WO2019011021A1 - 用于屏蔽电磁波的生物电信号采集装置及生物电信号采集装置 - Google Patents

用于屏蔽电磁波的生物电信号采集装置及生物电信号采集装置 Download PDF

Info

Publication number
WO2019011021A1
WO2019011021A1 PCT/CN2018/082697 CN2018082697W WO2019011021A1 WO 2019011021 A1 WO2019011021 A1 WO 2019011021A1 CN 2018082697 W CN2018082697 W CN 2018082697W WO 2019011021 A1 WO2019011021 A1 WO 2019011021A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
shielding layer
bioelectrode
electrode
acquisition device
Prior art date
Application number
PCT/CN2018/082697
Other languages
English (en)
French (fr)
Inventor
陈晓苏
柳仁松
徐大智
Original Assignee
陈晓苏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈晓苏 filed Critical 陈晓苏
Publication of WO2019011021A1 publication Critical patent/WO2019011021A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0006ECG or EEG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/06Cables with twisted pairs or quads with means for reducing effects of electromagnetic or electrostatic disturbances, e.g. screens

Definitions

  • the present disclosure relates to the field of biosignal acquisition technology, and in particular to a bioelectric signal acquisition device and a bioelectric signal acquisition device for shielding electromagnetic waves.
  • Bioelectrodes can be used to sense various electrical signals present in the body, such as ECG signals and EEG signals. These body signals are very low in intensity and are susceptible to electrical interference from various sources.
  • the objects of the present disclosure include, for example, a bioelectric signal acquisition device for shielding electromagnetic waves, which is capable of shielding external electromagnetic waves from electromagnetic waves. .
  • Embodiments of the present disclosure provide a bioelectric signal acquisition apparatus for shielding electromagnetic waves, the apparatus comprising: a bioelectrode, a signal transmission line having a shielding structure;
  • one end of the signal transmission line is electrically connected to the bioelectrode, and the other end is electrically connected to the signal processing device;
  • the bioelectrode is configured to collect a biosignal
  • the signal transmission line is configured to transmit a biosignal and shield electromagnetic waves.
  • the signal transmission line includes a signal line and a first shielding layer; wherein one end of the signal line is electrically connected to the bioelectrode, and the other end of the signal line is electrically connected to the signal processing device;
  • the first shielding layer is wrapped around the periphery of the signal line.
  • the first shielding layer is made of a high magnetic permeability material, wherein the high magnetic permeability material is a material having a magnetic permeability ⁇ >100H/m for a 100 Hz electromagnetic wave.
  • the high magnetic permeability material is any one of iron, ferrite, silicon steel, nickel steel, and permalloy.
  • the first shielding layer is made of a superconducting material.
  • the signal transmission line includes a signal line, a first shielding layer, an insulating layer and a second shielding layer; wherein one end of the signal line is electrically connected to the bioelectrode, and the other end of the signal line is The signal processing device is electrically connected; wherein the first shielding layer is wrapped around a periphery of the signal line, the insulating layer is wrapped around a periphery of the first shielding layer, and the second shielding layer is wrapped around the insulation The periphery of the layer.
  • the first shielding layer is made of a high magnetic permeability material
  • the second shielding layer is made of a high conductivity material; wherein the high magnetic permeability material is a magnetic permeability to a 100 Hz electromagnetic wave.
  • a material of ⁇ >100H/m, the high conductivity material being a material having a resistance of ⁇ 0.0000001 ⁇ /m.
  • the first shielding layer is made of a high conductivity material
  • the second shielding layer is made of a high magnetic permeability material; wherein the high conductivity material is a material with a resistance of ⁇ 0.0000001 ⁇ /m.
  • the high magnetic permeability material is a material having a magnetic permeability ⁇ >100H/m for a 100 Hz electromagnetic wave.
  • the high magnetic permeability material is any one of iron, ferrite, silicon steel, nickel steel and permalloy; and the high conductivity material is any one of copper, silver and aluminum.
  • the number of the signal lines is multiple, and each of the signal lines is respectively connected to one bioelectrode, and the first shielding layer simultaneously wraps a plurality of the signal lines.
  • a portion of the periphery of the bioelectrode is wrapped with an electrode shielding layer configured to shield electromagnetic waves around the bioelectrode.
  • an outer surface of the electrode shielding layer is provided with an electrode insulating layer, and the electrode insulating layer covers a periphery of the electrode shielding layer.
  • Embodiments of the present disclosure also provide a bioelectric signal acquisition apparatus including a bioelectrode configured to acquire a biosignal and a signal transmission line configured to transmit the biosignal;
  • the signal transmission line has a shielding structure configured to shield electromagnetic waves, one end of the signal transmission line being electrically connected to the bioelectrode, and the other end of the signal transmission line being configured to be electrically connected to the signal processing device.
  • the signal transmission line includes a signal line and a first shielding layer, one end of the signal line is electrically connected to the bioelectrode, and the other end of the signal line is configured to be electrically connected to the signal processing device.
  • the first shielding layer is wrapped around the periphery of the signal line.
  • the signal transmission line further includes an insulating layer and a second shielding layer, the insulating layer is wrapped around a periphery of the first shielding layer, and the second shielding layer is wrapped around a periphery of the insulating layer.
  • the number of the signal lines is multiple, and each of the signal lines is respectively connected to one bioelectrode, and the first shielding layer simultaneously wraps a plurality of the signal lines.
  • a portion of the periphery of the bioelectrode is wrapped with an electrode shielding layer configured to shield electromagnetic waves around the bioelectrode.
  • an outer surface of the electrode shielding layer is provided with an electrode insulating layer, and the electrode insulating layer covers a periphery of the electrode shielding layer.
  • the present disclosure provides a bioelectric signal acquisition device configured to shield electromagnetic waves, which can shield external electromagnetic waves and protect the measured biological signals from electromagnetic waves.
  • FIG. 1 is a schematic structural diagram of a first bioelectric signal collecting apparatus according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a second bioelectric signal collecting apparatus according to an embodiment of the present disclosure.
  • Icons 1-bioelectrode; 2-signal transmission line; 21-signal line; 22-first shield layer; 23-insulation layer; 24--second shield layer.
  • connection may also be a detachable connection or an integral connection; it may be a mechanical connection or an electrical connection; it may be directly connected or indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • the device includes: a bioelectrode 1 and a signal transmission line 2 having a shielding structure; wherein one end of the signal transmission line 2 is The bioelectrode 1 is electrically connected, and the other end is electrically connected to the signal processing device; the bioelectrode 1 is configured to connect the living body to collect the biosignal, and the signal transmission line 2 is configured to transmit the bioelectrode 1 to the biosignal to the signal processing device, and pass through the shielding structure. Shield electromagnetic waves.
  • the shielding structure is the first shielding layer 22, and the signal transmission line 2 is a coaxial cable including the signal line 21 and the first shielding layer 22; wherein the signal line 21 is an electrical conductor covered with an insulating layer, and the signal line 21 One end is electrically connected to the bioelectrode 1, and the electrical connection manner includes, but is not limited to, a jack type connection, a clip type connection, a solder connection, and the like.
  • the other end of the signal line 21 is electrically connected to the signal processing device, configured to receive and transmit the medical electrode to collect an EEG signal, and transmit the signal to a corresponding signal processing device, such as an EEG device or an electrocardiogram device;
  • a shielding layer 22 is wrapped around the periphery of the signal line 21 and configured to shield external electromagnetic waves from interference with the biological signal.
  • the corresponding signal processing device can generally connect a plurality of signal transmission lines 2 at the same time, and each of the signal transmission lines 2 is connected with the bioelectrode 1 to simultaneously collect and transmit biological signals of multiple organisms or multiple organisms of the same organism. signal.
  • the processing may be performed by: the signal processing device simultaneously connecting the plurality of signal lines 21, and the first shielding layer 22 simultaneously wrapping the plurality of signals Line 21, which can achieve the shielding effect, can also reduce the materials used in the shielding layer and save costs.
  • the first shielding layer 22 is made of a high magnetic permeability material, and the high magnetic permeability material is preferably a material having a magnetic permeability ⁇ >100H/m for a 100 Hz electromagnetic wave, and particularly preferably iron, ferrite, Any of silicon steel, nickel steel and permalloy, but not limited to the above-listed materials, other ferromagnetic materials and soft magnetic materials.
