WO2019011486A1 - Procédé de fonctionnement d'un dispositif d'entraînement, dispositif d'entraînement - Google Patents

Procédé de fonctionnement d'un dispositif d'entraînement, dispositif d'entraînement Download PDF

Info

Publication number
WO2019011486A1
WO2019011486A1 PCT/EP2018/059740 EP2018059740W WO2019011486A1 WO 2019011486 A1 WO2019011486 A1 WO 2019011486A1 EP 2018059740 W EP2018059740 W EP 2018059740W WO 2019011486 A1 WO2019011486 A1 WO 2019011486A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
internal combustion
combustion engine
gas turbocharger
braking
Prior art date
Application number
PCT/EP2018/059740
Other languages
German (de)
English (en)
Inventor
Michael Baeuerle
Magnus Labbe
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2019011486A1 publication Critical patent/WO2019011486A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/16Other safety measures for, or other control of, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/068Introducing corrections for particular operating conditions for engine starting or warming up for warming-up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/24Control of the engine output torque by using an external load, e.g. a generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/34Control of exhaust back pressure, e.g. for turbocharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/90Braking
    • F05D2260/903Braking using electrical or magnetic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a method for operating a drive device, in particular a motor vehicle, which has an internal combustion engine and an exhaust gas turbocharger associated with the internal combustion engine, wherein the
  • the invention relates to a drive device.
  • Turbine wherein by means of a braking device, the turbine is braked.
  • a deceleration of the turbine if, for example, the
  • the exhaust-gas turbocharger is braked at least temporarily in order to act on the internal combustion engine
  • the advantage here is that in a simple manner, in particular by the resistance exerted by the exhaust back pressure on the internal combustion engine, at least temporarily a load range or load point of the internal combustion engine is displaced in particular to higher load and is displaced by the increased injection quantity.
  • the internal combustion engine can thus, in order to achieve the requested drive torque, be operated with a higher actual drive torque or a higher actual rotational speed than before the deceleration of the exhaust gas turbocharger.
  • the increase of the actual drive torque or the actual speed causes an increase of one
  • Loss moments or a power loss of the internal combustion engine The torque which is generated in order to compensate for the resistance exerted by the exhaust gas backpressure is understood to be the "loss torque.”
  • Heat is generated by the internal combustion engine, in particular to the exhaust gas and / or to an engine that can be connected to the internal combustion engine The heat can advantageously be used to supply components of the vehicle with energy, in particular heat energy, so that they can be brought to a predefinable or predefined operating temperature more quickly
  • Exhaust after-treatment device such as a catalyst or a selective catalytic reduction device, a particulate filter system and / or a passenger compartment of the vehicle.
  • the shift of the load range can also be used to dynamically compensate for load fluctuations.
  • the shift of the load range is used to switch to operating states that are not possible at low load, such as a
  • the exhaust gas turbocharger is at least temporarily operated as an eddy current brake for braking the exhaust gas turbocharger.
  • the advantage here is that the braking takes place contactless and thus wear-free.
  • Exhaust gas turbocharger is thus particularly reliable and gentle on materials, so that a high repeatability of the deceleration of the exhaust gas turbocharger is ensured.
  • the eddy current brake is for example as a linear
  • Eddy current brake or as plate vortex current brake can be formed.
  • a decelerating magnetic field is generated for braking in the region of a compressor wheel and / or a turbine wheel of the exhaust gas turbocharger.
  • the advantage here is that the decelerating magnetic field or the braking effect acts directly on a component of the exhaust gas turbocharger itself. Additional materials on which the braking effect is or should take place are therefore not necessary.
  • the eddy current brake can be realized inexpensively.
  • the eddy current brake can be realized inexpensively.
  • Compressor and / or the turbine electrically conductive material Compressor and / or the turbine electrically conductive material.
  • the decelerating magnetic field is generated by at least one movable permanent magnet.
  • the advantage here is that the decelerating, especially static, magnetic field on simple and
  • the permanent magnet or permanent magnet preferably comprises ferromagnetic material or neodymium-iron-boron material. It is particularly preferably provided that the permanent magnet for braking the exhaust gas turbocharger in the vicinity of the compressor wheel and / or the
  • Turbine wheel is moved.
  • the advantage here is that the exhaust gas turbocharger is braked effectively in a simple manner.
  • the permanent magnet are in the particular rotating compressor wheel and / or the
  • Turbine wheel induced eddy currents as soon as they move in the magnetic field of the permanent magnet.
  • the permanent magnet is preferably moved on the front side or axially or laterally or radially in the direction of the compressor wheel and / or the turbine wheel.
  • a permanent magnet or a plurality of permanent magnets may be provided, whose magnetic field act on the compressor wheel and / or turbine wheel.
  • the permanent magnet is so in the vicinity of the compressor wheel and / or
  • Turbine wheel moves that the magnetic field the compressor wheel and / or
  • Turbine wheel interspersed vertically.
  • the turbine wheel and / or the compressor wheel preferably has at least one peripheral area with a flat surface or a flat end area, so that the decelerating magnetic field acts particularly effectively on the turbine wheel and / or compressor wheel
  • the permanent magnet is moved by an electric motor, pneumatically and / or hydraulically.
  • the advantage here is that the movement of the permanent magnet is very accurate.
  • a displacement distance of the permanent magnet and thus the braking effect on the turbine wheel and / or the compressor wheel can be precisely specified.
  • the movement of the permanent magnet is carried out stepwise or continuously, so that an induction of eddy currents and thus a braking force or braking effect on the compressor and / or the turbine wheel can be controlled.
  • this is preferably operatively connected to corresponding actuators.
  • the electromotive actuator may be formed, for example, as a linear motor, the hydraulic actuator as a hydraulic cylinder, and / or the pneumatic actuator as a pneumatic cylinder. It is preferably provided that the decelerating magnetic field is generated by a controllable electromagnet. This results in the advantage that the strength of the magnetic field of the electromagnet and thus the braking force can be varied. Preferably, the strength of the magnetic field is stepwise or continuously variable.
  • the electromagnet preferably has an iron core and a wire wound thereon or a coil, which can be acted upon by an electric current, so that in the wire or coil, a magnetic field, in particular the decelerating magnetic field, is formed.
  • the electromagnet is preferably arranged stationarily in the region of the turbine wheel and / or compressor wheel. A movement of the electromagnet relative to the turbine and / or compressor wheel is thus not necessary.
  • the deceleration of the exhaust gas turbocharger is performed by an electric motor coupled or coupled to the exhaust gas turbocharger.
  • Braking energy can be converted into electrical energy and thus used.
  • the electrical energy can be used, for example, to charge a vehicle battery which can be connected or connected to the electric motor and / or an energy store which, for example, has at least one electrical load, for example an optical display element in a vehicle electrical system
  • the electric motor is preferably operatively connected to a shaft of the exhaust gas turbocharger, so that, for example, by reversing the polarity of the electric motor, the shaft is braked.
  • the electric motor is operated as a generator to convert the braking energy into electrical energy.
