WO2019011065A1 - 一种无线帧传输的方法、装置和计算机存储介质 - Google Patents

一种无线帧传输的方法、装置和计算机存储介质 Download PDF

Info

Publication number
WO2019011065A1
WO2019011065A1 PCT/CN2018/088278 CN2018088278W WO2019011065A1 WO 2019011065 A1 WO2019011065 A1 WO 2019011065A1 CN 2018088278 W CN2018088278 W CN 2018088278W WO 2019011065 A1 WO2019011065 A1 WO 2019011065A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frame
frame
radio
determining
specified type
Prior art date
Application number
PCT/CN2018/088278
Other languages
English (en)
French (fr)
Inventor
张博
吕开颖
孙波
卢忱
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP18832969.2A priority Critical patent/EP3654565A4/en
Priority to US16/629,700 priority patent/US11304232B2/en
Publication of WO2019011065A1 publication Critical patent/WO2019011065A1/zh
Priority to US17/714,827 priority patent/US11997715B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/10Active monitoring, e.g. heartbeat, ping or trace-route
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0823Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability
    • H04L41/0836Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability to enhance reliability, e.g. reduce downtime
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of wireless communication networks, and in particular, to a method, an apparatus, and a computer storage medium for wireless frame transmission.
  • Embodiments of the present invention provide a method, an apparatus, and a computer storage medium for wireless frame transmission, so as to ensure a transmission success rate of a specified type of radio frame, and improve transmission efficiency of the network.
  • the embodiment of the invention provides a method for wireless frame transmission, including:
  • Radio frame Receiving a radio frame, determining that the radio frame is a radio frame of a specified type, and/or determining that the radio frame carries indication information that prohibits a third party from multiplexing the radio frame;
  • the physical carrier detect channel state is kept busy until the end of the radio frame.
  • An embodiment of the present invention further provides an apparatus for wireless frame transmission, including:
  • a determining module configured to receive a radio frame, determine that the radio frame is a radio frame of a specified type, and/or determine that the radio frame carries indication information that prohibits a third party from multiplexing the radio frame;
  • a transmission module configured to keep the physical carrier detect channel state busy until the radio frame ends.
  • the embodiment of the present invention further provides a method for transmitting a radio frame, including: transmitting a radio frame, where the radio frame is a radio frame of a specified type and/or carrying indication information for prohibiting a third party from multiplexing the radio frame.
  • An embodiment of the present invention further provides an apparatus for wireless frame transmission, comprising: a processor and a memory for storing a computer program capable of running on a processor, wherein the processor is configured to execute when the computer program is executed The steps of the method for transmitting wireless frame transmission on the receiving side according to the embodiment of the present invention;
  • the processor when configured to run the computer program, the step of the method for applying the wireless frame transmission on the transmitting side according to the embodiment of the present invention is performed.
  • the embodiment of the present invention further provides a computer storage medium, where the computer program is stored, and when the computer program is executed by the processor, the steps of the method for applying the wireless frame transmission on the receiving side according to the embodiment of the present invention are implemented; or When the computer program is executed by the processor, the steps of the method applied to the transmitting side radio frame transmission according to the embodiment of the present invention are implemented.
  • the method and apparatus for transmitting a radio frame by determining that a radio frame is a radio frame of a specified type and/or determining that the radio frame carries a directive information for prohibiting a third party from multiplexing the radio frame;
  • the physical carrier detection channel state is kept busy until the end of the radio frame, and the transmission success rate of the specified type of radio frame can be ensured, thereby improving the transmission efficiency of the network.
  • FIG. 1 is a flowchart of a method for transmitting a radio frame according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an apparatus for wireless frame transmission according to an embodiment of the present invention.
  • Figure 5 is a schematic diagram of a site location sequence
  • FIG. 6 is a schematic diagram of uplink MU acknowledgement information in this embodiment
  • FIG. 7 is a schematic diagram of a location measurement sequence interaction based on an FTM request according to the embodiment.
  • FIG. 8 is a schematic diagram of a data transmission confirmation sequence including a UMRS Control domain according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the AP scheduling multiple stations to send uplink data according to the embodiment.
  • FIG. 10 is a schematic diagram of the BA block confirmation of the embodiment.
  • FIG. 1 is a flowchart of a method for transmitting a radio frame according to an embodiment of the present invention, which is applied to a receiving side. As shown in FIG. 1, the method of this embodiment includes the following steps:
  • Step 11 The station receives the radio frame, determines that the radio frame is a radio frame of a specified type, and/or determines that the radio frame carries indication information that prohibits a third party from multiplexing the radio frame.
  • Step 12 Keep the physical carrier detection channel state busy until the radio frame ends.
  • the method further includes: maintaining a network allocation vector of the receiving station unchanged.
  • the method before the determining that the radio frame is a radio frame of a specified type, the method further includes: determining that the radio frame carries indication information that prohibits a third party from multiplexing the radio frame.
  • the method before the determining that the radio frame is a radio frame of a specified type, the method further includes: determining that the radio frame receiving energy is less than an overlapping basic service subset energy detecting threshold.
  • the determining that the radio frame carries indication information that prohibits a third party from multiplexing the radio frame includes: parsing a spatial multiplexing parameter information field of a physical layer signaling domain, and the spatial multiplexing parameter information The domain is forbidding spatial multiplexing instruction information.
  • the specified type of radio frame includes any one of the following: a channel measurement frame; a channel measurement declaration frame; a channel information feedback polling trigger frame; a channel information feedback frame; a radio frame with response information; Conditional radio frame; radio frame with positioning function.
  • the radio frame whose length meets a specific condition includes: a media access layer frame or a radio frame whose physical layer frame length is less than a threshold.
  • the radio frame includes a triggered radio frame.
  • the method further includes: updating a network allocation vector.
  • the method of this embodiment can guarantee the transmission success rate of a specified type of radio frame.
  • the embodiment provides a device for wireless frame transmission.
  • the device in this embodiment includes:
  • a determining module configured to: after receiving the radio frame, determine that the radio frame is a radio frame of a specified type and/or determine that the radio frame carries indication information that prohibits a third party from multiplexing the radio frame;
  • a transmission module configured to keep the physical carrier detect channel state busy until the radio frame ends.
  • the determining module is configured to determine that the radio frame carries indication information that prohibits a third party from multiplexing the radio frame before determining that the radio frame is a radio frame of a specified type.
  • the determining module is configured to determine that the radio frame receiving energy is less than an overlapping basic service subset energy detecting threshold before determining that the radio frame is a specified type of radio frame.
  • the determining module is configured to parse a spatial multiplexing parameter information field of a physical layer signaling domain, where the spatial multiplexing parameter information field is a spatial multiplexing instruction information.
  • the determining module configured to determine the specified type of radio frame, includes any one of the following: a channel measurement frame; a channel measurement declaration frame; a channel information feedback polling trigger frame; a channel information feedback frame; Radio frame of information; radio frame whose length meets certain conditions; radio frame with positioning function.
  • the transceiving and transmitting module is further configured to keep the current network allocation vector unchanged during the radio frame transmission.
  • the radio frame whose length meets a specific condition includes: a media access layer frame or a radio frame whose physical layer frame length is smaller than a threshold, wherein the radio frame includes a triggered radio frame.
  • the determining that the radio frame is a radio frame of a specified type includes: determining that the radio frame is a channel measurement frame when determining that the length and the spatial stream number in the physical layer signaling meet the specified matching condition.
  • the transceiving transmission module is further configured to update a network allocation vector during the radio frame receiving process.
  • the apparatus for radio frame transmission provided by the foregoing embodiment only exemplifies the division of each of the foregoing program modules. In actual applications, the foregoing processing may be allocated to different programs according to requirements. The module is completed, dividing the internal structure of the device into different program modules to complete all or part of the processing described above.
  • the apparatus for the radio frame transmission provided by the foregoing embodiment is the same as the method embodiment of the radio frame transmission, and the specific implementation process is described in detail in the method embodiment, and details are not described herein again.
  • the embodiment further provides an apparatus for wireless frame transmission, comprising: a processor and a memory for storing a computer program capable of running on a processor, wherein the processor is configured to run the computer program The method of the aforementioned radio frame transmission of the present invention is performed.
  • the embodiment of the present invention further provides a computer storage medium on which a computer program is stored, and when the computer program is executed by the processor, the method for transmitting the foregoing wireless frame of the present invention is implemented.
  • the embodiment of the invention provides a method for wireless frame transmission. For a sending station, the following steps are included:
  • Step 21 Send a radio frame, where the radio frame is a radio frame of a specified type and/or carries indication information that prohibits a third party from multiplexing the radio frame.
  • the spatial multiplexing parameter information field of the physical layer signaling domain of the radio frame carries indication information prohibiting the third party from multiplexing the radio frame.
