WO2019010897A1 - 一种微纳米纤维素的动态表征方法 - Google Patents

一种微纳米纤维素的动态表征方法 Download PDF

Info

Publication number
WO2019010897A1
WO2019010897A1 PCT/CN2017/112637 CN2017112637W WO2019010897A1 WO 2019010897 A1 WO2019010897 A1 WO 2019010897A1 CN 2017112637 W CN2017112637 W CN 2017112637W WO 2019010897 A1 WO2019010897 A1 WO 2019010897A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanocellulose
micro
particles
nano
microscope
Prior art date
Application number
PCT/CN2017/112637
Other languages
English (en)
French (fr)
Inventor
曾劲松
陈克复
陈鲁
Original Assignee
华南理工大学
深圳中科飞测科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学, 深圳中科飞测科技有限公司 filed Critical 华南理工大学
Priority to CA3050806A priority Critical patent/CA3050806C/en
Priority to SG11201906929WA priority patent/SG11201906929WA/en
Publication of WO2019010897A1 publication Critical patent/WO2019010897A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids

Definitions

  • the invention relates to the field of characterization of nanofibers of flexible materials, in particular to characterization methods of plant-derived micro-nanocellulose materials
  • Micro-nanocellulose has excellent properties, is environmentally friendly, naturally recyclable, biocompatible, and has excellent optical and mechanical properties.
  • micro-nano cellulose materials have been applied in various fields, such as cosmetics, biomedicine, construction, food, military, paper, environmental protection, etc., and have great application prospects.
  • the main object of the present invention is to overcome the shortcomings and deficiencies of the prior art, and to provide a method for characterizing micro-nanocellulose, which uses the existing particle tracking velocity measurement technology to capture micro-circulation observed under a microscope by a CCD camera.
  • the nanocellulose in the channel is processed according to the image data captured by the CCD camera to obtain important parameters such as length, diameter, speed and quantity of the nanocellulose.
  • the invention provides a dynamic characterization method of micro-nanocellulose, comprising the following steps:
  • the step (1) is specifically:
  • the 0.1% strength micro-nanocellulose suspension was subjected to intermittent sonication, the intermittent sonication time was 10 min, and the ultrasonic treatment conditions were ultrasonic time 3 s, intermittent time 3 s, power 300 W, temperature 0-4 ° C.
  • the speed in a certain suitable speed is in the range of 0-200 um/s. If it is not within the speed range, it takes a period of time to wait for the speed in the channel to decrease.
  • step (4) after the photographing, the stage is moved to measure the relevant parameters of the micro-nanocellulose in the microfluidic channel at different positions, including the length, diameter, velocity and quantity parameters of the nanocellulose.
  • the method for identifying the micro-nanocellulose particles comprises the following steps:
  • the nanofiber particles in the micro-nanocellulose suspension are irradiated by the light source to produce weak scattered light.
  • the micro-nano fiber After imaging on a CCD camera, the micro-nano fiber has a different contour from the background, and its center is brighter and the edge is darker, when the micro-nano fiber
  • the micro-nano fiber particles move continuously along the flow field, and the optical properties of the suspension and the background during the observation process are stable, so there is no change.
  • the imaging of the background on the CCD is invariant, thereby identifying moving nanofiber particles in the video.
  • the method for calculating the length and diameter of the nanocellulose is as follows:
  • the nanofiber particles can be identified by the background difference. Due to the difference between the gray value and the background color, the outline of the nanofiber particles is extracted by the selected gray threshold, and the nanofiber is determined in the frame image. The outline, and draw a minimum circumscribed rectangle on the fiber outline to enclose the micro-nanocellulose. The long side of the rectangle is the length of the micro-nanocellulose particles, and the length information is recorded in units of pixels; An inscribed circle is formed in the outline of the nanofiber particle, and the diameter of the inscribed circle is the diameter of the nanocellulose particle, and the diameter information is recorded in units of pixels;
  • the size of the field of view determined by the magnification of the microscope, and the resolution of the CCD it can be known that in the obtained image, one pixel is used to describe the actual unit length, thereby converting the pixel unit into the length. unit.
  • the method for calculating the velocity of the micro-nanocellulose particles is as follows:
  • the method for counting the velocity of the micro-nanocellulose particles is as follows:
  • the nanocellulose recognized by the system at the inner edge of the field of view is the first one when the nanofibers flow from the inflow side.
  • each frame is identified and tracked until it disappears on the other side of the field of view, and the fiber is counted as 1, and so on, while identifying and tracking multiple targets simultaneously.
  • a certain amount of nanocellulose particles will be accumulated in a certain period of time, and the system automatically labels the fibers in the order in which the fibers are identified.
  • the method is: the nanocelluloses sequentially entered in the field of view are marked as 1, respectively. 2, 3, 4...n, starting from 1, then the end of the video, the fiber number of the system identification is the number of fibers identified in the video.
  • the present invention has the following advantages and beneficial effects:
  • the invention can perform real-time dynamic tracking measurement on micro-nano cellulose, has short measurement time and large amount of processed information, and can not only measure the length and diameter of nano-cellulose, but also the speed of nano-cellulose in the flow field and The position change; while the above methods such as SEM/TEM/AFM are to measure the size of the solid nanocellulose under a static process, the nanocellulose needs to be dried before the measurement; the existing measurement method for the nanometer The measurement of cellulose has the disadvantages of long time and complicated operation. Compared with the existing research methods, the present invention has the advantages of short use time, simple operation, and multiple characterization parameters at the same time.
  • FIG. 1 is a flow chart of a method for dynamically characterizing nanocellulose according to the present invention
  • FIG. 2 is a view showing the effect of the nanofiber particles of the present invention after being irradiated by a light source
