doit ici circuler à travers la cage branchiale 4 pour assurer la continuité de l'approvisionnement en gaz. In the same way that water flows through the gills of a fish, either through the current or through the movement of the fish, a current of the underwater environment must circulate here. through the branchial cage 4 to ensure the continuity of the gas supply.
Après avoir parcouru la cage branchiale 4, le liquide transporteur d'oxygène 3 de l'anneau 2 est acheminé, grâce au flux généré par la pompe 7, vers le caisson pulmonaire 5. After having traversed the branchial cage 4, the oxygen-carrying liquid 3 of the ring 2 is conveyed, thanks to the flow generated by the pump 7, to the pulmonary caisson 5.
En référence à la figure 4, le caisson pulmonaire 5 comprend un second compartiment 13 d'anastomose d'entrée dans le caisson pulmonaire ou l'anneau 2 se divise, ici encore, en multiples sous-circuits 15i parallèles, représentés ici en perspective. Ces sous-circuits, disposés ici de façon glomérulaire, c'est-à- dire comme s'ils passaient autour d'une sphère, parcourent le caisson pulmonaire 5 puis se rassemblent au niveau d'un troisième compartiment 15 d'anastomose de sortie du caisson pulmonaire. Une bouche 6 de respiration, c'est-à-dire un orifice, est disposée sur une des surfaces du caisson pulmonaire 4. La bouche 6 est ici reliée à l'extrémité d'un tuyau 16 dont l'autre extrémité est équipée d'un détendeur 17 muni d'une embouchure 18. With reference to FIG. 4, the pulmonary caisson 5 comprises a second compartment 13 of anastomosis entering the pulmonary chamber where the ring 2 divides, here again, in multiple parallel sub-circuits 15i, represented here in perspective. These sub-circuits, arranged here glomerularly, that is, as if passing around a sphere, traverse the pulmonary chamber 5 and then collect at a third outlet anastomosis compartment 15 of the pulmonary caisson. A mouth 6 of breathing, that is to say an orifice, is disposed on one of the surfaces of the pulmonary chamber 4. The mouth 6 is here connected to the end of a pipe 16 whose other end is equipped with an expander 17 provided with a mouth 18.
En pratique, lorsqu'un plongeur, ayant inséré l'embouchure 18 du détendeur 17 dans sa bouche, inspire, il se crée dans le caisson 5 une dépression induisant une différence de pression partielle des gaz entre l'intérieur sec du caisson et le liquide transporteur d'oxygène 3 parcourant les sous circuits 15i. Cette différence de pression partielle entraine la pervaporisation des gaz, c'est-à-dire le passage des gaz, par diffusion à travers la membrane semi-perméable, de leur forme dissoute et/ou adsorbée dans le liquide 3 à une forme gazeuse dans le volume du caisson 5. In practice, when a plunger, having inserted the mouth 18 of the regulator 17 into its mouth, inspires, it creates in the box 5 a vacuum inducing a partial pressure difference of the gas between the dry interior of the box and the liquid oxygen carrier 3 traversing the sub-circuits 15i. This difference in partial pressure causes the pervaporation of the gases, that is to say the passage of the gases, by diffusion through the semipermeable membrane, of their dissolved form and / or adsorbed in the liquid 3 to a gaseous form in the volume of the box 5.
La disposition glomérulaire des sous-circuits 15i permet ici d'augmenter la surface d'échange de la membrane semi-perméable pour un volume moindre du caisson pulmonaire et de favoriser ainsi la libération des molécules de gaz sur un parcours plus court. Toute autre disposition permettant une pervaporisation efficace est néanmoins envisageable. The glomerular arrangement of the sub-circuits 15i here makes it possible to increase the exchange surface of the semipermeable membrane for a smaller volume of the pulmonary caisson and thus to favor the release of the gas molecules over a longer path. short. Any other provision allowing an effective pervaporation is nevertheless possible.
Les compartiments d'anastomose d'entrée 13, pour la division des circuits, et de sortie 14, pour leur reconnexion, permettent ici également d'assurer la bonne répartition du débit du liquide transporteur d'oxygène 3 le long de l'anneau 2. Il est bien sûr envisageable que les compartiments d'anastomose d'entrée et de sortie soient disposés côte à côte ou de tout autre manière, les sous-circuits devant alors être courbés de façon adéquate à l'intérieur du caisson pulmonaire 5. The inlet anastomosis compartments 13, for the division of the circuits, and output 14, for their reconnection, also make it possible here to ensure the good distribution of the flow rate of the oxygen-carrying liquid 3 along the ring 2 It is of course conceivable that the inlet and outlet anastomosis compartments are arranged side by side or in any other manner, the sub-circuits then having to be adequately bent within the pulmonary caisson 5.
Le détendeur 17 fonctionne ici comme une valve anti-retour. Ainsi, l'air expiré par le plongeur ne retourne pas vers le caisson pulmonaire 5. Ceci assure que la pression dans le caisson 5 est maintenue au maximum à la pression d'équilibre avec le liquide transporteur d'oxygène 3, la pression d'équilibre étant la somme des pressions partielles des différents gaz relargués. Dans cette configuration, le liquide transporteur d'oxygène 3 ne peut donc pas, au niveau du caisson pulmonaire 5, réabsorber de gaz. The expander 17 operates here as a non-return valve. Thus, the air exhaled by the plunger does not return to the pulmonary casing 5. This ensures that the pressure in the casing 5 is kept to the maximum at the equilibrium pressure with the oxygen-carrying liquid 3, the pressure of equilibrium being the sum of the partial pressures of the different gases released. In this configuration, the oxygen-carrying liquid 3 can not, at the pulmonary caisson 5, reabsorb gas.
