WO2019010776A1 - 组合标签、接头及确定含有低频突变核酸序列的方法 - Google Patents

组合标签、接头及确定含有低频突变核酸序列的方法 Download PDF

Info

Publication number
WO2019010776A1
WO2019010776A1 PCT/CN2017/100425 CN2017100425W WO2019010776A1 WO 2019010776 A1 WO2019010776 A1 WO 2019010776A1 CN 2017100425 W CN2017100425 W CN 2017100425W WO 2019010776 A1 WO2019010776 A1 WO 2019010776A1
Authority
WO
WIPO (PCT)
Prior art keywords
tag
nucleic acid
library
molecular
acid sequence
Prior art date
Application number
PCT/CN2017/100425
Other languages
English (en)
French (fr)
Inventor
高晓峘
曾晓静
张印新
韩颖鑫
何哲
王佳伟
夏伟成
李胜
Original Assignee
广州精科医学检验所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州精科医学检验所有限公司 filed Critical 广州精科医学检验所有限公司
Publication of WO2019010776A1 publication Critical patent/WO2019010776A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing

Definitions

  • the present invention relates to the field of nucleic acid sequencing technology. Specifically, the present invention relates to a combination tag, a linker containing the same, and a composition thereof, and a method for determining a target region of a sample to be tested containing a low frequency mutant nucleic acid sequence.
  • High-throughput sequencing is currently the most widely used sequencing technology.
  • the incidence is 0.1%-0.2% or higher, and the DNA polymerase used in the PCR process is also wrong.
  • the rate and error rate are 10-7-10-5, especially as the number of PCR cycles increases, the error rate also increases.
  • Each position of the molecular tag can be one of four bases A, T, C, and G.
  • the length of the molecular tag is selected according to actual experimental needs. According to the length of the molecular tag and the change of four bases, the molecular tag There can be 4 n-th power types. If the molecular tags of the original template are completely randomly distributed, the diversity of the molecular tags ensures that each original template is unique after the molecular tag is attached to the original library.
  • each original template will act as The initial template forms a cluster of "molecular clusters". If there are no sequencing errors and PCR errors, the molecular sequences in each cluster are the error-free "replication strands" of the original template positive and negative strands.
  • the base sequences at each position of the molecular tag are completely randomly distributed.
  • the same amount of A, T, The four bases of C and G because the energy or synthesis efficiency required for the synthesis of these four bases is different, the frequency of occurrence of the four bases A, T, C, and G at each position is not completely equal.
  • the invention provides a combination tag comprising a molecular tag and a library tag, the bases of the molecular tag being aligned with the bases of the library tag.
  • Another aspect of the present invention also provides a linker comprising the above-described combination tag, and the combination tag is located at any position other than the overhang "T" of the linker and the 20 bp base of the non-overhang end.
  • Another aspect of the present invention provides a method for determining that a target region of a sample to be tested contains a low frequency burst
  • a method of transforming a nucleic acid sequence comprising the steps of:
  • the invention combines the library tag and the random molecular tag, and uses the determined base sequence of the library tag identifying the different samples to randomly separate the molecular tags, so as to achieve the same number of consecutive bases without reducing the specific number.
  • Molecular tag types, and without the additional length of the two tags, will not waste sequencing data.
  • FIG. 1 is a flow chart of a method for determining a target region of a sample to be tested containing a low frequency mutant nucleic acid sequence according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the structure of a molecular tag in a fully complementary double link head according to an embodiment of the present invention.
  • FIG 3 is a schematic view showing the structure of a molecular tag in a Y-type connector with one end complementary to one end at the complementary end in the embodiment of the present invention.
  • FIG. 4 is a schematic view showing the structure of a molecular tag in a Y-type connector in which a complementary end of one end is open at an open end in the embodiment of the present invention.
  • Figure 5 is a schematic illustration of a Y-type structure in which a molecular tag is not located on a linker, but a linker can be introduced by PCR, in accordance with an embodiment of the present invention.
  • the present invention provides a combination tag comprising a molecular tag and a library tag, the bases of the library tag being interdigitated with the molecular tag.
  • the library tag refers to a tag sequence used to identify different sample libraries in sequencing to achieve the purpose of sequencing multiple libraries together.
  • the library tag used is barcode.
  • the library tag used is index.
  • every 1-2 bases of the library tag are arranged in cross-alignment with each 1-3 base of the molecular tag.
  • Each base of the library tag is arranged to cross every 1 base of the molecular tag, and the combination tag has at most 2 consecutive identical bases.
  • the first, third, fifth, seventh, ninth, .. .n-3, n-1 position is the library tag
  • positions 2, 4, 6, 8, 10, ... n-2, n are the molecular tags (N 2 N 4 N 6 N 8 ... N n-6 N n-4 N N-2 N n ).
  • the base of the molecular tag is different from the base of the library tag of the adjacent previous bit.
  • N 2 is not A, and may be any of T, C, and G.
  • N 4 is not T, and may be any one of A, C, and G.
  • the number of combinations of the molecular tags is 3n/2.
  • n 16
  • the library tag has a length of 8 bp
  • the molecular tag has a length of 8 bp
  • n position is the library tag
  • first, third, fifth, seventh, ninth, ..., n-3, n-1 positions are the molecular tags.
  • the base of the molecular tag is different from the base of the library tag of the next bit adjacent thereto, for example, N 1 AN 3 TN 5 GN 7 ..., N 1 is not A, and may be any of T, C, and G. One, N 3 is not T, and may be any one of A, C, and G.
  • the number of combinations of the molecular tags is 3n/2.
  • n 16
  • the length of the library tag is 8 bp
  • the length of the molecular tag is 8 bp
  • the combination label is AN 2 TN 4 GN 6 CN 8 ... AN n-7 TN n-5 GN n-3 CN n-1 A, from left to right, the first, third, fifth, seventh, ninth, ...n-2, the n position is the library tag, and the 2nd, 4th, 6th, 8th, 10th, ..., n-1 positions are the molecular tags.
  • the base of the molecular tag is different from the base of the library tag of the adjacent previous bit.
  • N 2 is not A, and may be any of T, C, and G.
  • N 4 is not T, and may be any one of A, C, and G.
  • the number of combinations of the molecular tags is 3 (n-1)/2.
  • the length of the molecular tag is 8 bp
  • n-1 position is the library tag
  • first, third, fifth, seventh, ninth, ..., n-2, and n positions are the molecular tags.
  • the base of the molecular tag is different from the base of the library tag of the next bit adjacent thereto, for example, N 1 AN 3 TN 5 GN 7 ..., N 1 is not A, and may be any of T, C, and G. One, N 3 is not T, and may be any one of A, C, and G.
  • the number of combinations of the molecular tags is 3 (n + 1)/2.
  • n 17
  • the library tag has a length of 8 bp
  • the molecular tag has a length of 9 bp
  • the molecular tag sequence combination 39 19683.
  • Each 1-2 bases of the library tag are arranged to cross every 1-2 bases of the molecular tag, and the combination tag has at most 3 consecutive identical bases.
  • every 1-2 bases of the library tag are arranged to cross each 1 base of the molecular tag, and the combination tag has at most 3 consecutive identical bases.
  • n position is the molecular tag.
  • the base of the molecular tag is different from the base of any of the adjacent library tags.
  • the number of combinations of the molecular tags is 4n/3.
  • the length of the molecular tag is 6 bp
  • the base of the molecular tag is different from the base of any of the adjacent library tags.
  • the number of combinations of the molecular tags is 4 (n + 2) / 3.
  • the length of the molecular tag sequence between the molecules in the library is 7 bp
  • the base of the molecular tag is different from the base of any of the adjacent library tags.
  • the number of combinations of the molecular tags is 4 (n-1)/3.
  • the length of the molecular tag sequence between the molecules in the library is 6 bp
  • the base of the molecular tag is different from the base of any of the adjacent library tags.
  • the number of combinations of the molecular tags is 4 (n-1)/3.
  • each base of the library tag is arranged to cross every 1-2 bases of the molecular tag, and the combination tag has at most three consecutive identical bases.
  • the combination label is AN 2 N 3 TN 5 N 6 ... CN n-4 N n-3 GN n-1 N n , from left to right, the first, fourth, seventh, ..., n-5, The n-2 position is the library tag, and the positions 2, 3, 5, 6, ..., n-4, n-3, n-1, and n are the molecular tags.
  • the base of the molecular tag may be any of four bases.
  • the number of combinations of the molecular tags is 42 n/3.
  • the length of the molecular tag is 16 bp
  • the combination label is AN 2 N 3 TN 5 N 6 ... CN n-5 N n-4 GN n-2 N n-1 T, from left to right, 1st, 4th, 7th, ..., n
  • the -6, n-3, and n positions are the library tags, and the positions 2, 3, 5, 6, ..., n-5, n-4, n-2, and n-1 are the molecular tags.
  • the base of the molecular tag may be any of four bases.
  • the number of combinations of the molecular tags is 42 (n-1) / 3.
  • the length of the molecular tag is 16 bp
  • the base of the molecular tag may be any of four bases.
  • the number of combinations of the molecular tags is 42 n/3.
  • the length of the molecular tag is 16 bp
  • n-2 position is the library tag
  • first, second, fourth, fifth, seventh, ..., n-4, n-3, n-1, and n positions are the molecular tags.
  • the base of the molecular tag may be any one of four bases, for example, N 1 N 2 TN 4 N 5 A (wherein N) may be any one of A, T, C, and G.
  • the number of combinations of the molecular tags is 42 (n + 1) / 3.
  • the length of the molecular tag is 18 bp
  • the combination label is AN 2 TN 4 N 5 GN 7 CN 9 N 10 ... GN n-3 CN n-1 N n , from left to right, the first, third, sixth, eighth, ... n- 4.
