WO2019011258A1 - 一种地源热泵系统、室内制热方法及室内制冷方法 - Google Patents

一种地源热泵系统、室内制热方法及室内制冷方法 Download PDF

Info

Publication number
WO2019011258A1
WO2019011258A1 PCT/CN2018/095215 CN2018095215W WO2019011258A1 WO 2019011258 A1 WO2019011258 A1 WO 2019011258A1 CN 2018095215 W CN2018095215 W CN 2018095215W WO 2019011258 A1 WO2019011258 A1 WO 2019011258A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground source
heat exchange
valve
pump system
heat pump
Prior art date
Application number
PCT/CN2018/095215
Other languages
English (en)
French (fr)
Inventor
梁小康
Original Assignee
梁小康
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 梁小康 filed Critical 梁小康
Publication of WO2019011258A1 publication Critical patent/WO2019011258A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat

Definitions

  • the present disclosure relates to the field of heat pump technology, and in particular to a ground source heat pump system, an indoor heating method, and an indoor cooling method.
  • Heat pump refers to the optimized and efficient transfer of heat energy in two directions.
  • the heat pump is widely used in heating, ventilation and air conditioning (HVAC) systems.
  • HVAC heating, ventilation and air conditioning
  • the heat pump is used to transfer heat because the heat pump consumes less energy than the heat pump transfers heat.
  • Heat pump heating uses a heat pump to transfer heat from the external environment to the interior. Most of the energy that is heated comes from the external environment, and only a small portion comes from electricity (or some other expensive energy source used to operate the compressor).
  • the application of electric heat pump, thermal energy transfer can be three or four times the power consumption, so that the system's coefficient of performance (COP) 3 or 4, compared to the traditional resistance heater COP is 1, that is, all heat is from the input The generation of electrical energy.
  • COP system's coefficient of performance
  • heat pumps are used to transfer external energy (environmental elements) to the interior space. These external energy sources can be air, earth and water. Simply put, the heat pump collects heat from the outside and brings the heat to the room for heating. There are three main types of heat pumps, and many sub-categories are based on different physical conditions and conditions.
  • Air Source Heat Pump (ASHP) – Air is the source of thermal energy for such heat pumps. This type of heat pump should be used for heating and cooling in less cold geographical areas. If the external temperature drops, the available thermal energy will be relatively reduced, which will reduce the efficiency. When the outside temperature drops below 0 °C, the external collector will frost, which will further reduce the heat collection efficiency.
  • air source heat pumps are the most common and inexpensive.
  • Water Source Heat Pump (WSHP) – Water is the source of thermal energy for such heat pumps.
  • the application of this type of heat pump is limited to the proximity of large water bodies. This large body of water can be lakes, rivers and groundwater.
  • the use of such heat pumps is limited to the geographic location.
  • the ground (earth) source heat pump uses underground (earth) as a source of thermal energy.
  • This type of heat pump is extremely reliable, regardless of location or season. The temperature below 7 meters on the earth's surface remains relatively constant. This relatively constant subsurface temperature is higher than the temperature on the surface of the winter and is a reliable source of heat.
  • This type of underground connected heat pump collects heat in two ways. The first method is to circulate the fluid as a medium in the ground and then extract the heat energy through a heat pump. Such a circulating fluid system may be an open loop or a closed loop, and the fluid may be water, brine, methyl, alcohol, antifreeze, and the like.
  • the second type is the direct diffusion geothermal system (DX), which directly uses the refrigerant to absorb underground thermal energy.
  • DX direct diffusion geothermal system
  • the closed-loop system collects thermal energy from an intermediate fluid using a 50 mm HDPE pipeline buried underground. These HDPE pipes must be placed flat in a 2 m deep trench, requiring a heating or cooling ton per 125 to 200 m pipe. These HDPE tubes can also be inserted vertically into underground boreholes. These boreholes will have a depth of 60 to 200 meters, depending on each row of holes that can produce 1 or 2 cold or hot tons. Horizontal closed-loop systems require large-scale excavation, while vertical closed-loop systems will require deep well drilling, greatly increasing the initial investment cost of the ground source heat pump system.
  • the present disclosure provides a ground source heat pump system that is capable of improving the initial investment cost and operating cost of improving the ground source heat pump system.
  • the present disclosure also provides an indoor heating method and an indoor cooling method based on the above ground source heat pump system, which can effectively reduce the cost of cooling and heating.
  • a ground source heat pump system which is a ground source heat pump system in which a refrigerant directly exchanges heat with a soil, comprising a ground source side heat exchange device, a compressor, a four-way valve, an indoor heat exchange device, and a first throttling device;
  • the four-way valve has a first valve port, a second valve port, a third valve port and a fourth valve port, and an outlet of the compressor is connected to a first valve port of the four-way valve, the compressor The inlet is connected to the third valve port of the compressor;
  • a second valve port of the four-way valve an indoor heat exchange device, a first throttling device, a ground source side heat exchange device, and a fourth valve port of the four-way valve are sequentially connected;
  • the ground source side heat exchange device includes one or at least two parallel heat exchange tubes buried vertically in the soil, and a bottom of the heat exchange tubes is provided with a reversible expansion valve.
  • the heat exchange tube has a length of 6-10 m.
  • the heat exchange tube has a length of 6 m, 7 m, 8 m, 9 m or 10 m.
  • the heat exchange tube has a diameter of 35-40 mm.
  • the heat exchange tube has a diameter of 35 mm, 36 mm, 37 mm, 38 mm, 39 mm or 40 mm.
  • the heat exchange tube is a U-shaped tube.
  • a first bypass valve is further included, the first bypass valve being coupled in parallel with the first throttle device to selectively bypass the first throttle device.
  • the first throttle device is a double-conducting thermal expansion valve or an electronic expansion valve
  • the first bypass valve is a solenoid valve
  • the second bypass valve being coupled in parallel with the second throttling device to selectively bypass the second throttling device, the first section
  • the flow device and the second throttle device are connected in series between the indoor heat exchange device and the ground source side heat exchange device.
  • first throttle device and the second throttle device are both thermal expansion valves.
  • first bypass valve and the second bypass valve are one-way valves or solenoid valves.
  • a reservoir is further included, the reservoir being disposed between the first throttle device and the second throttle device.
  • a ground source heat pump system comprising a ground source side heat exchange device, a compressor, a four-way valve, and an indoor heat exchange device;
  • the four-way valve has a first valve port, a second valve port, a third valve port and a fourth valve port, and an outlet of the compressor is connected to a first valve port of the four-way valve, the compressor The inlet is connected to the third valve port of the compressor;
  • the second valve port of the four-way valve, the indoor heat exchange device, the ground source side heat exchange device, and the fourth valve port of the four-way valve are sequentially connected.
  • An indoor refrigeration method based on the above ground source heat pump system comprising:
  • the compressor discharges the liquid refrigerant, and the liquid refrigerant sequentially enters the indoor heat exchange device after passing through the first valve port, the four-way valve and the second valve port, and the liquid refrigerant is exchanged in the indoor
  • the heat absorption in the heat device becomes a gaseous refrigerant
  • the gaseous refrigerant enters the ground source side heat exchange device to release heat into a liquid refrigerant
  • the liquid refrigerant sequentially passes through the fourth valve port, the four-way valve and the Return to the compressor after the third valve port.
  • An indoor heating method based on the above ground source heat pump system comprising:
  • the compressor discharges a liquid refrigerant, and the liquid refrigerant sequentially passes through the first valve port and the fourth valve port to enter the ground source side heat exchange device, and the liquid refrigerant is in the ground source side heat exchange device
  • the medium heat is turned into a gaseous refrigerant, and the gaseous refrigerant enters the indoor heat exchange device to release heat into a liquid refrigerant, and the liquid refrigerant sequentially passes through the second valve port, the four-way valve and the third valve. Return to the compressor after the mouth.
  • the ground source heat pump system of the present disclosure improves the heat resistance caused by heat exchange using the cold medium by directly transferring heat between the refrigerant in the ground source heat pump system and the soil, and eliminates the power required for circulating the cold medium.
  • the loss makes the ground source heat pump system more efficient, energy-saving, and can meet the needs of indoor users for cooling and heating.
  • the reversible expansion valve is installed at the bottom end of the ground source side heat exchange tube to effectively solve the bottom end of the heat exchange tube.
  • the distance from the compressor is far away, which causes the refrigerant to circulate to the bottom end of the heat exchange tube.
  • the amount of refrigerant can be saved, the heat exchange efficiency of the ground source heat pump system can be improved, the well drilling area can be reduced, and the ground source heat pump can be reduced.
  • the ground source heat pump system of the present disclosure provides a large suction heat exchange surface by applying a heat exchange tube having a larger diameter; in addition, the installation and drilling costs are relatively low by shortening the length of the pipeline.
  • the ground source heat pump system of the present disclosure is provided with a bypass valve in parallel with the throttling device, and only needs to open the bypass valve during defrosting, so that no reverse circulation is required in the ground source heat pump system. Defrost is used for the purpose.
  • ground source heat pump system directly exchanges heat between the refrigerant and the soil, improves the heat resistance caused by heat exchange using the cold medium, eliminates the power loss required for circulating the cold medium, and makes the ground source heat pump system more efficient and efficient. Energy saving, while reducing the cost of cooling and heating.
  • FIG. 1 is a schematic structural view of a ground source heat pump system of the present disclosure.
  • ground source heat pump system To facilitate an understanding of the present disclosure, a more detailed description of a ground source heat pump system will be described below with reference to the associated drawings. A preferred embodiment of a ground source heat pump system is given in the drawings. However, the ground source heat pump system can be implemented in many different forms and is not limited to the embodiments described herein. Rather, the purpose of providing these embodiments is to make the disclosure of the ground source heat pump system more thorough and comprehensive.
  • the term “comprising” or “including” may be used in the various embodiments of the present disclosure to indicate the existence of the disclosed function, operation or element, and does not limit one or more functions, operations or elements. increase.
  • the terms “comprising,” “having,” “,” It should not be understood that the existence or addition of one or more features, numbers, steps, operations, components or components of one or more other features, numbers, steps, operations, components, components or combinations of the foregoing are excluded. Or the possibility of a combination of the foregoing.
  • the expression “at least one of A or / and B” includes any or all combinations of the simultaneously listed words.
  • the expression “A or B” or “at least one of A or / and B” may include A, may include B, or may include both A and B.
  • the present disclosure provides a ground source heat pump system including a ground source side heat exchange device 100, a compressor 200, a four-way valve 300, an indoor heat exchange device 400, and a first throttle device 500.
  • the four-way valve 300 has a first valve port 301, a second valve port 302, a third valve port 303, and a fourth valve port 304, and an outlet of the compressor 200 and a fourth valve 300 A valve port 301 is connected, and an inlet of the compressor 200 is connected to a third valve port 303 of the compressor 200.
  • the second valve port 302 of the four-way valve 300, the indoor heat exchange device 400, the first throttle device 500, the ground source side heat exchange device 100, and the fourth valve port 304 of the four-way valve 300 are sequentially connected.
  • the ground source side heat exchange device 100 includes one or at least two parallel heat exchange tubes 110 buried vertically in the soil.
  • the number of heat exchange tubes 110 is three. In other embodiments, the heat exchange tubes 110 may also be four or five.
  • the bottom of the heat exchange tube 110 is provided with a reversible expansion valve 111.
  • the reversible expansion valve 111 is a double-conducting reversible expansion valve commonly used in the prior art, in which one direction can convert the liquid refrigerant into a gaseous refrigerant, and the other direction allows the gaseous refrigerant to pass directly.
  • the length of the heat exchange tube 110 is 6-10 m, such as 6 m, 7 m, 8 m, 9 m, or 10 m.
  • the heat exchange tubes 110 may also have a length of 4-5 m or 11-12 m.
  • the heat exchange tube 110 has a diameter of 35-40 mm, such as 35 mm, 36 mm, 37 mm, 38 mm, 39 mm, or 40 mm. In other embodiments, the heat exchange tubes 110 may also have a diameter of 33-35 mm.
  • the heat exchange tube 110 is a U-shaped tube.
  • the heat exchange tubes may also be spiral tubes.
  • the heat exchange tube 110 is a copper tube.
  • the heat exchange tubes can also be of other materials, such as aluminum tubes or iron tubes.
  • ground source heat pump system of the present disclosure operates on the following principles:
  • the liquid refrigerant discharged from the outlet of the compressor 200 sequentially passes through the first valve port 301 of the four-way valve 300 and the second valve port 302 of the four-way valve 300 to directly enter the indoor heat exchange device 400, and is cooled.
  • the agent passes through the indoor heat exchange device 400, absorbs heat and evaporates into a gaseous refrigerant, and then the refrigerant sequentially flows through the first throttling device and the ground source side heat exchange device 100, and the refrigerant enters the heat exchange tube 110 and passes through the heat exchange tube.
  • the liquid refrigerant discharged from the outlet of the compressor 200 sequentially passes through the first valve port 301 of the four-way valve 300 and the fourth valve port 304 of the four-way valve 300 directly into the ground source side heat exchange device. 100, the liquid refrigerant enters the heat exchange tube 110, and the refrigerant exchanges heat with the soil through the wall of the ground source side heat exchange device 100, absorbs heat in the soil, and passes through the reversible expansion valve 111 at the bottom of the heat exchange tube 110.