Il est envisageable de remplacer le détendeur par d'autres systèmes de valve connus de l'homme du métier. It is conceivable to replace the regulator with other valve systems known to those skilled in the art.
Ainsi, de la même façon que le sang relargue, au niveau des alvéoles pulmonaires d'un humain, les gaz non utilisés lors de l'expiration, un mélange gazeux dissout dans le liquide transporteur d'oxygène 3 est relargué dans le caisson pulmonaire 5. Thus, in the same way that the blood restores, at the level of the pulmonary alveoli of a human, the gases not used during expiration, a gaseous mixture dissolved in the oxygen-carrying liquid 3 is released into the pulmonary well 5 .
En sortie du caisson pulmonaire 5, le liquide transporteur d'oxygène 3 circulant dans l'anneau 2 contient très peu de gaz dissouts et/ou adsorbés, selon la signification rappelée plus haut . Après avoir parcouru le caisson pulmonaire 5, le liquide transporteur d'oxygène 3 de l'anneau 2 est réacheminé, grâce au flux généré par la pompe 7, vers la cage branchiale 4. At the outlet of the pulmonary caisson 5, the oxygen-carrying liquid 3 flowing in the ring 2 contains very few dissolved and / or adsorbed gases, according to the meaning recalled above. After having traveled through the pulmonary caisson 5, the oxygen-carrying liquid 3 of the ring 2 is redirected, thanks to the flow generated by the pump 7, towards the branchial cage 4.
Les trois compartiments d'anastomose 10, 13 et 14, décrits ici sont agencés pour assurer un passage fluide du liquide transporteur d'oxygène 3 le long de l'anneau 2 de circulation, en particulier au niveau des divisions et reconnexions des sous- circuits. Ces compartiments permettent d'éviter des surpressions locales pouvant endommager la membrane perméable. The three anastomosis compartments 10, 13 and 14, described herein, are arranged to ensure a fluid passage of the oxygen-carrying liquid 3 along the circulation ring 2, in particular at the division and reconnection of the sub-circuits. . These compartments make it possible to avoid local overpressures that can damage the permeable membrane.
L'ensemble de l'invention peut donc fournir en continu un gaz respirable dans le caisson pulmonaire, permettant à un plongeur de s'affranchir des contraintes de temps qu'il aurait avec un scaphandre autonome classique. The whole of the invention can therefore continuously provide a breathable gas in the pulmonary chamber, allowing a diver to overcome the time constraints he would have with a conventional scuba.
La quantité de gaz dissouts dans les milieux aquatiques augmentant avec la profondeur, le système y gagne même en efficacité . As the amount of gas dissolved in aquatic environments increases with depth, the system is even more efficient.
La désorption des gaz est proportionnelle à la dépression créée dans le caisson pulmonaire 5 lors de l'inspiration du plongeur, qui est elle-même directement proportionnelle à la quantité d'air inspiré par le plongeur. Ainsi, le système s' autorégule, et aucun système complexe de capteurs n'est alors nécessaire. The desorption of the gases is proportional to the depression created in the pulmonary chamber 5 during the inspiration of the diver, which is itself directly proportional to the amount of air inspired by the diver. Thus, the system self-regulates, and no complex system of sensors is then necessary.
La durée de vie de l'équipement est en théorie infinie, et en pratique seulement limitée par une usure normale. Il est intéressant, par exemple, de prévoir une ouverture obturable dans l'anneau 2 pour permettre la vidange et le remplissage du liquide transporteur d'oxygène 3. Ce liquide est néanmoins préparé de façon à avoir une durée de conservation longue. S'il est préparé à base de sang, il sera traité de façon à ce qu'il n'y ait pas de coagulation possible et que l'ensemble de ses composants soient stables dans le temps. Grâce à un transport « actif » de l'oxygène dans le liquide transporteur d'oxygène 3, l'air relargué dans le caisson pulmonaire est enrichi en oxygène, ce qui permet de réduire les paliers de compression lors de la remontée du plongeur. Il est néanmoins important de configurer l'ensemble de l'invention de façon à ne pas délivrer de pression partielle d'oxygène au-delà du seuil de toxicité, c'est à dire afin de ne pas placer un plongeur en situation d'hyperoxie. Les paramètres de configuration à prendre en compte sont au moins la surface de membrane en contact avec le milieu aquatique dans la cage branchiale, la surface de membrane exposée dans le caisson pulmonaire, la capacité de diffusion de la membrane, le débit de la pompe, la concentration en composants transportant activement l'oxygène ou, de façon plus générale, la composition du liquide transporteur d'oxygène. Le sang et en particulier l'hémoglobine est ici utilisée. Un liquide comprenant par exemple du perfluorodichlorooctane, composé non-protéique , peut également être utilisé. The life of the equipment is theoretically infinite, and in practice only limited by normal wear and tear. It is advantageous, for example, to provide an opening closable in the ring 2 to allow the emptying and filling of the oxygen carrier liquid 3. This liquid is nevertheless prepared so as to have a long shelf life. If it is prepared with blood, it will be treated so that there is no possible coagulation and all its components are stable over time. Thanks to an "active" transport of oxygen in the oxygen-carrying liquid 3, the air released in the pulmonary chamber is enriched with oxygen, which makes it possible to reduce the compression levels during the ascent of the plunger. It is nevertheless important to configure the assembly of the invention so as not to deliver oxygen partial pressure beyond the toxicity threshold, ie in order not to place a diver in a situation of hyperoxia . The configuration parameters to be taken into account are at least the membrane surface in contact with the aquatic environment in the branchial cage, the membrane surface exposed in the pulmonary caisson, the diffusion capacity of the membrane, the flow rate of the pump, the concentration of components actively carrying oxygen or, more generally, the composition of the oxygen-carrying liquid. Blood and in particular hemoglobin is used here. A liquid comprising, for example, perfluorodichlorooctane, a non-protein compound, may also be used.
