WO2019010657A1 - 电芯分容方法和装置 - Google Patents

电芯分容方法和装置 Download PDF

Info

Publication number
WO2019010657A1
WO2019010657A1 PCT/CN2017/092674 CN2017092674W WO2019010657A1 WO 2019010657 A1 WO2019010657 A1 WO 2019010657A1 CN 2017092674 W CN2017092674 W CN 2017092674W WO 2019010657 A1 WO2019010657 A1 WO 2019010657A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
discharge rate
preset
fully charged
temperature
Prior art date
Application number
PCT/CN2017/092674
Other languages
English (en)
French (fr)
Inventor
许柏皋
梁萌萌
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/092674 priority Critical patent/WO2019010657A1/zh
Priority to CN201780007658.7A priority patent/CN108701877A/zh
Publication of WO2019010657A1 publication Critical patent/WO2019010657A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Embodiments of the present invention relate to the field of battery technologies, and in particular, to a battery core sharing method and apparatus.
  • the UAV lithium-ion battery is composed of a plurality of cells in a series of ways, wherein the cells having substantially the same capacitance can be assembled into the same battery.
  • the method of splitting and matching is adopted to screen out the batteries with the capacity in accordance with the requirements.
  • the specific process is as follows: the battery is fully charged, and then discharged at a current of 0.5 C to obtain the capacity of the battery, and then the capacity meets the same requirements.
  • the batteries are grouped together.
  • a plurality of batteries are assembled into a battery and applied to the unmanned aerial vehicle.
  • the unmanned aerial vehicle In the actual operation process, the unmanned aerial vehicle generally discharges each of the electric cells with a current of 3C, and in this rapid discharge, a large amount is generated.
  • the heat causes the internal environment of the cell to change, which in turn affects the capacity of the cell. This may cause the capacity of each cell in the same battery to be unbalanced, resulting in a large voltage difference between the cells, which is likely to cause The battery exploded, causing a safety accident.
  • the embodiment of the invention provides a method and a device for dividing a battery core, which are used for accurately obtaining the capacity of the battery core when working at the power terminal, avoiding the imbalance of the capacity of the battery core in the user terminal, and ensuring the safety of the battery. Avoid the occurrence of security incidents.
  • an embodiment of the present invention provides a method for dividing a battery core, including:
  • the discharging of the fully charged battery according to a preset discharge rate to obtain the capacity of the battery includes:
  • the capacity of the battery cell is obtained according to the preset discharge rate and the discharge time length.
  • the discharging the fully charged battery according to a preset discharge rate comprises:
  • the preset temperature is between 20 and 80 degrees.
  • the discharging of the fully charged battery cell at a preset temperature according to a preset discharge rate includes:
  • the fully charged cells are discharged at a constant predetermined temperature according to a preset discharge rate.
  • the constant predetermined temperature is from 20 degrees to 80 degrees.
  • the battery is charged to obtain a fully charged battery, including:
  • Discharging the fully charged cells with a preset discharge rate including:
  • the battery with the full charge is used to supply power to the preset load.
  • the current of the charging source is greater than or equal to the product of the predetermined discharge rate and the nominal capacity of the cell.
  • the powered terminal is a drone.
  • the preset discharge rate is greater than or equal to a maximum discharge rate when the power terminal is operated.
  • the maximum discharge rate when the power terminal is operated is 2C to 3C.
  • the predetermined discharge rate is 2C to 6C.
  • an embodiment of the present invention provides a battery core sharing device, including: a power module and a controller;
  • the power module is configured to charge a battery core to obtain a battery with a full charge
  • the controller is configured to discharge the fully charged battery according to a preset discharge rate to obtain a capacity of the battery; wherein the preset discharge rate and the use of the battery core The discharge rate of the electric terminal is related.
  • the controller is specifically configured to:
  • the capacity of the battery cell is obtained according to the preset discharge rate and the discharge time length.