  • FIG. 3 is a schematic view showing a circumscribed rectangle and an inscribed circle of a contour map of nanocellulose particles according to the present invention
  • Figure 5 is a view showing the display of nanocellulose of Example 2 in a channel
  • Example 6 is a statistical diagram of the number of nanocellulose lengths of Example 2.
  • Example 7 is a statistical graph of the number of nanocellulose widths of Example 2.
  • Figure 8 is a graph showing the amount of nanocellulose speed in Example 2.
  • the dynamic characterization method of the micro-nanocellulose of the embodiment 1 includes the following steps:
  • intermittent ultrasonic treatment of 0.1% concentration of micro-nanocellulose suspension intermittent sonication time of 30min, ultrasonic treatment conditions of ultrasonic time 3s, intermittent time 3s, power 300W, temperature 0-4 ° C;
  • the method of identifying the micro-nanocellulose particles in the step (5) further comprises the following steps:
  • the nanofiber particles in the micro-nanocellulose suspension are irradiated by the light source to generate weak scattered light.
  • the effect diagram is shown in Figure 2.
  • the micro-nano fiber After imaging on a CCD camera, the micro-nano fiber has a different contour from the background, and its center is brighter. The edge is dark.
  • the micro-nano fiber particles move in the field of view, in the continuous frame diagram, the micro-nano fiber particles continuously move along the flow field direction, and the optical properties of the suspension and the background during the observation process. There is no change in stability, so in multiple consecutive frames or even the entire video, the imaging of the background on the CCD is invariant, identifying moving nanofiber particles in the video.
  • the method for calculating the length and diameter of nanocellulose is as follows:
  • any frame diagram we can identify the nanofiber particles by background difference.
  • the outline of the nanofiber particles can be extracted by the selected gray threshold.
  • FIG. 3 for the convenience of observation, the image is enlarged several times, and the pixel is more obvious.
  • the inscribed circle is a circle that is inscribed in the blue outline and its diameter is also the diameter of the fiber. We first record the size information in pixels.
  • the diameter of the inscribed circle shown is approximately 3 pixels (px).
  • the circumscribed rectangle as shown in Figure 3, we draw a minimum rectangle around the fiber imaging pattern, enveloping the fiber, and the long side of the rectangle is the length of the fiber, the length of the figure is about 17 pixels ( Px).
  • the method for calculating the speed of micro-nanocellulose particles is as follows:
  • the method for counting the velocity of micro-nanocellulose particles is as follows:
  • the nanocellulose recognized by the system at the inner edge of the field of view is the first one when the nanofibers flow from the inflow side. After identifying the nanocellulose, each frame is identified and tracked until it disappears in the field of view. Side, and count this fiber as 1, and so on, while identifying and tracking multiple targets, a certain amount of nanocellulose particles will be accumulated in a certain period of time, and the system automatically identifies the fibers in the order of fibers. Labeling (the nanocellulose entering in the field of view is labeled as 1, 2, 3, 4...n, respectively), starting from 1, then the end of the video, the fiber number of the system identification is also recognized in the video. The number of fibers to reach.
  • NFC nanocellulose nanofibril
  • the light source of the microscope is provided by the power module TH4-200.
  • the black switch below the panel is opened.
  • the light source switch and adjustment knob of the microscope are located in front of the base, the light source switch is on the left side, and the light source intensity adjustment switch is on the right side. After the light source is turned on, the intensity of the light source is adjusted in real time according to the observation situation.
  • the position of the stage in the XY axis direction is then adjusted so that the microfluidic channel is aligned with the objective lens during observation.
  • the knob below the microscope is the focus knob, the large knob of the outer ring is coarse adjustment, and the small knob with the inner rotation is fine adjustment, and the distance (focal length) between the objective lens and the micro flow channel is adjusted to achieve the best observation distance.
  • the dial switch above the microscope is a splitter switch. When it is on the far left side, all the light is entered into the eyepiece for manual observation. When in the middle, half of the light is split into the eyepiece and distributed to the computer imaging system. When it is at the far right. , then all the light into the computer imaging system, which can not be observed at the eyepiece.
  • micro-nanocellulose suspension was subjected to intermittent sonication, intermittent sonication time was 30 min, sonication conditions were ultrasonic time 3 s, intermittent time 3 s, power 300 W, temperature 0-4 ° C,
  • the sonicated NFC suspension was slowly injected into the microfluidic channel by injection. Since the high magnification objective lens is an oil lens, it is necessary to first drop a special oil drop on the lens, and then search for the channel under the low magnification objective lens, and move the imaging under the low power microscope to the center of the field of view and then switch to the high magnification objective lens. Fine-tuning the focus to the high magnification of the image is clear, as shown in Figure 5.
  • the field of view under the microscope is photographed by the imaging unit on the computer workstation, and the video is continuously calculated by the intercepted video, since no subsequent injection is performed.
  • the speed of the nanocellulose in the channel will decrease continuously due to the viscous force of the inner wall of the channel.
  • the intercepted video is subjected to correlation algorithm operation. The parameters such as the number, length, diameter and speed of the nanocellulose are obtained, as shown in Fig. 6, Fig. 7, and Fig. 8.
  • Figure 6 shows the number distribution of nanocellulose length intervals in the range of 600-2000 nm, wherein the number of nanocelluloses is 600-800 nm, and the number of nanocelluloses of 800-1000 nm is the second.
  • Figure 7 shows the distribution range of the nanocellulose diameter interval, with the largest number of nanocelluloses in the range of 600-650 nm.
  • Figure 8 shows the distribution of the nanocellulose speed in the range of 0-80 um / s, which The largest amount of nanocellulose in 20-30um/s.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Paper (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