  • the n-2 position is the library tag, and the positions 2, 4, 5, 7, 9, ... n-3, n-1, n are the molecular tags.
  • the base of the molecular tag may be any of four bases.
  • the number of combinations of the molecular tags is 44n/7.
  • the length of the molecular tag is 12 bp
  • n-1 position is the library tag
  • 2, 3, 5, 7, 8, ... n-3, n-2, n positions are the molecular tags.
  • the base of the molecular tag may be any of four bases.
  • the number of combinations of the molecular tags is 44n/7.
  • the length of the molecular tag is 12 bp
  • the combination label is AN 2 N 3 TN 5 GN 7 N 8 CN 10 ... GN n-4 N n-3 CN n-1 T, from left to right, the first, fourth, sixth, ninth, ..
  • the .n-5, n-2, and n positions are the library tags, and the positions 2, 3, 5, 7, 8, ..., n-4, n-3, and n-1 are the molecular tags.
  • the base of the molecular tag may be any of four bases.
  • the number of combinations of the molecular tags is 44 (n-1) / 7.
  • the length of the molecular tag is 12 bp
  • every 1-2 bases of the library tag are arranged to cross every 1-2 bases of the molecular tag, and the combination tag has at most 3 consecutive identical bases.
  • the base of the molecular tag may be any of four bases.
  • the number of combinations of the molecular tags is 4n/2.
  • the length of the molecular tag is 8 bp
  • the combination label is ATN 3 N 4 GN 6 CTN 9 N 10 AN 12 ... GCN n-3 N n-2 AN n , from left to right, the first, second, fifth, seventh, eighth, eleven,.
  • the .n-5, n-4, n-1 positions are the library tags, and the 3, 4, 6, 9, 10, 12, ... n-3, n-2, n positions are the molecules label.
  • the base of the molecular tag may be any of four bases.
  • the number of combinations of the molecular tags is 4n/2.
  • the length of the molecular tag is 8 bp
  • the base of the molecular tag may be any of four bases.
  • the number of combinations of the molecular tags is 45n/8.
  • the length of the molecular tag is 15 bp
  • positions 1, 2, 6, 7, 11, 12, ..., n-9, n-8, n-4, n-3 are the library tags, 3, 4, 5, 8
  • positions 9, 9, 10, 13, 14, 15, ..., n-7, n-6, n-5, n-2, n-1, n are the molecular tags.
  • the base of the molecular tag may be any of four bases.
  • the number of combinations of the molecular tags is 43n/5.
  • the length of the molecular tag is 12 bp
  • Each 1-2 bases of the library tag are arranged to cross every 1-3 bases of the molecular tag, and the combination tag has at most 4 consecutive identical bases.
  • the base of the molecular tag may be any of four bases.
  • the number of combinations of the molecular tags is 46n/10.
  • the length of the molecular tag is 12 bp
  • the base of the molecular tag may be any of four bases.
  • the number of combinations of the molecular tags is 44n/7.
  • the length of the molecular tag is 12 bp
  • the invention solves the problem in the prior art that in order to avoid the occurrence of a plurality of consecutive identical bases in a molecular tag, a U base is added inside the molecular tag to separate the molecular tag (NNNUUUNNNUUUNNN). For the first time, combining the library tag with the random molecular tag can ensure the library tag and molecular tag of sufficient length to meet the requirements of the specific scheme by ensuring that the effective molecular tag length is not added without invalid length.
  • the molecular tag has a length of 6-18 bp.
  • the length of the library tag is 8-12 bp.
  • the present invention also provides a linker comprising a combination tag as described above, and the combination tag is located at any position other than the overhang "T" of the linker and the 20 bp base of the non-overhang end.
  • the linker further comprises a sequence of identifying features, the sequence of identifying features being 4 non-repeating bases, the identifying feature sequence being 3' or 5' of the combined tag Connected to the end.
  • the present invention also provides a method for determining a target region of a sample to be tested containing a low frequency mutant nucleic acid sequence, as described in FIG.
  • Example 1 Method for determining a target region of a sample to be tested containing a low frequency mutant nucleic acid sequence
  • the combination tag is designed in a single base cross-arrangement according to the library tag and the molecular tag, and the combination tag contains up to two consecutive identical bases. According to the needs of the experiment, 16 sets of combined labels were designed. As shown in Table 1, 16 combinations of labels:
  • the underlined base is a molecular tag sequence
  • the ununderlined base is a library tag sequence.
  • the combination label of the above design is designed as a set of joints, wherein the combination label can be located at any position other than the overhang "T" of the linker and the 20 bp base of the non-overhang end.
  • NNN...NNN represents a combination label
  • the type of the connector may be a fully complementary double-stranded structure, a Y-type structure in which one end is complementary to one end, or may be PCR-enabled.
  • the combination label is introduced into the Y-shaped structure of the joint.
  • the combination label may be located at either or both ends of the linker, or may be distributed at two or more positions, and the number of N represents the number of bases of the combination label, and the number of combinations of the required labels increases the base at the position.
  • the number for example, the number of bases of 8 bp, 12 bp, 16 bp, 24 bp or more.
  • Identification signature sequences and/or library tags can also be added at the 3' or 5' end of the combinatorial tag as desired for the experiment. For example, when sequencing using the Ion Torrent platform, Barcode sequences that recognize different samples can be added to them.
  • the designed combination tag or its corresponding reverse complement sequence and its sequence at the 3' end and the 5' end are synthesized according to the designed linker sequence to obtain a linker containing the combination tag.
  • synthetic methods can be employed in methods well known in the art or can be commissioned by a primer synthesis company.
  • Plasma DNA is extracted by methods well known to those skilled in the art.
  • the extracted DNA solution and the end-repaired reagent mixture are mixed, and the reaction is carried out according to a method of terminal repair well known to those skilled in the art, and the reaction is separated and purified.
  • Reagent body DNA 50 10 ⁇ PNK buffer 5 dNTP solution (10mM) 2 T4 DNA polymerase 1 T4PNK 1 KLENOW fragment 1 Total volume / ul 50
  • reaction system After mixing at room temperature, after slight centrifugation, the reaction system was placed in a PCR machine, and reacted at 20 ° C for 30 minutes. After the reaction was completed, it was purified using AMpure XP magnetic beads.
  • the DNA solution after the terminal repair is mixed with the working solution of the combination-containing link obtained in the above step 3, and the reaction reagent mixture, and the reaction is carried out according to a method of adding a linker well known to those skilled in the art, and the reaction is carried out after completion of the reaction. purification.
  • reaction system After mixing at room temperature, after slight centrifugation, the reaction system was placed in a PCR machine, and reacted at 20 ° C for 30 minutes. After the reaction was completed, it was purified using AMpure XP magnetic beads.
  • the DNA after the addition of the linker and the PCR reaction reagent mixture are mixed, and the PCR reaction is carried out according to a method well known to those skilled in the art. After the reaction is completed, the separation and purification are carried out. After the completion of the library construction, the library is subjected to QC detection, and the test is waited after passing the test. Sequencing.
  • PCR primer PE2 (10pmol/ul) 4 Pfx DNA polymerase 1 Total volume / ul 50
  • reaction system After mixing at room temperature, after slight centrifugation, the reaction system was placed in a PCR machine and reacted according to the following conditions:
  • Magnetic bead purification was carried out using the method shown in 5.2, except that 50 ul of magnetic beads were added to the 50 ul system reaction product. The library construction is over.
  • the library was subjected to QPCR and Agilent 2100 detection, and the quality-qualified library was arranged on the machine.
  • the library can be sequenced using a second generation sequencer such as Ion Torrent Proton, Ion Torrent PGM.
  • a second generation sequencer such as Ion Torrent Proton, Ion Torrent PGM.
  • the sequencing results of the DNA obtained after sequencing are analyzed, and the obtained DNA sequences are classified according to the combination label, and the sequence carrying the same combination tag is taken as a "molecular cluster" which is the initial one DNA molecule.
  • the method for determining that the target region of the sample to be tested contains the low-frequency mutant nucleic acid sequence is substantially the same as that of the first embodiment, except that in step 1, 2 bases of the library tag and 1 base of the molecular tag are arranged in a cross.
  • SEQ ID NO 46 CCTCTCTATGGGCAGTCGGTGAT.
  • the underlined base is a molecular tag sequence
  • the ununderlined base is a library tag sequence.
  • the method for determining that the target region of the sample to be tested contains the low-frequency mutant nucleic acid sequence is substantially the same as that of the first embodiment, and the difference is that in step 1, the library tag is 1-2 bases and the molecular tag is 1-2 bases. Cross arranged.
  • SEQ ID NO 59 CCTCTCTATGGGCAGTCGGTGAT.
  • the underlined base is a molecular tag sequence
  • the ununderlined base is a library tag sequence.
  • the method for determining that the target region of the sample to be tested contains the low frequency mutant nucleic acid sequence is substantially the same as that of the first embodiment, except that in step 1, the library tag is 1-2 bases and the molecular tag is 2-3 bases. Cross arranged.
  • SEQ ID NO 72 CCTCTCTATGGGCAGTCGGTGAT.
  • the underlined base is a molecular tag sequence
  • the ununderlined base is a library tag sequence.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了组合标签、含有该组合标签的接头及其组合物以及一种确定待测样本目标区域含有低频突变核酸序列的方法。其中所述组合标签包括分子标签和文库标签,所述分子标签的碱基与所述文库标签的碱基交叉排列。