  • the device further includes: a heating module; the heating module is electrically connected to the controller;
  • the heating module is configured to heat the battery core
  • the controller is specifically configured to: according to a preset discharge rate, control the heating module to heat the battery to a preset temperature, and discharge the fully charged battery; wherein the preset temperature is greater than room temperature .
  • the preset temperature is between 20 and 80 degrees.
  • the device further includes: a temperature sensor and a cooling module;
  • the temperature sensor is configured to detect a temperature of the battery cell
  • the cooling module is configured to cool the chip
  • the controller is specifically configured to:
  • the constant predetermined temperature is from 20 degrees to 80 degrees.
  • the power module includes: a charging power source and a preset load;
  • the charging power source is specifically configured to charge the battery core by using a charging power source to obtain a battery with a full charge
  • the controller is specifically configured to use a predetermined discharge rate to supply power to the preset load by using the fully charged battery.
  • the current of the charging source is greater than or equal to the product of the predetermined discharge rate and the nominal capacity of the cell.
  • the powered terminal is a drone.
  • the preset discharge rate is greater than or equal to a maximum discharge rate when the power terminal is operated.
  • the maximum discharge rate when the power terminal is operated is 2C to 3C.
  • the predetermined discharge rate is 2C to 6C.
  • the device further comprises: a box;
  • the box is configured to receive the battery core
  • the power module is configured to charge the battery core housed in the box to obtain a fully charged battery cell.
  • the method and device for dispersing a cell according to an embodiment of the present invention discharges a fully charged cell according to a preset discharge rate associated with a discharge rate of the power terminal, so that the discharge process of the cell in the embodiment It is closer to the operating environment of the battery in the terminal. Therefore, the battery is discharged by the preset discharge rate, and the capacity of the obtained battery is closer to the capacity of the battery in the actual operation of the user terminal, which is more accurate. Therefore, after assembling the cells of similar capacity obtained in the embodiment into a battery, the capacity of each cell is balanced during the operation of the user terminal, and the voltage difference between the cells is not large, thereby ensuring the battery. Safe to use, to avoid the occurrence of security incidents.
  • FIG. 1 is a flowchart of a method for dividing a cell according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a battery core capacity sharing device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a cell balancing device according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a battery core capacity-distributing device according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a cell balancing device according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a cell balancing device according to another embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for dividing a cell according to an embodiment of the present invention, as shown in FIG.
  • the method of an embodiment may include:
  • S101 Charging the battery core to obtain a battery with a full charge.
  • S102 Discharge the fully charged battery cell according to a preset discharge rate to obtain a capacity of the battery cell; wherein the preset discharge rate and a discharge rate of the power terminal to which the battery cell is applied related.
  • the battery is charged until the battery is fully charged, a fully charged battery is obtained, and then the fully charged battery is discharged.
  • the embodiment is based on a preset discharge rate.
  • the fully charged battery is discharged, and the predetermined discharge rate is related to the discharge rate of the electric terminal to which the battery is applied, wherein the electric terminal to which the battery is applied refers to the battery used by the electric terminal.
  • the battery is included in the battery.
  • the present embodiment discharges the fully charged battery according to the preset discharge rate associated with the discharge rate of the powered terminal, so that the discharge process of the battery in this embodiment is closer to that of the battery.
  • the operating environment of the terminal therefore, discharging the battery cell by the preset discharge rate, the capacity of the obtained battery cell is closer to the capacity of the battery core in the actual working of the user terminal, and is more accurate, so that the similarities obtained in this embodiment are similar.
  • the capacity of each battery cell is balanced during the operation of the user terminal, and the voltage difference between the cells is not large, thereby ensuring the safety of the battery and avoiding safety accidents. occur.
  • the foregoing S102 may include S1021-S1023:
  • S1011 Discharge the fully charged battery according to the preset discharge rate.
  • S1022 Acquire a discharge duration of the battery cell when the electric quantity of the battery cell is discharged to an empty battery.