一种微纳米纤维素的动态表征方法,包括下述步骤:(1)将微纳米纤维素悬浮液进行间歇式超声处理;(2)注入经过步骤(1)处理后的微纳米纤维素悬浮液;(3)调整显微镜的物镜来保证微流通道在显微镜的视野内且该微流通道是一个清晰的成像;(4)使用显微镜直连的CCD相机拍摄微流通道中的微纳米纤维素;(5)将CCD相机拍摄的照片传输至计算机中处理图像数据,根据图像上纳米纤维素粒子与水分的像素粒子灰度不同将它们区别开来;使用粒子跟踪测速技术,根据CCD拍摄到的图像数据处理分析得到纳米纤维素的长度、直径、速度、数量等重要参数。

Description

一种微纳米纤维素的动态表征方法 技术领域
本发明涉及柔性物质的纳米纤维的表征领域,尤其是植物来源的微纳米纤维素材料的表征方法
背景技术
微纳米纤维素具有优良的性质,绿色环保、天然可再生、生物相容性,同时还具有优异的光学性能和机械性能。目前,微纳米纤维素材料已经应用在各行各业,如化妆品、生物医药、建筑、食品、军工、造纸、环保等领域,有着非常巨大的应用前景。
目前研究微纳米纤维素的表征方法包括:TEM/SEM电镜、AFM(原子力显微镜)、DLS(动态光散射技术)等。现有的这些方法耗时长、制样复杂、操作难等缺点。
发明内容
本发明的主要目的在于克服现有技术的缺点与不足,提供一种微纳米纤维素的表征方法,该表征方法使用现有的粒子跟踪测速技术,通过CCD相机拍摄在显微镜下观察到的微流通道中的纳米纤维素,根据CCD相机拍摄到的图像数据处理分析得到纳米纤维素的长度、直径、速度,数量等重要参数。
为了达到上述目的,本发明采用以下技术方案:
本发明提供了一种微纳米纤维素的动态表征方法,包括下述步骤:
(1)将微纳米纤维素虚浮液进行间歇式超声处理,处理时间5-10min,时 间间隔3S;
(2)使用微注射器向微纳米级别的微流通道中注入经过步骤(1)处理后的微纳米纤维素悬浮液;
(3)调整显微镜的物镜来保证微流通道在显微镜的视野内且该微流通道是一个清晰的成像,然后在显微镜下观察微纳米纤维素在微流通道中的流动情况,以确认微纳米纤维素在通道中是流动的并保持一定合适的速度;
(4)使用显微镜直连的CCD相机拍摄微流通道中的微纳米纤维素,拍摄过程中保持所有位置不变以减少误差,拍摄过后移动载物台来测量不同位置的微流通道内微纳米纤维素的有关参数;
(5)将CCD相机拍摄的照片传输至计算机中处理图像数据,根据图像上纳米纤维素粒子与水分的像素粒子灰度不同将它们区别开来;通过在微纳米纤维素粒子轮廓绘制最小外接矩形和内切圆计算纳米纤维素的长度和直径;通过多张帧图中纳米纤维素粒子的中心点位移,计算出纳米纤维素粒子的速度;通过计算在一定时间内流过纳米纤维素的数量,来对数量进行统计。
作为优选的技术方案,步骤(1)具体为:
将0.1%浓度的微纳米纤维素悬浮液进行间歇式超声处理,间歇式超声处理时间为10min,超声处理条件为超声时间3s,间歇时间3s,功率300W,温度0-4℃。
作为优选的技术方案,步骤(3)中,保持一定合适的速度中速度的范围是0-200um/s,如果不在该速度范围之内,需要一段时间来等待通道内的速度降低。
作为优选的技术方案,步骤(4)中,拍摄过后移动载物台来测量不同位置的微流通道内微纳米纤维素的有关参数,包括纳米纤维素的长度、直径、速度和数量参数。
作为优选的技术方案,步骤(5)中,包括对微纳米纤维素粒子识别的方法,具体包括下述步骤:
微纳米纤维素悬浮液中的纳米纤维粒子经过光源照射,产生微弱的散射光,在CCD相机上成像后,微纳米纤维的轮廓与背景不同,其中心偏亮,边缘偏暗,当微纳米纤维粒子在视场中运动时,在连续的帧图中,微纳米纤维粒子是沿着流场方向不断运动的,而悬浮液和背景在观测过程中的光学特性稳定不会有任何变化,所以在多张连续帧图中甚至整个视频中,背景在CCD上的成像是不变的,从而在视频中识别出运动的纳米纤维粒子。
作为优选的技术方案,步骤(5)中,计算纳米纤维素长度和直径的方法如下:
在任一帧图像中,通过背景差异可识别出纳米纤维粒子,由于其灰度值与背景颜色的差异,通过选定的灰度阈值勾出纳米纤维粒子的轮廓,确定纳米纤维在此帧图中的轮廓,并在该纤维轮廓上绘制一个最小外接矩形将微纳米纤维素包络在内,此矩形的长边即是微纳米纤维素粒子的长度,并以像素作为单位来记录长度信息;另外在纳米纤维粒子的轮廓内做内切圆,内切圆的直径即为纳米纤维素的粒子的直径,并以像素作为单位来记录直径信息;
依据显微镜的放大倍率确定的视场大小,以及CCD的分辨率,就可以得知,在已获得的图像中,利用一个像素来描述实际中多小的单位长度,由此将像素单位换算为长度单位。