Description

组合标签、接头及确定含有低频突变核酸序列的方法 技术领域
本发明涉及核酸测序技术领域,具体的,本发明涉及组合标签、含有该组合标签的接头及其组合物、确定待测样本目标区域含有低频突变核酸序列的方法。
背景技术
高通量测序是目前应用范围最广的测序技术,然而其在测序中仍不可避免的存在一些测序错误,发生率为0.1%-0.2%或者更高,并且PCR过程使用的DNA聚合酶也有错误率,错误率为10-7-10-5,特别是随着PCR循环数的增加错误率也有所增加。
为了检测低于0.1%的碱基突变(低频突变)或测序错误,学者发明了分子标签的方法,分子标签是在PCR之前给每个测序模板的一端或者两端加入一段特殊的序列。分子标签的每个位置可以是A、T、C、G 4种碱基中的1种,分子标签的长度根据实际的实验需要选择,根据分子标签的长度及4种碱基的变化,分子标签可以有4的n次方种类。如果原始模板的分子标签是完全随机分布的,那分子标签的多样性能够保证每个原始模板在原始文库中连上分子标签后是独一无二的,在之后的PCR过程中,每个原始模板会作为初始模板形成一簇“分子簇”,如果没有测序错误和PCR错误,这各簇中的分子序列都是初始模板正链和负链的无错误“复制链”。
理论上,分子标签的每个位置的碱基序列是完全随机分布的。然而,在引物合成过程中,合成某一碱基时,会加入等量的A、T、 C、G四种碱基,由于这四种碱基合成所需的能量或者合成效率不一样,使得每个位置上A、T、C、G四种碱基的出现频率并不是完全相等的。可能会出现多个连续一样的碱基,例如8个A、8个G等,从而导致实际上得到的随机分子标签种类并没有理论上那么多。
多个连续一样的碱基不仅会增加测序错误的可能性,也会增加优势分子序列的比例。当序列十分相似的不同分子序列连上同一种标签序列的情况下,技术人员无法区别判断其属于正常存在、测序错误导致或低频突变的分子。更进一步的,当低频突变和正常丰度的序列连上一样的分子克隆时会导致将低频突变当成测序错误或PCR错误从而漏检。因此分子标签的不随机性会降低其效用,甚至限制了其应用。为了解决这个问题,有学者在分子标签中加入碱基U,比如NNNUUUNNNUUUNNN,以避免出现多个连续相同的碱基,导致分子标签的检测效用低下,而此种方法将增加分子标签的长度,且U碱基在分析过程并不具有区分不同分子的作用,即不具备分子标签的效用,因此此种方法不仅添加了无效的分子标签长度,且浪费测序长度,影响测序成本。
发明内容
本发明的目的在于提供能够有效控制标签的碱基数目减少测序数据浪费的标签组合物及检测方法。
本发明一方面提供一种组合标签,包括分子标签和文库标签,所述分子标签的碱基与所述文库标签的碱基交叉排列。
本发明另一方面还提供一种接头,所述接头含有上述组合标签,且所述组合标签位于所述接头除突出端“T”和非突出端末端20bp碱基以外的任意位置。
本发明另一方面还提供一种确定待测样本目标区域含有低频突 变核酸序列的方法,包括如下步骤:
S1、利用如上所述的接头,对待测样本目标区域核酸进行加接头反应,对加接头后的待测样本目标区域核酸进行PCR扩增,获得扩增产物,所述扩增产物构成所述待测样本的目标区域核酸测序文库;
S2、对所述待测样本的目标区域核酸测序文库进行测序,获得测序后核酸序列;
S3、将所述测序后核酸序列按照所述接头中含有的分子标签进行分类,将携带有相同分子标签的所述测序后的核酸序列归类为同一核酸序列集;
S4、将所述核酸序列集内的测序后核酸序列进行相互比较,统计所述核酸序列集中每个碱基位置的碱基种类及其频率;
S5、根据所述核酸序列集中每个碱基位置的碱基种类及其频率,通过数据分析,得到所述核酸序列集中含有正确的碱基排列位置的核酸序列;
S6、将所述含有正确的碱基排列位置的核酸序列与所述核酸序列集中的其余的核酸序列或平行的核酸序列集中的核酸序列进行比较,得到含有低频突变的核酸序列。
本发明将文库标签和随机分子标签结合在一起,利用识别不同样本的文库标签的确定的碱基序列,将分子标签随机隔开,这样既能达到控制连续一样的碱基数目,不会降低特定分子标签种类,并且又不会额外增加两种标签的长度的目的,不会浪费测序数据。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施 例的描述中将变得明显和容易理解,其中
图1为本发明实施例中确定待测样本目标区域含有低频突变核酸序列的方法流程图。
图2为本发明实施例中完全互补双链接头中分子标签结构示意图。
图3为本发明实施例中一端互补一端开放的Y型接头中分子标签位于互补端的结构示意图。
图4为本发明实施例中一端互补一端开放的Y型接头中分子标签位于开放端的结构示意图。
图5为本发明实施例中分子标签不位于接头上,但可通过PCR引入接头的Y型结构的示意图。
具体实施方式
下面详细描述本发明的实施例。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
需要说明的是,在本发明的描述中,除非另有说明“多个”的含义是两个或两个以上。
本发明提供一种组合标签,包括分子标签和文库标签,所述文库标签的碱基与所述分子标签交叉排列。
所述文库标签是指,用来识别测序中不同样本文库的标签序列,以达到多个文库一起测序的目的。例如当测序平台是proton,使用的文库标签为barcode。当测序平台是illumina时,使用的文库标签为index。
根据本发明的具体实施例,所述文库标签的每1-2个碱基与所述分子标签的每个1-3碱基交叉排列。详细描述如下;
一、所述文库标签的每1个碱基与所述分子标签的每1个碱基交叉排列,并且所述组合标签最多有2个连续相同的碱基。参考以下具体示例:
1、当组合标签为AN2TN4GN6CN8……ANn-6TNn-4GNn-2CNn时,从左到右,第1、3、5、7、9、...n-3、n-1位置是所述文库标签
(ATGC…ATGC),第2、4、6、8、10、...n-2、n位置是所述分子标签(N2N4N6N8…Nn-6Nn-4Nn-2Nn)。
所述分子标签的碱基与其相邻的前一位的文库标签的碱基不同,例如AN2TN4GN6CN8……中,N2不为A,可以是T、C、G中任一个,N4不为T,可以是A、C、G中任一个。
在1个确定的文库标签的情况下,所述分子标签的组合数是3n/2。例如,当n=16时,文库标签的长度为8bp,所述分子标签的长度为8bp,分子标签序列组合数为38=6561。
2、当组合标签为N1AN3TN5GN7……CNn-7ANn-5TNn-3GNn-1C,从左到右,第2、4、6、8、10、...、n位置是所述文库标签,第1、3、5、7、9、...n-3、n-1位置是所述分子标签。
所述分子标签的碱基与其相邻的后一位的文库标签的碱基不同,例如N1AN3TN5GN7……中,N1不为A,可以是T、C、G中任一个,N3不为T,可以是A、C、G中任一个。
在1个确定的文库标签的情况下,所述分子标签的组合数是3n/2。例如,当n=16时,文库标签的长度为8bp,所述分子标签的长度为8bp,分子标签序列组合数38=6561。
3、当组合标签为AN2TN4GN6CN8……ANn-7TNn-5GNn-3CNn-1A,从左到右,第1、3、5、7、9、...n-2、n位置是所述文库标签,第2、 4、6、8、10、...n-1位置是所述分子标签。
所述分子标签的碱基与其相邻的前一位的文库标签的碱基不同,例如AN2TN4GN6CN8……中,N2不为A,可以是T、C、G中任一个,N4不为T,可以是A、C、G中任一个。