  • the refrigerant is converted into a gaseous state, and then directly enters the indoor heat exchange device 400 through the first throttling device, the refrigerant passes through the indoor heat exchange device 400, condenses and releases heat, and finally the refrigerant sequentially passes through the second valve port 302 of the four-way valve 300.
  • the third valve port 303 of the four-way valve 300 is returned to the compressor 200, thus completing the circulation of the refrigerant in the ground source heat pump system during indoor heating.
  • the ground source heat pump system of the present disclosure improves the thermal resistance caused by heat exchange using the cold medium by directly transferring heat between the refrigerant in the ground source heat pump system and the soil, and eliminates the power loss required for circulating the cold medium.
  • the source heat pump system is more efficient, energy-saving, and can continuously meet the needs of indoor users for cooling and heating.
  • By providing a reversible expansion valve 111 at the bottom end of the ground source side heat exchange tube 110 the bottom end of the heat exchange tube 110 is effectively compressed.
  • the distance of the machine 200 is far away, which causes the refrigerant to circulate to the bottom end of the heat exchange tube 110, and can save the amount of refrigerant, improve the heat exchange efficiency of the ground source heat pump system, reduce the well drilling area, and reduce the ground source. Operating cost of the heat pump system.
  • the ground source heat pump system further includes a first bypass valve 600, the first bypass valve 600 is connected in parallel with the first throttle device 500 to selectively bypass the first The flow device 500.
  • first bypass valve 600 may be turned on or off.
  • first bypass valve 600 When the first bypass valve 600 is opened, the refrigerant passes through the first bypass valve 600, thereby bypassing the first parallel connection with the first bypass valve 600.
  • the throttling device does not pass through the first throttling device.
  • “selectively” means that the first bypass valve 600 is turned on or off according to an operation mode required for the heat pump system.
  • the ground source side heat exchanging device 100 When the ground source side heat exchanging device 100 is defrosted, by simply opening the first bypass valve 600, the pressure difference of the refrigerant in the heat pump system can be gradually disappeared, the flow rate is increased, and thus the heat exchange into the ground source side is performed.
  • the heat of the apparatus 100 is rapidly increased, so that the defrosting speed of the ground source side heat exchanger 100 can be rapidly increased, and no reverse circulation is required at the time of defrosting.
  • the first bypass valve 600 when the ground source heat pump system is required for indoor cooling or heating, the first bypass valve 600 is closed, so that switching between the three modes of cooling, heating, and defrosting is very convenient.
  • the first throttle device 500 is a double-conducting thermal expansion valve or an electronic expansion valve, and the first expansion valve is a solenoid valve.
  • the ground source heat pump system further includes a second throttle device 700 and a second bypass valve 800.
  • the second bypass valve 800 is connected in parallel with the second throttle device 700 to selectively bypass the second throttle device 700.
  • the second bypass valve 800 can be turned on or off when the second bypass When the valve 800 is opened, the refrigerant passes through the second bypass valve 800, thereby bypassing the second throttle device in parallel with the second bypass valve 800 without passing through the first throttle device.
  • the first throttling device 500 and the second throttling device 700 are connected in series between the indoor heat exchange device 400 and the ground source side heat exchange device 100.
  • the ground source heat pump system of the present disclosure is provided by providing the first throttle device 500 and the second throttle device 700, and the first bypass valve 600 and the first in parallel with the first throttle device 500.
  • the second bypass valve 800 in parallel with the second throttle device 700 opens the second bypass valve 800 and closes the first bypass valve 600 in the heating mode, and the refrigerant sequentially passes through the second bypass valve 800 and the first section Flow device 500; in the cooling mode, opening the first bypass valve 600 and closing the second bypass valve 800, the refrigerant sequentially passes through the first bypass valve 600 and the second throttle device 700; in the defrosting mode, opens
  • the first bypass valve 600 and the second bypass valve 800 increase the refrigerant flow rate and temperature entering the ground source side heat exchanger 100, thereby enabling rapid defrosting.
  • first throttle device 500 and the second throttle device 700 are both thermal expansion valves.
  • the first throttling device 500 and the second throttling device 700 may both be a one-way thermal expansion valve.
  • first bypass valve 600 and the second bypass valve 800 are one-way valves or solenoid valves.
  • the ground source heat exchange system further includes a reservoir 900 disposed in series between the first throttle device 500 and the second throttle device 700.
  • the reservoir 900 is configured to store excess refrigerant that does not pass through the throttling device in a cooling or heating mode.
  • the ground source heat pump system of the present disclosure improves the heat resistance caused by heat exchange using the cold medium by directly transferring heat between the refrigerant in the ground source heat pump system and the soil, and eliminates the power required for circulating the cold medium.
  • the loss makes the ground source heat pump system more efficient, energy-saving, and can meet the needs of indoor users for cooling and heating.
  • the reversible expansion valve is installed at the bottom end of the ground source side heat exchange tube to effectively solve the bottom end of the heat exchange tube.
  • the distance from the compressor is far away, which causes the refrigerant to circulate to the bottom end of the heat exchange tube.
  • the amount of refrigerant can be saved, the heat exchange efficiency of the ground source heat pump system can be improved, the well drilling area can be reduced, and the ground source heat pump can be reduced.
  • the operating cost of the system is the amount of refrigerant can be saved, the heat exchange efficiency of the ground source heat pump system can be improved, the well drilling area can be reduced, and the ground source heat pump can be reduced.
  • the ground source heat pump system of the present disclosure provides a large suction heat exchange surface by applying a heat exchange tube having a larger diameter; in addition, the installation and drilling costs are relatively low by shortening the length of the pipeline.
  • the ground source heat pump system of the present disclosure is provided with a bypass valve in parallel with the throttling device, and only needs to open the bypass valve during defrosting, so that no reverse circulation is required in the ground source heat pump system. Defrost is used for the purpose.
  • the ground source heat pump system improves the thermal resistance caused by heat exchange using the cold medium by directly transferring heat between the refrigerant in the ground source heat pump system and the soil, and eliminates the power loss required for circulating the cold medium.
  • the ground source heat pump system is better, more efficient, energy-saving, and can meet the needs of indoor users for cooling and heating. And by providing a reversible expansion valve at the bottom end of the ground source side heat exchange tube, the bottom end of the heat exchange tube is effectively solved. The distance is far away, which causes the refrigerant to circulate to the bottom end of the heat exchange tube. At the same time, the amount of refrigerant can be saved, the heat exchange efficiency of the ground source heat pump system can be improved, the well drilling area can be reduced, and the ground source heat pump system can be reduced. Operating costs, so it has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