  • the first shielding layer 22 is made of such a material, and can effectively shield the low-frequency electromagnetic waves around the signal transmission line 2.
  • the bioelectrode 1 is surrounded by an electrode shielding layer disposed outside the region directly or indirectly in contact with the living body, and the electrode shielding layer is configured to shield the collected electromagnetic wave pairs around the electrode. Interference with biological signals.
  • the exterior of the electrode shielding layer may also add an electrode insulating layer covering the periphery of the electrode shielding layer.
  • the electrode insulating layer may be selected from a thermoplastic material and configured to achieve insulation with other electrical hazards that may occur, the electrode shielding layer and The electrode insulating layer is not shown in detail in the drawings, but does not affect the understanding of the present solution by those skilled in the art.
  • the bioelectrode 1 may be an electroencephalic electrode or an electrocardiographic electrode configured to test an electroencephalogram signal or an electrocardiographic signal, or may be other types of bioelectrodes 1 configured to test other types of biosignals.
  • the type of the bioelectrode may be a clip-on electrode, a plate electrode, an adsorption electrode, a disk electrode, or the like which is used daily, and FIG. 1 is not used to limit its shape, size, and the like.
  • FIG. 1 also shows a schematic structural diagram of another bioelectric signal acquisition device provided by this embodiment.
  • the device includes: a bioelectrode 1 and a signal transmission line 2 having a shielding structure; wherein, the signal transmission line 2 One end is electrically connected to the bioelectrode 1 and the other end is electrically connected to the signal processing device; the bioelectrode 1 is configured to connect the living body to collect the biosignal, and the signal transmission line 2 is configured to transmit the bioelectrode 1 to the biosignal to the signal processing device.
  • the electromagnetic wave is shielded by the shielding structure.
  • the shielding structure is the first shielding layer 22, and the signal transmission line 2 is a coaxial cable including the signal line 21 and the first shielding layer 22; wherein the signal line 21 is an electrical conductor covered with an insulating layer, and the signal line 21 One end is electrically connected to the bioelectrode 1, and the electrical connection manner includes, but is not limited to, a jack type connection, a clip type connection, a solder connection, and the like.
  • the other end of the signal line 21 is electrically connected to the signal processing device, configured to receive and transmit the medical electrode to collect an EEG signal, and transmit the signal to a corresponding signal processing device, such as an EEG device or an electrocardiograph device;
  • the first shielding layer 22 is wrapped around the periphery of the signal line 21 and is configured to shield external electromagnetic waves from interference with the biological signal.
  • the corresponding signal processing device can generally connect a plurality of signal transmission lines 2 at the same time, and each of the signal transmission lines 2 is connected with the bioelectrode 1 to simultaneously collect and transmit biological signals of multiple organisms or multiple organisms of the same organism. signal.
  • the processing may be performed by: the signal processing device simultaneously connecting the plurality of signal lines 21, and the first shielding layer 22 simultaneously wrapping the plurality of signals Line 21, which can achieve the shielding effect, can also reduce the materials used in the shielding layer and save costs.
  • the first shielding layer 22 is made of a superconducting material. Due to the existence of the Meissner effect, the superconducting material has good diamagnetic resistance, and can shield electromagnetic waves in all frequency bands to achieve full-scale shielding.
  • the bioelectrode 1 is surrounded by an electrode shielding layer disposed outside the region directly or indirectly in contact with the living body, and the electrode shielding layer is configured to shield the collected electromagnetic wave pairs around the electrode. Interference with biological signals.
  • the exterior of the electrode shielding layer may also add an electrode insulating layer covering the periphery of the electrode shielding layer.
  • the electrode insulating layer may be selected from a thermoplastic material and configured to achieve insulation with other electrical hazards that may occur, the electrode shielding layer and The electrode insulating layer is not shown in detail in the drawings, but does not affect the understanding of the present solution by those skilled in the art.
  • the bioelectrode 1 may be an electroencephalic electrode or an electrocardiographic electrode configured to test an electroencephalogram signal or an electrocardiographic signal, or may be other types of bioelectrodes 1 configured to test other types of biosignals.
  • the type of the bioelectrode may be a clip-on electrode, a plate electrode, an adsorption electrode, a disk electrode, or the like which is used daily, and FIG. 1 is not used to limit its shape, size, and the like.
  • the device includes: a bioelectrode 1 and a signal transmission line 2 having a shielding structure; wherein one end of the signal transmission line 2 is The bioelectrode 1 is electrically connected, and the other end is electrically connected to the signal processing device; the bioelectrode 1 is configured to connect the living body to collect the biosignal, and the signal transmission line 2 is configured to transmit the bioelectrode 1 to the biosignal transmission to the signal processing device, and through the shielding
  • the structure shields electromagnetic waves.
  • the shielding structure includes a first shielding layer 22 and a second shielding layer 24, and the signal transmission line 22 is a coaxial cable including a signal line 21, a first shielding layer 22, an insulating layer 23, and a second shielding layer 24;
  • the signal line 21 is an electric conductor covered with an insulating layer, and one end of the signal line 21 is electrically connected to the bioelectrode 1, and the electrical connection manner includes, but is not limited to, a jack type connection, a clip type connection, a solder connection, and the like.
  • the other end of the signal line 21 is electrically connected to the signal processing device, configured to receive and transmit the medical electrode to collect an EEG signal, and transmit the signal to a corresponding signal processing device, such as an EEG device or an electrocardiograph device;
  • the first shielding layer 22 is wrapped around the periphery of the signal line 21, the insulating layer 23 is wrapped around the periphery of the first shielding layer 22, and the second shielding layer 24 is wrapped around the periphery of the insulating layer 23.
  • the two shielding layers collectively shield the external electromagnetic wave from the biological signal. Interference.
  • the corresponding signal processing device can generally connect a plurality of signal transmission lines 2 at the same time, and each of the signal transmission lines 2 is connected with the bioelectrode 1 to simultaneously collect and transmit biological signals of multiple organisms or multiple organisms of the same organism. signal.
  • the processing may be performed by: the signal processing device simultaneously connecting the plurality of signal lines 21, and the first shielding layer 22 simultaneously wrapping the plurality of signals Line 21, which can achieve the shielding effect, can also reduce the materials used in the shielding layer and save costs.
  • the first shielding layer 22 is made of a high magnetic permeability material, and the high magnetic permeability material is preferably a material having a magnetic permeability ⁇ >100H/m for a 100 Hz electromagnetic wave, and particularly preferably iron, ferrite, Any one of silicon steel, nickel steel and permalloy, but not limited to several materials listed above, may also be other ferromagnetic materials and soft magnetic materials, and the first shielding layer 22 can be effectively shielded by using the material.
  • the high magnetic permeability material is preferably a material having a magnetic permeability ⁇ >100H/m for a 100 Hz electromagnetic wave, and particularly preferably iron, ferrite, Any one of silicon steel, nickel steel and permalloy, but not limited to several materials listed above, may also be other ferromagnetic materials and soft magnetic materials, and the first shielding layer 22 can be effectively shielded by using the material.
  • the second shield layer 24 is made of a high-conductivity material, that is, a low-resistance material, preferably a material having a resistance of ⁇ 0.0000001 ⁇ /m, and particularly preferably copper, silver, and Any of the aluminum, but not limited to copper, silver, aluminum, or other electrically conductive material capable of achieving the same function, the second shielding layer 24 is used to effectively shield external high-frequency electromagnetic waves and static electricity.
  • a double-layer shielding structure is adopted, which can strengthen the shielding function, and simultaneously shield electromagnetic waves of multiple frequency bands, not only shielding low-frequency electromagnetic waves, but also shielding frequency-modulated electromagnetic waves and static electricity.
  • the bioelectrode 1 is surrounded by an electrode shielding layer disposed outside the region directly or indirectly in contact with the living body, and the electrode shielding layer is configured to shield the collected electromagnetic wave pairs around the electrode. Interference with biological signals.