  • the drive device according to the invention with the features of claim 9 is characterized by a controllable braking device for braking the exhaust gas turbocharger and by a control unit which is specially adapted to perform the method according to the invention from.
  • the braking device is designed to generate a decelerating magnetic field.
  • the braking device is in particular as an eddy current brake, which preferably has a permanent magnet or an electromagnet to generate the decelerating magnetic field and / or formed as an electric motor. This results in the already mentioned advantages. Further advantages and preferred features emerge in particular from the previously described and from the claims.
  • Figure 1 shows a drive device with an internal combustion engine and an internal combustion engine associated exhaust gas turbocharger and
  • FIG. 1 shows in a simplified longitudinal sectional view a
  • the exhaust gas turbocharger 3 has a compressor 4, which is arranged in an intake tract 5 of the internal combustion engine 2, and a turbine 6, which in an exhaust line 22 of the
  • the turbine 6 has a turbine wheel 7 to be driven or driven by the exhaust gases of the internal combustion engine 2.
  • a rotation of the turbine wheel 7 is by a bearing shaft 8 on a
  • Compressor 9 of the compressor 4 transmitted.
  • Compressor 9 is sucked through an intake duct 10 combustion air or fresh air and at least one cylinder, not shown here, the internal combustion engine 2 fed. In the cylinder, an air /
  • the drive device 1 further has a controllable braking device 11 for braking the exhaust gas turbocharger 3.
  • the braking device 11 is preferably designed to generate a decelerating magnetic field.
  • the braking device 11 is in the present case designed as an eddy current brake 12.
  • the decelerating magnetic field is preferably generated by at least one movable permanent magnet 13 and / or at least one controllable electromagnet 14.
  • the permanent magnet 13 has a static magnetic field and is moved in the present case in the vicinity of the compressor wheel 9. As a result, eddy currents are induced in the compressor wheel 9, by which a magnetic field of the permanent magnet 13 opposite magnetic field is generated, which causes a deceleration of the exhaust gas turbocharger 3.
  • the permanent magnet 13 is preferably moved axially or radially, in the present case radially in the direction of the arrow 20, in the direction of the compressor wheel 9.
  • the permanent magnet 13 is at a
  • pivot bearing 21 pivotally mounted, wherein the pivot bearing 21 preferably at a compressor 4 associated
  • Housing portion of the exhaust gas turbocharger 3 or the internal combustion engine 2 is arranged.
  • Compressor 9 pivots in the direction of a flat end face 16 of the compressor 9.
  • an electromotive actuator 15 such as a linear motor, operatively connected.
  • the electromagnet 14 preferably has a coil and an iron core, wherein upon application of the coil with electrical energy, the decelerating magnetic field is generated.
  • the electromagnet 14 is preferably arranged stationarily in the vicinity of the turbine wheel 7. A movement of the electromagnet 14 relative to the turbine wheel 7 is thus not necessary.
  • Exhaust gas turbocharger 3 acting braking force is particularly dependent on a current flowing through the electromagnet 14 electric current and thus of the magnetic field strength.
  • the compressor wheel 9 and the turbine wheel 7 preferably have at least one flat surface or a flat end face 16 on the circumference. Thereby it is ensured that the decelerating magnetic field of the permanent magnet 13 and / or the electromagnet 14 at this point acts or can act particularly effectively on the turbine wheel 7 and / or compressor wheel 9.
  • the turbine wheel 7 and / or the compressor wheel 9, in particular the flat end face 16 are penetrated perpendicularly by the decelerating magnetic field.
  • the electric motor 14 is arranged in the region of the turbine wheel 7 such that, when an electric current flows, its magnetic field strikes the flat end face 16 perpendicularly.
  • the braking device 11 as a with the
  • Exhaust gas turbocharger coupled electric motor 17 for example as
  • the electric motor 17 is preferably connected to the bearing shaft 8 or shaft of the exhaust gas turbocharger 3.
  • Umpolung For example, by Umpolung or
  • Braking energy of the bearing shaft 8 is converted into electrical energy.
  • the drive device has a control unit 18.
  • the control unit
  • the sensor is, for example, at least one
  • Temperature sensor which is designed to detect an actual temperature of at least one component of the vehicle.
  • the component is, for example, a catalyst, a selective catalytic reduction device
  • control unit 18 Particulate filter or a passenger compartment.
  • setpoint operating temperatures for the respective components are stored.
  • the control unit 18 in particular, the control unit 18 in particular
  • FIG. 2 shows a method for operating the drive device according to an exemplary embodiment.
  • a first step S1 after the vehicle is put into operation by the control unit 18, it is checked whether a desired operating temperature of a component of the vehicle, for example a setpoint temperature of the internal combustion engine 2 or of a selective catalytic reduction device, of a detected actual
  • a second step S2 by the control unit 18 is an operating condition, in particular a warm-up operation, for example
  • a third step S3 the internal combustion engine 2 is controlled in dependence on a requested drive torque or desired drive torque which is increased independently of a driver request as a function of the current operating state.
  • a requested drive torque or desired drive torque which is increased independently of a driver request as a function of the current operating state.
  • a fourth step S4 the exhaust-gas turbocharger 3 is braked at least temporarily during the increase of the requested drive torque in order to generate an exhaust-gas back pressure acting on the internal combustion engine 2
  • control unit 18 increases the amount of fuel to be injected, so that an actual drive torque of the
  • Internal combustion engine 2 at least substantially the requested
  • Braking effect is generated for a predetermined or limited period of time.
  • the injection quantity for all or only for individual, for example, only for a single cylinder of the internal combustion engine can be increased.
  • the load point or load range of the internal combustion engine 2 is shifted to a higher value in order to realize the requested target drive torque, whereby a rich operation of
  • control unit 18 controls in a fifth step S5 a braking device 11, for example the
  • a decelerating magnetic field is generated in the vicinity of the turbine wheel 7, so that the exhaust gas turbocharger 3 is decelerated.
  • a direction of rotation of the electric motor 14 operated in particular as a generator is reversed, so that the bearing shaft 8 is braked.
  • the actual temperature is compared with the desired temperature by the control unit 18 in a sixth step S6.
  • the exhaust gas counterpressure can additionally or alternatively be increased by activating, in particular closing, control valves, in particular wastegate valves, and / or adjusting VTG (Variable Turbine Geometry) blades.
  • VTG Very Turbine Geometry
  • the internal combustion engine 2 can thus have a higher actual drive torque or a higher actual rotational speed apply to achieve the requested drive torque
  • Regeneration operation for example, a particulate filter regeneration operation
  • the method is advantageously applicable.
  • the method according to the invention thus deliberately generates a loss torque in order to supply the vehicle more quickly with energy, in particular heat energy, in certain operating states, or to shift the engine to an operating point, by enabling operating states which are usually not possible at low load.
  • energy in particular heat energy
  • a loss torque in order to supply the vehicle more quickly with energy, in particular heat energy, in certain operating states, or to shift the engine to an operating point, by enabling operating states which are usually not possible at low load.
  • Grease operation or regeneration operation for a storage catalytic converter in the exhaust system of the internal combustion engine can be performed by charging a
  • Traction battery increases.
  • the actual drive torque is increased by activation of electrical consumers, preferably heating elements with high power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