在1个确定的文库标签的情况下,所述分子标签的组合数是3(n-1)/2。例如,当n=17时,文库标签的长度为9bp,所述分子标签的长度为8bp,分子标签序列组合数38=6561。
4、当组合标签为N1AN3TN5GN7……CNn-8ANn-6TNn-4GNn-2CNn,从左到右,第2、4、6、8、10、...n-1位置是所述文库标签,第1、3、5、7、9、...n-2、n位置是所述分子标签。
所述分子标签的碱基与其相邻的后一位的文库标签的碱基不同,例如N1AN3TN5GN7……中,N1不为A,可以是T、C、G中任一个,N3不为T,可以是A、C、G中任一个。
在1个确定的文库标签的情况下,所述分子标签的组合数是3(n+1)/2。例如,当n=17时,文库标签的长度为8bp,所述分子标签的长度为9bp,分子标签序列组合39=19683。
二、所述文库标签的每1-2个碱基与所述分子标签的每1-2个碱基交叉排列,并且所述组合标签最多有3个连续相同的碱基。
进一步的,所述文库标签的每1-2个碱基与所述分子标签的每1个碱基交叉排列,并且所述组合标签最多有3个连续相同的碱基。参考以下具体示例:
5、当组合标签为ATN3GCN6……ACNn-3TCNn,从左到右,第1、2、4、5、7、8、...(n-2)、(n-1)位置是所述文库标签,第3、6、9、12、15、18、...(n-3)、n位置是所述分子标签。
所述分子标签的碱基与其相邻的任一个文库标签的碱基不同。
在1个确定的文库标签的情况下,所述分子标签的组合数是4n/3。当n=18时,所述文库标签的长度为12bp,所述分子标签的长度为6bp,分子标签序列组合数46=4069。
6、当组合标签为N1ATN4GC……Nn-6ACNn-3TGNn,从左到右,第2、3、5、6、8、9、...(n-2)、(n-1)位置是所述文库标签,第1、4、7、10、13、16、19、...(n-6)、(n-3)、n位置是所述分子标签。
所述分子标签的碱基与其相邻的任一个文库标签的碱基不同。
在1个确定的文库标签的情况下,所述分子标签的组合数是4(n+2)/3。当n=19时,文库标签的长度为12bp,文库内分子间的分子标签序列的长度为7bp,分子标签序列组合数47=16384。
7、当组合标签为ATN3GCN6……ACNn-4TGNn-1C,从左到右,第1、2、4、5、7、8、...(n-2)、n位置是文库标签,第3、6、9、12、15、18、...(n-4)、(n-1)位置是所述分子标签。
所述分子标签的碱基与其相邻的任一个文库标签的碱基不同。
在1个确定的文库标签的情况下,所述分子标签的组合数是4(n-1)/3。当n=19时,文库标签的长度为13bp,文库内分子间的分子标签序列的长度为6bp,分子标签序列组合数46=4069。
8、当组合标签为TN2GCN5ACN8……TGNn-2CT,从左到右,从左到右,第1、3、4、6、7、...(n-4)、(n-3)、(n-1)、n位置是文库标签,第2、5、8、12、15、18、...(n-2)位置是所述分子标签。
所述分子标签的碱基与其相邻的任一个文库标签的碱基不同。
在1个确定的文库标签的情况下,所述分子标签的组合数是4(n-1)/3。当n=13时,文库标签的长度为9bp,文库内分子间的分 子标签序列的长度为4bp,分子标签序列组合数44=256。
进一步的,所述文库标签的每1个碱基与所述分子标签的每1-2个碱基交叉排列,并且所述组合标签最多有3个连续相同的碱基。参考以下具体示例:
9、当组合标签为AN2N3TN5N6……CNn-4Nn-3GNn-1Nn,从左到右,第1、4、7、...n-5、n-2位置是所述文库标签,第2、3、5、6、...n-4、n-3、n-1、n位置是所述分子标签。
所述分子标签的碱基可以为四种碱基中的任一种。
在1个确定的文库标签的情况下,所述分子标签的组合数是42n/3。当n=24时,所述文库标签的长度为8bp,所述分子标签的长度为16bp,分子标签序列组合数416=4294967296。
10、当组合标签为AN2N3TN5N6……CNn-5Nn-4GNn-2Nn-1T,从左到右,第1、4、7、...n-6、n-3、n位置是所述文库标签,第2、3、5、6、...n-5、n-4、n-2、n-1位置是所述分子标签。
所述分子标签的碱基可以为四种碱基中的任一种。
在1个确定的文库标签的情况下,所述分子标签的组合数是42(n-1)/3。当n=25时,所述文库标签的长度为8bp,所述分子标签的长度为16bp,分子标签序列组合数416=4294967296。
11、当组合标签为N1N2TN4N5A……CNn-5Nn-4GNn-2Nn-1T,从左到右,第3、6、9、...n-6、n-3、n位置是所述文库标签,第1、2、4、5、7、...n-5、n-4、n-2、n-1位置是所述分子标签。
所述分子标签的碱基可以为四种碱基中的任一种。
在1个确定的文库标签的情况下,所述分子标签的组合数是42n/3。当n=24时,所述文库标签的长度为8bp,所述分子标签的长度为16bp,分子标签序列组合数416=4294967296。
12、当组合标签为N1N2TN4N5A……CNn-4Nn-3GNn-1Nn,从左到右,第3、6、9、...n-5、n-2位置是所述文库标签,第1、2、4、5、7、...n-4、n-3、n-1、n位置是所述分子标签。
所述分子标签的碱基可以为四种碱基中的任一种,例如N1N2TN4N5A…………中,N可以是A、T、C、G中任一个。
在1个确定的文库标签的情况下,所述分子标签的组合数是42(n+1)/3。当n=26时,所述文库标签的长度为8bp,所述分子标签的长度为18bp,分子标签序列组合数418=68719476736。
13、当组合标签为AN2TN4N5GN7CN9N10……GNn-3CNn-1Nn,从左到右,第1、3、6、8、...n-4、n-2位置是所述文库标签,第2、4、5、7、9、...n-3、n-1、n位置是所述分子标签。
所述分子标签的碱基可以为四种碱基中的任一种。
在1个确定的文库标签的情况下,所述分子标签的组合数是44n/7。当n=21时,所述文库标签的长度为9bp,所述分子标签的长度为12bp,分子标签序列组合数412=16777216。
14、当组合标签为AN2N3TN5GN7N8CN10……GNn-3Nn-2CNn,从左到右,第1、4、6、9、...n-4、n-1位置是所述文库标签,第2、3、5、7、8、...n-3、n-2、n位置是所述分子标签。
所述分子标签的碱基可以为四种碱基中的任一种。
在1个确定的文库标签的情况下,所述分子标签的组合数是44n/7。当n=21时,所述文库标签的长度为9bp,所述分子标签的长度为12bp,分子标签序列组合数412=16777216。
15、当组合标签为AN2N3TN5GN7N8CN10……GNn-4Nn-3CNn-1T,从左到右,第1、4、6、9、...n-5、n-2、n位置是所述文库标签,第2、3、5、7、8、...n-4、n-3、n-1位置是所述分子标签。
所述分子标签的碱基可以为四种碱基中的任一种。
在1个确定的文库标签的情况下,所述分子标签的组合数是44(n-1)/7。当n=22时,所述文库标签的长度为10bp,所述分子标签的长度为12bp,分子标签序列组合数412=16777216。