La régulation du taux d'oxygène dans l'air pervaporisé dans le caisson pulmonaire peut également impliquer de coupler l'ensemble de l'invention à un recycleur, c'est à dire un circuit de recyclage des gaz expirés par le plongeur. Les recycleurs sont bien connus des spécialistes de la plongée. De tels systèmes peuvent en effet s'avérer utile dans le contexte d'une capsule subaquatique dont les résidents ne peuvent pas expirer directement vers l'extérieur de la capsule. Dans le contexte d'un plongeur seul, le couplage de l'équipement de l'invention avec un recycleur pourrait également permettre de réduire encore plus la dimension de l'ensemble, le recyclage permettant de réduire le besoin d'extraire les gaz du milieu aquatique . The regulation of the oxygen content in the pervaporized air in the pulmonary chamber may also involve coupling the whole of the invention to a rebreather, ie a circuit for recycling the gases exhaled by the diver. Recyclers are well known to diving specialists. Such systems may indeed be useful in the context of an underwater capsule whose residents can not exhale directly to the outside of the capsule. In the context of a single diver, the coupling of the equipment of the invention with a rebreather could also make it possible to further reduce the size of the assembly, the recycling making it possible to reduce the need to extract the gases from the medium. aquatic .
En référence à la figure 8, un recycleur 80, ici un recycleur semi-fermé, est constitué d'une boucle fermée 83 comprenant en série les éléments suivants : un sas inspiratoire 87 relié à une purge 88, une première valve anti-retour 82, un embout respiratoire 98, une seconde valve anti-retour 92, un sas expiratoire 85 et un filtre à C02 84. Le recycleur 80 est connecté à une bouche de respiration 86 d'un ensemble de respiration 81 selon l'invention entre le filtre à C02 84 et le sas inspiratoire 87. Un diluant 89 est également connecté à la boucle 83 au même niveau. L'embout respiratoire 98 est destiné à être relié à la bouche du plongeur. La première valve antiretour 82 est agencée pour s'ouvrir lorsque le plongeur inspire tandis que la seconde valve anti-retour 92 est agencée pour s'ouvrir lorsque le plongeur expire. With reference to FIG. 8, a rebreather 80, here a semi-closed rebreather, consists of a closed loop 83 comprising in series the following elements: an inspiratory airlock 87 connected to a purge 88, a first non-return valve 82 , a mouthpiece 98, a second non-return valve 92, an expiratory airlock 85 and a CO 2 filter 84. The rebreather 80 is connected to a breathing mouth 86 of a breathing assembly 81 according to the invention between the CO 2 filter 84 and the inspiratory airlock 87. A diluent 89 is also connected to the loop 83 at the same level. The respiratory tip 98 is intended to be connected to the mouth of the plunger. The first non-return valve 82 is arranged to open when the plunger is inhaling while the second non-return valve 92 is arranged to open when the plunger exhales.
Lorsque le plongeur expire, l'air expiré, contenant de l'oxygène, de l'azote et du C02, est amené au sas expiratoire 85 via la valve 92, puis traverse le filtre à C02 84. Un tel filtre, contenant généralement de la chaux sodée permet de séparer le C02 de l'air expirer afin de ne laisser dans la boucle 83 du recycleur que les autres gaz. When the diver expires, exhaled air containing oxygen, nitrogen and CO 2 is supplied to the exhalation chamber 85 via valve 92 and then passes through the CO 2 filter 84. Such a filter generally contains the soda lime makes it possible to separate the CO 2 from the exhaling air so as to leave in the loop 83 of the rebreather only the other gases.
Le mélange gazeux sortant du filtre à C02 est ensuite mélangé à l'air provenant de la cage pulmonaire de l'ensemble de respiration 81 et à un diluant 89, par exemple un gaz tel que de l'azote ou de l'hélium, afin d'assurer un rapport oxygène azote approprié à la respiration du plongeur. Le ratio des gaz provenant des différentes sources (boucle de recyclage 83, ensemble de respiration 81 et diluant 89) peut être réglé manuellement ou par des moyens électroniques pour assurer une pression partielle d'oxygène constante pour la durée de la plongée, ou adaptée en fonction des besoins du plongeur selon la profondeur par exemple. Le mélange ainsi obtenu pénètre alors dans le sas inspiratoire 87 et, lorsque le plongeur inspire, ouvrant ainsi la valve 82, parvient à l'embout respiratoire 98. La purge 88 installée sur le sas inspiratoire 87 permet de gérer d'éventuelles surpressions. The gas mixture leaving the CO 2 filter is then mixed with the air from the pulmonary cage of the breathing assembly 81 and a diluent 89, for example a gas such as nitrogen or helium, so that to ensure a nitrogen oxygen ratio appropriate to the diver's breathing. The ratio of the gases from the different sources (recycle loop 83, breathing assembly 81 and diluent 89) can be adjusted manually or by electronic means to ensure a constant oxygen partial pressure for the duration of the dive, or adapted in according to the needs of the diver according to the depth for example. The mixture thus obtained then enters the breathing chamber 87 and, when the plunger inspires, thus opening the valve 82, reaches the respiratory tip 98. The purge 88 installed on the breathing chamber 87 can handle any overpressure.