L'invention concerne un procédé de fonctionnement d'un dispositif d'entraînement (1), en particulier d'un véhicule automobile, qui comporte un moteur à combustion interne (2) et un turbocompresseur à gaz d'échappement (3) associé au moteur à combustion interne (2), ledit moteur à combustion interne (2) étant commandé en fonction d'un couple d'entraînement demandé, en ce qu'il est augmenté en fonction d'un état de fonctionnement actuel, notamment de la mise à température, indépendamment de la demande du conducteur. Selon l'invention, le turbocompresseur à gaz d'échappement (3) est freiné au moins temporairement pour augmenter une contre-pression de gaz d'échappement agissant sur le moteur à combustion interne (2), et une quantité d'injection d'un carburant pour le moteur à combustion interne (2) est augmentée de telle manière qu'un couple d'entraînement effectif du moteur à combustion interne (2) correspond au moins sensiblement au couple d'entraînement demandé.
PCT/EP2018/059740 2017-07-12 2018-04-17 Procédé de fonctionnement d'un dispositif d'entraînement, dispositif d'entraînement WO2019011486A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017211894.6 2017-07-12
DE102017211894.6A DE102017211894A1 (de) 2017-07-12 2017-07-12 Verfahren zum Betreiben einer Antriebsvorrichtung, Antriebsvorrichtung