  • the battery with full charge is discharged until the power of the battery is empty, and the discharge time of the battery is obtained, that is, the battery discharges from the full charge at a preset discharge rate.
  • the length of discharge when the battery is empty is empty.
  • the capacity of the battery cell is obtained. How to obtain the capacity of the battery cell according to the preset discharge rate and the discharge time length can be referred to the related description in the prior art, and details are not described herein again. .
  • a feasible implementation manner of discharging the fully charged battery according to a preset discharge rate is: according to a preset discharge rate, the fully charged battery at a preset temperature Discharging is performed; wherein the preset temperature is greater than room temperature.
  • the battery cell in the process of discharging the fully charged battery core at a preset discharge rate, The battery cell is at a preset temperature, and the preset temperature is greater than room temperature. This is because when the battery is applied to the power terminal, the battery is in the process of discharging during the actual working process, and the battery core generates a large amount of heat, so that the temperature of the battery core in the power terminal is greater than room temperature. Therefore, in order to further make the discharge process of the cell of the embodiment close to the actual working environment of the cell in the user terminal, the embodiment discharges the cell at a preset temperature.
  • the preset temperature is between 20 degrees and 80 degrees, and the temperature is close to the temperature of the battery core when the user terminal actually works, thereby realizing that the battery core is actually simulated when detecting the capacity of the battery core.
  • a feasible implementation manner of discharging the fully charged battery cell at a preset temperature according to a preset discharge rate is: according to a preset discharge rate, the constant preset temperature
  • the fully charged cells are discharged.
  • the process of discharging the fully charged battery according to the preset discharge rate not only the battery is at a preset temperature, but also the battery is at a constant preset temperature, so that the battery is at At a constant temperature during discharge. Since the battery core is in actual operation when the power terminal is in operation, the battery core generates a large amount of heat, so that the temperature of the battery core continues to be at a high temperature.
  • the cell is at a constant preset temperature, and the capacity of the cell thus obtained is closer to the capacity of the cell when it is applied to the terminal.
  • the constant preset temperature is 20 degrees to 80 degrees, wherein the constant preset temperature herein refers to a certain temperature in a range of 20 degrees to 80 degrees, for example, a constant pre-predetermined temperature.
  • the temperature be, for example, 45 degrees, or a constant preset temperature, for example, 60 degrees. It should be noted that during the actual operation, the constant preset temperature allows temperature fluctuations of a certain error range.
  • a feasible implementation manner of the foregoing S101 is: charging the battery core by using a charging power source to obtain a battery full of power.
  • a feasible implementation manner of discharging the fully charged battery cell by using a preset discharge rate is: according to the preset discharge rate, using the fully charged battery cell pair preset The load is supplied with power. In the process of powering the preset load by using the battery core, it is the discharge process of the battery core.
  • the charging power source and the preset load may be integrated into one device, that is, a power module, and the power module has a charging function for the battery core and a discharging function for the battery core, which is equivalent to the power module to the battery core.
  • Power is supplied, and the battery can be discharged to absorb the power of the battery. And stored, the stored power can still supply power to the battery, so that the power can be recycled, avoiding wasted power, environmental protection and energy saving.
  • the current of the charging power source is greater than or equal to the product of the predetermined discharge rate and the nominal capacity of the battery cell, so as to ensure that the battery cell can be discharged at a preset discharge rate.
  • the preset discharge rate is 3C and the nominal capacity of the battery cell is 6AH
  • the current of the charging power source is, for example, 20A.
  • the preset discharge rate is greater than or equal to a maximum discharge rate when the power terminal is in operation.
  • the preset discharge rate of the embodiment is related to the maximum discharge rate when the terminal is operated. If the preset discharge rate is greater than or equal to the maximum discharge rate when the power terminal is working.
  • the maximum discharge rate when the power terminal is operated is 2C to 3C.
  • the preset discharge rate is 2C-6C.
  • the above-mentioned power terminal is a drone.
  • FIG. 2 is a schematic structural diagram of a cell-capacitor device according to an embodiment of the present invention.