  • the specified type of radio frame comprises any one of the following: a channel measurement frame; a channel measurement declaration frame; a channel information feedback polling trigger frame; a channel information feedback frame; a radio frame with response information a radio frame whose length meets certain conditions; a radio frame with a positioning function.
  • the radio frame whose length meets a specific condition includes: a media access layer frame or a radio frame whose physical layer frame length is less than a threshold.
  • the radio frame carries the indication information that prohibits the third party from ignoring the radio frame, and sends the radio frame, indicating that all the third-party stations receive the spatial multiplexing indicator frame, and the carrier sense is set to be busy until This radio frame ends.
  • the embodiment further provides an apparatus for wireless frame transmission, including:
  • a sending module configured to send a radio frame, where the radio frame is a radio frame of a specified type and/or carries indication information that prohibits a third party from multiplexing the radio frame.
  • the spatial multiplexing parameter information field of the physical layer signaling domain of the radio frame carries indication information prohibiting the third party from multiplexing the radio frame.
  • the specified type of radio frame comprises any one of the following: a channel measurement frame; a channel measurement declaration frame; a channel information feedback polling trigger frame; a channel information feedback frame; a radio frame with response information a radio frame whose length meets certain conditions; a radio frame with a positioning function.
  • the radio frame whose length meets a specific condition includes: a radio frame whose physical layer frame length is smaller than a threshold.
  • the apparatus for radio frame transmission provided by the foregoing embodiment only exemplifies the division of each of the foregoing program modules. In actual applications, the foregoing processing may be allocated to different programs according to requirements. The module is completed, dividing the internal structure of the device into different program modules to complete all or part of the processing described above.
  • the apparatus for the radio frame transmission provided by the foregoing embodiment is the same as the method embodiment of the radio frame transmission. For the specific implementation process, refer to the method embodiment, and details are not described herein again.
  • the embodiment further provides an apparatus for wireless frame transmission, comprising: a processor and a memory for storing a computer program capable of running on a processor, wherein the processor is configured to run the computer program The method of the aforementioned radio frame transmission of the present invention is performed.
  • the embodiment of the present invention further provides a computer storage medium on which a computer program is stored, and when the computer program is executed by the processor, the method for transmitting the foregoing wireless frame of the present invention is implemented.
  • AP1 in BSS1 transmits a channel measurement declaration frame (NDPA, in a high-efficiency (HE, High Efficiency) Single User (Physical Packet Data Unit) frame format (PPDU).
  • Null Data Packet Announcement initiates a downlink channel measurement sequence, spatial multiplexing in the spatial multiplexing domain in HE-SIG-A (High Efficiency Signal A) signaling in the HE SU PPDU (SR, Spatial)
  • the Reuse subfield is set to disable/restrict spatial multiplexing signaling, ie SR-DISALLOW, to prohibit/restrict third-party sites from spatial multiplexing, including non-SRG/SRG OBSS-PD based.
  • the access node (AP, Access Point) generates a legacy short training field (L-STF, Legacy short training field), a legacy (Legitude Long Training Field), and a legacy signaling domain (L-LT).
  • L-STF Legacy short training field
  • L-LT legacy signaling domain
  • SIG Legacy signaling
  • R-SIG Repeated Legacy Signaling
  • HE-SIG-A HE-STF
  • HE-LTF Data
  • Data Data
  • the physical layer performs Orthogonal Frequency Division Multiplexing (OFDM) transformation according to a corresponding manner, and performs framing to generate a baseband HE SU PPDU, which is modulated by a pulse and modulated by a mixer. 5GHz, signal transmission.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the OBSS station receives a radio frame, performs matching through the L-STF training field in the physical layer, determines that the frame is a wireless fidelity (Wi-Fi) radio frame, and sets a physical carrier monitor.
  • the channel detection status is busy, and the frame is determined to be a HE radio frame by the L-SIG and the repeated legacy signaling domain (RL-SIG, Repeat Legacy Signaling), and the network color (BSS color) in the HE-SIG-A is analyzed.
  • SR-DISALLOW space-free multiplexing instruction
  • the AP1 station in the BSS1 network sends a HE channel measurement frame (NDP, Null Data Packet) PPDU frame, which is used to measure the downlink channel of AP1 to STA A and STA B, and AP1 transmits the HE NDP PPDU frame.
  • the HE NDP PPDU is characterized by no data fields, as shown in Figure 4:
  • the spatial multiplexing domain in the HE-SIG-A in which the physical layer signaling is set is a space-free multiplexing instruction (SR-DISALLOW), and the HE-LTF of the PPDU is used for the beamforming receiver to measure the beamforming sender.
  • the measured information may include information such as a channel steering matrix, a channel's signal-to-noise ratio (SNR), and channel fluctuations.
  • an AP1 station in a BSS1 network transmits a channel measurement frame based on an 802.11ax frame format, that is, a HE SU NDP PPDU frame, which is used to measure a downlink channel of AP1 to STA A and STA B, and AP1 transmits a HE NDP PPDU frame.
  • an 802.11ax frame format that is, a HE SU NDP PPDU frame, which is used to measure a downlink channel of AP1 to STA A and STA B
  • AP1 transmits a HE NDP PPDU frame.
  • the spatial multiplexing domain in the HE-SIG-A in which the physical layer signaling is set is the spatial multiplexing instruction SR-DISALLOW, and the HE-LTF of the PPDU is used for the beamforming receiver to measure the beamforming sender to the beam.
  • the channel quality of the shaped receiver, the measured information may include information such as a channel steering matrix, a signal to noise ratio SNR, and channel fluctuations.
  • the station STA2 in the BSS2 in the OBSS network receives the radio frame, determines that the frame is a Wi-Fi radio frame by energy detection and L-STF matching, and determines that the frame is an HE PPDU by repetition of the L-SIG.
  • the length field in the L-SIG signaling and the Nsts field in the HE-SIG-A are obtained by matching the relationship to obtain the frame as an NDP frame, and the BSS color field is used to determine that the frame is from the OBSS network, and is received according to the process without spatial multiplexing function.
  • the foregoing radio frame includes OBSS_PD and SRP SR spatial multiplexing, and the physical carrier detection channel state is busy until the end of the radio frame.
  • the AP1 station in the BSS1 network sends a HE NDP PPDU frame to measure the downlink channel of AP1 to STAA and STA B.
  • the HE NDP PPDU is characterized by no data field.
  • the AP sets the spatial multiplexing domain in the HE-SIG-A of the physical layer signaling in the HENDP PPDU to be SR-DISALLOWED, and the HE-LTF of the PPDU is used to make the beamforming receiver measure the beam assignment.
  • the channel quality of the sender to the beamforming receiver, the measured information may include information such as a channel steering matrix, a signal to noise ratio SNR, and channel fluctuations.
  • the station receives a radio frame, and judges that the frame is a WiFi frame through preamble matching, and then determines that the frame is an HE PPDU by L-SIG repetition, and further analyzes the BSS color in the signaling of HE-SIG-A.
  • the site will keep the physical carrier monitoring busy, including disabling OBSS_PD and SRP SR spatial multiplexing until the end of this PPDU.
  • the AP1 in the BSS1 network sends a Trigger frame, and the stations STA A and STA B in the BSS1 are scheduled, wherein the trigger frame is beamforming report poll information, and the trigger variant frame is used.
  • the AP is performing measurement of the channel state of the AP to the STA, and scheduling the channel state of the feedback measurement by the multiple stations, wherein the channel state category can be indicated in the NDPA frame, including the steering matrix, and the signal-to-noise ratio (SNR) of each space-time stream. It can be partial channel bandwidth information or full bandwidth channel information.
  • the AP1 sets a spatial reuse field to the space-free multiplexing (SR-DISALLOWED) in the shared information field (Common Info) in the trigger frame for generating the channel information feedback poll, and is used for configuring the trigger frame.
  • the receiver responds to the spatial multiplexing information field in the physical layer signaling domain of the transmitted Trigger-Based PPDU,
  • the spatial multiplexing information of the common information in the same trigger frame thereby prohibiting/restricting the OBSS site receiving the Trigger based-PPDU from performing spatial multiplexing, including not performing spatial multiplexing parameter (SRP) spatial multiplexing parameter (SRP) Usage, energy detection (OBSS_PD, Power Detection,), Spatial Reuse Group (SRG), spatial multiplexing, and OBSS_PD NON SRG spatial multiplexing.
  • SRP spatial multiplexing parameter
  • SRP spatial multiplexing parameter
  • OBSS_PD energy detection
  • SRG Spatial Reuse Group
  • OBSS_PD NON SRG spatial multiplexing OBSS_PD NON SRG spatial multiplexing.
  • the STAs and the Bs in the BSS1 receive the PPDUs carrying the Beamforming report poll frames from the AP1
  • the STAs perform the feature matching through the L-STF to determine that the frame is a Wi-Fi physical frame and pass the L-SIG.
  • the RL-SIG determines that the frame is an HE PPDU, and further parses the network color information in the color domain of the BSS network in the HE-SIG-A signaling domain in the physical layer to obtain the frame from the same BSS, and analyzes and sends the Beamforming to itself.
  • the report poll frame and the measurement feedback channel information feedback (Beamforming feedback) frame is transmitted after the short interframe space (SIFS) frame interval using the Trigger-Based PPDU physical layer format.
  • the spatial multiplexing information field of the physical layer signaling domain is set to a prohibited/restricted spatial multiplexing indication set by the shared information field in the received Beamforming report poll frame.
  • AP1 sets the spatial multiplexing domain in the HE-SIG-A signaling of the physical layer to SR–DISALLOW when transmitting the HE SU PPDU containing the Beamforming report poll frame, indicating that the OBSS station prohibits all after receiving the frame. SR operation.
  • the STAs and STAs in the BSS1 receive the Beamforming report poll frame from the Trigger variant frame sent by the AP1.
  • the Target RSSI information in the trigger frame different stations perform transmission power adjustment to make the transmitted signal pass the path loss.
  • the power reaching AP1 approximately satisfies a certain error level, and the synchronization according to the training field in the Trigger frame includes CFO synchronization, and the time error is limited to ⁇ 0.4us.
  • STA A and STA B pass the trigger frame.
  • the PPDU sends a Beam forming feedback, where the feedback information may include a channel steering matrix, SNR or CQI information of the spatial stream of each subcarrier.
  • BSS1 includes AP1, STA A, and STA B
  • BSS2 includes AP2, STA1, and STA2.
  • the AP1 sends a positioning request trigger frame (Positioning Request Trigger Frame), and the type (Type) field in the trigger frame indicates that the frame is a positioning measurement request frame, and the STA A and the STA B station send the uplink MU.