  • the exterior of the electrode shielding layer may also add an electrode insulating layer covering the periphery of the electrode shielding layer.
  • the electrode insulating layer may be selected from a thermoplastic material and configured to achieve insulation with other electrical hazards that may occur, the electrode shielding layer and The electrode insulating layer is not shown in detail in the drawings, but does not affect the understanding of the present solution by those skilled in the art.
  • the bioelectrode 1 may be an electroencephalic electrode or an electrocardiographic electrode configured to test an electroencephalogram signal or an electrocardiographic signal, or may be other types of bioelectrodes 1 configured to test other types of biosignals.
  • the type of the bioelectrode may be a clip-on electrode, a plate electrode, an adsorption electrode, a disk electrode, or the like which is used daily, and FIG. 2 is not used to limit its shape, size, and the like.
  • FIG. 2 also shows a schematic structural diagram of another bioelectric signal acquisition device provided by this embodiment.
  • the device includes: a bioelectrode 1 and a signal transmission line 2 having a shielding structure; wherein, the signal transmission line 2 One end is electrically connected to the bioelectrode 1 and the other end is electrically connected to the signal processing device; the bioelectrode 1 is configured to connect the living body to collect the biosignal, and the signal transmission line 2 is configured to transmit the bioelectrode 1 to the biosignal to the signal processing device.
  • the electromagnetic wave is shielded by the shielding structure.
  • the shielding structure includes a first shielding layer 22 and a second shielding layer 24, and the signal transmission line 22 is a coaxial cable including a signal line 21, a first shielding layer 22, an insulating layer 23, and a second shielding layer 24;
  • the signal line 21 is an electric conductor covered with an insulating layer, and one end of the signal line 21 is electrically connected to the bioelectrode 1, and the electrical connection manner includes, but is not limited to, a jack type connection, a clip type connection, a solder connection, and the like.
  • the other end of the signal line 21 is electrically connected to the signal processing device, configured to receive and transmit the medical electrode to collect an EEG signal, and transmit the signal to a corresponding signal processing device, such as an EEG device or an electrocardiograph device;
  • the first shielding layer 22 is wrapped around the periphery of the signal line 21, the insulating layer 23 is wrapped around the periphery of the first shielding layer 22, and the second shielding layer 24 is wrapped around the periphery of the insulating layer 23.
  • the two shielding layers collectively shield the external electromagnetic wave from the biological signal. Interference.
  • the corresponding signal processing device can generally connect a plurality of signal transmission lines 2 at the same time, and each of the signal transmission lines 2 is connected with the bioelectrode 1 to simultaneously collect and transmit biological signals of multiple organisms or multiple organisms of the same organism. signal.
  • the processing may be performed by: the signal processing device simultaneously connecting the plurality of signal lines 21, and the first shielding layer 22 simultaneously wrapping the plurality of signals Line 21, which can achieve the shielding effect, can also reduce the materials used in the shielding layer and save costs.
  • the first shielding layer 22 is made of a high-conductivity material, that is, a low-resistance material, preferably a material having a resistance of ⁇ 0.0000001 ⁇ /m, and particularly preferably any of copper, silver, and aluminum.
  • a high-conductivity material that is, a low-resistance material, preferably a material having a resistance of ⁇ 0.0000001 ⁇ /m, and particularly preferably any of copper, silver, and aluminum.
  • the first shielding layer 22 is used to effectively shield external high-frequency electromagnetic waves and static electricity interference.
  • the second shielding layer 24 is made of a high magnetic permeability material including all materials having a magnetic permeability ⁇ >100H/m for 100 Hz electromagnetic waves, and is preferably iron, ferrite, silicon steel, nickel steel, and Any of the permalloys, but not limited to the above-listed materials, may also be other ferromagnetic materials and soft magnetic materials.
  • the second shielding layer 24 is selected from the material to effectively shield the low frequency electromagnetic waves around the signal line 21.
  • a double-layer shielding structure is adopted, which can strengthen the shielding function, and simultaneously shield electromagnetic waves of multiple frequency bands, not only shielding low-frequency electromagnetic waves, but also shielding frequency-modulated electromagnetic waves and static electricity.
  • the bioelectrode 1 is surrounded by an electrode shielding layer disposed outside the region directly or indirectly in contact with the living body, and the electrode shielding layer is configured to shield the collected electromagnetic wave pairs around the electrode. Interference with biological signals.
  • the exterior of the electrode shielding layer may also add an electrode insulating layer covering the periphery of the electrode shielding layer.
  • the electrode insulating layer may be selected from a thermoplastic material and configured to achieve insulation with other electrical hazards that may occur, the electrode shielding layer and The electrode insulating layer is not shown in detail in the drawings, but does not affect the understanding of the present solution by those skilled in the art.
  • the bioelectrode 1 may be an electroencephalic electrode or an electrocardiographic electrode configured to test an electroencephalogram signal or an electrocardiographic signal, or may be other types of bioelectrodes 1 configured to test other types of biosignals.
  • the type of the bioelectrode may be a clip-on electrode, a plate electrode, an adsorption electrode, a disk electrode, or the like which is used daily, and FIG. 2 is not used to limit its shape, size, and the like.
  • the embodiment further provides a bioelectric signal acquisition device, comprising a bioelectrode 1 configured to collect a biosignal and a signal transmission line 2 configured to transmit a biosignal;
  • the signal transmission line 2 has a shield structure configured to shield electromagnetic waves, one end of the signal transmission line 2 is electrically connected to the bioelectrode 1, and the other end of the signal transmission line 2 is configured to be electrically connected to the signal processing device.
  • the signal transmission line 2 includes a signal line 21 and a first shielding layer 22, one end of the signal line 21 is electrically connected to the bioelectrode 1, and the other end of the signal line 21 is configured to be electrically connected to the signal processing device, the first shielding layer 22 Wrapped around the periphery of the signal line 21.
  • the signal transmission line 2 further includes an insulating layer 23 and a second shielding layer 24, the insulating layer 23 is wrapped around the periphery of the first shielding layer 22, and the second shielding layer 22 is wrapped around the periphery of the insulating layer 23.
  • the number of the signal lines 21 is multiple, and each of the signal lines 21 is respectively connected to one bioelectrode 1, and the first shielding layer 22 simultaneously wraps the plurality of signal lines 21.
  • a part of the periphery of the bio-electrode 1 is wrapped with an electrode shielding layer, and the electrode shielding layer is configured to shield electromagnetic waves around the bio-electrode 1 .
  • an electrode insulating layer is disposed on an outer portion of the electrode shielding layer, and an electrode insulating layer covers the periphery of the electrode shielding layer.
  • the specific structure of the bioelectric signal acquisition device can adopt the specific structures of the first and second bioelectric signal acquisition devices described above.
  • the bioelectric signal acquisition device includes a bioelectrode 1 and a signal transmission line 2
  • the signal transmission line 2 includes a signal line 21 and a first shielding layer 22.
  • One end of the signal line 21 is electrically connected to the bioelectrode 1
  • the other of the signal line 21 One end is configured to be electrically connected to the signal processing device, and the first shield layer 22 is wrapped around the periphery of the signal line 21.
  • the bioelectric signal acquisition device includes a bioelectrode 1 and a signal transmission line 2
  • the signal transmission line includes a signal line 21, a first shielding layer 22, an insulating layer 23, and a second shielding layer 24, one end of the signal line 21 and the bioelectrode 1 is electrically connected, the other end of the signal line 21 is configured to be electrically connected to the signal processing device
  • the first shielding layer 22 is wrapped around the periphery of the signal line 21
  • the insulating layer 23 is wrapped around the periphery of the first shielding layer 22
  • the second shielding layer 24 is Wrapped around the periphery of the insulating layer 23.
  • the present disclosure provides a bioelectric signal acquisition device that is simple in structure, compact, and low in cost, and is capable of shielding electromagnetic waves from electromagnetic waves.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Psychology (AREA)
  • Electromagnetism (AREA)
  • Psychiatry (AREA)
  • Physiology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Cardiology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种用于屏蔽电磁波的生物电信号采集装置及生物电信号采集装置,包括:生物电极(1),具有屏蔽结构的信号传输线(2);其中,信号传输线(2)的一端与生物电极(1)电连接,另一端与信号处理装置电连接;生物电极(1)配置成采集生物信号;信号传输线(2)配置成传输生物信号以及屏蔽电磁波。用于屏蔽电磁波的生物电信号采集装置及生物电信号采集装置能够对电磁波进行屏蔽,使所测得的生物信号免受电磁波的干扰。