作为优选的技术方案,步骤(5)中,计算微纳米纤维素粒子速度的方法如下:
在识别出某特定的纳米纤维粒子后,确定纳米纤维素粒子的成像轮廓的中心点位置,在相邻的两帧图像中,分析同一个纤维的中心点的位移变化,从而 得知在特定时间间隔内,纳米纤维素粒子中心点的位移,然后通过V=S/t计算得到这一时刻该粒子的移动速度,而稳定的流场中,通过多张帧图的连续分析,取均值即可得到纳米纤维粒子移动的匀速度。
作为优选的技术方案,步骤(5)中,统计微纳米纤维素粒子速度的方法如下:
由于纳米纤维在流动的液体中都是从视场的一侧流入,从另一侧流出,在纳米纤维从流入一侧开始,系统在视场内边缘识别到的纳米纤维素即是第一张,在识别该纳米纤维素后,每一帧都识别出来,并追踪直至其消失在视场的另一侧,并将此纤维计数为1,由此类推,同时进行多个目标的识别追踪,在一定时间段内,就会累计一定数量的纳米纤维素粒子,系统自动以识别出纤维的顺序对纤维进行标号,标号方法是:在视场中按顺序进入的纳米纤维素分别标记为1,2,3,4...n,从1开始,那么截止到视频结束,系统标识的纤维序号也就是视频中识别到的纤维数。
本发明与现有技术相比,具有如下优点和有益效果:
1、本发明可以对微纳米纤维素完成实时动态的跟踪测量,测量时间短,处理的信息量大,不仅可以测量纳米纤维素的长度和直径,还包括纳米纤维素在流场中的速度及位置变化;而SEM/TEM/AFM等上述的方法都是在静态的过程下对固态纳米纤维素进行尺寸的测量,在测量以前需要对纳米纤维素进行干燥处理;目前已有的测量方法对纳米纤维素的测量具有耗时长、操作复杂等缺点。而本发明与现有的研究方法相比较具有用时短、操作简单,可以同时获得多个表征参数等优点。
2、本发明可以对通道中的纳米纤维素根数、长度、直径等参数的分布情况 进行统计,这是现有技术中的方法做不到的。
附图说明
图1为本发明纳米纤维素动态表征方法的流程图;
图2为本发明纳米纤维粒子经过光源照射后的效果图;
图3为本发明纳米纤维素粒子轮廓图的外接矩形和内切圆示意图;
图4为实施例2实验仪器的结构示意图;
图5为实施例2纳米纤维素在通道中的显示图;
图6为实施例2纳米纤维素长度数量统计图;
图7为实施例2纳米纤维素宽度数量统计图;
图8为实施例2纳米纤维素速度数量统计图。
具体实施方式
以下结合实施例,对本发明进行进一步详细说明。以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
如图1所示,本实施例1微纳米纤维素的动态表征方法,包括下述步骤:
(1)将0.1%浓度的微纳米纤维素悬浮液进行间歇式超声处理,间歇式超声处理时间为30min,超声处理条件为超声时间3s,间歇时间3s,功率300W,温度0-4℃;
(2)使用微注射器向微纳米级别的微流通道中注入经过步骤(1)处理后 的微纳米纤维素悬浮液;
(3)调整显微镜的物镜来保证微流通道在显微镜的视野内且该微流通道是一个清晰的成像,然后在显微镜下观察微纳米纤维素在微流通道中的流动情况,以确认微纳米纤维素在通道中是流动的并保持一定合适的速度,速度范围在0-200um/s,如果不在该速度范围之内,需要一段时间来等待通道内的速度降低;
(4)使用显微镜直连的CCD相机拍摄微流通道中的微纳米纤维素,拍摄过程中保持所有位置不变以减少误差,拍摄过后移动载物台来测量不同位置的微流通道内微纳米纤维素的有关参数;
(5)将CCD相机拍摄的照片传输至计算机中处理图像数据,根据图像上纳米纤维素粒子与水分的像素粒子灰度不同将它们区别开来;通过在微纳米纤维素粒子轮廓绘制最小外接矩形和内切圆计算纳米纤维素的长度和直径;通过多张帧图中纳米纤维素粒子的中心点位移,计算出纳米纤维素粒子的速度;通过计算在一定时间内流过纳米纤维素的数量,来对数量进行统计。
步骤(5)中还包括对微纳米纤维素粒子识别的方法,具体包括下述步骤:
微纳米纤维素悬浮液中的纳米纤维粒子经过光源照射,产生微弱的散射光,其效果图如图2所示,在CCD相机上成像后,微纳米纤维的轮廓与背景不同,其中心偏亮,边缘偏暗,当微纳米纤维粒子在视场中运动时,在连续的帧图中,微纳米纤维粒子是沿着流场方向不断运动的,而悬浮液和背景在观测过程中的光学特性稳定不会有任何变化,所以在多张连续帧图中甚至整个视频中,背景在CCD上的成像是不变的,从而在视频中识别出运动的纳米纤维粒子。
计算纳米纤维素长度和直径的方法如下:
在任一帧图中,我们通过背景差异可以识别出纳米纤维粒子,在图像中,由于其灰度值与背景的差异,通过选定的灰度阈值即可勾出纳米纤维粒子的轮廓, 如图3所示,为方便观察,对图像放大若干倍,像素较明显。