  • the AP1 After receiving the uplink MU NDP, the AP1 continues to send the downlink NDPA and the downlink NDP.
  • the frame exchange sequence is as shown in Figure 5:
  • the AP1 is transmitted in the transmitted DL trigger frame using the HE PPDU frame format, and the AP is set to disable spatial multiplexing signaling (SR-DISALLOW) in the HE-SIG-A in the physical layer signaling, and the trigger frame at the MAC layer.
  • SR-DISALLOW spatial multiplexing signaling
  • Setting a corresponding scheduling information command, including received information such as a target signal strength indicator (RSSI), a transmit power spatial stream, and the like, and setting a spatial multiplexing instruction of the common information in the trigger frame to Space multiplexing signaling SR-DISALLOW is prohibited.
  • the SIFS interval feeds back the HE MU NDP frame, and the NDP frames are separated in the frequency domain interval, so that the AP1 can traverse the frequency domain NDP signals sent by different stations.
  • the NDP sent by the STA A and the STAB does not include a data unit, and the frame format is as shown in FIG. 4, and the Common Info field in the Trigger frame in the AP1 is copied in the HE-SIG-A in the transmitted HE MU NDP frame.
  • the information includes the set space-free multiplexing instruction SR-DISALLOW.
  • the AP1 receives the information of the uplink HE MU NDP, the measurement channel, and the time sent by the STA A and the STA B for positioning, and then the AP1 sends the downlink NDPA, and sets the spatial multiplexing field in the HE-SIG-A domain in the physical layer signaling to
  • the spatial multiplexing signaling SR-DISALLOW is disabled to ensure that the frame is not multiplexed by other OBSS stations, and the downlink NDP channel measurement frame is sent after the SIFS time, and the physical layer signaling HE-SIG-A in the NDP frame is set.
  • the field is the space-free instruction SR-Prohibted.
  • STA1 or STA2 receives a radio frame, and the type matching is a WiFi radio frame.
  • the BSS color field in the HE-SIG-A signaling in the parsing physical layer determines that the frame is from the OBSS site.
  • the SR spatial multiplexing domain in the HE-SIG-A is parsed to obtain the domain-disabled spatial multiplexing signaling (SR-DISALLOW), and the STA1 or STA2 keeps the physical carrier detection channel state busy until the end of the radio frame.
  • SR-DISALLOW domain-disabled spatial multiplexing signaling
  • Multi-block acknowledgment (MU-BA, Multiple Block Ack) is supported in 802.11ax, that is, multiple stations can simultaneously transmit an upper block acknowledgement ACK in an orthogonal frequency division multiple access (OFDMA) manner.
  • OFDMA orthogonal frequency division multiple access
  • AP1 in the BSS1 network sends downlink multi-user data through the HE MU. It can pass OFDMA, multi-user-multiple input multiple output (MU-MIMO), or a combination of the two.
  • STA A and STA B feed back.
  • Block confirmation (BA, Block Ack) confirmation message (BA, Block Ack) confirmation message.
  • the AP1 transmits the downlink data in the HEMU MU PPDU frame format in the OFDMA manner, and then transmits the carrying trigger frame, and the scheduling station sends the uplink acknowledgement information, in any of the following cases:
  • the preset length threshold is 30 bytes
  • the spatial multiplexing sub-domain of the information in the Common Info field of the AP in the trigger frame is set to prohibit spatial multiplexing SR-DISALLOW, that is, all spatial multiplexing behavior is prohibited.
  • STA1 receives a radio frame that satisfies the reception threshold, determines that the frame is a WiFi radio frame by signal feature matching, and improves the frame as a HE PPDU by using the L-SIG and RL-SIG types. Parsing the PPDU format field in the HE-SIG-A signaling to determine that the frame is a Trigger-based PPDU, and decoding the BSS color value to determine that the frame is from the OBSS network, and parsing the spatial multiplexing field to solve the field is prohibited/ The spatial multiplexing signaling SR-DISALLOW is restricted, and the station STA1 keeps the physical carrier detection channel state busy until the end of the radio frame.
  • the time measurement is ms level, the frame frame interaction needs to be protected, and the OBSS site cannot be reused for the current frame interaction.
  • the FTM is generally used to measure the site. Point and other site distance, the site can use the location of other sites to determine the location of the site based on frame interaction.
  • the frame sequence of the FTM is initiated by the initiator, and the responder sends the FTM measurement frame. The initiator and the responder determine the location information by recording the reception time of the PPDU.
  • the frame interaction sequence is as shown in FIG. 7:
  • the initiator STA A requests the AP to perform FTM measurement, and measures the distance information between STA A and AP1.
  • the initiator is STA A and the responder is AP1.
  • the initiator initiates the request through a request (FTM request) frame, and the responder replies to the Ack.
  • FTM request request
  • the responder replies to the Ack.
  • the responder transmits the first FTM measurement frame at time t1_1 in the time interval of the Burst Duration, the requester receives the frame at time t2_1, and sends an Ack confirmation message at time t3_1, and records the time, the responder The Ack confirmation information is received at time t4_1, and the time information is recorded.
  • the responder transmits the FTM frame at time t1_2 and carries the time t1_1 at which the first FTM measurement frame is transmitted and the time t4_1 at which the Ack is received.
  • the requester estimates the distance from the requestor to the responder by using the time information t1_1, t2_1, t3_1, t4_1 after receiving the time information FTM_2 at time t2_2, and records the time t2_2.
  • the Ack confirmation message is sent at t3_2.
  • the responder receives the Ack confirmation message at time t4_2 and records the time.
  • the next measurement interaction carries the time information of the last measurement confirmation.
  • the FTM request frame, the FTM measurement frame, and the responding Ack frame sent by the station are transmitted in the HE PPDU frame format, and are in the HE-SIG-A signaling domain of the physical layer.
  • the spatial multiplexing field is set to disable spatial multiplexing SR-DISALLOW.
  • the station STA1 or STA2 receives a radio frame, the frame energy exceeds the reception threshold, and the frame is matched to the WiFi frame by the preamble, and the frame is further determined by the L-SIG as the HE PPDU, and the HE-SIG-A signal is analyzed.
  • the domain is parsed, the BSS color field is parsed, the frame is determined to be OBSS, and the spatial multiplexing field is parsed. If the field is disabled for spatial multiplexing SR-DISALLOW, the station STA1 or STA2 receiving the frame in BSS2 will maintain the physics.
  • the carrier sense is busy until the end of the radio frame.
  • a station may schedule multiple sites to send uplink data by triggering frames, and in some simple scenarios, such as an AP scheduling site, sending uplink acknowledgement information, the site may choose not to complete.
  • the trigger frame is sent to the station for uplink data scheduling, and only the Trigger part information needs to be placed in the uplink multi-user response Scheduling (UMRS) control domain, which is integrated in the HT (High Throughput) control.
  • UMRS uplink multi-user response Scheduling
  • the signaling in the UMRS control domain does not have a spatial multiplexing domain, so for responding to a frame type having a UMRS domain, scheduling a specific frame type such as BA or ACK, etc., must prohibit spatial multiplexing, Set the default forbidden spatial multiplexing instruction, SR-DISALLOW, and SR-DISALLOW, for all SR spatial multiplexing.
  • AP1 transmits the downlink HE MU PPDU through OFDMA, and schedules STA A and STA B to send uplink ACK acknowledgment information, and the first MAC layer data unit (MPDU, MAC Protocol Data Unit) in each multi-user data.
  • MPDU the first MAC layer data unit
  • the UMRS Control field is included.
  • the site After receiving the PPDU, the site sets a default spatial multiplexing instruction to disable spatial multiplexing signaling.
  • the frame interaction sequence is shown in Figure 8.
  • the STA1 in the BSS2 receives a radio frame and passes the preamble matching, it confirms that the frame is a Wi-Fi radio frame, and further determines that the frame is an HE PPDU through the L-SIG, and further obtains the HE-SIG-A.
  • the format field determines that the frame is a HE PPDU based on the trigger frame and the BSS Color field, the frame is from the OBSS site, and the Spatial Reuse field is parsed to confirm that the spatial multiplexing information is prohibited, and STA1 sets its physical carrier monitoring. It is busy until the end of the PPDU frame reception.
  • an AP can schedule multiple sites to send uplink data, thereby improving the average throughput of the network.
  • AP1 in the BSS1 network sends a trigger frame to schedule a plurality of stations STA A and STA B to transmit uplink data, which is other data except channel measurement feedback data and acknowledgement information, and AP1 is in the Trigger frame.
  • the spatial multiplexing domain in the Common Info field is set to disable SRP spatial multiplexing and the Non SRG OBSS_PD spatial multiplexing instruction, ie, SRP_AND_NON-SRG-OBSS-PD_DISALLOW, and the frame transmission sequence is as shown in FIG.
  • the STAA and the STAB copy the signaling in the spatial multiplexing domain in the trigger frame, that is, SRP_AND_NON-SRG-OBSS-PD_DISALLOW, and set the physical layer signaling HE-SIG in the uplink data frame HE Trigger based PPDU.
  • the spatial multiplexing domain in A is also SRP_AND_NON-SRG-OBSS-PD_DISALLOW.
  • an AP can schedule multiple users to transmit uplink data.
  • AP1 in the BSS1 network schedules STA A and STA B to send multiple downlink multi-user data units, and the last data unit carries a trigger frame, and the scheduling STA A and STA B send an uplink block acknowledgement (BA, Block ACK). ), as shown in Figure 10.
  • BA uplink block acknowledgement
  • STA1 receives the radio frame, obtains the frame as a WiFi frame through preamble matching, and the frame is an HE frame, and determines that the frame is from the OBSS network through the BSS color in the physical layer, according to the length information in the physical layer. (ie, the length of Length) t satisfies a preset threshold T, that is, t ⁇ T. STA 1 will keep the physical carrier listening busy until the PPDU ends.
  • a preset threshold T that is, t ⁇ T.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage device includes the following steps: the foregoing storage medium includes: a mobile storage device, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk or an optical disk.
  • optical disk A medium that can store program code.
  • the above-described integrated unit of the present invention may be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a standalone product.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a mobile storage device, a ROM, a RAM, a magnetic disk, or an optical disk.
  • the technical solution of the embodiment of the present invention determines that the radio frame is a radio frame of a specified type and/or determines that the radio frame carries the indication information that prohibits the third party from multiplexing the radio frame; When the radio frame ends, the transmission success rate of the specified type of radio frame can be guaranteed, and the transmission efficiency of the network is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种无线帧传输的方法,包括:接收无线帧,确定所述无线帧为指定类型的无线帧和/或确定所述无线帧携带禁止第三方对该无线帧复用的指示信息;保持物理载波检测信道状态为忙,直到所述无线帧结束。本发明实施例还公开了一种无线帧传输的装置和计算机存储介质。