  • the cell-capacitor device 200 of the present embodiment may include a power module 201 and a controller 202.
  • the power module 201 is configured to charge the battery to obtain a fully charged battery.
  • the controller 202 is configured to discharge the fully charged battery cell according to a preset discharge rate to obtain a capacity of the battery cell; wherein the preset discharge rate is applied to the battery core
  • the discharge rate of the electric terminal is related.
  • the power module 201 and the controller 202 can be electrically connected.
  • controller 202 is specifically configured to:
  • the capacity of the battery cell is obtained according to the preset discharge rate and the discharge time length.
  • the device of this embodiment may be used to implement the technical solution of the foregoing method embodiment of the present invention, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • FIG. 3 is a schematic structural diagram of a cell-capacity dispensing device according to another embodiment of the present invention.
  • the device of the present embodiment further includes: a heating module 203, based on the device embodiment shown in FIG. 2;
  • the heating module 203 is electrically connected to the controller 202.
  • the heating module 203 is configured to heat the battery cells.
  • the controller 202 is specifically configured to: control the heating module 203 according to a preset discharge rate
  • the battery is discharged to the fully charged battery by heating the battery to a preset temperature; wherein the preset temperature is greater than room temperature.
  • the preset temperature is between 20 degrees and 80 degrees.
  • the device of this embodiment may be used to implement the technical solution of the foregoing method embodiment of the present invention, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • FIG. 4 is a schematic structural diagram of a cell balancing device according to another embodiment of the present invention. As shown in FIG. 4, the device of the embodiment further includes: a temperature sensor 204 according to the device embodiment shown in FIG. Refrigeration module 205.
  • the temperature sensor 204 is configured to detect the temperature of the battery cell.
  • the cooling module 205 is configured to cool the chip
  • the controller 202 is specifically configured to:
  • the fully charged cells are discharged at a preset temperature.
  • the constant predetermined temperature is 20 degrees to 80 degrees.
  • the device of this embodiment may be used to implement the technical solution of the foregoing method embodiment of the present invention, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • FIG. 5 is a schematic structural diagram of a cell balancing device according to another embodiment of the present invention. As shown in FIG. 5, the device of this embodiment is based on any of the embodiments of FIG. 2 to FIG. 4, wherein FIG. 5
  • the power module 201 of the present embodiment includes a charging power source 2011 and a preset load 2012, as shown in FIG.
  • the charging power source 2011 is specifically configured to charge the battery core to obtain a battery with a full charge
  • the controller 202 is specifically configured to supply power to the preset load 2012 by using a battery with a full charge by using a preset discharge rate.
  • the current of the charging power source is greater than or equal to a product of the predetermined discharge rate and a nominal capacity of the battery cell.
  • the powered terminal is a drone.
  • the preset discharge rate is greater than or equal to a maximum discharge rate when the power terminal is in operation.
  • the maximum discharge rate when the power terminal is operated is 2C to 3C.
  • the preset discharge rate is 2C-6C.
  • the device of this embodiment may be used to implement the technical solution of the foregoing method embodiment of the present invention, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • FIG. 6 is a schematic structural diagram of a cell balancing device according to another embodiment of the present invention. As shown in FIG. 6, the device of this embodiment is based on any of the embodiments of FIG. 2 to FIG. 5, wherein FIG. 6 As shown on the basis of FIG. 5, the apparatus of this embodiment further includes a case 206.
  • the box 206 is configured to receive the battery core.
  • the power module 201 is configured to charge the battery cells housed in the box 206 to obtain a fully charged battery.
  • the heating module 203 can heat the casing 206 to bring the casing 206 to a preset temperature. Accordingly, the cells contained in the casing 206 are at a preset temperature.
  • the temperature sensor 204 can be used to detect the temperature in the box 206, and the temperature in the box 206 is used as the temperature of the battery core.
  • the cooling module 205 can be used to cool the box 206 to ensure the cabinet.