Description

用于屏蔽电磁波的生物电信号采集装置及生物电信号采集装置
相关申请的交叉引用
本公开要求于2017年07月14日提交中国专利局的申请号为2017105734005、名称为“用于屏蔽电磁波的生物电信号采集装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及生物信号采集技术领域,尤其涉及用于屏蔽电磁波的生物电信号采集装置及生物电信号采集装置。
背景技术
生物电极可以用于感测存在于身体内的各种电信号,诸如心电信号和脑电信号。这些身体信号在强度上非常低,并且容易受到来自各个源的电干扰。
尤其是脑电信号,极易被干扰。因此急需要一种装置,在实现采集的过程中,保护身体信号尤其是脑电信号免其干扰。
发明内容
针对现有技术中的缺陷,本公开的目的包括,例如,提供了一种用于屏蔽电磁波的生物电信号采集装置,能够对外部电磁波进行屏蔽,使所测得的生物信号免受电磁波的干扰。
本公开的目的还包括,提供了一种生物电信号采集装置,其能够对外部电磁波进行屏蔽,使所测得的生物信号免受电磁波的干扰。
本公开的实施例是这样实现的:
本公开的实施例提供了一种用于屏蔽电磁波的生物电信号采集装置,所述装置包括:生物电极,具有屏蔽结构的信号传输线;
其中,所述信号传输线的一端与所述生物电极电连接,另一端与信号处理装置电连接;
所述生物电极配置成采集生物信号;
所述信号传输线配置成传输生物信号以及屏蔽电磁波。
可选的,所述信号传输线包括信号线和第一屏蔽层;其中,所述信号线的一端与所述生物电极电连接,所述信号线的另一端与所述信号处理装置电连接;所述第一屏蔽层包裹在所述信号线的外围。
可选的,所述第一屏蔽层由高磁导率材料制成,其中,所述高磁导率材料为对100Hz电磁波的磁导率μ>100H/m的材料。
可选的,所述高磁导率材料为铁、铁氧体、硅钢、镍钢和坡莫合金中的任意一种。
可选的,所述第一屏蔽层由超导材料制成。
可选的,所述信号传输线包括信号线、第一屏蔽层、绝缘层和第二屏蔽层;其中,所述信号线的一端与所述生物电极电连接,所述信号线的另一端与所述信号处理装置电连接;其中,所述第一屏蔽层包裹在所述信号线的外围,所述 绝缘层包裹在所述第一屏蔽层的外围,所述第二屏蔽层包裹在所述绝缘层的外围。
可选的,所述第一屏蔽层由高磁导率材料制成,所述第二屏蔽层由高电导率材料制成;其中,所述高磁导率材料为对100Hz电磁波的磁导率μ>100H/m的材料,所述高电导率材料为电阻<0.0000001Ω/m的材料。
可选的,所述第一屏蔽层由高电导率材料制成,所述第二屏蔽层由高磁导率材料制成;其中,所述高电导率材料为电阻<0.0000001Ω/m的材料,所述高磁导率材料为对100Hz电磁波的磁导率μ>100H/m的材料。
可选的,所述高磁导率材料为铁、铁氧体、硅钢、镍钢和坡莫合金中的任意一种;所述高电导率材料为铜、银和铝中的任意一种。
可选的,所述信号线的数量为多条,每条所述信号线分别连接一个生物电极,所述第一屏蔽层同时包裹多条所述信号线。
可选的,所述生物电极的部分外围包裹有电极屏蔽层,所述电极屏蔽层配置成屏蔽所述生物电极周围的电磁波。
可选的,所述电极屏蔽层的外部设置有电极绝缘层,所述电极绝缘层覆盖在所述电极屏蔽层的外围。
本公开的实施例还提供了一种生物电信号采集装置,其包括配置成采集生物信号的生物电极和配置成传输所述生物信号的信号传输线;
所述信号传输线具有配置成屏蔽电磁波的屏蔽结构,所述信号传输线的一端与所述生物电极电连接,所述信号传输线的另一端配置成与信号处理装置电连接。
可选的,所述信号传输线包括信号线和第一屏蔽层,所述信号线的一端与所述生物电极电连接,所述信号线的另一端配置成与所述信号处理装置电连接,所述第一屏蔽层包裹在所述信号线的外围。
可选的,所述信号传输线还包括绝缘层和第二屏蔽层,所述绝缘层包裹在所述第一屏蔽层的外围,所述第二屏蔽层包裹在所述绝缘层的外围。
可选的,所述信号线的数量为多条,每条所述信号线分别连接一个生物电极,所述第一屏蔽层同时包裹多条所述信号线。
可选的,所述生物电极的部分外围包裹有电极屏蔽层,所述电极屏蔽层配置成屏蔽所述生物电极周围的电磁波。
可选的,所述电极屏蔽层的外部设置有电极绝缘层,所述电极绝缘层覆盖在所述电极屏蔽层的外围。
与现有的技术相比,本公开实施例的有益效果包括,例如:
综上所述,本公开提供一种配置成屏蔽电磁波的生物电信号采集装置,能够对外部电磁波进行屏蔽,使所测得的生物信号免受电磁波的干扰。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开实施例提供的第一种生物电信号采集装置的结构示意图;
图2为本公开实施例提供的第二种生物电信号采集装置的结构示意图。
图标:1-生物电极;2-信号传输线;21-信号线;22-第一屏蔽层;23-绝缘层;24-第二屏蔽层。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本公开的描述中,需要说明的是,若出现术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公 开的限制。
此外,若出现术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
此外,若出现术语“水平”、“竖直”、“悬垂”等术语并不表示要求部件绝对水平或悬垂,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
在本公开的描述中,还需要说明的是,除非另有明确的规定和限定,若出现术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
发明人在研究中发现,在用生物电极感测身体内的各种电信号时,往往容易受到来自手机、电脑、工业交流电以及其他电器产生的电磁波的干扰,以及患者衣物所产生的静电的干扰,因此需要设计一款能够屏蔽此类电磁波的装置。
图1示出了本实施例提供的第一种生物电信号采集装置的结构示意图,如图所示,装置包括:生物电极1,具有屏蔽结构的信号传输线2;其中,信号传输线2的一端与生物电极1电连接,另一端与信号处理装置电连接;生物电极1配置成连接生物体采集生物信号,信号传输线2配置成将生物电极1采集到生物信号传输至信号处理装置,并通过屏蔽结构屏蔽电磁波。