Description

一种无线帧传输的方法、装置和计算机存储介质
相关申请的交叉引用
本申请基于申请号为201710561914.9、申请日为2017年7月11日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本发明涉及无线通信网络领域,具体涉及一种无线帧传输的方法、装置和计算机存储介质。
背景技术
当前,无线通信系统中各种物联网设备的数量急剧增长,网络负荷越来越重,通信效率也随之下降。空间复用技术能够缓解这种效率的下降,但是对于某些帧序列来说,其传输的成功关系后续帧交换的成功,在无线通信中某些帧序列是需要严格保护不能被其他站点复用。
空间复用技术即能够使得不同的基本服务子集(BSS,Basic Service Set)下的站点同时复用同一信道进行传输从而提高网络的吞吐。空间复用的基本原理是当接收到重叠基本服务子集(OBSS,Overlapping Basic Service Set)的帧,检测到接收功率小于一定的阈值,则可以忽略该帧,认为信道是空闲的,进行退避并竞争接入信道,进行数据传输。但是,对于本BSS中的发送方来说,某些帧的传输时间是不希望被OBSS中的第三方站点复用,如果被复用会使得传输效果变差,甚至影响后续的数据传输。
发明内容
本发明实施例提供一种无线帧传输的方法、装置和计算机存储介质,以保证指定类型的无线帧的传输成功率,提升网络的传输效率。
本发明实施例提供了一种无线帧传输的方法,包括:
接收无线帧,确定所述无线帧为指定类型的无线帧和/或确定所述无线帧携带禁止第三方对该无线帧复用的指示信息;
保持物理载波检测信道状态为忙,直到所述无线帧结束。
本发明实施例还提供了一种无线帧传输的装置,包括:
确定模块,配置为接收无线帧,确定所述无线帧为指定类型的无线帧和/或确定所述无线帧携带禁止第三方对该无线帧复用的指示信息;
传输模块,配置为保持物理载波检测信道状态为忙,直到所述无线帧结束。
本发明实施例还提供了一种无线帧传输的方法,包括:发送无线帧,所述无线帧为指定类型的无线帧和/或携带禁止第三方对该无线帧复用的指示信息。
本发明实施例还提供了一种无线帧传输的装置,包括:
发送模块,配置为发送无线帧,所述无线帧为指定类型的无线帧和/或携带禁止第三方对该无线帧复用的指示信息。
本发明实施例还提供了一种无线帧传输的装置,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行本发明实施例所述的应用于接收侧的无线帧传输的方法的步骤;
或者,所述处理器用于运行所述计算机程序时,执行本发明实施例所述的应用于发送侧的无线帧传输的方法的步骤。
本发明实施例还提供了一种计算机存储介质,其上存储有计算机程序, 该计算机程序被处理器执行时实现本发明实施例所述的应用于接收侧的无线帧传输的方法的步骤;或者,该计算机程序被处理器执行时实现本发明实施例所述的应用于发送侧无线帧传输的方法的步骤。
本发明实施例提供的无线帧传输的方法、装置和计算机存储介质,通过确定无线帧为指定类型的无线帧和/或确定所述无线帧携带禁止第三方对该无线帧复用的指示信息;保持物理载波检测信道状态为忙,直到所述无线帧结束,可以保证指定类型的无线帧的传输成功率,提升网络的传输效率。
附图说明
图1为本发明实施例的一种无线帧传输的方法的流程图;
图2为本发明实施例的一种无线帧传输的装置的示意图;
图3为具有两个BSS的网络分布图;
图4为NDP帧结构示意图;
图5为站点定位序列的示意图;
图6为本实施例中上行MU确认信息的示意图;
图7为本实施例的基于FTM请求的位置测量序列交互的示意图;
图8为本实施例的含有UMRS Control域的数据传输确认序列的示意图
图9为本实施例的AP调度多个站点发送上行数据的示意图;
图10为本实施例的BA块确认示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
实施例一
图1为本发明实施例的一种无线帧传输的方法的流程图,应用于接收侧。如图1所示,本实施例的方法包括以下步骤:
步骤11、站点接收无线帧,确定所述无线帧为指定类型的无线帧和/或确定所述无线帧携带禁止第三方对该无线帧复用的指示信息;
步骤12、保持物理载波检测信道状态为忙,直到所述无线帧结束。
在一实施例中,所述无线帧传输过程中,所述方法还包括:保持接收站点的网络分配矢量不变。
在一实施例中,所述确定所述无线帧为指定类型的无线帧之前,所述方法还包括:确定所述无线帧携带禁止第三方对所述无线帧复用的指示信息。
在一实施例中,所述确定所述无线帧为指定类型的无线帧之前,所述方法还包括:确定所述无线帧接收能量小于重叠基本服务子集能量检测门限。
在一实施例中,所述确定所述无线帧携带禁止第三方对该无线帧复用的指示信息,包括:解析物理层信令域的空间复用参数信息域,所述空间复用参数信息域为禁止空间复用指令信息。
本实施例中,所述指定类型的无线帧包括以下任一种:信道测量帧;信道测量声明帧;信道信息反馈轮询触发帧;信道信息反馈帧;具有响应信息的无线帧;长度满足特定条件的无线帧;具有定位功能的无线帧。
其中,所述长度满足特定条件的无线帧,包括:媒体接入层帧或者物理层帧长度小于阈值的无线帧。
其中,所述无线帧包括被触发的无线帧。
在一实施例中,所述接收无线帧过程中,所述方法还包括:更新网络分配矢量。
在一实施例中,所述确定所述无线帧为指定类型的无线帧,包括:在 判断物理层信令中长度和空间流数满足指定的匹配条件时,确定所述无线帧为信道测量帧。
本实施例的方法可以保证指定类型的无线帧的传输成功率。
相应地,本实施例提供一种无线帧传输的装置,如图2所示,本实施例的装置包括:
确定模块,配置为接收到无线帧后,确定所述无线帧为指定类型的无线帧和/或确定所述无线帧携带禁止第三方对该无线帧复用的指示信息;
传输模块,配置为保持物理载波检测信道状态为忙,直到所述无线帧结束。
在一实施例中,所述确定模块,配置为确定所述无线帧为指定类型的无线帧之前,确定所述无线帧携带禁止第三方对该无线帧复用的指示信息。
在一实施例中,所述确定模块,配置为确定所述无线帧为指定类型的无线帧之前,确定所述无线帧接收能量小于重叠基本服务子集能量检测门限。
在一实施例中,所述确定模块,配置为解析物理层信令域的空间复用参数信息域,所述空间复用参数信息域为禁止空间复用指令信息。
在一实施例中,所述确定模块,配置为确定的指定类型的无线帧包括以下任一种:信道测量帧;信道测量声明帧;信道信息反馈轮询触发帧;信道信息反馈帧;具有响应信息的无线帧;长度满足特定条件的无线帧;具有定位功能的无线帧。
在一实施例中,所述收发传输模块,还配置为在所述无线帧传输过程中,保持当前网络分配矢量不变。
其中,所述长度满足特定条件的无线帧,包括:媒体接入层帧或者物理层帧长度小于阈值的无线帧,其中,所述无线帧包括触发的无线帧。
其中,所述确定所述无线帧为指定类型的无线帧,包括:在判断物理 层信令中长度和空间流数满足指定的匹配条件时,确定所述无线帧为信道测量帧。
在一实施列中,所述收发传输模块,还配置为在所述无线帧接收过程中,更新网络分配矢量。
需要说明的是:上述实施例提供的无线帧传输的装置在进行无线帧传输时,仅以上述各程序模块的划分进行举例说明,实际应用中,可以根据需要而将上述处理分配由不同的程序模块完成,即将装置的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分处理。另外,上述实施例提供的无线帧传输的装置与无线帧传输的方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
相应的,本实施例还提供了一种无线帧传输的装置,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行本发明前述无线帧传输的方法。
相应的,本发明实施例还提供了一种计算机存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现本发明前述无线帧传输的方法。
实施例二