L'ensemble de l'invention et les différents éléments peuvent prendre des formes multiples qui ne sont pas limitées aux formes décrites ci-dessus. Dans le cas d'un équipement pour un plongeur, il est important que l'anneau 2 soit suffisamment protégé afin qu'il ne se détériore pas par contact avec des obstacles, comme par exemple des rochers, ou qu'il ne s'accroche pas à la végétation aquatique. Le caisson pulmonaire peut prendre n'importe quelle forme, notamment des formes ergonomiques qui permettent au plongeur de rester libre de ses mouvements. Dans le cas d'une capsule subaquatique, l'ensemble de l'invention peut être judicieusement agencé sur l'habitacle de façon à ce que la cage branchiale reçoive le courant de façon optimale lorsque la capsule se déplace. The whole of the invention and the different elements can take many forms which are not limited to the forms described above. In the case of equipment for a diver, it is important that ring 2 is sufficient protected so that it does not deteriorate by contact with obstacles, such as rocks, or that it does not cling to the aquatic vegetation. The pulmonary chamber can take any form, including ergonomic shapes that allow the diver to remain free of his movements. In the case of an underwater capsule, the assembly of the invention can be judiciously arranged on the passenger compartment so that the branchial cage receives the current optimally when the capsule moves.
L'ensemble de l'invention n'est pas uniquement destinée à un plongeur mais peut également servir à extraire de l'air respirable destiné à alimenter une enceinte de vie naturelle. The assembly of the invention is not only intended for a diver but can also be used to extract breathable air for supplying a natural living chamber.
En référence à la figure 5, l'ensemble de respiration subaquatique 101 comprenant un anneau 102 de circulation d'un liquide transporteur d'oxygène 103 traversant une cage branchiale 104 et un caisson pulmonaire 105 muni d'une bouche de respiration 106. L'ensemble 101 est ici connecté à une enceinte 108 par une bouche d'aération 109. La bouche d'aération 109 et la bouche de respiration 106 sont reliées par un connecteur étanche 110. Trois individus 111 sont ici représentés dans l'enceinte 108. Les éléments sont bien évidemment ici représentés à une échelle fictive, l'enceinte 108 étant en réalité beaucoup plus grande que les autres éléments de 1 ' ensemble . With reference to FIG. 5, the subaqueous breathing assembly 101 comprising a ring 102 for the circulation of an oxygen-carrying liquid 103 passing through a gill cage 104 and a pulmonary caisson 105 provided with a breathing mouth 106. 101 together here is connected to a chamber 108 by an air vent 109. The air vent 109 and the breathing mouth 106 are connected by a sealed connector 110. Three individuals 111 are here represented in the enclosure 108. Obviously, elements are here represented on a fictitious scale, the enclosure 108 being in fact much larger than the other elements of the assembly.
En référence à la figure 6, une enceinte 118, ici octogonale, est connectée à quatre modules 120 d'extraction de gaz, chaque module 120 comprenant trois unités 125 constituées chacune d'un anneau 102 de circulation d'un liquide transporteur d'oxygène, d'une cage branchiale 104, d'un caisson pulmonaire 105 et d'un connecteur 110 reliant l'enceinte 118 aux caissons pulmonaires 105. En référence à la figure 7, pour chaque unité 125 d'extraction de gaz, au niveau de l'entrée 121 de la cage branchiale 104, l'anneau 102 se divise en un faisceau de sous-circuits 126, qui se rassemblent au niveau de la sortie 122 de la cage branchiale 104. De même, l'anneau 102 se divise à nouveau en un faisceau de sous-circuits (non représentés) au niveau de l'entrée 123 du caisson pulmonaire, puis se rassemblent au niveau de la sortie 124 de celle-ci. With reference to FIG. 6, an enclosure 118, here octagonal, is connected to four gas extraction modules 120, each module 120 comprising three units 125 each consisting of a ring 102 for circulating an oxygen-carrying liquid. , a branchial cage 104, a pulmonary box 105 and a connector 110 connecting the chamber 118 to the pulmonary chambers 105. Referring to FIG. 7, for each gas extraction unit 125, at the inlet 121 of the gill cage 104, the ring 102 splits into a sub-circuit bundle 126, which collects at the from the outlet 122 of the gill cage 104. Similarly, the ring 102 is again divided into a bundle of sub-circuits (not shown) at the inlet 123 of the pulmonary chamber, and then collect at the level of the output 124 thereof.