可选的,屏蔽结构为第一屏蔽层22,信号传输线2为包括信号线21、第一屏蔽层22的同轴电缆;其中,信号线21为包有绝缘层的导电体,信号线21的一端与生物电极1电连接,电连接方式包括但不限于插孔式连接、夹式连接、焊接连接等多种方式。信号线21的另一端与信号处理装置电连接,配置成接收和传输医用电极采集到脑电信号,并将该信号传输至对应的信号处理装置,如脑电图设备或心电图设备;其中,第一屏蔽层22包裹在信号线21的外围,配置成屏蔽外部电磁波对该生物信号的干扰。
其中,对应的信号处理装置上通常可同时连接多条信号传输线2,每条信号传输线2均连接有生物电极1,可同时采集和传输多个生物体的生物信号或同一生物体的多项生物信号。对于采集多个生物体的生物信号或同一生物体的多项生物一项,也可以通过以下方式进行处理:信号处理装置同时连接多条信号线21,且第一屏蔽层22同时包裹多条信号线21,即能达到屏蔽效果,同时也能减少屏蔽层的用料,节省成本。
可选的,第一屏蔽层22由高磁导率材料制成,高磁导率材料优选为对100Hz电磁波的磁导率μ>100H/m的材料,并具体优选为铁、铁氧体、硅钢、镍钢和坡莫合金中的任意一种,但并不限于以上列举的几种材料,还可以其他的铁磁材料和软磁材料。第一屏蔽层22采用该种材料,可有效屏蔽信号传输线2周围的低频电磁波。
可选的,生物电极1除与生物体直接或间接接触的区域之外,该生物电极1的其它部分外围均包裹有电极屏蔽层,该电极屏蔽层配置成屏蔽电极周围的电磁波对所采集的生物信号的干扰。
可选的,电极屏蔽层的外部也可增加电极绝缘层,覆盖在电极屏蔽层的外围,该电极绝缘层可选择热塑性材料,配置成实现与其他可能出现的电危害的绝缘,电极屏蔽层和电极绝缘层并未在附图中详细示出,但不影响本领域技术 人员对本方案的理解。
可选的,生物电极1可以是脑电电极或心电电极,配置成测试脑电信号或心电信号,也可以是其它类型的生物电极1,配置成测试其它类型的生物信号。同时,生物电极的类型可以是日常使用的夹式电极、平板电极、吸附电极、圆盘电极等,图1不用于限制其形状、尺寸等。
同时,图1还示出了本实施例提供的另一种生物电信号采集装置的结构示意图,如图所示,装置包括:生物电极1,具有屏蔽结构的信号传输线2;其中,信号传输线2的一端与生物电极1电连接,另一端与信号处理装置电连接;生物电极1配置成连接生物体以采集生物信号,信号传输线2配置成将生物电极1采集到生物信号传输至信号处理装置,并通过屏蔽结构屏蔽电磁波。
可选的,屏蔽结构为第一屏蔽层22,信号传输线2为包括信号线21、第一屏蔽层22的同轴电缆;其中,信号线21为包有绝缘层的导电体,信号线21的一端与生物电极1电连接,电连接方式包括但不限于插孔式连接、夹式连接、焊接连接等多种方式。信号线21的另一端与与信号处理装置电连接,配置成接收和传输医用电极采集到脑电信号,并将该信号传输至对应的信号处理装置,如脑电图设备或心电图设备;其中,第一屏蔽层22包裹在信号线21的外围,配置成屏蔽外部电磁波对该生物信号的干扰。
其中,对应的信号处理装置上通常可同时连接多条信号传输线2,每条信号传输线2均连接有生物电极1,可同时采集和传输多个生物体的生物信号或同一生物体的多项生物信号。对于采集多个生物体的生物信号或同一生物体的多项生物一项,也可以通过以下方式进行处理:信号处理装置同时连接多条信号线21,且第一屏蔽层22同时包裹多条信号线21,即能达到屏蔽效果,同时 也能减少屏蔽层的用料,节省成本。
可选的,第一屏蔽层22由超导材料制成,由于迈斯纳效应的存在,超导材料具有良好的抗磁性,几乎可以屏蔽所有频段的电磁波,实现全方位的屏蔽。
可选的,生物电极1除与生物体直接或间接接触的区域之外,该生物电极1的其它部分外围均包裹有电极屏蔽层,该电极屏蔽层配置成屏蔽电极周围的电磁波对所采集的生物信号的干扰。
可选的,电极屏蔽层的外部也可增加电极绝缘层,覆盖在电极屏蔽层的外围,该电极绝缘层可选择热塑性材料,配置成实现与其他可能出现的电危害的绝缘,电极屏蔽层和电极绝缘层并未在附图中详细示出,但不影响本领域技术人员对本方案的理解。
可选的,生物电极1可以是脑电电极或心电电极,配置成测试脑电信号或心电信号,也可以是其它类型的生物电极1,配置成测试其它类型的生物信号。同时,生物电极的类型可以是日常使用的夹式电极、平板电极、吸附电极、圆盘电极等,图1不用于限制其形状、尺寸等。
图2示出了本实施例提供的第二种生物电信号采集装置的结构示意图,如图所示,装置包括:生物电极1,具有屏蔽结构的信号传输线2;其中,信号传输线2的一端与生物电极1电连接,另一端与信号处理装置电连接;生物电极1配置成连接生物体以采集生物信号,信号传输线2配置成将生物电极1采集到生物信号传输至信号处理装置,并通过屏蔽结构屏蔽电磁波。
可选的,屏蔽结构包括第一屏蔽层22和第二屏蔽层24,信号传输线22为包括信号线21、第一屏蔽层22、绝缘层23和第二屏蔽层24的同轴电缆; 其中,信号线21为包有绝缘层的导电体,信号线21的一端与生物电极1电连接,电连接方式包括但不限于插孔式连接、夹式连接、焊接连接等多种方式。信号线21的另一端与与信号处理装置电连接,配置成接收和传输医用电极采集到脑电信号,并将该信号传输至对应的信号处理装置,如脑电图设备或心电图设备;其中,第一屏蔽层22包裹在信号线21的外围,绝缘层23包裹在第一屏蔽层22的外围,第二屏蔽层24包裹在绝缘层23的外围,两个屏蔽层共同屏蔽外部电磁波对生物信号的干扰。
其中,对应的信号处理装置上通常可同时连接多条信号传输线2,每条信号传输线2均连接有生物电极1,可同时采集和传输多个生物体的生物信号或同一生物体的多项生物信号。对于采集多个生物体的生物信号或同一生物体的多项生物一项,也可以通过以下方式进行处理:信号处理装置同时连接多条信号线21,且第一屏蔽层22同时包裹多条信号线21,即能达到屏蔽效果,同时也能减少屏蔽层的用料,节省成本。
可选的,第一屏蔽层22由高磁导率材料制成,高磁导率材料优选为对100Hz电磁波的磁导率μ>100H/m的材料,并具体优选为铁、铁氧体、硅钢、镍钢和坡莫合金中的任意一种,但并不限于以上列举的几种材料,还可以是其他的铁磁材料和软磁材料,第一屏蔽层22选用该种材料可有效屏蔽信号线21周围的低频电磁波;第二屏蔽层24由高电导率材料制成,高电导率材料也即低电阻材料,优选为电阻<0.0000001Ω/m的材料,并具体优选为铜、银和铝中的任意一种,但不仅限于铜、银、铝,也可以是其它能够实现同样功能的电导材料,第二屏蔽层24采用该种材料,可有效屏蔽外部高频电磁波以及静电的干扰。本实施例采用双层屏蔽结构,能够加强屏蔽功能,同时屏蔽多个频段的电磁波,不仅可以屏蔽低频电磁波,还可以屏蔽调频电磁波和静电。