本发明实施例提供一种无线帧传输的方法,对于发送站点,包括以下步骤:
步骤21、发送无线帧,所述无线帧为指定类型的无线帧和/或携带禁止第三方对该无线帧复用的指示信息。
其中,所述无线帧为所述指定类型的无线帧时,所述无线帧的物理层信令域的空间复用参数信息域携带禁止第三方对该无线帧复用的指示信息。
在一实施例中,所述指定类型的无线帧包括以下帧中的任一种:信道 测量帧;信道测量声明帧;信道信息反馈轮询触发帧;信道信息反馈帧;具有响应信息的无线帧;长度满足特定条件的无线帧;具有定位功能的无线帧。
其中,所述长度满足特定条件的无线帧,包括:媒体接入层帧或者物理层帧长度小于阈值的无线帧。
在上述无线帧中携带禁止第三方对该无线帧进行忽略处理的指示信息,并发送该无线帧,表示所有的第三方站点接收到具有该空间复用标示帧,会设置载波监听为忙,直到本无线帧结束。
相应地,本实施例还提供一种无线帧传输的装置,包括:
发送模块,配置为发送无线帧,所述无线帧为指定类型的无线帧和/或携带禁止第三方对该无线帧复用的指示信息。
在一实施例中,所述无线帧为所述指定类型的无线帧时,所述无线帧的物理层信令域的空间复用参数信息域携带禁止第三方对该无线帧复用的指示信息。
在一实施例中,所述指定类型的无线帧包括以下帧中的任一种:信道测量帧;信道测量声明帧;信道信息反馈轮询触发帧;信道信息反馈帧;具有响应信息的无线帧;长度满足特定条件的无线帧;具有定位功能的无线帧。
其中,所述长度满足特定条件的无线帧,包括:物理层帧长度小于阈值的无线帧。
需要说明的是:上述实施例提供的无线帧传输的装置在进行无线帧传输时,仅以上述各程序模块的划分进行举例说明,实际应用中,可以根据需要而将上述处理分配由不同的程序模块完成,即将装置的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分处理。另外,上述实施例提供的无线帧传输的装置与无线帧传输的方法实施例属于同一构思, 其具体实现过程详见方法实施例,这里不再赘述。
相应的,本实施例还提供了一种无线帧传输的装置,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行本发明前述无线帧传输的方法。
相应的,本发明实施例还提供了一种计算机存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现本发明前述无线帧传输的方法。
实施例三
在图3中,BSS1中的AP1,通过高效的(HE,High Efficiency)单用户(SU,Single User)物理层帧数据单元(PPDU,Physical Packet Data Unit)帧格式发送信道测量声明帧(NDPA,Null Data Packet Announcement)发起下行信道测量序列,在HE SU PPDU中的高效信令A域(HE-SIG-A,High Efficiency signal A)信令中的空间复用域中空间复用(SR,Spatial Reuse)子字段设置为禁止/限制空间复用信令,即SR-DISALLOW,禁止/限制第三方站点进行空间复用,包括non-SRG/SRG OBSS-PD based。接入节点(AP,Access Point)生成遗留短训练序列(L-STF,Legacy short training field)、传统(遗留)长训练序列(L-LTF,Legacy Long Training Field)、遗留信令域(L-SIG,Legacy signaling)、重复的遗留信令域(RL-SIG,Repeat Legacy Signaling)、HE-SIG-A、HE-STF、HE-LTF以及数据(Data)字段,其中物理层的Data字段是承载介质接入控制(MAC,Medium Access Control)层NDPA帧的数据信息。物理层通过将每个字段按照对应的方式进行正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)变换,并进行组帧,生成基带HE SU PPDU,通过脉冲整形,以及通过混频器调制到5GHz,进行信号发送。
OBSS站点,图3中BSS2中的站点STA2,接收到一个无线帧,通过 物理层中的L-STF训练字段进行匹配,确定该帧为无线保真(Wi-Fi)无线帧,设置物理载波监听信道检测状态为忙,并通过L-SIG与重复的遗留信令域(RL-SIG,Repeat Legacy Signaling)判断该帧为HE无线帧,解析HE-SIG-A中的网络颜色(BSS color),得到该帧为来自OBSS站点,进一步解析HE-SIG-A的空间复用域,得到空间复用域为禁止空间复用指令(SR-DISALLOW),保持物理载波监听信道检测状态为忙,直到本无线帧结束。
实施例四
在图3中,BSS1网络中的AP1站点发送了一个HE信道测量帧(NDP,Null Data Packet)PPDU帧,用来测量AP1到STA A和STA B的下行信道,AP1在发送HE NDP PPDU帧时,HE NDP PPDU的特点是没有数据字段,如图4所示:
其中设置物理层信令的HE-SIG-A中的空间复用域为禁止空间复用指令(SR-DISALLOW),该PPDU的HE-LTF用来让波束赋形接收方测量波束赋形发送方到波束赋形接收方的信道质量,测量的信息可以包含信道导向矩阵,信道的信噪比(SNR),信道的波动等信息。
在OBSS网络中即BSS2中的站点STA2接收到无线帧,通过能量检测以及L-STF匹配确定该帧是Wi-Fi无线帧,并通过L-SIG的重复,判断该帧为HE PPDU。并且通过BSS color域判断该帧来自OBSS网络,STA2解析HE-SIG-A中的SR域为SR-DISALLOW,并按无空间复用功能流程接收上述无线帧包括禁止OBSS_PD以及SRP SR空间复用,物理载波检测信道状态为忙,直到本无线帧结束。
实施例五
在图3中,BSS1网络中的AP1站点发送基于802.11ax帧格式的信道测量帧即HE SU NDP PPDU帧,用来测量AP1到STA A和STA B的下行 信道,AP1在发送HE NDP PPDU帧时,如图4所示:
其中设置物理层信令的HE-SIG-A中的空间复用域为禁止空间复用指令SR-DISALLOW,该PPDU的HE-LTF用来让波束赋形接收方测量波束赋形发送方到波束赋形接收方的信道质量,测量的信息可以包含信道导向矩阵,信道的信噪比SNR,信道的波动等信息。
在OBSS网络中即BSS2中的站点STA2接收到无线帧,通过能量检测以及L-STF匹配确定该帧是Wi-Fi无线帧,并通过L-SIG的重复,判断该帧为HE PPDU。解析L-SIG信令中的长度域以及HE-SIG-A中的Nsts域通过匹配关系得到该帧是NDP帧,并且通过BSS color域判断该帧来自OBSS网络,按无空间复用功能流程接收上述无线帧,包括禁止OBSS_PD以及SRP SR空间复用,物理载波检测信道状态为忙,直到本无线帧结束。
实施例六
在图3中,BSS1网络中的AP1站点发送了一个HE NDP PPDU帧,用来测AP1到STAA和STA B的下行信道,AP1在发送HE NDP PPDU帧时,HE NDP PPDU的特点是没有数据字段,如图4所示:AP设置HENDP PPDU中物理层信令的HE-SIG-A中的空间复用域为SR-DISALLOWED,该PPDU的HE-LTF用来让波束赋形接收方测量波束赋形发送方到波束赋形接收方的信道质量,测量的信息可以包含信道导向矩阵,信道的信噪比SNR,信道的波动等信息。
在BSS2中站点接收到一个无线帧,并通过前导匹配判断该帧是一个WiFi帧,接着通过L-SIG重复,确定该帧为HE PPDU,进一步解析HE-SIG-A的信令中的BSS color字段,确定该PPDU来自OBSS站点,并继续通过OBSS_PD门限进行判断,接收能量小于OBSS_PD门限,并解析HE-SIG-A信令中的空间复用字段空间复用字段,解析该字段为禁止空间复用,则该站点会保持物理载波监听为忙,包括禁止OBSS_PD以及SRP SR空间复用, 直到本PPDU结束。
实施例七