Les circuits 126 sont ici représentés comme un faisceau de capillaires parallèles disposés autour de cylindres, plusieurs de ces cylindres étant disposés parallèlement entre l'entrée 121 et la sortie 122 de la cage branchiale 104.  The circuits 126 are represented here as a bundle of parallel capillaries arranged around cylinders, several of these cylinders being arranged parallel between the inlet 121 and the outlet 122 of the branchial cage 104.
L'extraction de gaz respirable se fait selon le même principe que décrit précédemment. Le liquide transporteur d'oxygène 103 circulant dans l'anneau 102 permet d'extraire l'oxygène et l'azote du milieu subaquatique au niveau de la cage branchiale 104 et de l'apporter au le caisson pulmonaire 105 où ils sont pervaporisés . The extraction of breathable gas is done according to the same principle as described above. The oxygen-carrying liquid 103 flowing in the ring 102 makes it possible to extract the oxygen and the nitrogen from the subaquatic medium at the level of the gill cage 104 and to supply it to the pulmonary caisson 105 where they are pervaporized.
Le connecteur 110 est étanche, c'est-à-dire qu'il ne laisse pas d'eau du milieu subaquatique s'infiltrer à l'intérieur de l'enceinte 108 ou du caisson pulmonaire 105. Il peut être équipé, au niveau de la bouche de d'aération 109, ou entre la bouche d'aération 109 et la bouche de respiration 106, d'une hélice de ventilation (non représentée) , créant une circulation d'air sortant du caisson de respiration vers l'enceinte 108. Il se crée alors dans le caisson 105 une dépression induisant une différence de pression partielle des gaz entre l'intérieur sec du caisson et le liquide transporteur d'oxygène 103 le parcourant. Cette différence de pression partielle entraine la pervaporisation des gaz, c'est-à-dire le passage des gaz, par diffusion à travers la membrane semi-perméable, de leur forme dissoute et/ou adsorbée dans le liquide 103 à une forme gazeuse dans le volume du caisson 105. Cette dépression peut également être assurée par tout moyen connu de l'homme du métier autre qu'une hélice de ventilation. Le nombre de modules 120 d'extraction de gaz, ou le nombre d'unités 125 par module, est variable et doit être adapté à la taille de l'enceinte 108 à alimenter en gaz respirable. De même que pour l'équipement destiné à un plongeur, les paramètres de configuration à prendre en compte sont au moins la surface de membrane en contact avec le milieu aquatique dans la cage branchiale, la surface de membrane exposée dans le caisson pulmonaire, la capacité de diffusion de la membrane, le débit de la pompe, la concentration en composants transportant activement l'oxygène ou, de façon plus générale, la composition du liquide transporteur d'oxygène. The connector 110 is sealed, that is to say that it does not let water from the subaquatic medium infiltrate inside the enclosure 108 or the pulmonary box 105. It can be equipped, at the level of of the air vent 109, or between the air vent 109 and the breathing mouth 106, a ventilation fan (not shown), creating a flow of air from the breathing chamber to the enclosure 108. Then there is created in the box 105 a depression inducing a partial pressure difference of the gases between the dry interior of the box and the oxygen-carrying liquid 103 flowing therethrough. This difference in partial pressure causes the pervaporation of the gases, that is to say the passage of gases, by diffusion through the semipermeable membrane, of their dissolved and / or adsorbed form in the liquid 103 to a gaseous form in the volume of the box 105. This depression can also be provided by any means known to those skilled in the art other than a ventilation fan. The number of gas extraction modules 120, or the number of units 125 per module, is variable and must be adapted to the size of the enclosure 108 to supply breathable gas. As for the equipment intended for a diver, the configuration parameters to be taken into account are at least the membrane surface in contact with the aquatic environment in the gill cage, the membrane surface exposed in the pulmonary caisson, the capacity diffusion of the membrane, the flow rate of the pump, the concentration of components actively carrying oxygen or, more generally, the composition of the oxygen-carrying liquid.
L'air qui est déplacé du caisson pulmonaire 105 vers l'enceinte 108 peut éventuellement également être par exemple filtré, séché, chauffé ou refroidi selon les besoins. The air that is displaced from the pulmonary caisson 105 to the enclosure 108 may also optionally be, for example, filtered, dried, heated or cooled as required.
L'enceinte 108 pourrait être délimitée par une double paroi. Différentes installations techniques pourraient ainsi être insérées entre les deux parois, comme par exemple des pompes pour générer la dépression nécessaire dans le caisson pulmonaire ou les câbles et équipements électrique. The enclosure 108 could be delimited by a double wall. Different technical installations could be inserted between the two walls, such as pumps to generate the necessary depression in the pulmonary chamber or cables and electrical equipment.
Un système de recyclage d'air peut également être prévu afin de maintenir une atmosphère respirable constante dans l'enceinte. L'approvisionnement en énergie, pour le fonctionnement de l'ensemble de l'invention, aussi bien que pour alimenter d'autres équipements utilisés par les individus se trouvant à l'intérieur de l'enceinte, peut se faire au moyen d' hydroliennes placées à l'extérieur, à proximité de l'enceinte. An air recirculation system may also be provided to maintain a constant breathable atmosphere in the enclosure. The supply of energy, for the operation of the whole of the invention, as well as to supply other equipment used by the individuals inside the enclosure, can be done by means of tidal turbines. placed outside, near the enclosure.