可选的,生物电极1除与生物体直接或间接接触的区域之外,该生物电极1的其它部分外围均包裹有电极屏蔽层,该电极屏蔽层配置成屏蔽电极周围的 电磁波对所采集的生物信号的干扰。
可选的,电极屏蔽层的外部也可增加电极绝缘层,覆盖在电极屏蔽层的外围,该电极绝缘层可选择热塑性材料,配置成实现与其他可能出现的电危害的绝缘,电极屏蔽层和电极绝缘层并未在附图中详细示出,但不影响本领域技术人员对本方案的理解。
可选的,生物电极1可以是脑电电极或心电电极,配置成测试脑电信号或心电信号,也可以是其它类型的生物电极1,配置成测试其它类型的生物信号。同时,生物电极的类型可以是日常使用的夹式电极、平板电极、吸附电极、圆盘电极等,图2不用于限制其形状、尺寸等。
同时,图2还示出了本实施例提供的另一种生物电信号采集装置的结构示意图,如图所示,装置包括:生物电极1,具有屏蔽结构的信号传输线2;其中,信号传输线2的一端与生物电极1电连接,另一端与信号处理装置电连接;生物电极1配置成连接生物体以采集生物信号,信号传输线2配置成将生物电极1采集到生物信号传输至信号处理装置,并通过屏蔽结构屏蔽电磁波。
可选的,屏蔽结构包括第一屏蔽层22和第二屏蔽层24,信号传输线22为包括信号线21、第一屏蔽层22、绝缘层23和第二屏蔽层24的同轴电缆;其中,信号线21为包有绝缘层的导电体,信号线21的一端与生物电极1电连接,电连接方式包括但不限于插孔式连接、夹式连接、焊接连接等多种方式。信号线21的另一端与与信号处理装置电连接,配置成接收和传输医用电极采集到脑电信号,并将该信号传输至对应的信号处理装置,如脑电图设备或心电图设备;其中,第一屏蔽层22包裹在信号线21的外围,绝缘层23包裹在第一屏蔽层22的外围,第二屏蔽层24包裹在绝缘层23的外围,两个屏蔽层共 同屏蔽外部电磁波对生物信号的干扰。
其中,对应的信号处理装置上通常可同时连接多条信号传输线2,每条信号传输线2均连接有生物电极1,可同时采集和传输多个生物体的生物信号或同一生物体的多项生物信号。对于采集多个生物体的生物信号或同一生物体的多项生物一项,也可以通过以下方式进行处理:信号处理装置同时连接多条信号线21,且第一屏蔽层22同时包裹多条信号线21,即能达到屏蔽效果,同时也能减少屏蔽层的用料,节省成本。
可选的,第一屏蔽层22由高电导率材料制成,高电导率材料也即低电阻材料,优选为电阻<0.0000001Ω/m的材料,并具体优选为铜、银和铝中的任意一种,但不仅限于铜、银、铝,也可以是其它能够实现同样功能的电导材料,第一屏蔽层22采用该种材料,可有效屏蔽外部高频电磁波以及静电的干扰。第二屏蔽层24由高磁导率材料制成,高磁导率材料包括所有对100Hz电磁波的磁导率μ>100H/m的材料,并优选为铁、铁氧体、硅钢、镍钢和坡莫合金中的任意一种,但并不限于以上列举的几种材料,还可以其他的铁磁材料和软磁材料。,第二屏蔽层24选用该种材料可有效屏蔽信号线21周围的低频电磁波。本实施例采用双层屏蔽结构,能够加强屏蔽功能,同时屏蔽多个频段的电磁波,不仅可以屏蔽低频电磁波,还可以屏蔽调频电磁波和静电。
可选的,生物电极1除与生物体直接或间接接触的区域之外,该生物电极1的其它部分外围均包裹有电极屏蔽层,该电极屏蔽层配置成屏蔽电极周围的电磁波对所采集的生物信号的干扰。
可选的,电极屏蔽层的外部也可增加电极绝缘层,覆盖在电极屏蔽层的外围,该电极绝缘层可选择热塑性材料,配置成实现与其他可能出现的电危害的绝缘,电极屏蔽层和电极绝缘层并未在附图中详细示出,但不影响本领域技术人员对本方案的理解。
可选的,生物电极1可以是脑电电极或心电电极,配置成测试脑电信号或心电信号,也可以是其它类型的生物电极1,配置成测试其它类型的生物信号。同时,生物电极的类型可以是日常使用的夹式电极、平板电极、吸附电极、圆盘电极等,图2不用于限制其形状、尺寸等。
本实施例还提供了一种生物电信号采集装置,其包括配置成采集生物信号的生物电极1和配置成传输生物信号的信号传输线2;
信号传输线2具有配置成屏蔽电磁波的屏蔽结构,信号传输线2的一端与生物电极1电连接,信号传输线2的另一端配置成与信号处理装置电连接。
可选的,信号传输线2包括信号线21和第一屏蔽层22,信号线21的一端与生物电极1电连接,信号线21的另一端配置成与信号处理装置电连接,第一屏蔽层22包裹在信号线21的外围。
可选的,信号传输线2还包括绝缘层23和第二屏蔽层24,绝缘层23包裹在第一屏蔽层22的外围,第二屏蔽层22包裹在绝缘层23的外围。
可选的,信号线21的数量为多条,每条信号线21分别连接一个生物电极1,第一屏蔽层22同时包裹多条信号线21。
可选的,生物电极1的部分外围包裹有电极屏蔽层,电极屏蔽层配置成屏蔽生物电极1周围的电磁波。
可选的,电极屏蔽层的外部设置有电极绝缘层,电极绝缘层覆盖在电极屏蔽层的外围。
该生物电信号采集装置的具体结构可以采用上述的第一种和第二种生物 电信号采集装置的具体结构。
附图实施例:
结合图1,该生物电信号采集装置包括生物电极1和信号传输线2,信号传输线2包括信号线21和第一屏蔽层22,信号线21的一端与生物电极1电连接,信号线21的另一端配置成与信号处理装置电连接,第一屏蔽层22包裹在信号线21的外围。
结合图2,该生物电信号采集装置包括生物电极1和信号传输线2,信号传输线包括信号线21、第一屏蔽层22、绝缘层23和第二屏蔽层24,信号线21的一端与生物电极1电连接,信号线21的另一端配置成与信号处理装置电连接,第一屏蔽层22包裹在信号线21的外围,绝缘层23包裹在第一屏蔽层22的外围,第二屏蔽层24包裹在绝缘层23的外围。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,附图仅作为示意图进行辅助说明,而非对其结构、形状、尺寸等进行限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围,其均应涵盖在本公开的权利要求和说明书的范围当中。
工业实用性:
综上所述,本公开提供了一种生物电信号采集装置,其结构简单、紧凑,造价低,能够对电磁波进行屏蔽,使所测得的生物信号免受电磁波的干扰