由此我们可确定纳米纤维素在此帧图中的轮廓,为了理解识别其直径和长度的方法:我们需要在该纤维轮廓上绘制一个外接长方形和内接圆,如图所示3所示。
内接圆是内切于蓝色轮廓线的圆形,其直径也就是纤维的直径。我们先以像素作为单位来记录尺寸信息。图示内接圆的直径约是3个像素(px)。
外接长方形,如图3所示,我们在纤维成像图形周围绘制一个最小的矩形,将该纤维包络在内,而此矩形的长边即是纤维的长度,图示长度约为17个像素(px)。
依据显微镜的放大倍率确定的视场大小,以及CCD的分辨率,就可以得知,在获得的图像中,我们用了一个像素来描述实际中多小的单位长度,由此即可将像素单位换算为长度单位。
计算微纳米纤维素粒子速度的方法如下:
可在视频中识别出某个特定的纳米纤维粒子,在连续的帧图中位置不断移动,参考尺寸的测量方式,在此基础上确定纳米纤维(成像的轮廓)的中心点所在,在相邻的两帧图像中,分析同一个纤维的中心点的位移变化(像素数),从而得知在特定时间(帧间隔)纤维移动的距离(中心点的位移),由此即可通过V=S/t计算得到这一时刻该粒子的移动速度,而稳定的流场中,通过多张帧图的连续分析,取均值即可得到纳米纤维粒子移动的匀速度。
统计微纳米纤维素粒子速度的方法如下:
由于纳米纤维在流动的液体中都是从视场的一侧流入,从另一侧流出,在纳米纤维从流入一侧开始,系统在视场内边缘识别到的纳米纤维素即是第一张,在识别该纳米纤维素后,每一帧都识别出来,并追踪直至其消失在视场的另一 侧,并将此纤维计数为1,由此类推,同时进行多个目标的识别追踪,在一定时间段内,就会累计一定数量的纳米纤维素粒子,系统自动以识别出纤维的顺序对纤维进行标号(在视场中按顺序进入的纳米纤维素分别标记为1,2,3,4...n),从1开始,那么截止到视频结束,系统标识的纤维序号也就是视频中识别到的纤维数。
通过上述步骤,即可完成对本发明纳米纤维素的动态表征。
实施例2
下面以具体实验来验证本发明纳米纤维素的动态表征方法:
如图4所示,本次实验使用的仪器有:
Figure PCTCN2017112637-appb-000001
首先取0.1%浓度的NFC(纳米纤维素纳米纤丝)悬浮液,然后对NFC悬浮液进行间歇式超声处理30min,超声处理条件为超声时间3s,间歇时间3s,功率300W,温度0-4℃,超声处理完NFC悬浮液后向微流通道中注射加入悬浮液。
显微镜的光源由电源模块TH4-200提供,当电源供电后,打开面板下方的黑色开关。
显微镜的光源开关和调节钮位于底座前方,左侧为光源开关,右侧则为光源强弱调节开关,打开光源后依据观测情况实时调整光源强弱。
随后调节载物台在XY轴方向的位置,使得观测时微流通道对准物镜。
显微镜下方旋钮为调焦旋钮,外圈大旋钮为粗调,内旋带刻度的小旋钮为精调,对物镜与微流通道之间的距离(焦距)进行调整,以达到最佳观测距离。
显微镜上方的拨档开关为分光开关,当处于最左侧时,将所有光线均进入目镜进行人工观测,当处于中间时,光线一半分给目镜一半分给电脑成像系统,当处于最右侧时,则将所有光线都进入电脑成像系统,此时在目镜处无法观测。
实验开始时,将0.1%浓度的微纳米纤维素悬浮液进行间歇式超声处理,间歇式超声处理时间为30min,超声处理条件为超声时间3s,间歇时间3s,功率300W,温度0-4℃,将超声过后的NFC悬浮液通过注射方式缓慢注入微流通道。由于高倍物镜是油镜,需要先在镜头上滴专用的油滴,然后在低倍物镜下寻找通道的成像,将低倍镜下的成像移至视野内的中央后再转换到高倍物镜下,微调焦距到高倍镜下的成像清晰,如图5所示。待含有NFC的悬浮液在通道中流动至倒置显微镜观察的通道部分时,在计算机工作站上通过成像单元对显微镜下的视场进行拍摄,通过截取的视频进行不断地计算,由于没有进行后续的注射,通道内的纳米纤维素的速度会由于通道内壁的粘滞力而不断降低,当视场内的速度降到在大约0-200um/s的范围内时,再将截取的视频进行相关算法运算得到纳米纤维素根数、长度、直径、速度等参数,如图6、图7、图8所示。图6表示纳米纤维素长度区间在600-2000nm内的数量分布,其中600-800nm的纳米纤维素数量最多,800-1000nm的纳米纤维素数量为第二。图7表示纳米纤维素直径区间的分布范围,其中600-650nm范围之内的纳米纤维素数量最多。图8表示纳米纤维素速度在0-80um/s内的数量分布情况,其 中20-30um/s内的纳米纤维素数量最多。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