Que ce soit pour alimenter en air respirable un plongeur seul, ou un espace sous-marin de grande taille, le poumon de l'invention peut prendre toute forme adaptée à l'utilisation qui en est faite. Par exemple, le poumon peut être configuré avec un volume variable, comme illustré sur l'ensemble 90 de la figure 9 et en référence aux figures 10a et 10b. Whether to supply breathable air to a single diver, or a large underwater space, the lung of the invention can take any form adapted to the use that is made of it. For example, the lung may be configured with a variable volume, as illustrated in assembly 90 of Figure 9 and with reference to Figures 10a and 10b.
L'ensemble 90 comprend une structure branchiale 91 cylindrique de support de membranes creuses pour la circulation du liquide transporteur d'oxygène (non représenté) à l'intérieur de laquelle une structure 92 de support des membranes creuses et un soufflet 93 formant la partie pulmonaire peuvent s'insérer, les membranes creuses (non représentées) parcourant successivement les parties branchiales et pulmonaires, comme décrit plus haut. La partie pulmonaire est pourvue d'une bouche de respiration 96. Un cylindre rigide 94, à pression négative, est placé autour du soufflet 93. The assembly 90 comprises a cylindrical gill structure 91 supporting hollow membranes for the circulation of the oxygen-carrying liquid (not shown) inside which a structure 92 for supporting the hollow membranes and a bellows 93 forming the pulmonary portion may be inserted, the hollow membranes (not shown) successively browsing the gill and lung parts, as described above. The pulmonary portion is provided with a breathing mouth 96. A rigid cylinder 94, at negative pressure, is placed around the bellows 93.
Comme décrit plus haut, les gaz dissout dans l'eau dans laquelle est plongée la partie branchiale se dissolvent/s' adsorbent, à ce niveau, dans le liquide transporteur d'oxygène parcourant la/les membranes perméables contenant ce liquide. Le liquide transporteur d'oxygène achemine les gaz dissouts/adsorbés vers la partie pulmonaire au niveau de la structure de support 92, ici une portion de cylindre sec, c'est-à-dire ne contenant pas d' eau . As described above, the gases dissolved in the water in which the gill portion is dipped dissolve / adsorb, at this point, into the oxygen-carrying liquid flowing through the permeable membranes containing the liquid. The oxygen-carrying liquid conveys the dissolved / adsorbed gases towards the pulmonary portion at the level of the support structure 92, here a portion of dry cylinder, that is to say one containing no water.
Le soufflet 93 définit ici un volume variable pour la pervaporisation des gaz. Ce soufflet 93 est lui-même compris dans un cylindre 94. Une sous-pression est appliquée au volume compris entre le cylindre 94 et la paroi extérieure du soufflet. Cette sous-pression permet au soufflet de rester en position étendue ou déployée (figure 10a) lorsqu' aucune aspiration n'est appliquée à la bouche de respiration (le plongeur n'inspire pas) . Ceci permet d'avoir également une sous-pression dans le soufflet 93 qui favorise la pervaporisation des gaz dans ce soufflet .  The bellows 93 here defines a variable volume for the pervaporation of gases. This bellows 93 is itself included in a cylinder 94. Underpressure is applied to the volume between the cylinder 94 and the outer wall of the bellows. This underpressure allows the bellows to remain in extended or extended position (Figure 10a) when no suction is applied to the breathing mouth (the diver does not breathe). This also makes it possible to have an underpressure in the bellows 93 which favors the pervaporation of the gases in this bellows.
Lorsqu'une aspiration est appliquée à la bouche de respiration (ex : le plongeur inspire), l'air compris dans le soufflet 93 est aspiré et le volume du soufflet diminue (figure 10b) . La pression négative dans le cylindre 94 entraine ensuite, à la fin de l'inspiration, le retour du soufflet 93 en position déployé, favorisant à nouveau la pervaporisation des gaz parcourant la/les membranes de la structure 92. When a suction is applied to the breathing mouth (eg the diver inhales), the air included in the bellows 93 is sucked and the volume of the bellows decreases (Figure 10b). The negative pressure in cylinder 94 then drives, at the end inspiration, the return of the bellows 93 in the deployed position, again favoring the pervaporation of the gases flowing through the membrane / structure 92.
Le soufflet 93 est ici représenté sous forme d'un cylindre présentant des plis en accordéon mais toute autre configuration présentant un volume variable peut être envisagée. The bellows 93 is here represented in the form of a cylinder having folds in accordion but any other configuration having a variable volume can be envisaged.
Cet agencement particulier, basé sur un jeu de pressions entre les différents compartiments du caisson pulmonaire permet ainsi d'améliorer son efficacité. This particular arrangement, based on a set of pressures between the different compartments of the pulmonary chamber thus makes it possible to improve its efficiency.
Les différentes options présentées ci-dessus peuvent être combinées entre elles, comme par exemple l'agencement particulier avec soufflet du caisson pulmonaire et le recycleur d'air de la figure 8. The various options presented above can be combined with each other, for example the particular arrangement with bellows of the pulmonary caisson and the air recycler of FIG. 8.

Claims

Revend!cations Resells! Cations
Ensemble (1) subaquatique comprenant un anneau (2) de circulation d'un liquide transporteur d'oxygène (3) , une cage branchiale (4) et un caisson pulmonaire (5), caractérisé par le fait qu'il est de respiration, le caisson pulmonaire comportant une bouche de respiration (6) , ledit anneau traversant la cage branchiale (4) et le caisson pulmonaire (5) . Underwater assembly (1) comprising a ring (2) for circulation of an oxygen-carrying liquid (3), a branchial cage (4) and a pulmonary caisson (5), characterized in that it is of respiration, the pulmonary chamber comprising a breathing mouth (6), said ring passing through the branchial cage (4) and the pulmonary chamber (5).