Claims (18)

  1. 一种用于屏蔽电磁波的生物电信号采集装置,其特征在于,所述装置包括:生物电极,具有屏蔽结构的信号传输线;其中,所述信号传输线的一端与所述生物电极电连接,另一端与信号处理装置电连接;所述生物电极配置成采集生物信号;所述信号传输线配置成传输生物信号以及屏蔽电磁波。
  2. 根据权利要求1所述的生物电信号采集装置,其特征在于,所述信号传输线包括信号线和第一屏蔽层;其中,所述信号线的一端与所述生物电极电连接,所述信号线的另一端与所述信号处理装置电连接;所述第一屏蔽层包裹在所述信号线的外围。
  3. 根据权利要求2所述的生物电信号采集装置,其特征在于,所述第一屏蔽层由高磁导率材料制成,其中,所述高磁导率材料为对100Hz电磁波的磁导率μ>100H/m的材料。
  4. 根据权利要求3所述的生物电信号采集装置,其特征在于,所述高磁导率材料为铁、铁氧体、硅钢、镍钢和坡莫合金中的任意一种。
  5. 根据权利要求2所述的生物电信号采集装置,其特征在于,所述第一屏蔽层由超导材料制成。
  6. 根据权利要求1所述的生物电信号采集装置,其特征在于,所述信号传输线包括信号线、第一屏蔽层、绝缘层和第二屏蔽层;其中,所述信号线的一端与所述生物电极电连接,所述信号线的另一端与所述信号处理装置电连接;其中,所述第一屏蔽层包裹在所述信号线的外围,所述绝缘层包裹在所述第一屏蔽层的外围,所述第二屏蔽层包裹在所述绝缘层的外围。
  7. 根据权利要求6所述的生物电信号采集装置,其特征在于,所述第一屏 蔽层由高磁导率材料制成,所述第二屏蔽层由高电导率材料制成;其中,所述高磁导率材料为对100Hz电磁波的磁导率μ>100H/m的材料,所述高电导率材料为电阻<0.0000001Ω/m的材料。
  8. 根据权利要求6所述的生物电信号采集装置,其特征在于,所述第一屏蔽层由高电导率材料制成,所述第二屏蔽层由高磁导率材料制成;其中,所述高电导率材料为电阻<0.0000001Ω/m的材料,所述高磁导率材料为对100Hz电磁波的磁导率μ>100H/m的材料。
  9. 根据权利要求7或8所述的生物电信号采集装置,其特征在于,所述高磁导率材料为铁、铁氧体、硅钢、镍钢和坡莫合金中的任意一种;所述高电导率材料为铜、银和铝中的任意一种。
  10. 根据权利要求2-9任一项所述的生物电信号采集装置,其特征在于,所述信号线的数量为多条,每条所述信号线分别连接一个生物电极,所述第一屏蔽层同时包裹多条所述信号线。
  11. 根据权利要求1-10任一项所述的生物电信号采集装置,其特征在于,所述生物电极的部分外围包裹有电极屏蔽层,所述电极屏蔽层配置成屏蔽所述生物电极周围的电磁波。
  12. 根据权利要求11所述的生物电信号采集装置,其特征在于,所述电极屏蔽层的外部设置有电极绝缘层,所述电极绝缘层覆盖在所述电极屏蔽层的外围。
  13. 一种生物电信号采集装置,其特征在于,包括配置成采集生物信号的生物电极和配置成传输所述生物信号的信号传输线;
    所述信号传输线具有配置成屏蔽电磁波的屏蔽结构,所述信号传输线的一 端与所述生物电极电连接,所述信号传输线的另一端配置成与信号处理装置电连接。
  14. 根据权利要求13所述的生物电信号采集装置,其特征在于,所述信号传输线包括信号线和第一屏蔽层,所述信号线的一端与所述生物电极电连接,所述信号线的另一端配置成与所述信号处理装置电连接,所述第一屏蔽层包裹在所述信号线的外围。
  15. 根据权利要求14所述的生物电信号采集装置,其特征在于,所述信号传输线还包括绝缘层和第二屏蔽层,所述绝缘层包裹在所述第一屏蔽层的外围,所述第二屏蔽层包裹在所述绝缘层的外围。
  16. 根据权利要求14或15所述的生物电信号采集装置,其特征在于,所述信号线的数量为多条,每条所述信号线分别连接一个生物电极,所述第一屏蔽层同时包裹多条所述信号线。
  17. 根据权利要求13-16任一项所述的生物电信号采集装置,其特征在于,所述生物电极的部分外围包裹有电极屏蔽层,所述电极屏蔽层配置成屏蔽所述生物电极周围的电磁波。
  18. 根据权利要求17所述的生物电信号采集装置,其特征在于,所述电极屏蔽层的外部设置有电极绝缘层,所述电极绝缘层覆盖在所述电极屏蔽层的外围。
PCT/CN2018/082697 2017-07-14 2018-04-11 用于屏蔽电磁波的生物电信号采集装置及生物电信号采集装置 WO2019011021A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710573400.5 2017-07-14
CN201710573400.5A CN107233091A (zh) 2017-07-14 2017-07-14 用于屏蔽电磁波的生物电信号采集装置