在图3中,BSS1网络中的AP1发送触发(Trigger)帧,调度BSS1中的站点STA A和STA B,其中该触发帧是信道信息反馈轮询(beamforming report poll)信息,该触发变体帧是AP在进行测量AP到STA的信道状态,调度多个站点反馈测量的信道状态,其中信道状态类别可以在NDPA帧中指示出来,包括导向矩阵,每个空时流的信噪比(SNR),可以部分信道带宽信息或者是全带宽信道信息。AP1在生成含有信道信息反馈轮询的触发帧中的共享信息域(Common Info)中设置空间复用(spatial reuse)域为禁止空间复用(SR-DISALLOWED),用于配置该触发帧的目的接收方响应发送的Trigger-Based PPDU的物理层信令域中的空间复用信息域,
为相同的触发帧中的公共信息的空间复用信息,从而禁止/限制接收到该Trigger based-PPDU的OBSS站点执行空间复用,包括不执行空间复用参数(SRP,Spatial Reuse Parameter)空间复用、能量检测(OBSS_PD,Power Detection,)、空间复用组(SRG,Spatial Reuse Group)、空间复用以及OBSS_PD NON SRG空间复用。
在接收侧:
在BSS1中的站点STA A和STA B接收到来自AP1的携带有Beamforming report poll帧的PPDU时,站点STA通过L-STF进行特征匹配判断出该帧是Wi-Fi物理帧,并通过L-SIG和RL-SIG判断该帧是HE PPDU,进一步解析物理层中HE-SIG-A信令域的通过BSS网络颜色域中的网络颜色信息得到该帧来自同一个BSS,解析出发送给自己的Beamforming report poll帧,并在短帧间间隔(SIFS,Short Interframe Space)帧间隔之后使用Trigger-Based PPDU物理层格式发送测量反馈信道信息反馈(Beamforming feedback)帧。其中,物理层信令域的空间复用信息域设置为所接收到的 Beamforming report poll帧中的共享信息域所设置的禁止/限制空间复用指示。
在BSS2中的站点STA1检测到接收信号能量超过-62dBm,通过特征匹配得到该帧为Wi-Fi帧,通过L-SIG和RL-SIG判断出该帧是HE PPDU,进一步解析物理层HE-SIG-A信令域的字段中的BSS网络颜色域的网络颜色信息得到该帧来自OBSS网络,解析空间复用域得到该域为禁止空间复用SR-DISALLOW,则STA1设置物理载波检测信道状态监听为忙,包括禁止OBSS_PD以及SRP SR空间复用,直到本无线帧结束。
实施例八
在发送端:
在BSS1中,AP1在发送含有Beamforming report poll帧的HE SU PPDU时,设置物理层的HE-SIG-A信令中的空间复用域为SR–DISALLOW,表示OBSS站点接收到该帧后禁止所有的SR操作。
在接收端:
BSS1中站点STA A和STA B接收到来自AP1发送的Trigger变体帧Beamforming report poll帧,根据触发帧中的Target RSSI信息指示,不同的站点会进行发送功率调整,以使发送的信号经过路损到达AP1的功率近似满足一定的误差水平,并根据Trigger帧中的训练字段进行同步包括CFO同步,以及时间误差限制在±0.4us内,在完成上述校准后,STA A和STA B通过基于触发帧的PPDU发送Beam forming feedback(信道信息反馈帧),其中反馈的信息可以包含信道导向矩阵,每个子载波的空间流的SNR或者CQI信息。
在BSS2中站点STA1接收到一个无线帧,通过特征匹配,判断出该帧是一个Wi-Fi信号帧,通过L-SIG和RL-SIG判断出该帧是HE PPDU,并解析物理层HE-SIG-A中帧格式Format域得到该域表示该帧为HE SU  PPDU,通过HE-SIG-A中的BSS color判断该帧来自OBSS站点,并解析空间复用域该域为SR-DISALLOW,该站点物理载波检测信道状态监听为忙,直到本无线帧接收结束。
实施例九
在商场等场所中,基于WLAN的无线网络中,AP可以根据STA所在位置,对站点进行定位,判断人流量等,通过802.11az协议实现,AP借助信道探测帧测量不同站点到达站点的序列信息时间信息,由于时间测量的准确性要求,不能允许非本BSS站点对定位序列的空间复用。
存在多个BSS网络如图3所示,BSS1包含AP1、STA A和STA B,BSS2包含了AP2、STA1和STA2。
在BSS1中,AP1发送具有定位请求的定位请求触发帧(Positioning Request Trigger Frame),通过触发帧中的类型(Type)域表明该帧为定位测量需求帧,调度STA A和STA B站点发送上行MU NDP,AP1接收到上行的MU NDP后,继续发送下行的NDPA以及下行的NDP,帧交换序列如图5所示:
AP1在发送的DL触发帧中使用HE PPDU帧格式发送,AP在物理层信令中的HE-SIG-A中设置为禁止空间复用信令(SR-DISALLOW),并且在MAC层的触发帧中设置对应调度信息指令,包括接收到的目标(Target)信号强度指示值(RSSI,Received Signal Strength Indicator,)、发送功率空间流等信息,并且设置触发帧中common信息的空间复用指令设置为禁止空间复用信令SR-DISALLOW。
STA A和STA B接收到上述请求定位的Trigger帧后,SIFS间隔反馈HE MU NDP帧,所述的NDP帧在频域间隔分开,使得AP1能够遍历不同站点所发的频域NDP信号。所述STA A和STAB发送的NDP不包含数据单元,帧格式如图4所示,并且在所发送的HE MU NDP帧中的HE-SIG-A 中复制AP1中Trigger帧中的Common Info域中的信息包括设置的禁止空间复用指令即SR-DISALLOW。
AP1接收到STA A和STA B发送的上行HE MU NDP、测量信道、时间等信息用于定位,接着AP1发送下行的NDPA,设置物理层信令中HE-SIG-A域中空间复用字段为禁止空间复用信令SR-DISALLOW,确保该帧不被其他OBSS站点复用,并在SIFS时间后发送下行NDP信道测量帧,并且设置NDP帧中物理层信令HE-SIG-A中空间复用字段为禁止空间复用指令SR-Prohibted。
在BSS2中任意站点如图3所示,STA1或者STA2接收到无线帧,通过类型匹配是WiFi无线帧,解析物理层中HE-SIG-A信令中的BSS color字段判断该帧来自OBSS站点,并解析HE-SIG-A中的SR空间复用域得到该域为禁止空间复用信令(SR-DISALLOW),站点STA1或STA2保持物理载波检测信道状态为忙,直到本无线帧结束。
实施例十
在WLAN网络中,一个重要的数据传输就是站点需要确认接收到发送给自己的数据,目前网络中下行数据量是远远大于上行数据的,对于下行数据确认的保护也变的很重要。
在802.11ax中支持多块确认(MU-BA,Multiple Block Ack),即多个站点可以同时以正交频分多址(OFDMA,Orthogonal Frequency Division Multiplexing Access)的方式发送上块确认ACK。如图6所示,BSS1网络中的AP1通过HE MU方式发送下行多用户数据,可以通过OFDMA,多用户-多输入多输出(MU-MIMO)或者两者的结合,STA A和STA B反馈上行的块确认(BA,Block Ack)确认信息。
AP1以OFDMA的方式通过HE MU PPDU帧格式发送下行数据,接着发送携带触发帧,调度站点发送上行确认信息,在以下的情况中的任意一 种:
当AP所调度的帧满足指定的帧类型时:
BA帧/ACK帧,信道测量反馈(Sounding feedback)帧;
AP所调度的帧长度满足预设的长度阈值时;
预设的长度阈值为30字节;
在本实施例中,AP在触发帧中的Common Info域中的信息的空间复用子域设置为禁止空间复用SR-DISALLOW即禁止所有的空间复用行为。