一种地源热泵系统、室内制热方法及室内制冷方法,系统包括地源侧换热装置(100)、压缩机(200)、四通阀(300)、室内换热器(400)和第一节流装置(500);地源侧换热装置(100)包括垂直埋于土壤中的一个或至少两个并联的换热管(110),换热管(110)的底部设置有可逆膨胀阀(111)。地源热泵系统通过使地源热泵系统内的制冷剂与土壤直接换热,消除因循环冷媒介质所须的功率损耗,使得地源热泵系统更佳高效、节能,通过在地源侧换热管(110)的底端设置可逆膨胀阀(111),有效解决换热管(110)底端离压缩机(200)距离较远导致制冷剂循环到换热管(110)底端时部分上不去的问题,同时可以节省制冷剂的用量,提高地源热泵系统的换热效率,降低地源热泵系统的初期投资成本和运营成本费用。

Description

一种地源热泵系统、室内制热方法及室内制冷方法
相关申请的交叉引用
本申请要求于2017年07月11日提交中国专利局的申请号为201720838007.X、名称为“一种地源热泵系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及热泵技术领域,具体而言,涉及一种地源热泵系统、室内制热方法及室内制冷方法。
背景技术
根据天然物理现象,热能自然地从温暖的地方转移到较冷的地方。通常可通过三种基本的传热方式,即传导、对流和辐射。如果利用热泵技术亦可以逆转使用,吸收热量从寒冷的地方,释放到温暖的地方。这个能源交换过程确需要一定的外部能量如电能。热泵是指蒸汽压缩制冷装置优化而高效的把热能在两个方向交换转移,热泵广泛应用于供暖,通风和空调(HVAC)等系统。热泵是可逆向使用的,即可以将热能在从任何一方向向另外一方向转移,从而向其目标内部空间提供加热或冷却。
应用热泵传输热量,因为相比热泵所转移释放热量,热泵消耗能量较少。热泵加热是利用热泵将热量从外部环境转移到内部空间。加热的大部分能源来自外部环境,只有一小部分来自电力(或一些其他高价能源用来操作压缩机)。应用电动热泵、热能的转移可以是电力消耗的三或四倍大,使系统的性能系数(COP)3或4,相对于传统的电阻加热器的COP为1,即所有的热量都是从输入电能的产生。
在暖通空调行业,热泵被用来把外间能源(环境元素)转移至內部空间。这些外间能源可以是空气、地球和水。简单来说,热泵是从外部收集热能,把热能带到室内达取暖的目的。主要有三种热泵类型,还有很多子类根据不同的物理条件和情况。
空气源热泵(ASHP)–空气是这类热泵的热能来源。这类型的热泵宜用于不太寒冷的地理区域来加热和冷却。如外间温度下降那可用的热能会相对减少,从而降低了效率。当外界温度降至0℃冰点以下时,外置集热器会结霜,进而更加降低集热效率。然而,空气源热泵是最常见和廉价的。
水源热泵(WSHP)–水是这类热泵的热能来源。这类型的热泵的应用只限于邻近有大型水体。这大型水体可以是湖泊、河流和地下水。这类热泵的使用限于地理位置的允许。
地(地球)源热泵(GSHP)利用地下(地球)作为热能的来源。无论任何地理位置和季节,这类型热泵的应用都异常可靠。地球表面7米以下的温度保持相对恒定。这个相对恒定的地下温度比地表上冬季的气温高,成为热能的可靠来源。这类型的地下连接热泵收集热能有两种方式。第一种方法是将流体作为介质在地下循环,然后通过热泵来提取热能。 这种循环流体系统可以是开环式或封闭回环式,流体可以是水、盐水、甲基、醇、防冻剂等。第二种是直接扩散式地热系统(DX),即直接利用制冷剂吸收地下热能。
开环系统,采用地下水作为热能源。只有在有地下水源充足和当地政府允许的同时才可以使用。由于这种自然资源宝贵,许多地方环保局都不允许使用。
闭环系统是通过中介流体用一条埋于地下的50毫米HDPE管道收集热能。这些HDPE管道须平放置于2米深的沟里,需要每125至200米的管道可产生一加热或冷却吨。这些HDPE管也可以垂直插置地下钻孔,这些钻孔的深度将是60至200米,取决于每钻孔可产生1或2冷或热吨。水平闭环系统需要大面积的开挖,而垂直闭环系统将需要钻挖深井,大大增加了地源热泵系统的初期投资成本。
发明内容
本公开提供了一种地源热泵系统,其能够改善改善降低地源热泵系统的初期投资成本和运营成本费用。
本公开还提供了一种基于上述地源热泵系统的室内制热方法和室内制冷方法可以有效降低供冷供热的成本。
一种地源热泵系统,其为制冷剂与土壤直接换热的地源热泵系统,包括地源侧换热装置、压缩机、四通阀、室内换热装置和第一节流装置;
所述四通阀具有第一阀口、第二阀口、第三阀口和第四阀口,所述压缩机的出口与所述四通阀的第一阀口连接,所述压缩机的入口与所述压缩机的第三阀口连接;
所述四通阀的第二阀口、室内换热装置、第一节流装置、地源侧换热装置和所述四通阀的第四阀口依次连接;
所述地源侧换热装置包括垂直埋于土壤中的一个或至少两个并联的换热管,所述换热管的底部设置有可逆膨胀阀。
进一步地,所述换热管的长度为6-10m。
进一步地,所述换热管的长度为6m、7m、8m、9m或10m。
进一步地,所述换热管的直径为35-40mm。
进一步地,所述换热管的直径为35mm、36mm、37mm、38mm、39mm或40mm。
进一步地,所述换热管为U型管。
进一步地,还包括第一旁通阀,所述第一旁通阀与第一节流装置并联以选择性地旁通所述第一节流装置。
进一步地,所述第一节流装置为双向导通的热力膨胀阀或电子膨胀阀,所述第一旁通阀为电磁阀。
进一步地,还包括第二节流装置和第二旁通阀,所述第二旁通阀与第二节流装置并联 以选择性地旁通所述第二节流装置,所述第一节流装置和所述第二节流装置串联在所述室内换热装置和所述地源侧换热装置之间。
进一步地,所述第一节流装置和所述第二节流装置均为热力膨胀阀。
进一步地,所述第一旁通阀和所述第二旁通阀为单向阀或电磁阀。
进一步地,还包括贮液器,所述贮液器设置在第一节流装置和所述第二节流装置之间。
一种地源热泵系统,其包括地源侧换热装置、压缩机、四通阀、室内换热装置;
所述四通阀具有第一阀口、第二阀口、第三阀口和第四阀口,所述压缩机的出口与所述四通阀的第一阀口连接,所述压缩机的入口与所述压缩机的第三阀口连接;
所述四通阀的第二阀口、室内换热装置、地源侧换热装置和所述四通阀的第四阀口依次连接。
一种基于上述地源热泵系统的室内制冷方法,其包括:
所述压缩机排出液态制冷剂,液态制冷剂依次经过所述第一阀口、所述四通阀及所述第二阀口后进入所述室内换热装置,液态制冷剂在所述室内换热装置中吸热变成气态制冷剂,气态制冷剂进入所述地源侧换热装置放热变成液态制冷剂,液态制冷剂依次经过所述第四阀口、所述四通阀及所述第三阀口后回到所述压缩机。
一种基于上述地源热泵系统的室内制热方法,其包括:
所述压缩机排出液态制冷剂,液态制冷剂依次经过所述第一阀口、所述第四阀口后进入所述地源侧换热装置,液态制冷剂在所述地源侧换热装置中吸热变成气态制冷剂,气态制冷剂进入所述室内换热装置放热变成液态制冷剂,液态制冷剂依次经过所述第二阀口、所述四通阀及所述第三阀口后回到所述压缩机。
与现有技术相比,本公开的地源热泵系统的有益效果包括:
(1)、本公开的地源热泵系统通过使地源热泵系统内的制冷剂与土壤直接换热,改善了使用冷媒介质进行换热造成的热阻问题,消除因循环冷媒介质所须的功率损耗,使得地源热泵系统更佳高效、节能,并可持续地满足室内用户制冷供暖的需求,通过在地源侧换热管的底端设置可逆膨胀阀,有效解决该换热管底端离压缩机距离较远导致制冷剂循环到换热管底端时部分上不去的问题,同时可以节省制冷剂的用量,提高地源热泵系统的换热效率,减少打井面积,降低地源热泵系统的初期投资成本和运营成本费用。
(2)、进一步地,本公开的地源热泵系统通过应用直径较大的换热管,提供较大的吸取热能交换面;另外,通过缩短管道长度,使安装和钻井成本相对比较低。
(3)、进一步地,本公开的地源热泵系统通过与节流装置并联地设置旁通阀,除霜时只需打开旁通阀,实现在该地源热泵系统内无需进行逆循环就可进行除霜的目的。
与现有技术相比,本公开的室内制冷方法和室内制热方法的有益效果包括:
采用上述的地源热泵系统,制冷剂与土壤直接换热,改善了使用冷媒介质进行换热造成的热阻问题,消除因循环冷媒介质所须的功率损耗,使得地源热泵系统更佳高效、节能,同时降低了供冷供热的成本。
为使本公开的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本公开具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开的地源热泵系统的结构示意图。
主要元件符号说明:
100-地源侧换热装置;
110-换热管;
111-可逆膨胀阀;
200-压缩机;
300-四通阀;
301-四通阀的第一阀口;
302-四通阀的第二阀口;
303-四通阀的第三阀口;
304-四通阀的第四阀口;
400-室内换热器;
500-第一节流装置;
600-第一旁通阀;
700-第二节流装置;
800-第二旁通阀;
900-贮液器。
具体实施方式
为了便于理解本公开,下面将参照相关附图对地源热泵系统进行更全面的描述。附图中给出了地源热泵系统的首选实施例。但是,地源热泵系统可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对地源热泵系统的公 开内容更加透彻全面。
在下文中,可在本公开的各种实施例中使用的术语“包括”或“可包括”指示所公开的功能、操作或元件的存在,并且不限制一个或更多个功能、操作或元件的增加。此外,如在本公开的各种实施例中所使用,术语“包括”、“具有”及其同源词仅意在表示特定特征、数字、步骤、操作、元件、组件或前述项的组合,并且不应被理解为首先排除一个或更多个其它特征、数字、步骤、操作、元件、组件或前述项的组合的存在或增加一个或更多个特征、数字、步骤、操作、元件、组件或前述项的组合的可能性。
在本公开的各种实施例中,表述“A或/和B中的至少一个”包括同时列出的文字的任何组合或所有组合。例如,表述“A或B”或“A或/和B中的至少一个”可包括A、可包括B或可包括A和B二者。
在本公开的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
在本公开的描述中,除非另有规定和限定,需要说明的是,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。除非另有限定,否则在这里使用的所有术语(包括技术术语和科学术语)具有与本公开的各种实施例所属领域普通技术人员通常理解的含义相同的含义。所述术语(诸如在一般使用的词典中限定的术语)将被解释为具有与在相关技术领域中的语境含义相同的含义并且将不被解释为具有理想化的含义或过于正式的含义,除非在本公开的各种实施例中被清楚地限定。
实施例
参阅图1,本公开提供了一种地源热泵系统,包括地源侧换热装置100、压缩机200、四通阀300、室内换热装置400和第一节流装置500。
具体地,所述四通阀300具有第一阀口301、第二阀口302、第三阀口303和第四阀口304,所述压缩机200的出口与所述四通阀300的第一阀口301连接,所述压缩机200的入口与所述压缩机200的第三阀口303连接。
所述四通阀300的第二阀口302、室内换热装置400、第一节流装置500、地源侧换热装置100和所述四通阀300的第四阀口304依次连接。
所述地源侧换热装置100包括垂直埋于土壤中的一个或至少两个并联的换热管110。本实施例中,换热管110的数量为三个。其它实施例中,换热管110也可以为四个或者五个。所述换热管110的底部设置有可逆膨胀阀111。
上述可逆膨胀阀111为现有技术中常用的双向导通的可逆膨胀阀,其中一个方向可以将液态的制冷剂转换成气态的制冷剂,另一个方向使气态的制冷剂直接通过。
可以理解的是,上述换热管的个数可以实际情况需要进行设置。
可选地,本公开实施例中,所述换热管110的长度为6-10m如6m、7m、8m、9m或10m等。其它实施例中,换热管110的长度也可以为4-5m或者11-12m。
可选地,所述换热管110的直径为35-40mm如35mm、36mm、37mm、38mm、39mm或40mm等。其它实施例中,换热管110的直径也可以为33-35mm。
可选地,所述换热管110为U型管。其它实施例中,换热管也可以为螺旋管。
可选地,所述换热管110为铜管。其它实施中,换热管也可以为其它材质,比如铝管或者铁管。
由上述描述可知,本公开的地源热泵系统,其工作原理为:
当用于室内制冷时,从压缩机200的出口排出的液态制冷剂依次经过四通阀300的第一阀口301、四通阀300的第二阀口302直接进入室内换热装置400,制冷剂经室内换热装置400,吸热蒸发变成气态的制冷剂,然后制冷剂依次流经第一节流装置和地源侧换热装置100,制冷剂进入换热管110,经过换热管110底部的可逆膨胀阀111后,通过换热管110的管壁与土壤进行换热,将制冷剂冷凝成液态放热,并将热量排到土壤中,最后制冷剂依次经四通阀300的第四阀口304和四通阀300的第三阀口303回到压缩机200,这样完成室内制冷时地源热泵系统内制冷剂的循环。
当用于室内制热时,从压缩机200的出口排出的液态制冷剂依次经过四通阀300的第一阀口301、四通阀300的第四阀口304直接进入地源侧换热装置100,液态的制冷剂进入换热管110,制冷剂通过地源侧换热装置100的管壁与土壤进行换热,吸收土壤中的热量,并经过换热管110底部的可逆膨胀阀111后转换成气态的制冷剂,然后经第一节流装置直接进入室内换热装置400,制冷剂经室内换热装置400,冷凝放热,最后制冷剂依次经四通阀300的第二阀口302和四通阀300的第三阀口303回到压缩机200,这样完成室内制热 时地源热泵系统内制冷剂的循环。
本公开的地源热泵系统通过使地源热泵系统内的制冷剂与土壤直接换热,改善了使用冷媒介质进行换热造成的热阻问题,消除因循环冷媒介质所须的功率损耗,使得地源热泵系统更佳高效、节能,并可持续地满足室内用户制冷供暖的需求,通过在地源侧换热管110的底端设置可逆膨胀阀111,有效解决该换热管110底端离压缩机200距离较远导致制冷剂循环到换热管110底端时部分上不去的问题,同时可以节省制冷剂的用量,提高地源热泵系统的换热效率,减少打井面积,降低地源热泵系统的运营成本费用。
可选地,本公开实施例中,所述地源热泵系统还包括第一旁通阀600,所述第一旁通阀600与第一节流装置500并联以选择性地旁通所述第一节流装置500。
需要理解的是,第一旁通阀600可以导通或关闭,当第一旁通阀600打开时,制冷剂通过第一旁通阀600,从而旁通与第一旁通阀600并联的第一节流装置,不经过第一节流装置。这里,需要说明的是,“选择性地”是指根据热泵系统所需的运行模式导通或截止第一旁通阀600。
当对地源侧换热装置100进行除霜时,通过简单地打开第一旁通阀600,可以使热泵系统内的制冷剂的压差逐渐消失,流量增大,因此进入地源侧换热装置100的热气快速增多,使地源侧换热装置100的化霜速度可以快速提高,并且在除霜时无需进行逆循环。
换言之,该地源热泵系统需要用于室内制冷或制热时,则关闭第一旁通阀600,因此,制冷、制热和除霜三种模式的切换非常方便。
可选地,所述第一节流装置500为双向导通的热力膨胀阀或电子膨胀阀,所述第一膨胀阀为电磁阀。
进一步地,所述地源热泵系统还包括第二节流装置700和第二旁通阀800。所述第二旁通阀800与第二节流装置700并联以选择性地旁通所述第二节流装置700,换言之,第二旁通阀800可以导通或截止,当第二旁通阀800打开时,制冷剂通过第二旁通阀800,从而旁通与第二旁通阀800并联的第二节流装置,不经过第一节流装置。
所述第一节流装置500和所述第二节流装置700串联在所述室内换热装置400和所述地源侧换热装置100之间。
上述,需要理解的是,本公开的地源热泵系统,通过设置第一节流装置500和第二节流装置700,以及与第一节流装置500并联的第一旁通阀600和与第二节流装置700并联的第二旁通阀800,在制热模式下,打开第二旁通阀800及关闭第一旁通阀600,制冷剂依次通过第二旁通阀800和第一节流装置500;在制冷模式下,打开第一旁通阀600及关闭第二旁通阀800,制冷剂依次通过第一旁通阀600和第二节流装置700;在除霜模式下,打开第一旁通阀600和第二旁通阀800,进入地源侧换热装置100的制冷剂流量和温度提高, 从而能够快速除霜。
可选地,所述第一节流装置500和所述第二节流装置700均为热力膨胀阀。所述第一节流装置500和所述第二节流装置700可以均为单向导通的热力膨胀阀。
可选地,所述第一旁通阀600和所述第二旁通阀800为单向阀或电磁阀。
可选地,地源换热系统还包括贮液器900,所述贮液器串联地设置在第一节流装置500和所述第二节流装置700之间。
可以理解的是,所述贮液器900被配置为制冷或制热模式下储存未通过节流装置的多余的制冷剂。
综上所述,本公开的地源热泵系统的有益效果是:
(1)、本公开的地源热泵系统通过使地源热泵系统内的制冷剂与土壤直接换热,改善了使用冷媒介质进行换热造成的热阻问题,消除因循环冷媒介质所须的功率损耗,使得地源热泵系统更佳高效、节能,并可持续地满足室内用户制冷供暖的需求,通过在地源侧换热管的底端设置可逆膨胀阀,有效解决该换热管底端离压缩机距离较远导致制冷剂循环到换热管底端时部分上不去的问题,同时可以节省制冷剂的用量,提高地源热泵系统的换热效率,减少打井面积,降低地源热泵系统的运营成本费用。
(2)、进一步地,本公开的地源热泵系统通过应用直径较大的换热管,提供较大的吸取热能交换面;另外,通过缩短管道长度,使安装和钻井成本相对比较低。
(3)、进一步地,本公开的地源热泵系统通过与节流装置并联地设置旁通阀,除霜时只需打开旁通阀,实现在该地源热泵系统内无需进行逆循环就可进行除霜的目的。
尽管以上较多使用了表示结构的术语,例如“地源侧换热装置”、“室内换热装置”、“第一节流装置”等,但并不排除使用其它术语的可能性。使用这些术语仅仅是为了更方便地描述和解释本公开的本质;把它们解释成任何一种附加的限制都是与本公开精神相违背的。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。
工业实用性
总体效果
本公开提供的地源热泵系统通过使地源热泵系统内的制冷剂与土壤直接换热,改善了使用冷媒介质进行换热造成的热阻问题,消除因循环冷媒介质所须的功率损耗,使得地源热泵系统更佳高效、节能,并可持续地满足室内用户制冷供暖的需求,并且通过在地源侧换热管的底端设置可逆膨胀阀,有效解决该换热管底端离压缩机距离较远导致制冷剂循环到换热管底端时部分上不去的问题,同时可以节省制冷剂的用量,提高地源热泵系统的换 热效率,减少打井面积,降低地源热泵系统的运营成本费用,因此具有工业实用性。