Publications (1)

Publication Number Publication Date
WO2019011021A1 true WO2019011021A1 (zh) 2019-01-17

Family

ID=59991905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082697 WO2019011021A1 (zh) 2017-07-14 2018-04-11 用于屏蔽电磁波的生物电信号采集装置及生物电信号采集装置

Country Status (2)

Country Link
CN (1) CN107233091A (zh)
WO (1) WO2019011021A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107233091A (zh) * 2017-07-14 2017-10-10 陈晓苏 用于屏蔽电磁波的生物电信号采集装置
CN108685571A (zh) * 2018-06-22 2018-10-23 广东脉搏医疗科技有限公司 电导线、心电监测穿戴设备及心电监测系统
CN108742593A (zh) * 2018-06-22 2018-11-06 广东脉搏医疗科技有限公司 心电监测穿戴设备及心电监测系统
CN109621196B (zh) * 2019-01-29 2019-11-08 深圳讯丰通医疗股份有限公司 一种负压抽吸电极系统
CN110123315B (zh) * 2019-05-10 2022-02-22 深圳市德力凯医疗设备股份有限公司 一种抗电刀干扰的脑电信号检测系统及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2165875Y (zh) * 1993-03-20 1994-05-25 宋维伦 一种治疗体
US6776758B2 (en) * 2002-10-11 2004-08-17 Koninklijke Philips Electronics N.V. RFI-protected ultrasound probe
CN2916857Y (zh) * 2006-05-23 2007-06-27 高思义 一种医用电离室电缆
CN201046119Y (zh) * 2007-04-09 2008-04-16 袁丰莲 脑电图抗干扰电极连接线
CN206021974U (zh) * 2016-08-27 2017-03-15 上海宏欣电线电缆有限公司 一种工业机器人用复合电缆
CN107233091A (zh) * 2017-07-14 2017-10-10 陈晓苏 用于屏蔽电磁波的生物电信号采集装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4678865A (en) * 1985-04-25 1987-07-07 Westinghouse Electric Corp. Low noise electroencephalographic probe wiring system
US8426734B2 (en) * 2010-06-28 2013-04-23 Ametek, Inc. Low noise ECG cable and electrical assembly
CN102592721B (zh) * 2012-03-20 2013-12-25 青岛光电电子器具有限公司 一种心电导联线及其制作方法
CN103815899B (zh) * 2014-03-07 2017-01-11 华中科技大学 一种非接触式心电电极模块及心电图检测装置
CN203953644U (zh) * 2014-05-09 2014-11-26 深圳市朗泰科电子科技有限公司 心电监护仪导联线
CN105575543B (zh) * 2016-03-06 2018-07-06 北京工业大学 一种抗磁感应耦合信号电缆
CN106859634B (zh) * 2017-02-22 2020-06-26 中国科学院电子学研究所 非接触式动态心电监测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2165875Y (zh) * 1993-03-20 1994-05-25 宋维伦 一种治疗体
US6776758B2 (en) * 2002-10-11 2004-08-17 Koninklijke Philips Electronics N.V. RFI-protected ultrasound probe
CN2916857Y (zh) * 2006-05-23 2007-06-27 高思义 一种医用电离室电缆
CN201046119Y (zh) * 2007-04-09 2008-04-16 袁丰莲 脑电图抗干扰电极连接线
CN206021974U (zh) * 2016-08-27 2017-03-15 上海宏欣电线电缆有限公司 一种工业机器人用复合电缆
CN107233091A (zh) * 2017-07-14 2017-10-10 陈晓苏 用于屏蔽电磁波的生物电信号采集装置

Also Published As

Publication number Publication date
CN107233091A (zh) 2017-10-10

Similar Documents

Publication Publication Date Title
WO2019011021A1 (zh) 用于屏蔽电磁波的生物电信号采集装置及生物电信号采集装置
CN101938938B (zh) 屏蔽的电极连接器
US9775531B2 (en) Sensor device, processing device, and measurement system for acquiring a biopotential
CN103271736A (zh) 柔性电容心电干电极及其加工方法
CN104027111A (zh) 一种两用电极及采用两用电极实现表面肌电提取及经皮电刺激的装置及方法
CN106859634B (zh) 非接触式动态心电监测系统
JP2013184024A (ja) 生体測定用電極
Mukala et al. A novel Zigbee-based low-cost, low-power wireless EKG system
JP4565411B2 (ja) 生体電極とその接続構造
CN108685571A (zh) 电导线、心电监测穿戴设备及心电监测系统
CN108742593A (zh) 心电监测穿戴设备及心电监测系统
CN201752412U (zh) 无干扰电生理检测用电极
CN201046119Y (zh) 脑电图抗干扰电极连接线
CN104757963A (zh) 心电传感器及心电检测设备
CN210040815U (zh) 一种屏蔽导联线结构
CN214388520U (zh) 一种用于电疗仪的抗干扰电极线结构
GB2490296A (en) Needle placement detection and security device and method
JP2016136456A (ja) 生体信号計測用衣服
CN209529116U (zh) 电导线、心电监测穿戴设备及心电监测系统
CN204600461U (zh) 心电传感器及心电检测设备
CN209236137U (zh) 心电电极、心电监测穿戴设备及心电监测系统
CN213192129U (zh) 一种用于电疗仪的电极线
CN212546961U (zh) 一种抗外部电磁脉冲干扰的脑电信号采集装置
CN215585247U (zh) 一种同步脊髓电刺激和记录用电极片
CN221766421U (zh) 一种医用无磁性心电导联线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832951

Country of ref document: EP

Kind code of ref document: A1