进一步的,所述文库标签的每1-2个碱基与所述分子标签的每1-2个碱基交叉排列,并且所述组合标签最多有3个连续相同的碱基。参考以下具体示例:
16、当组合标签为AN2N3TGN6CN8N9ATN12……GNn-4Nn-3CANn,从左到右,第1、4、5、7、10、11、...n-5、n-2、n-1位置是所述文库标签,第2、3、6、8、9、12、...n-4、n-3、n位置是所述分子标签。
所述分子标签的碱基可以为四种碱基中的任一种。
在1个确定的文库标签的情况下,所述分子标签的组合数是4n/2。当n=16时,所述文库标签的长度为8bp,所述分子标签的长度为8bp,分子标签序列组合数48=65536。
17、当组合标签为ATN3N4GN6CTN9N10AN12……GCNn-3Nn-2ANn,从左到右,第1、2、5、7、8、11、...n-5、n-4、n-1位置是所述文库标签,第3、4、6、9、10、12、...n-3、n-2、n位置是所述分子标签。
所述分子标签的碱基可以为四种碱基中的任一种。
在1个确定的文库标签的情况下,所述分子标签的组合数是4n/2。当n=16时,所述文库标签的长度为8bp,所述分子标签的长度为8bp,分子标签序列组合数48=65536。
三、所述文库标签的每1-2个碱基与所述分子标签的每2-3个 碱基交叉排列,并且所述组合标签最多有4个连续相同的碱基。参考以下具体示例:
18、当组合标签为AN2N3N4TGN7N8CN10N11N12AT……ANn-6Nn-5Nn-4TGNn-1Nn,从左到右,第1、5、6、9、13、14、...n-7、n-3、n-2位置是所述文库标签,第2、3、4、7、8、10、11、12、...n-6、n-5、n-4、n-1、n位置是所述分子标签。
所述分子标签的碱基可以为四种碱基中的任一种。
在1个确定的文库标签的情况下,所述分子标签的组合数是45n/8。当n=24时,所述文库标签的长度为9bp,所述分子标签的长度为15bp,分子标签序列组合数415=1073741824。
19、当组合标签为ATN3N4N5GCN8N9N10ATN13N14N15……GCNn-7Nn-6Nn-5ATNn-2Nn-1Nn,从左到右,第1、2、6、7、11、12、...n-9、n-8、n-4、n-3位置是所述文库标签,第3、4、5、8、9、10、13、14、15、...n-7、n-6、n-5、n-2、n-1、n位置是所述分子标签。
所述分子标签的碱基可以为四种碱基中的任一种。
在1个确定的文库标签的情况下,所述分子标签的组合数是43n/5。当n=20时,所述文库标签的长度为8bp,所述分子标签的长度为12bp,分子标签序列组合数412=16777216。
四、所述文库标签的每1-2个碱基与所述分子标签的每1-3个碱基交叉排列,并且所述组合标签最多有4个连续相同的碱基。参考以下具体示例:
20、当组合标签为 AN2N3N4TGN7N8CN10……ANn-8Nn-7Nn-6TGNn-3Nn-2CNn,从左到右,第1、5、6、9、...n-9、n-5、n-4、n-1位置是所述文库标签,第2、3、4、7、8、10、...n-8、n-7、n-6、n-3、n-2、n位置是所述分子标签。
所述分子标签的碱基可以为四种碱基中的任一种。
在1个确定的文库标签的情况下,所述分子标签的组合数是46n/10。当n=20时,所述文库标签的长度为8bp,所述分子标签的长度为12bp,分子标签序列组合数412=16777216。
21、当组合标签为ATN3N4N5GN7ATN10N11N12GN14……ATNn-4Nn-3Nn-2GNn,从左到右,第1、2、6、8、9、13、......n-6、n-5、n-1是所述文库标签,第3、4、5、7、10、11、12、14、...n-7、n-6、n-5、n-2、n-1、n位置是所述分子标签。
所述分子标签的碱基可以为四种碱基中的任一种。
在1个确定的文库标签的情况下,所述分子标签的组合数是44n/7。当n=21时,所述文库标签的长度为9bp,所述分子标签的长度为12bp,分子标签序列组合数412=16777216。
本发明解决了现有技术中为了避免分子标签中出现多个连续一样的碱基,而在分子标签内部加入U碱基来隔开分子标签(NNNUUUNNNUUUNNN)的问题。首次将文库标签和随机分子标签结合在一起,能在保证不加入无效长度的前提下,通过增加有效分子标签长度,能保证有足够长度的文库标签和分子标签,满足具体方案的需求。
根据本发明的具体实施例,所述分子标签的长度为6-18bp,所 述文库标签的长度为8-12bp。
本发明还提供一种接头,所述接头含有如上所述的组合标签,且所述组合标签位于所述接头除突出端“T”和非突出端末端20bp碱基以外的任意位置。
根据本发明的具体实施例,所述接头还含有识别性特征序列,所述识别性特征序列为4个不重复的碱基,所述识别性特征序列与所组合标签的3’端或5’端相连。
本发明还提供一种确定待测样本目标区域含有低频突变核酸序列的方法,如图1所述包括如下步骤:
S1、利用如上所述的接头,对待测样本目标区域核酸进行加接头反应,对加接头后的待测样本目标区域核酸进行PCR扩增,获得扩增产物,所述扩增产物构成所述待测样本的目标区域核酸测序文库;
S2、对所述待测样本的目标区域核酸测序文库进行测序,获得测序后核酸序列;
S3、将所述测序后核酸序列按照所述接头中含有的分子标签进行分类,将携带有相同分子标签的所述测序后的核酸序列归类为同一核酸序列集;
S4、将所述核酸序列集内的测序后核酸序列进行相互比较,统计所述核酸序列集中每个碱基位置的碱基种类及其频率;
S5、根据所述核酸序列集中每个碱基位置的碱基种类及其频率,通过数据分析,得到所述核酸序列集中含有正确的碱基排列位置的核酸序列;
S6、将所述含有正确的碱基排列位置的核酸序列与所述核酸序列集中的其余的核酸序列或平行的核酸序列集中的核酸序列进行比 较,得到含有低频突变的核酸序列。
下面将结合实施例对本发明的方案进行解释。本领域技术人员将会理解,下面示例仅用于解释本发明,而不能理解为对本发明的限制。除另有交待,以下实施例中涉及的未特别交待的试剂、序列(接头、标签和引物)、软件及仪器,都是常规市售产品或者开源的。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
实施例1确定待测样本目标区域含有低频突变核酸序列的方法
1、设计组合标签及含有该组合标签的接头。
按照文库标签和分子标签以单个碱基交叉排列方式设计组合标签,所述组合标签上最多含有2个连续相同的碱基。按照实验需要,设计一组组合标签16种。如表1所示,16种组合标签:
表1
SEQ ID NO: 分子标签 SEQ ID NO: 分子标签
1 ATGTCATAGCTGCTGC 9 ACGTCATCGCTACTGC
2 AGGACGTTGCTACAGC 10 AGGACGTAGCTACTGC
3 ATGACGTCGTTGCAGC 11 ACGACATCGTTGCAGC
4 AGGTCGTTGGTGCAGC 12 ACGTCGTAGGTGCAGC
5 ACGACGTTGCTACTGC 13 ATGACCTAGCTACTGC
6 ACGTCTTCGATGCTGC 14 ACGACGTAGCTACTGC
7 AGGTCGTCGATGCAGC 15 ATGACGTCGATGCTGC