Ensemble selon la revendication 1, dans lequel l'anneau de circulation An assembly according to claim 1, wherein the circulation ring
(2) est perméable à l'oxygène et le caisson pulmonaire (5) est agencé pour provoquer la pervaporisation d'oxygène, transporté par le liquide transporteur d'oxygène (3) , à travers l'anneau perméable. (2) is permeable to oxygen and the pulmonary chamber (5) is arranged to cause the pervaporation of oxygen transported by the oxygen-carrying liquid (3) through the permeable ring.
Ensemble selon la revendication 2, dans lequel la cage branchiale (4) est agencée pour permettre la diffusion d'oxygène, du milieu subaquatique vers le liquide transporteur d'oxygène An assembly according to claim 2, wherein the branchial cage (4) is arranged to allow diffusion of oxygen from the underwater medium to the oxygen carrier liquid
(3), à travers l'anneau perméable. (3), through the permeable ring.
4. Ensemble selon l'une des revendications 1 à 3, dans lequel le liquide transporteur d'oxygène (3) comprend au moins un composant pouvant adsorber l'oxygène. 4. Assembly according to one of claims 1 to 3, wherein the oxygen-carrying liquid (3) comprises at least one component capable of adsorbing oxygen.
Ensemble selon l'une des revendications 1 à 4, dans lequel il est prévu une pompe (7) pour assurer la circulation du liquide transporteur d'oxygène (3) . Assembly according to one of claims 1 to 4, wherein there is provided a pump (7) for circulating the oxygen-carrying liquid (3).
6. Ensemble selon l'une des revendications 2 à 5, dans lequel l'anneau (2) de circulation est également perméable au diazote . 6. Assembly according to one of claims 2 to 5, wherein the ring (2) circulation is also permeable to the dinitrogen.
7. Ensemble selon l'une des revendications 1 à 2, dans lequel l'oxygène et le diazote sont solubles dans le liquide transporteur d'oxygène (3) . 7. An assembly according to one of claims 1 to 2, wherein the oxygen and the dinitrogen are soluble in the oxygen-carrying liquid (3).
8. Ensemble selon l'une des revendications 1 à 7, dans lequel l'anneau de circulation (2) comprend au moins une membrane perméable ou semi-perméable hydrophobe agencée pour envelopper le liquide transporteur d'oxygène. 8. Assembly according to one of claims 1 to 7, wherein the circulation ring (2) comprises at least one hydrophobic permeable or semi-permeable membrane arranged to envelop the oxygen-carrying liquid.
9. Ensemble selon l'une des revendications 1 à 8, dans lequel la cage branchiale (4) est agencée pour y permettre la circulation d'un courant du milieu subaquatique. 9. Assembly according to one of claims 1 to 8, wherein the branchial cage (4) is arranged to allow the circulation of a current of the underwater medium.
10. Ensemble selon l'une des revendications 1 à 9, dans lequel l'anneau de circulation (2) se divise, sur une portion de sa longueur, en plusieurs sous-circuits parallèles . 10. An assembly according to one of claims 1 to 9, wherein the circulation ring (2) is divided over a portion of its length into several parallel sub-circuits.
11. Ensemble selon l'une des revendications 1 à 10, comprenant, en sortie de la bouche de respiration, un recycleur d'air. 11. Assembly according to one of claims 1 to 10, comprising, at the outlet of the breathing mouth, an air recycler.
12. Ensemble selon l'une des revendications 1 à 11, dans lequel le caisson pulmonaire (92, 93) a un volume variable.  12. Assembly according to one of claims 1 to 11, wherein the pulmonary chamber (92, 93) has a variable volume.
13. Ensemble selon la revendication 12 dans lequel le caisson pulmonaire comprend un soufflet (93) de volume variable agencé pour y assurer une sous-pression favorisant la pervaporisation, dans le caisson pulmonaire, d'oxygène transporté par le liquide transporteur d'oxygène 13. The assembly of claim 12 wherein the pulmonary chamber comprises a bellows (93) of variable volume arranged to provide a sub-pressure promoting the pervaporation in the pulmonary chamber of oxygen transported by the oxygen-carrying liquid.
(3) à travers l'anneau perméable. (3) through the permeable ring.
14. Enceinte (108) subaquatique pour vie naturelle caractérisée par le fait qu'elle est reliée à la bouche (106) de respiration d'au moins un ensemble (101) selon l'une des revendications 1 à 10 pour être alimentée en air respirable . 14. Underwater enclosure (108) for natural life characterized in that it is connected to the breathing mouth (106) of at least one assembly (101) according to one of claims 1 to 10 to be supplied with air breathable.
15. Enceinte (108) selon la revendication 14, pourvue d'une bouche d'aération (109) à laquelle est reliée la bouche (106) de respiration de l'ensemble (101) par un connecteur étanche (110) . 15. Enclosure (108) according to claim 14, provided with a vent (109) to which is connected the mouth (106) for breathing the assembly (101) by a sealed connector (110).