  1. 一种微纳米纤维素的动态表征方法,其特征在于,包括下述步骤:
    (1)将微纳米纤维素虚浮液进行间歇式超声处理,处理时间5-10min,时间间隔3S;
    (2)使用微注射器向微纳米级别的微流通道中注入经过步骤(1)处理后的微纳米纤维素悬浮液;
    (3)调整显微镜的物镜来保证微流通道在显微镜的视野内且该微流通道是一个清晰的成像,然后在显微镜下观察微纳米纤维素在微流通道中的流动情况,以确认微纳米纤维素在通道中是流动的并保持一定合适的速度;
    (4)使用显微镜直连的CCD相机拍摄微流通道中的微纳米纤维素,拍摄过程中保持所有位置不变以减少误差,拍摄过后移动载物台来测量不同位置的微流通道内微纳米纤维素的有关参数;
    (5)将CCD相机拍摄的照片传输至计算机中处理图像数据,根据图像上纳米纤维素粒子与水分的像素粒子灰度不同将它们区别开来;通过在微纳米纤维素粒子轮廓绘制最小外接矩形和内切圆计算纳米纤维素的长度和直径;通过多张帧图中纳米纤维素粒子的中心点位移,计算出纳米纤维素粒子的速度;通过计算在一定时间内流过纳米纤维素的数量,来对数量进行统计。
  2. 根据权利要求1所述微纳米纤维素的动态表征方法,其特征在于,步骤(1)具体为:
    将0.1%浓度的微纳米纤维素悬浮液进行间歇式超声处理,间歇式超声处理时间为10min,超声处理条件为超声时间3s,间歇时间3s,功率300W,温度0-4℃。
  3. 根据权利要求1所述微纳米纤维素的动态表征方法,其特征在于,步骤(3)中,保持一定合适的速度中速度的范围是0-200um/s,如果不在该速度范围之内,需要一段时间来等待通道内的速度降低。
  4. 根据权利要求1所述微纳米纤维素的动态表征方法,其特征在于,步骤(4)中,拍摄过后移动载物台来测量不同位置的微流通道内微纳米纤维素的有关参数,包括纳米纤维素的长度、直径、速度和数量参数。
  5. 根据权利要求1所述微纳米纤维素的动态表征方法,其特征在于,步骤(5)中,包括对微纳米纤维素粒子识别的方法,具体包括下述步骤:
    微纳米纤维素悬浮液中的纳米纤维粒子经过光源照射,产生微弱的散射光,在CCD相机上成像后,微纳米纤维的轮廓与背景不同,其中心偏亮,边缘偏暗,当微纳米纤维粒子在视场中运动时,在连续的帧图中,微纳米纤维粒子是沿着流场方向不断运动的,而悬浮液和背景在观测过程中的光学特性稳定不会有任何变化,所以在多张连续帧图中甚至整个视频中,背景在CCD上的成像是不变的,从而在视频中识别出运动的纳米纤维粒子。
  6. 根据权利要求1所述微纳米纤维素的动态表征方法,其特征在于,步骤(5)中,计算纳米纤维素长度和直径的方法如下:
    在任一帧图像中,通过背景差异可识别出纳米纤维粒子,由于其灰度值与背景颜色的差异,通过选定的灰度阈值勾出纳米纤维粒子的轮廓,确定纳米纤维在此帧图中的轮廓,并在该纤维轮廓上绘制一个最小外接矩形将微纳米纤维素包络在内,此矩形的长边即是微纳米纤维素粒子的长度,并以像素作为单位来记录长度信息;另外在纳米纤维粒子的轮廓内做内切圆,内切圆的直径即为纳米纤维素的粒子的直径,并以像素作为单位来记录直径信息;
    依据显微镜的放大倍率确定的视场大小,以及CCD的分辨率,就可以得知,在已获得的图像中,利用一个像素来描述实际中多小的单位长度,由此将像素单位换算为长度单位。
  7. 根据权利要求1所述微纳米纤维素的动态表征方法,其特征在于,步骤(5)中,计算微纳米纤维素粒子速度的方法如下:
    在识别出某特定的纳米纤维粒子后,确定纳米纤维素粒子的成像轮廓的中心点位置,在相邻的两帧图像中,分析同一个纤维的中心点的位移变化,从而得知在特定时间间隔内,纳米纤维素粒子中心点的位移,然后通过V=S/t计算得到这一时刻该粒子的移动速度,而稳定的流场中,通过多张帧图的连续分析,取均值即可得到纳米纤维粒子移动的匀速度。
  8. 根据权利要求1所述微纳米纤维素的动态表征方法,其特征在于,步骤 (5)中,统计微纳米纤维素粒子速度的方法如下:
    由于纳米纤维在流动的液体中都是从视场的一侧流入,从另一侧流出,在纳米纤维从流入一侧开始,系统在视场内边缘识别到的纳米纤维素即是第一张,在识别该纳米纤维素后,每一帧都识别出来,并追踪直至其消失在视场的另一侧,并将此纤维计数为1,由此类推,同时进行多个目标的识别追踪,在一定时间段内,就会累计一定数量的纳米纤维素粒子,系统自动以识别出纤维的顺序对纤维进行标号,标号方法是:在视场中按顺序进入的纳米纤维素分别标记为1,2,3,4...n,从1开始,那么截止到视频结束,系统标识的纤维序号也就是视频中识别到的纤维数。
PCT/CN2017/112637 2017-07-14 2017-11-23 一种微纳米纤维素的动态表征方法 WO2019010897A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3050806A CA3050806C (en) 2017-07-14 2017-11-23 Dynamic characterization method for micro-nano celluloses
SG11201906929WA SG11201906929WA (en) 2017-07-14 2017-11-23 A dynamic characterization method for micro-nanocellulose