8 ATGACGTCGATGCAGC 16 ATGTCGTAGCTGCAGC
其中,有下划线的碱基是分子标签序列,无下划线的碱基是文库标签序列。
将上述设计的组合标签设计成一组接头,其中组合标签可位于接头除突出端“T”和非突出端末端20bp碱基以外的任意位置。如图2、图3、图4、图5所示,NNN...NNN代表组合标签,接头的种类可以是,完全互补的双链结构、一端互补一端开放的Y型结构,或者可通过PCR将组合标签引入接头的Y型结构。组合标签可以仅位于接头的任意一端或中间,也可以分布于2个或者2个以上的位置,N的个数代表组合标签的碱基数目,需要的组合标签种类多就增加该位置的碱基个数,比如采用8bp、12bp、16bp、24bp或者更多的碱基个数。
如表2所示,16种含有不同组合标签的接头:
表2
Figure PCTCN2017100425-appb-000001
Figure PCTCN2017100425-appb-000002
Figure PCTCN2017100425-appb-000003
当接头如图1和图2及其类似的结构,需要同时设计含有组合标签反向互补的结构,如需要同时设计表2中的F向序列和R向序列,图3、图4及其类似的结构则只需要设计单链组合标签,如表2中的F向序列而不需要设计组合标签反向互补序列。
根据实验的需要,还可以在组合标签的3’或5’端添加识别性特征序列和/或文库标签。例如,使用Ion Torrent平台测序时,可以将识别不同样本的Barcode序列加入其中。
2、合成含有组合标签的接头
根据所设计的接头序列,将设计出来的组合标签或及其对应的反向互补序列及其3'端、5'端的序列进行合成,得到含有组合标签的接头。本领域人员可以理解的,合成方法可采用本领域熟知的方法,也可委托给引物合成公司合成。
3、将得到的接头稀释成工作液,待用。
4、提取样本DNA
抽取病人外周EDTA抗凝血10ml,并新鲜离心分离血浆,按照 本领域技术人员熟知的方法提取血浆DNA。
5、DNA末端修复
将提取得到的DNA溶液和末端修复的试剂混合液混合,按照本领域技术人员熟知的末端修复的方法进行反应,反应结束后进行分离纯化。
5.1按如下反应体系在1.5mlEP管中配制:
试剂
DNA 50
10×PNK缓冲液 5
dNTP溶液(10mM) 2
T4DNA聚合酶 1
T4PNK 1
KLENOW片段(稀 1
总体积/ul 50
室温混匀,轻微离心后,反应体系置于PCR仪中,20℃反应30分钟,反应结束后,使用AMpure XP磁珠纯化。
5.2在50ul体系反应产物中加入90ul磁珠,进行AMpure XP磁珠纯化后,反复用500ul 75%乙醇洗涤两次,弃上清液。37℃烘干,至磁珠干燥。加入23ul水,混匀磁珠,待澄清,吸取22ul上清液。
6、加接头反应
将末端修复后的DNA溶液和前述第3步中得到的含有组合标签的接头的工作液、连接反应试剂混合液混合,按照本领域技术人员熟知的加接头的方法进行反应,反应结束后进行分离纯化。
6.1将5中得到的溶液按照以下体系配制反应液:
试剂 体积ul
DNA 22
10×快速连接酶缓冲液 5
ATP(10mM) 3.5
T4DNA连接酶 3
接头A(12.5pmol/ul稀释4倍) 1
接头P1(12.5pmol/ul稀释4倍) 1
H2O 14.5
总体积/ul 50
室温混匀,轻微离心后,反应体系置于PCR仪中,20℃反应30分钟,反应结束后,使用AMpure XP磁珠纯化。
6.2采用如5.2所示的方法进行磁珠纯化,其区别在于50ul体系反应产物中加入75ul磁珠,反复用500ul 75%乙醇洗涤两次,弃上清液。37℃烘干,至磁珠干燥。加入36ul水,混匀磁珠,待澄清,吸取34.5ul上清液。
7、PCR富集,构建测序文库
将加接头后的DNA和PCR反应试剂混合液混均,按照本领域技术人员熟知的方法进行PCR反应,反应结束后进行分离纯化,到此文库构建结束,对文库进行QC检测,检测合格后等待测序。
7.1在1个新的PCR管中按照以下体系配制反应液:
试剂 体积/ul
DNA 34.5
10×Pfx扩增缓冲液 5
dNTP溶液(10mM) 5
MgSO4(50mM) 2
PCR引物PE1(10pmol/ul) 4
PCR引物PE2(10pmol/ul) 4
Pfx DNA聚合酶 1
总体积/ul 50
室温混匀,轻微离心后,反应体系置于PCR仪中,按照以下条件进行反应:
Figure PCTCN2017100425-appb-000004
反应结束后,使用AMpure XP磁珠纯化。
7.2采用如5.2所示的方法进行磁珠纯化,其区别在于50ul体系反应产物中加入50ul磁珠。文库构建结束。
8、文库质检
对文库进行QPCR和Agilent 2100检测,质检合格文库安排上机。
9、对文库进行DNA测序
可使用Ion Torrent Proton、Ion Torrent PGM等二代测序仪对文库进行测序。
10、分析测序结果
将测序后得到的DNA的测序结果进行分析,按照组合标签将得到的DNA序列进行分类,将携带有相同的组合标签的序列作为1个“分子簇”,这个分子簇是初始1个DNA分子通过PCR形成的1类DNA,即原始DNA分子的正链和负链的“复制链”。
统计“分子簇”内部每个碱基位置的碱基种类及其出现的频数。
根据数据分析,找出由于PCR和测序带入的错误并纠正。
从而得到原始DNA的正确序列,并通过分子簇内部和平行比较,找出真正的突变序列。
实施例2
本实施例确定待测样本目标区域含有低频突变核酸序列的方法与实施例1基本相同,其不同之处在于,步骤1中按照文库标签2个碱基与分子标签1个碱基交叉排列。
如下表3所示:
Figure PCTCN2017100425-appb-000005
Figure PCTCN2017100425-appb-000006
接头P1序列5’-3’:
SEQ ID NO 46:CCTCTCTATGGGCAGTCGGTGAT。
其中,有下划线的碱基是分子标签序列,无下划线的碱基是文库标签序列。
实施例3
本实施例确定待测样本目标区域含有低频突变核酸序列的方法与实施例1基本相同,其不同之处在于,步骤1中按照文库标签1-2个碱基与分子标签1-2个碱基交叉排列。
如下表4所示:
Figure PCTCN2017100425-appb-000007
Figure PCTCN2017100425-appb-000008
接头P1序列5’-3’:
SEQ ID NO 59:CCTCTCTATGGGCAGTCGGTGAT。
其中,有下划线的碱基是分子标签序列,无下划线的碱基是文库标签序列。
实施例4
本实施例确定待测样本目标区域含有低频突变核酸序列的方法与实施例1基本相同,其不同之处在于,步骤1中按照文库标签1-2个碱基与分子标签2-3个碱基交叉排列。
如下表5所示:
Figure PCTCN2017100425-appb-000009
Figure PCTCN2017100425-appb-000010
接头P1序列5’-3’:
SEQ ID NO 72:CCTCTCTATGGGCAGTCGGTGAT。
其中,有下划线的碱基是分子标签序列,无下划线的碱基是文库标签序列。
以上实施方式仅用以说明本发明的技术方案而非限制,尽管参照以上较佳实施方式对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换都不应脱离本发明技术方案的精神和范围。