16. Enceinte (108) selon l'une des revendications 14 et16. Enclosure (108) according to one of claims 14 and
15, comprenant des moyens de faire circuler l'air pervaporisé du caisson de respiration (105) vers l'enceinte (108) . 15, comprising means for circulating the pervaporized air of the breathing chamber (105) to the enclosure (108).
PCT/EP2018/068555 2017-07-10 2018-07-09 Underwater breathing assembly WO2019011864A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
BE2017/5490A BE1024595B1 (en) 2017-07-10 2017-07-10 SUBAQUATIC BREATHING ASSEMBLY
BEBE2017/5490 2017-07-10
BE2017/5737A BE1024883B1 (en) 2017-07-10 2017-10-16 SUBAQUATIC BREATHING ASSEMBLY
BEBE2017/5737 2017-10-16

Publications (1)

Publication Number Publication Date
WO2019011864A1 true WO2019011864A1 (en) 2019-01-17

Family

ID=59506005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/068555 WO2019011864A1 (en) 2017-07-10 2018-07-09 Underwater breathing assembly

Country Status (2)

Country Link
BE (2) BE1024595B1 (en)
WO (1) WO2019011864A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220063782A1 (en) * 2020-08-26 2022-03-03 University Of Florida Research Foundation, Incorporated Apparatus and method for self contained breathing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4602987A (en) * 1984-09-24 1986-07-29 Aquanautics Corporation System for the extraction and utilization of oxygen from fluids
US4609383A (en) * 1984-09-24 1986-09-02 Aquanautics Corporation Apparatus and method for extracting oxygen from fluids
WO2002040343A1 (en) 2000-11-15 2002-05-23 Bodner Alan Izhar Open-circuit self-contained underwater breathing apparatus
US20040000232A1 (en) * 2001-11-13 2004-01-01 Van Horne William J. Device and method for exchanging oxygen and carbon dioxide between a gas and an aqueous liquid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4602987A (en) * 1984-09-24 1986-07-29 Aquanautics Corporation System for the extraction and utilization of oxygen from fluids
US4609383A (en) * 1984-09-24 1986-09-02 Aquanautics Corporation Apparatus and method for extracting oxygen from fluids
WO2002040343A1 (en) 2000-11-15 2002-05-23 Bodner Alan Izhar Open-circuit self-contained underwater breathing apparatus
US20040000232A1 (en) * 2001-11-13 2004-01-01 Van Horne William J. Device and method for exchanging oxygen and carbon dioxide between a gas and an aqueous liquid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MING-CHIEN YANG ET AL: "ARTIFICIAL GILLS", JOURNAL OF MEMBRANE SCIENCE, ELSEVIER BV, NL, vol. 42, no. 3, 15 March 1989 (1989-03-15), pages 273 - 284, XP000070927, ISSN: 0376-7388, DOI: 10.1016/S0376-7388(00)82381-9 *

Also Published As

Publication number Publication date
BE1024595B1 (en) 2018-04-17
BE1024883B1 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP7071894B2 (en) Anesthesia maintenance device for fish and shellfish
JP2022062721A (en) Artificial lung system and method of application thereof
JP2017018626A (en) Blood storage bag system and depletion device having oxygen and carbon dioxide depletion ability
WO2019011864A1 (en) Underwater breathing assembly
WO1998049054A1 (en) Method and device for producing autonomous breathing gas and processing and provision of breathing gas for a diver at extreme depths
FR2905606A1 (en) METHOD AND DEVICE FOR SEPARATING CARBON DIOXIDE FROM A MIXTURE OF RESPIRATORY GAS USING A FIXED SITES SUPPORT MEMBRANE
US7278422B2 (en) Open-circuit self-contained underwater breathing apparatus
CN102249195A (en) Military plateau vehicle-mounted oxygen machine
US8631788B2 (en) Artificial gills for deep diving without incurring the bends and for scavenging O2 from and dispelling CO2 into water or thin air
US11685673B2 (en) Systems and methods for removal of carbon dioxide from seawater
GB2553790A (en) Turbocharger for a fluid separation device
BE1030767B1 (en) Aquatic Breathing System
JP2002248490A (en) Water oxygen enriching and cleaning apparatus
KR102262959B1 (en) Simple re-breathing apparatus
JP2683767B2 (en) Carbon dioxide separation membrane containing polydentate ligand and carbon dioxide carrier
FR2601925A1 (en) DEEP BREATHING EQUIPMENT
US20220063782A1 (en) Apparatus and method for self contained breathing
KR102407831B1 (en) Underwater breathing apparatus using artificial gill system
JP2009034442A (en) Oxygen inhaling apparatus for high altitudes, and carbon dioxide adsorbent agent revitalization mechanism
Krog Oxygen supply in aquatic forms
CN112960084A (en) Underwater breathing equipment
Heo et al. Separation of dissolved gas for breathing of a human against sudden waves using hollow fiber membranes
FR2917778A1 (en) Carbon dioxide emission sequestering and limiting method for e.g. terrestrial motor vehicle, involves collecting coolant of engine block, and circulating coolant in heat exchanger that functions with exhaust gas
WO2024042314A1 (en) Artificial gill
Nagase et al. Optimum control of oxygen affinity of hemoglobin as an oxygen carrier solution for an artificial gill

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18735593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18735593

Country of ref document: EP

Kind code of ref document: A1