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710574739.7A CN107561080B (zh) 2017-07-14 2017-07-14 一种微纳米纤维素的动态表征方法
CN201710574739.7 2017-07-14

Publications (1)

Publication Number Publication Date
WO2019010897A1 true WO2019010897A1 (zh) 2019-01-17

Family

ID=60973496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112637 WO2019010897A1 (zh) 2017-07-14 2017-11-23 一种微纳米纤维素的动态表征方法

Country Status (4)

Country Link
CN (1) CN107561080B (zh)
CA (1) CA3050806C (zh)
SG (1) SG11201906929WA (zh)
WO (1) WO2019010897A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109682818A (zh) * 2019-02-28 2019-04-26 华南理工大学 一种实时测量纤维素或木质素材料湿胀系数的装置及方法
CN112697068A (zh) * 2020-12-11 2021-04-23 中国计量大学 一种管状水准泡气泡长度测量方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108548768A (zh) * 2018-05-10 2018-09-18 华南理工大学 一种基于图像处理技术的微纳米颗粒悬浮液的动态表征方法
CN108627488A (zh) * 2018-05-24 2018-10-09 华南理工大学 一种对荧光cnc的新型表征方法
CN111692981A (zh) * 2020-06-22 2020-09-22 重庆国际复合材料股份有限公司 一种纤维直径快速测量方法及测量系统
CN112396625B (zh) * 2020-09-16 2024-08-20 南京大学 一种用于分析纳米粒子跨膜运动速率的轨迹追踪互相关函数方法
CN115308210A (zh) * 2022-08-19 2022-11-08 珠海华伦造纸科技有限公司 一种快速测量造纸纤维形态参数的系统及其方法
CN115597507A (zh) * 2022-10-27 2023-01-13 中钢集团郑州金属制品研究院股份有限公司(Cn) 一种合成纤维的直径检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1696654A (zh) * 2005-06-06 2005-11-16 清华大学 一种颗粒粒径分布的测量方法
CN101907574A (zh) * 2009-06-08 2010-12-08 贾立锋 一种鉴别纤维类别的方法和显色试剂及其鉴别系统
CN101988897A (zh) * 2009-08-07 2011-03-23 中国科学院广州生物医药与健康研究院 基于量子点的液相芯片检测仪
US20120190078A1 (en) * 2009-09-28 2012-07-26 Paul Gatenholm Three-dimensional bioprinting of biosynthetic cellulose (bc) implants and scaffolds for tissue engineering
CN103076265A (zh) * 2013-01-11 2013-05-01 战仁军 一种颗粒分布和直径的测量装置
CN106323393A (zh) * 2016-08-31 2017-01-11 电子科技大学 一种基于光操控的双模式微量液体流量计
CN106701065A (zh) * 2017-01-04 2017-05-24 华南理工大学 一种植物微纳米纤维素荧光标记的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2264556A (en) * 1992-02-21 1993-09-01 Hatfield Polytechnic Higher Ed Diffraction analysis of particle size, shape and orientation
DE19720426C1 (de) * 1997-05-15 1999-06-02 Baier Verena Dr Ing Vorrichtung und Verfahren für die Bestimmung der Partikelausbildung in einem durchsichtigen flüssigen Medium
DE10052384B4 (de) * 2000-10-20 2011-02-10 Schwartz, Margit Vorrichtung und Verfahren zur Bestimmung von Partikeleigenschaften und/oder Partikelkonzentrationen in einem fluiden Medium
US8293524B2 (en) * 2006-03-31 2012-10-23 Fluxion Biosciences Inc. Methods and apparatus for the manipulation of particle suspensions and testing thereof
CN101852814B (zh) * 2010-04-29 2012-05-30 中国农业大学 一种滴灌灌水器迷宫流道内流动的全场测试方法
CN102331510B (zh) * 2011-06-09 2013-02-13 华南理工大学 纸浆两相流piv测量的图像处理方法
CN206248502U (zh) * 2016-12-03 2017-06-13 中国计量大学 一种关于软颗粒流变特性的显微可视化实验装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1696654A (zh) * 2005-06-06 2005-11-16 清华大学 一种颗粒粒径分布的测量方法