STA A和STA B接收到Trigger帧后SIFS时间间隔后,回复HE Trigger-based PPDU帧格式发送的BA确认信息,不同STA在各自的RU上发送上行确认信息,在发送的HE Trigger-based PPDU中的物理层信令HE-SIG-A的空间复用字段依据接收到的Trigger帧中的common信息中空间复用的信令指示设置为禁止/限制空间复用信令(SR-DISALLOW)。
在BSS2中的站点中,STA1接收到一个无线帧,该无线帧满足接收门限,通过信号特征匹配判断该帧为WiFi无线帧,进步通过L-SIG和RL-SIG类型判断该帧为HE PPDU,解析HE-SIG-A信令的中的PPDU format字段判断该帧是Trigger-based PPDU,并解得BSS color值判断出该帧来自OBSS网络,并解析空间复用字段解得该字段为禁止/限制空间复用信令SR-DISALLOW,站点STA1保持物理载波检测信道状态为忙,直到本无线帧结束。
实施例十一
在精确时间测量(FTM,Fine Time Measurement)帧交互过程中,时间的测量为ms级别,该帧帧交互需要保护,不能让OBSS站点对本次帧交互进行复用,FTM一般用于测量本站点和其他站点距离,本站点可以基于帧交互利用其他站点的位置来决定本站点的位置。FTM的帧序列由发起方发起FTM请求,响应端发送FTM测量帧,发起方和响应方通过记录PPDU 的接收时间来确定位置信息,帧交互序列如图7所示:
在图3中,BSS1中,发起方STA A请求AP进行FTM测量,测量STA A与AP1的距离信息。其中发起方为STA A,响应方为AP1。
发起方通过请求(FTM request)帧发起请求,响应方回复Ack。
响应方在时间测量帧时期(Burst Duration)时间段内的t1_1时刻发送第一FTM测量帧,请求方在t2_1时刻接收到该帧,并在t3_1时刻发送Ack确认信息,并记录该时刻,响应方在t4_1时刻接收到Ack确认信息,并记录该时刻信息。
响应方在t1_2时刻发送FTM帧并携带发送第一FTM测量帧的时刻t1_1和接收Ack的时刻t4_1。
请求方在t2_2时刻接收到含有时间信息FTM_2后通过时间信息t1_1,t2_1,t3_1,t4_1来估计请求方到响应方的距离吗,并记录t2_2时刻。在t3_2发送Ack确认信息。
响应方在t4_2时刻接收到Ack确认信息,并记录该时刻。
在一个时间测量帧时期内,可以有多个测量确认交互,下一个测量交互携带上一个测量确认的时间信息。
在上述请求和响应站点发送的帧序列交互中,站点发送的FTM请求帧,FTM测量帧以及响应的Ack帧中,通过HE PPDU帧格式发送,在物理层的HE-SIG-A信令域的空间复用字段设置为禁止空间复用SR-DISALLOW。
在BSS2中站点STA1或者STA2接收一个无线帧,该帧能量超过接收门限,并通过前导匹配该帧为WiFi帧,进一步通过L-SIG重复判断该帧为HE PPDU,通过解析HE-SIG-A信令域,解析BSS color字段,判断该帧来OBSS,并解析空间复用字段,解得该字段为禁止空间复用SR-DISALLOW,则BSS2中接收到该帧的站点STA1或者STA2,会保持物理载波监听为忙,直到本无线帧的结束。
实施例十二
在WLAN网络中,特别是基于802.11ax协议的数据传输中,站点可以通过触发帧调度多个站点发送上行数据,在某些简单场景,例如AP调度站点发送上行确认信息,站点可以选择不将完整的触发帧发送给站点进行上行数据调度,只需要将Trigger部分信息放在上行多用户响应调度(UMRS,Uplink Multi-user Response Scheduling)控制域,这个域集成在高吞吐(HT,High Throughput)控制域中的A-Control域中,但是在UMRS控制域的信令没有空间复用域,因此对于响应具有UMRS域的帧类型,调度特定帧类型例如BA或者ACK等,须禁止空间复用,可以设置默认的禁止空间复用指令即SR-DISALLOW,SR-DISALLOW表示禁止所有的SR空间复用。
在BSS1中AP1通过OFDMA方式发送下行的HE MU PPDU,调度STA A和STA B发送上行ACK确认信息,并在每个多用户数据中的第一个MAC层数据单元(MPDU,MAC Protocol Data Unit)中含有UMRS Control域,站点接收到该PPDU后,会设置默认的空间复用指令即禁止空间复用信令,帧交互序列如图8所示。
当BSS2中的站点STA1接收到一个无线帧,经过前导匹配,确认该帧为Wi-Fi无线帧,进一步通过L-SIG重复判断出该帧为HE PPDU,进一步通过解得HE-SIG-A,判断格式(Format)域确定帧为基于触发帧的HE PPDU以及BSS Color域该帧来OBSS站点,解析空间复用(Spatial Reuse)域,确认为禁止空间复用信息,STA1则设置其物理载波监听为忙,直到该PPDU帧接收结束。
实施例十三
在WLAN网络中,特别是在基于802.11ax协议的数据通信中,AP可以调度多个站点发送上行数据,从而提高网络的平均吞吐。
在如图3中的情况下,BSS1网络中的AP1发送触发帧调度多个站点 STA A和STA B发送上行数据,该数据是除了信道测量反馈数据和确认信息的其他数据,AP1在Trigger帧中的Common Info域中的空间复用域设置为禁止SRP空间复用和Non SRG OBSS_PD空间复用指令即SRP_AND_NON-SRG-OBSS-PD_DISALLOW,帧传输序列如图9所示。
STAA和STAB接收到触发帧后,会复制触发帧中的空间复用域中的信令即SRP_AND_NON-SRG-OBSS-PD_DISALLOW,设置上行数据帧HE Trigger based PPDU中的物理层信令HE-SIG-A中的空间复用域也为SRP_AND_NON-SRG-OBSS-PD_DISALLOW。
在BSS2中的站点STA1接收到一个无线帧,经过前导匹配,确认该帧为Wi-Fi无线帧,进一步通过L-SIG重复判断出该帧为HE PPDU,进一步通过解得HE-SIG-A,判断Format域确定帧为基于HE触发帧PPDU以及BSS Color域该帧来OBSS站点,解析空间复用(Spatial Reuse)域,确认为SRP_AND_NON-SRG-OBSS-PD_DISALLOW信令,那么STA禁止SRP空间复用和Non SRG OBSS_PD空间复用,但依然可以执行SRG空间复用。
实施例十四
在WLAN网络中,特别是在基于下一代IEEE802.11协议的WLAN网络中,AP可以调度多个用户发送上行数据。
在图3中,BSS1网络中的AP1调度STA A和STA B发送多个下行多用户数据单元,并最后一个数据单元中携带触发帧,调度STA A和STA B发送上行块确认(BA,Block ACK),如图10所示。
在BSS2网络中STA1,接收到无线帧,通过前导匹配得到该帧为WiFi帧,以及该帧是HE帧,并通过物理层中的BSS color判断出该帧来自OBSS网络,根据物理层中长度信息(即Length的长度)t满足预设的阈值T即t<T。STA 1会保持物理载波监听为忙,直到该PPDU结束。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法, 可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本发明上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算 机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
工业实用性
本发明实施例的技术方案通过确定无线帧为指定类型的无线帧和/或确定所述无线帧携带禁止第三方对该无线帧复用的指示信息;保持物理载波检测信道状态为忙,直到所述无线帧结束,可以保证指定类型的无线帧的传输成功率,提升网络的传输效率。