Claims (10)

  1. 一种组合标签,其特征在于,包括分子标签和文库标签,所述分子标签的碱基与所述文库标签的碱基交叉排列。
  2. 根据权利要求1所述的组合标签,其特征在于,所述文库标签的每1-2个碱基与所述分子标签的每个1-3碱基交叉排列。
  3. 根据权利要求2所述的组合标签,其特征在于,所述文库标签的每1个碱基与所述分子标签的每1个碱基交叉排列,并且所述组合标签最多有2个连续相同的碱基。
  4. 根据权利要求2所述的组合标签,其特征在于,所述文库标签的每1-2个碱基与所述分子标签的每1-2个碱基交叉排列,并且所述组合标签最多有3个连续相同的碱基。
  5. 根据权利要求2所述的组合标签,其特征在于,所述文库标签的每1-2个碱基与所述分子标签的每2-3个碱基交叉排列,并且所述组合标签最多有4个连续相同的碱基。
  6. 根据权利要求2所述的组合标签,其特征在于,所述文库标签的每1-2个碱基与所述分子标签的每1-3个碱基交叉排列,并且所述组合标签最多有4个连续相同的碱基。
  7. 根据权利要求1所述的组合标签,其特征在于,所述分子标签的长度为6-18bp,所述文库标签的长度为8-12bp。
  8. 一种接头,其特征在于,所述接头含有如权利要求1-6任一项所述的组合标签,且所述组合标签位于所述接头除突出端“T”和非突出端末端20bp碱基以外的任意位置。
  9. 如权利要求8所述的接头,其特征在于,所述接头还含有识别性特征序列,所述识别性特征序列为4个不重复的碱基,所述识 别性特征序列与所组合标签的3’端或5’端相连。
  10. 一种确定待测样本目标区域含有低频突变核酸序列的方法,包括如下步骤:
    S1、利用如权利要求8所述的接头,对待测样本目标区域核酸进行加接头反应,对加接头后的待测样本目标区域核酸进行PCR扩增,获得扩增产物,所述扩增产物构成所述待测样本的目标区域核酸测序文库;
    S2、对所述待测样本的目标区域核酸测序文库进行测序,获得测序后核酸序列;
    S3、将所述测序后核酸序列按照所述接头中含有的分子标签进行分类,将携带有相同分子标签的所述测序后的核酸序列归类为同一核酸序列集;
    S4、将所述核酸序列集内的测序后核酸序列进行相互比较,统计所述核酸序列集中每个碱基位置的碱基种类及其频率;
    S5、根据所述核酸序列集中每个碱基位置的碱基种类及其频率,通过数据分析,得到所述核酸序列集中含有正确的碱基排列位置的核酸序列;
    S6、将所述含有正确的碱基排列位置的核酸序列与所述核酸序列集中的其余的核酸序列或平行的核酸序列集中的核酸序列进行比较,得到含有低频突变的核酸序列。
PCT/CN2017/100425 2017-07-14 2017-09-04 组合标签、接头及确定含有低频突变核酸序列的方法 WO2019010776A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710573056.XA CN107354209B (zh) 2017-07-14 2017-07-14 组合标签、接头及确定含有低频突变核酸序列的方法
CN201710573056.X 2017-07-14