CN101907574A (zh) * 2009-06-08 2010-12-08 贾立锋 一种鉴别纤维类别的方法和显色试剂及其鉴别系统
CN101988897A (zh) * 2009-08-07 2011-03-23 中国科学院广州生物医药与健康研究院 基于量子点的液相芯片检测仪
US20120190078A1 (en) * 2009-09-28 2012-07-26 Paul Gatenholm Three-dimensional bioprinting of biosynthetic cellulose (bc) implants and scaffolds for tissue engineering
CN103076265A (zh) * 2013-01-11 2013-05-01 战仁军 一种颗粒分布和直径的测量装置
CN106323393A (zh) * 2016-08-31 2017-01-11 电子科技大学 一种基于光操控的双模式微量液体流量计
CN106701065A (zh) * 2017-01-04 2017-05-24 华南理工大学 一种植物微纳米纤维素荧光标记的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, HONGJUN ET AL.: "Dynamic Detection System Design for PET Fiber Diameter Control", CHINA SYNTHETIC FIBER INDUSTRY, 10 February 2010 (2010-02-10), pages 63 - 65, ISSN: 1001-0041 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109682818A (zh) * 2019-02-28 2019-04-26 华南理工大学 一种实时测量纤维素或木质素材料湿胀系数的装置及方法
CN112697068A (zh) * 2020-12-11 2021-04-23 中国计量大学 一种管状水准泡气泡长度测量方法

Also Published As

Publication number Publication date
CN107561080A (zh) 2018-01-09
SG11201906929WA (en) 2019-08-27
CA3050806C (en) 2021-06-01
CA3050806A1 (en) 2019-01-17
CN107561080B (zh) 2019-08-20

Similar Documents

Publication Publication Date Title
WO2019010897A1 (zh) 一种微纳米纤维素的动态表征方法
CN109310320A (zh) 用于确定杂散纤维的成像方法
WO2015024690A1 (en) Apparatus and method for determining the mechanical properties of cells
JPH04188042A (ja) フローイメージングサイトメータにおけるフローセル機構
CN101702053A (zh) 一种尿沉渣检验设备中显微镜系统的自动聚焦方法
US9140641B2 (en) Fluid analysis method and fluid analysis system
Wang et al. Single vision based identification of yarn hairiness using adaptive threshold and image enhancement method
CN105425377A (zh) 一种用于显微镜的成像方法及系统
CN110324611A (zh) 一种摄像模组检测系统及检测方法
Zhou et al. Study on imaging method for measuring droplet size in large sprays
CN106442528A (zh) 纤维成份含量的双摄像头显微镜测试装置及测试方法
JP2004191959A5 (zh)
CN106056129A (zh) 一种融合多种特征的监控视频图像过曝光区域检测方法
CN107782744A (zh) 一种光栅调制的镜片疵病自动检测装置
CN109884052B (zh) 基于ccd探测的减法式谐波显微成像方法
CN109003228B (zh) 一种暗场显微大视场自动拼接成像方法
CN106773158A (zh) 一种移动式自寻位液晶屏像素质量分析装置和方法
Jiang et al. Blind deblurring for microscopic pathology images using deep learning networks
Shabani et al. A facile LED backlight in situ imaging technique to investigate sub-micron level processing
CN110823920A (zh) 一种内孔侧壁表面缺陷采集装置、检测系统及方法
CN108548768A (zh) 一种基于图像处理技术的微纳米颗粒悬浮液的动态表征方法
US11256078B2 (en) Continuous scanning for localization microscopy
CN107402212A (zh) 一种粪便应用液检测装置
CN207730612U (zh) 一种基于分束镜获取颗粒分层图像的成像装置
TW200825947A (en) Microscopic image analysis method and system of microfluidic cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3050806

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/06/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17917715

Country of ref document: EP

Kind code of ref document: A1