Claims (28)

  1. 一种无线帧传输的方法,包括:
    接收无线帧,确定所述无线帧为指定类型的无线帧和/或确定所述无线帧携带禁止第三方对该无线帧复用的指示信息;
    保持物理载波检测信道状态为忙,直到所述无线帧结束。
  2. 如权利要求1所述的方法,其中,所述确定所述无线帧为指定类型的无线帧之前,所述方法还包括:
    确定所述无线帧携带禁止第三方对所述无线帧复用的指示信息。
  3. 如权利要求2所述的方法,其中,所述确定所述无线帧为指定类型的无线帧之前,所述方法还包括:
    确定所述无线帧接收能量小于重叠基本服务子集能量检测门限。
  4. 如权利要求1所述的方法,其中,所述确定所述无线帧携带禁止第三方对该无线帧复用的指示信息,包括:
    解析物理层信令域的空间复用参数信息域,所述空间复用参数信息域为禁止空间复用指令信息。
  5. 如权利要求1-4任一项所述的方法,其中,所述指定类型的无线帧包括以下任一种:
    信道测量帧;
    信道测量声明帧;
    信道信息反馈轮询触发帧;
    信道信息反馈帧;
    具有响应信息的无线帧;
    长度满足特定条件的无线帧;
    具有定位功能的无线帧。
  6. 如权利要求5所述的方法,其中,所述接收无线帧过程中,所述方 法还包括:保持当前网络分配矢量不变。
  7. 如权利要求5所述的方法,其中,所述长度满足特定条件的无线帧,包括:媒体接入层帧或者物理层帧长度小于阈值的无线帧。
  8. 如权利要求7所述的方法,其中,所述无线帧包括被触发的无线帧。
  9. 如权利要求8所述的方法,其中,所述接收无线帧过程中,所述方法还包括:更新网络分配矢量。
  10. 如权利要求5所述的方法,其中,所述确定所述无线帧为指定类型的无线帧,包括:在判断物理层信令中长度和空间流数满足指定的匹配条件时,确定所述无线帧为信道测量帧。
  11. 一种无线帧传输的装置,包括:
    确定模块,配置为接收无线帧,确定所述无线帧为指定类型的无线帧和/或确定所述无线帧携带禁止第三方对该无线帧复用的指示信息;
    传输模块,配置为保持物理载波检测信道状态为忙,直到所述无线帧结束。
  12. 如权利要求11所述的装置,其中,
    所述确定模块,配置为确定所述无线帧为指定类型的无线帧之前,确定所述无线帧携带禁止第三方对该无线帧复用的指示信息。
  13. 如权利要求12所述的装置,其中,
    所述确定模块,配置为确定所述无线帧为指定类型的无线帧之前,确定所述无线帧接收能量小于重叠基本服务子集能量检测门限。
  14. 如权利要求11所述的装置,其中,
    所述确定模块,配置为解析物理层信令域的空间复用参数信息域,所述空间复用参数信息域为禁止空间复用指令信息。
  15. 如权利要求11-14任一项所述的装置,其中,所述确定模块,配置为确定的指定类型的无线帧包括以下任一种:信道测量帧;信道测量声明 帧;信道信息反馈轮询触发帧;信道信息反馈帧;具有响应信息的无线帧;长度满足特定条件的无线帧;具有定位功能的无线帧。
  16. 如权利要求15所述的装置,其中,所述传输模块,还配置为在接收所述无线帧过程中,保持当前网络分配矢量不变。
  17. 如权利要求15所述的装置,其中,所述长度满足特定条件的无线帧,包括:媒体接入层帧或者物理层帧长度小于阈值的无线帧,所述无线帧包括触发的无线帧。
  18. 如权利要求17所述的装置,其中,所述传输模块,还配置为接收无线帧过程中,更新网络分配矢量。
  19. 一种无线帧传输的方法,包括:
    发送无线帧,所述无线帧为指定类型的无线帧和/或携带禁止第三方对该无线帧复用的指示信息。
  20. 如权利要求19所述的方法,其中,
    所述无线帧为所述指定类型的无线帧时,所述无线帧的物理层信令域的空间复用参数信息域携带禁止第三方对该无线帧复用的指示信息。
  21. 如权利要求19或20所述的方法,其中,所述指定类型的无线帧包括以下帧中的任一种:
    信道测量帧;
    信道测量声明帧;
    信道信息反馈轮询触发帧;
    信道信息反馈帧;
    具有响应信息的无线帧;
    长度满足特定条件的无线帧;
    具有定位功能的无线帧。
  22. 如权利要求21所述的方法,其中,所述长度满足特定条件的无线 帧,包括:媒体接入层帧或者物理层帧长度小于阈值的无线帧。
  23. 一种无线帧传输的装置,其中,包括:
    发送模块,配置为发送无线帧,所述无线帧为指定类型的无线帧和/或携带禁止第三方对该无线帧复用的指示信息。
  24. 如权利要求23所述的装置,其中,
    所述无线帧为所述指定类型的无线帧时,所述无线帧的物理层信令域的空间复用参数信息域携带禁止第三方对该无线帧复用的指示信息。
  25. 如权利要求23或24所述的装置,其中,所述指定类型的无线帧包括以下帧中的任一种:信道测量帧;信道测量声明帧;信道信息反馈轮询触发帧;信道信息反馈帧;具有响应信息的无线帧;长度满足特定条件的无线帧;具有定位功能的无线帧。
  26. 如权利要求25所述的装置,其中,所述长度满足特定条件的无线帧,包括:媒体接入层帧或者物理层帧长度小于阈值的无线帧。
  27. 一种无线帧传输的装置,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行权利要求1至10任一项所述无线帧传输的方法的步骤;
    或者,所述处理器用于运行所述计算机程序时,执行权利要求19至22任一项所述无线帧传输的方法的步骤。
  28. 一种计算机存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现权利要求1至10任一项所述无线帧传输的方法的步骤;或者,该计算机程序被处理器执行时实现权利要求19至22任一项所述无线帧传输的方法的步骤。
PCT/CN2018/088278 2017-07-11 2018-05-24 一种无线帧传输的方法、装置和计算机存储介质 WO2019011065A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18832969.2A EP3654565A4 (en) 2017-07-11 2018-05-24 METHOD AND DEVICE FOR WIRELESS TRANSMISSION OF FRAMES AND COMPUTER STORAGE MEDIUM
US16/629,700 US11304232B2 (en) 2017-07-11 2018-05-24 Wireless frame transmission method and apparatus
US17/714,827 US11997715B2 (en) 2017-07-11 2022-04-06 Wireless frame transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710561914.9 2017-07-11
CN201710561914.9A CN109245851B (zh) 2017-07-11 2017-07-11 一种无线帧传输的方法与装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/629,700 A-371-Of-International US11304232B2 (en) 2017-07-11 2018-05-24 Wireless frame transmission method and apparatus
US17/714,827 Continuation US11997715B2 (en) 2017-07-11 2022-04-06 Wireless frame transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2019011065A1 true WO2019011065A1 (zh) 2019-01-17

Family

ID=65000988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088278 WO2019011065A1 (zh) 2017-07-11 2018-05-24 一种无线帧传输的方法、装置和计算机存储介质

Country Status (4)

Country Link
US (2) US11304232B2 (zh)
EP (1) EP3654565A4 (zh)
CN (1) CN109245851B (zh)
WO (1) WO2019011065A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11271617B2 (en) * 2018-10-03 2022-03-08 Qualcomm Incorporated Null data packet-based implicit sounding and calibration in a wireless local area network
CN117200955A (zh) * 2019-01-30 2023-12-08 华为技术有限公司 空间复用的指示方法及无线通信装置
JP7233248B2 (ja) * 2019-02-26 2023-03-06 キヤノン株式会社 通信装置、通信装置の制御方法、およびプログラム
US20230009996A1 (en) * 2019-11-05 2023-01-12 Sony Group Corporation Access points, station and corresponding methods
CN114125854A (zh) * 2020-08-28 2022-03-01 华为技术有限公司 通信方法及装置
US11665682B2 (en) * 2021-05-12 2023-05-30 Hewlett Packard Enterprise Development Lp Selective spatial reuse to enhance network performance
CN114513283B (zh) * 2022-01-11 2023-10-17 深圳市联平半导体有限公司 基于空间复用的数据传输方法、装置、设备及存储介质
CN115004819A (zh) * 2022-04-22 2022-09-02 北京小米移动软件有限公司 通信方法及装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105812295A (zh) * 2014-12-30 2016-07-27 中兴通讯股份有限公司 数据传输方法和站点
CN106603211A (zh) * 2015-10-20 2017-04-26 华为技术有限公司 传输数据的方法和装置
CN106879004A (zh) * 2015-12-11 2017-06-20 华为技术有限公司 空闲信道评估方法、节点、站点及接入点
US20170188368A1 (en) * 2015-12-23 2017-06-29 Laurent Cariou Spatial reuse for uplink multiuser transmissions

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3307007B1 (en) * 2015-06-05 2022-04-27 LG Electronics Inc. Method for transmitting data in wireless communication system and apparatus therefor
WO2017022945A1 (ko) * 2015-08-04 2017-02-09 엘지전자(주) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
US10153877B2 (en) * 2015-10-19 2018-12-11 Lg Electronics Inc. Method and apparatus for transmitting feedback frame in wireless local area network system
EP4152878A1 (en) * 2015-10-20 2023-03-22 Wilus Institute of Standards and Technology Inc. Wireless communication method and wireless communication terminal in high-density environment including overlapped basic service set
CN108701402B (zh) * 2015-12-28 2021-11-16 阿特拉斯全球技术有限责任公司 多网络分配向量操作

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105812295A (zh) * 2014-12-30 2016-07-27 中兴通讯股份有限公司 数据传输方法和站点
CN106603211A (zh) * 2015-10-20 2017-04-26 华为技术有限公司 传输数据的方法和装置
CN106879004A (zh) * 2015-12-11 2017-06-20 华为技术有限公司 空闲信道评估方法、节点、站点及接入点
US20170188368A1 (en) * 2015-12-23 2017-06-29 Laurent Cariou Spatial reuse for uplink multiuser transmissions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3654565A4 *

Also Published As

Publication number Publication date
CN109245851A (zh) 2019-01-18
US20210084686A1 (en) 2021-03-18
CN109245851B (zh) 2022-11-15
EP3654565A4 (en) 2021-03-24
US11304232B2 (en) 2022-04-12
US11997715B2 (en) 2024-05-28
US20220408485A1 (en) 2022-12-22
EP3654565A1 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
CN110832912B (zh) 与唤醒无线电设备相关联的闭环传输
US11997715B2 (en) Wireless frame transmission method and apparatus
US10924955B2 (en) Method for reporting channel information in wireless LAN system and device therefor
CN106717100B (zh) 探测和信道选择的方法和系统
EP3241391B1 (en) Method and station for digital communications with interference avoidance
US10448333B2 (en) Power saving mode operation method in wireless LAN system, and apparatus for same
EP2595439B1 (en) Method and device for regaining transmit opportunity control right in reverse grant
US20180213424A1 (en) Channel measurement method and sta
US12041652B2 (en) Channel access method and device, and storage medium
KR20170054536A (ko) 전력 제어를 위한 시스템 및 방법
JP2017509236A (ja) 無線lanにおけるフレームを送信する方法及び装置
CN106304357B (zh) 一种无线信号的传输方法及系统
EP3949650A1 (en) Cot sharing indicator for message 3 in random access procedure
WO2016206652A2 (zh) 一种无线信号的传输方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018832969

Country of ref document: EP

Effective date: 20200211