Claims (15)

  1. 一种地源热泵系统,其为制冷剂与土壤直接换热的地源热泵系统,其特征在于:包括地源侧换热装置、压缩机、四通阀、室内换热装置和第一节流装置;
    所述四通阀具有第一阀口、第二阀口、第三阀口和第四阀口,所述压缩机的出口与所述四通阀的第一阀口连接,所述压缩机的入口与所述压缩机的第三阀口连接;
    所述四通阀的第二阀口、室内换热装置、第一节流装置、地源侧换热装置和所述四通阀的第四阀口依次连接;
    所述地源侧换热装置包括垂直埋于土壤中的一个或至少两个并联的换热管,所述换热管的底部设置有可逆膨胀阀。
  2. 根据权利要求1所述的地源热泵系统,其特征在于:所述换热管的长度为6-10m。
  3. 根据权利要求2所述的地源热泵系统,其特征在于:所述换热管的长度为6m、7m、8m、9m或10m。
  4. 根据权利要求1所述的地源热泵系统,其特征在于:所述换热管的直径为35-40mm。
  5. 根据权利要求4所述的地源热泵系统,其特征在于:所述换热管的直径为35mm、36mm、37mm、38mm、39mm或40mm。
  6. 根据权利要求1所述的地源热泵系统,其特征在于:所述换热管为U型管。
  7. 根据权利要求1所述的地源热泵系统,其特征在于:还包括第一旁通阀,所述第一旁通阀与第一节流装置并联以选择性地旁通所述第一节流装置。
  8. 根据权利要求7所述的地源热泵系统,其特征在于:所述第一节流装置为双向导通的热力膨胀阀或电子膨胀阀,所述第一旁通阀为电磁阀。
  9. 根据权利要求7所述的地源热泵系统,其特征在于:还包括第二节流装置和第二旁通阀,所述第二旁通阀与第二节流装置并联以选择性地旁通所述第二节流装置,所述第一节流装置和所述第二节流装置串联在所述室内换热装置和所述地源侧换热装置之间。
  10. 根据权利要求9所述的地源热泵系统,其特征在于:所述第一节流装置和所述第二节流装置均为热力膨胀阀。
  11. 根据权利要求9所述的地源热泵系统,其特征在于:所述第一旁通阀和所述第二旁通阀为单向阀或电磁阀。
  12. 根据权利要求9所述的地源热泵系统,其特征在于:还包括贮液器,所述贮液器设置在第一节流装置和所述第二节流装置之间。
  13. 一种地源热泵系统,其特征在于:包括地源侧换热装置、压缩机、四通阀和室 内换热装置;
    所述四通阀具有第一阀口、第二阀口、第三阀口和第四阀口,所述压缩机的出口与所述四通阀的第一阀口连接,所述压缩机的入口与所述压缩机的第三阀口连接;
    所述四通阀的第二阀口、室内换热装置、地源侧换热装置和所述四通阀的第四阀口依次连接。
  14. 一种基于权利要求13所述的地源热泵系统的室内制冷方法,其特征在于,包括:
    所述压缩机排出液态制冷剂,液态制冷剂依次经过所述第一阀口、所述四通阀及所述第二阀口后进入所述室内换热装置,液态制冷剂在所述室内换热装置中吸热变成气态制冷剂,气态制冷剂进入所述地源侧换热装置放热变成液态制冷剂,液态制冷剂依次经过所述第四阀口、所述四通阀及所述第三阀口后回到所述压缩机。
  15. 一种基于权利要求13所述的地源热泵系统的室内制热方法,其特征在于,包括:
    所述压缩机排出液态制冷剂,液态制冷剂依次经过所述第一阀口、所述第四阀口后进入所述地源侧换热装置,液态制冷剂在所述地源侧换热装置中吸热变成气态制冷剂,气态制冷剂进入所述室内换热装置放热变成液态制冷剂,液态制冷剂依次经过所述第二阀口、所述四通阀及所述第三阀口后回到所述压缩机。
PCT/CN2018/095215 2017-07-11 2018-07-11 一种地源热泵系统、室内制热方法及室内制冷方法 WO2019011258A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720838007.X 2017-07-11
CN201720838007.XU CN207196995U (zh) 2017-07-11 2017-07-11 一种地源热泵系统