Publications (1)

Publication Number Publication Date
WO2019011486A1 true WO2019011486A1 (fr) 2019-01-17

Family

ID=62027979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/059740 WO2019011486A1 (fr) 2017-07-12 2018-04-17 Procédé de fonctionnement d'un dispositif d'entraînement, dispositif d'entraînement

Country Status (2)

Country Link
DE (1) DE102017211894A1 (fr)
WO (1) WO2019011486A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019203557A1 (de) * 2019-03-15 2020-09-17 Robert Bosch Gmbh Verfahren zum Betreiben eines Verbrennungsmotors

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4133736A1 (de) * 1991-10-11 1993-04-15 Daimler Benz Ag Abgasturbolader fuer eine brennkraftmaschine
WO2001055575A1 (fr) * 2000-01-25 2001-08-02 International Engine Intellectual Property Company, Llc Commande d'un turbocompresseur a geometrie variable, par detection de la pression des gaz d'echappement
EP2333272A1 (fr) * 2009-12-04 2011-06-15 Perkins Engines Company Limited Frein de turbocompresseur
DE102011081946A1 (de) 2011-09-01 2013-03-07 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Aufladeeinrichtung für einen Verbrennungsmotor
EP2679787A1 (fr) * 2012-06-28 2014-01-01 MAN Truck & Bus AG Procédé et dispositif destinés à la commande d'un volet de freinage
US9127589B2 (en) 2010-06-22 2015-09-08 Volvo Lastvagnar Ab Turbo compound transmission and a method for controlling a turbo compound transmission
DE102015203596A1 (de) 2015-02-27 2016-09-01 Robert Bosch Gmbh Lader, insbesondere Abgasturbolader, für eine Antriebseinrichtung sowie entsprechende Antriebseinrichtung
WO2016191775A1 (fr) * 2015-05-29 2016-12-08 Ge Jenbacher Gmbh & Co Og Procédé de fonctionnement d'un moteur à combustion interne