Publications (1)

Publication Number Publication Date
WO2019010776A1 true WO2019010776A1 (zh) 2019-01-17

Family

ID=60293441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100425 WO2019010776A1 (zh) 2017-07-14 2017-09-04 组合标签、接头及确定含有低频突变核酸序列的方法

Country Status (2)

Country Link
CN (1) CN107354209B (zh)
WO (1) WO2019010776A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110438121A (zh) * 2018-05-03 2019-11-12 深圳华大临床检验中心 接头、接头文库及其应用
CN111073961A (zh) * 2019-12-20 2020-04-28 苏州赛美科基因科技有限公司 一种基因稀有突变的高通量检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008150377A1 (en) * 2007-05-29 2008-12-11 Ming-Sheng Lee High throughput mutation screening methods and kits
CN104293938A (zh) * 2014-09-30 2015-01-21 天津华大基因科技有限公司 构建测序文库的方法及其应用
CN106048009A (zh) * 2016-06-03 2016-10-26 人和未来生物科技(长沙)有限公司 一种用于超低频基因突变检测的标签接头及其应用
CN106676182A (zh) * 2017-02-07 2017-05-17 北京诺禾致源科技股份有限公司 一种低频率基因融合的检测方法及装置
CN106811460A (zh) * 2015-11-30 2017-06-09 安诺优达基因科技(北京)有限公司 用于低频突变检测的二代测序文库的构建方法及试剂盒
CN106834275A (zh) * 2017-02-22 2017-06-13 天津诺禾医学检验所有限公司 ctDNA超低频突变检测文库的构建方法、试剂盒及文库检测数据的分析方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103938277B (zh) * 2014-04-18 2016-05-25 中国科学院北京基因组研究所 以痕量dna为基础的二代测序文库构建方法
US11535882B2 (en) * 2015-03-30 2022-12-27 Becton, Dickinson And Company Methods and compositions for combinatorial barcoding
CN105861710B (zh) * 2016-05-20 2018-03-30 北京科迅生物技术有限公司 测序接头、其制备方法及其在超低频变异检测中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008150377A1 (en) * 2007-05-29 2008-12-11 Ming-Sheng Lee High throughput mutation screening methods and kits
CN104293938A (zh) * 2014-09-30 2015-01-21 天津华大基因科技有限公司 构建测序文库的方法及其应用
CN106811460A (zh) * 2015-11-30 2017-06-09 安诺优达基因科技(北京)有限公司 用于低频突变检测的二代测序文库的构建方法及试剂盒
CN106048009A (zh) * 2016-06-03 2016-10-26 人和未来生物科技(长沙)有限公司 一种用于超低频基因突变检测的标签接头及其应用
CN106676182A (zh) * 2017-02-07 2017-05-17 北京诺禾致源科技股份有限公司 一种低频率基因融合的检测方法及装置
CN106834275A (zh) * 2017-02-22 2017-06-13 天津诺禾医学检验所有限公司 ctDNA超低频突变检测文库的构建方法、试剂盒及文库检测数据的分析方法

Also Published As

Publication number Publication date
CN107354209B (zh) 2021-01-08
CN107354209A (zh) 2017-11-17

Similar Documents

Publication Publication Date Title
CN106367485B (zh) 一种用于检测基因突变的多定位双标签接头组及其制备方法和应用
CN107002292B (zh) 一种核酸的双接头单链环状文库的构建方法和试剂
CN104694635B (zh) 一种高通量简化基因组测序文库的构建方法
CN106048009B (zh) 一种用于超低频基因突变检测的标签接头及其应用
WO2016037416A1 (zh) 泡状接头及其在核酸文库构建及测序中的应用
CN108998508B (zh) 扩增子测序文库的构建方法及引物组和试剂盒
WO2021073490A1 (zh) 一种检测ctDNA中肿瘤特异基因的变异和甲基化的方法
CN111808854B (zh) 带有分子条码的平衡接头及快速构建转录组文库的方法
CN106939344B (zh) 用于二代测序的接头
CN106554955B (zh) 构建pkhd1基因突变的测序文库的方法和试剂盒及其用途
US12054710B2 (en) Method of ctDNA library construction and sequencing data analysis for simultaneously detecting multiple common mutations in liver cancer
CN105506063A (zh) 引物组合物及其用途
CN106011230A (zh) 用于检测碎片化dna目标区域的引物组合物及其应用
WO2017024991A1 (zh) 猪bcr重链多重pcr引物及其应用
KR20170133270A (ko) 분자 바코딩을 이용한 초병렬 시퀀싱을 위한 라이브러리 제조방법 및 그의 용도
CN103571822B (zh) 一种用于新一代测序分析的多重目的dna片段富集方法
WO2021253372A1 (zh) 一种高兼容性的PCR-free建库和测序方法
CN108531475A (zh) 一种高通量转录组文库构建方法
WO2023202030A1 (zh) 一种小分子rna的高通量测序文库构建方法
WO2021203461A1 (zh) 一种用于纳米孔测序建库的位置锚定条码系统
WO2012037875A1 (zh) Dna标签及其应用
WO2019010776A1 (zh) 组合标签、接头及确定含有低频突变核酸序列的方法
CN110724731A (zh) 一种在多重pcr体系内加入内参定量核酸拷贝数的方法
CN108220418A (zh) 基于多重pcr捕获技术的杜氏/贝氏肌营养不良症的检测试剂盒及方法
KR20220077907A (ko) 라이브러리 구축 방법 및 응용

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917408

Country of ref document: EP

Kind code of ref document: A1