Publications (1)

Publication Number Publication Date
WO2019011258A1 true WO2019011258A1 (zh) 2019-01-17

Family

ID=61784523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095215 WO2019011258A1 (zh) 2017-07-11 2018-07-11 一种地源热泵系统、室内制热方法及室内制冷方法

Country Status (2)

Country Link
CN (1) CN207196995U (zh)
WO (1) WO2019011258A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207196995U (zh) * 2017-07-11 2018-04-06 梁小康 一种地源热泵系统
RU2738527C1 (ru) * 2020-01-10 2020-12-14 Михаил Николаевич Чванов Теплонасосная установка для отопления и охлаждения помещений

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2605538Y (zh) * 2003-01-23 2004-03-03 清华同方人工环境有限公司 一种用于热泵机组中的旁通除霜装置
CN201503095U (zh) * 2009-09-11 2010-06-09 湖南大学 一种地源直接耦合型热泵多联机组
CN201666695U (zh) * 2009-10-14 2010-12-08 施丽川 直埋式直接换热地源热泵
CN202083060U (zh) * 2011-05-18 2011-12-21 巢民强 一种分置式水/地能热泵机组
CN105135576A (zh) * 2015-09-24 2015-12-09 宝莲华新能源技术(上海)有限公司 一种制冷剂与土壤直接换热的地源热泵系统
EP3184936A1 (en) * 2015-12-23 2017-06-28 EKOMATIC Spolka Cywilna Ground source heat pump system with a cooling function
CN207196995U (zh) * 2017-07-11 2018-04-06 梁小康 一种地源热泵系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2605538Y (zh) * 2003-01-23 2004-03-03 清华同方人工环境有限公司 一种用于热泵机组中的旁通除霜装置
CN201503095U (zh) * 2009-09-11 2010-06-09 湖南大学 一种地源直接耦合型热泵多联机组
CN201666695U (zh) * 2009-10-14 2010-12-08 施丽川 直埋式直接换热地源热泵
CN202083060U (zh) * 2011-05-18 2011-12-21 巢民强 一种分置式水/地能热泵机组
CN105135576A (zh) * 2015-09-24 2015-12-09 宝莲华新能源技术(上海)有限公司 一种制冷剂与土壤直接换热的地源热泵系统
EP3184936A1 (en) * 2015-12-23 2017-06-28 EKOMATIC Spolka Cywilna Ground source heat pump system with a cooling function
CN207196995U (zh) * 2017-07-11 2018-04-06 梁小康 一种地源热泵系统

Also Published As

Publication number Publication date
CN207196995U (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
CN102393049B (zh) 一种地源热管热泵空调
CN101344347A (zh) 热管地源热泵系统
KR101583603B1 (ko) 하이브리드 히트 펌프 시스템
CN102278836B (zh) 一种分置式水/地能冷暖生活热水一体中央空调机组
CN201954760U (zh) 太阳能热泵复合热水装置
CN109869935B (zh) 一种地热能复合运行系统
CN105627623A (zh) 一种新型太阳能-空气能复合热泵冷热联供机组
US7082779B2 (en) Geothermal heat accumulator and air-conditioning using it
CN107044743B (zh) 一种利用微通道环路热管的太阳能热泵系统
WO2019011258A1 (zh) 一种地源热泵系统、室内制热方法及室内制冷方法
CN202419820U (zh) 一种地源热管热泵空调
CN201779922U (zh) 基于空调制冷、空调制热和卫生热水的户式三联供地源热泵机组
CN104154597A (zh) 一种双用换热多联空调装置
CN101285625B (zh) 地源冷暖空调系统
CN205807717U (zh) 一种基于空气源耦合地源热泵的供热空调系统
CN201014834Y (zh) 地源热泵辐射空调及热水装置
CN102221251B (zh) 一种分置降压式水/地能冷暖生活热水一体中央空调机组
US20150083361A1 (en) Heat transfer system and method
JP2014115016A (ja) 地中熱利用冷暖房システム
CN203771579U (zh) 一体水源柜式空调
CN101493268A (zh) 一种多功能地源热泵空调热水器
CN207936515U (zh) 一种室内温度调节和生活热水节能系统
CN112648758A (zh) 一种地源空气源一体式热泵
CN205373444U (zh) 带蒸发冷凝器的冰源空气交换器
CN205593245U (zh) 一种流态冰潜艇降温系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/06/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18832200

Country of ref document: EP

Kind code of ref document: A1