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4133736A1 (de) * 1991-10-11 1993-04-15 Daimler Benz Ag Abgasturbolader fuer eine brennkraftmaschine
US5323612A (en) 1991-10-11 1994-06-28 Mercedes-Benz Ag Exhaust gas turbocharger arrangement
WO2001055575A1 (fr) * 2000-01-25 2001-08-02 International Engine Intellectual Property Company, Llc Commande d'un turbocompresseur a geometrie variable, par detection de la pression des gaz d'echappement
EP2333272A1 (fr) * 2009-12-04 2011-06-15 Perkins Engines Company Limited Frein de turbocompresseur
US20120244011A1 (en) 2009-12-04 2012-09-27 Perkins Engine Company Limited Turbocharger Brake
US9127589B2 (en) 2010-06-22 2015-09-08 Volvo Lastvagnar Ab Turbo compound transmission and a method for controlling a turbo compound transmission
DE102011081946A1 (de) 2011-09-01 2013-03-07 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Aufladeeinrichtung für einen Verbrennungsmotor
EP2679787A1 (fr) * 2012-06-28 2014-01-01 MAN Truck & Bus AG Procédé et dispositif destinés à la commande d'un volet de freinage
DE102015203596A1 (de) 2015-02-27 2016-09-01 Robert Bosch Gmbh Lader, insbesondere Abgasturbolader, für eine Antriebseinrichtung sowie entsprechende Antriebseinrichtung
WO2016191775A1 (fr) * 2015-05-29 2016-12-08 Ge Jenbacher Gmbh & Co Og Procédé de fonctionnement d'un moteur à combustion interne

Also Published As

Publication number Publication date
DE102017211894A1 (de) 2019-01-17

Similar Documents

Publication Publication Date Title
DE102008041876B4 (de) Ventilöffnungs- und Schliesssteuergerät
DE102004018625B4 (de) Steuerungsvorrichtung für einen Verbrennungsmotor mit elektromotorbetriebenem Auflader
DE19715236B4 (de) Verfahren zur Steuerung des Ladeluftmassenstroms einer Brennkraftmaschine mit einem Abgasturbolader mit verstellbarer Turbinengeometrie
EP3056718B1 (fr) Procede et dispositif d'augmentation et/ou de reduction d'une temperature de gaz d'echappement d'un moteur a combustion interne comprenant un dispositif de post-traitement des gaz d'echappement dispose dans une conduite de gaz d'echappement
EP1744924B1 (fr) Procede et dispositif pour faire fonctionner un vehicule hybride
DE102010021449B4 (de) Verfahren zum Betreiben eines Verbrennungsmotors und Verbrennungsmotor
DE60316064T2 (de) Abgasturbolader
DE102010006722A1 (de) Verbrennungsmotor-Steuervorrichtung
DE102013106643A1 (de) Motoranordnung mit Energierückgewinnung aus dem Abgas
DE10156704A1 (de) Verfahren und Vorrichtung zum Betreiben eines Abgasturboladers für Verbrennungskraftmaschinen mit elektrisch unterstütztem Antrieb
EP3051097B1 (fr) Procédé de freinage de moteur pour un moteur à combustion interne suralimenté et dispositif de modulation d'une puissance de freinage de moteur d'un véhicule automobile comprenant un moteur à combustion interne suralimenté
WO2019011486A1 (fr) Procédé de fonctionnement d'un dispositif d'entraînement, dispositif d'entraînement
DE102008051818B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine
WO2020164948A1 (fr) Procédé pour faire fonctionner un turbocompresseur
DE102009060357A1 (de) Verfahren zum Betrieb einer einen Abgasturbolader aufweisenden Brennkraftmaschine und eine Brennkraftmaschine zur Durchführung des Verfahrens
EP3845745A1 (fr) Procédé de commande d'un turbocompresseur électrifié d'un moteur à combustion interne ainsi que véhicule automobile à moteur à combustion interne
DE102008051817B4 (de) Verfahren zum Betätigen eines Wastegateventils
EP1873372A1 (fr) Procédé d'augmentation de la pression de chargement pour moteurs à combustion internes chargés
DE102012006532A1 (de) Verfahren und Vorrichtung zur Steuerung eines elektrischen Stellantriebes für eine Wastegate-Ventilanordnung eines Abgasturboladers
DE102019124788A1 (de) Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug sowie entsprechende Antriebseinrichtung
EP2789826A1 (fr) Système d'entraînement
DE102007009161A1 (de) Hybridantrieb mit Verbrennungsmotor und elektrischer Maschine
DE102016015357A1 (de) Drosseleinrichtung für einen Abgastrakt einer Verbrennungskraftmaschine
EP3326880B1 (fr) Procédé de commande d'un entraînement hybride d'un véhicule automobile et entraînement hybride d'un véhicule automobile
DE102007000312B4 (de) Steuergerät eines Fahrzeugverbrennungsmotorsystems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18719109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18719109

Country of ref document: EP

Kind code of ref document: A1