  • the temperature within 206 is constant, and accordingly, the cells contained within the housing 206 are at a constant preset temperature.
  • the purpose of heating the cells is achieved by heating the casing 206.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage medium includes: read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk, and the like, which can store program codes. Medium.

Abstract

一种电芯分容方法和装置,该方法包括:对电芯进行充电,获得满电量的电芯(S101);根据预设放电倍率,对所述满电量的电芯进行放电,以获得所述电芯的容量;其中,所述预设放电倍率与所述电芯应用于的用电终端的放电倍率有关(S102)。因此,通过预设放电倍率对电芯进行放电,获得的电芯的容量更接近于电芯在用户终端的实际工作时的容量,更加准确,从而将获得的相近容量的电芯组装成电池后,在用户终端的工作时,各个电芯的容量也是均衡的,不会造成电芯间的压差大的情况,保证了电池的使用安全,避免了安全事故的发生。

Description

电芯分容方法和装置 技术领域
本发明实施例涉及电池技术领域,尤其涉及一种电芯分容方法和装置。
背景技术
无人机锂离子动力电池是多个电芯以串并的方式组成的,其中,电容量基本相同的电芯才能组装成同一块电池。目前是采用分容配组的方式,筛选出容量符合要求的电芯,具体过程为:将电芯充满电,然后以0.5C电流进行放电,获得电芯的容量,再将容量符合同一要求的电芯配为一组。但是,多个电芯组装成电池,并应用于无人机中,无人机在实际运行过程中一般是以3C电流对各个电芯进行快速放电,在这一快速放电的时候,会产生大量热量,从而造成电芯的内部环境发生变化,进而影响到电芯的容量,这很有可能造成同一块电池内各个电芯的容量不均衡,从而造成各个电芯间的压差大,容易引起电池爆炸,造成安全事故。
发明内容
本发明实施例提供一种电芯分容方法和装置,用于精确地获得电芯在用电终端工作时的容量,避免用户终端中的电芯的容量不均衡,保证了电池的使用安全,避免了安全事故的发生。
第一方面,本发明实施例提供一种电芯分容方法,包括:
对电芯进行充电,获得满电量的电芯;
根据预设放电倍率,对所述满电量的电芯进行放电,以获得所述电芯的容量;其中,所述预设放电倍率与所述电芯应用于的用电终端的放电倍率有关。
在一种可能的设计中,所述根据预设放电倍率,对所述满电量的电芯进行放电,以获得所述电芯的容量,包括:
根据所述预设放电倍率,对所述满电量的电芯进行放电;
在所述电芯的电量放电至空电量时,获取所述电芯的放电时长;
根据所述预设放电倍率和所述放电时长,获得所述电芯的容量。
在一种可能的设计中,所述根据预设放电倍率,对所述满电量的电芯进行放电,包括:
根据预设放电倍率,在预设温度下对所述满电量的电芯进行放电;其中,所述预设温度大于室温。
在一种可能的设计中,所述预设温度介于20度到80度之间。
在一种可能的设计中,所述根据预设放电倍率,在预设温度下对所述满电量的电芯进行放电,包括:
根据预设放电倍率,在恒定的所述预设温度下对所述满电量的电芯进行放电。
在一种可能的设计中,所述恒定的所述预设温度为20度~80度。
在一种可能的设计中,所述对电芯进行充电,获得满电量的电芯,包括:
采用充电电源对所述电芯进行充电,获得满电量的电芯;
采用预设放电倍率,对所述满电量的电芯进行放电,包括:
根据所述预设放电倍率,采用所述满电量的电芯对预设负载进行供电。
在一种可能的设计中,所述充电电源的电流大于或等于所述预设放电倍率与所述电芯的标称容量之积。
在一种可能的设计中,所述用电终端为无人机。
在一种可能的设计中,所述预设放电倍率大于等于所述用电终端工作时的最大放电倍率。
在一种可能的设计中,所述用电终端工作时的最大放电倍率为2C~3C。
在一种可能的设计中,所述预设放电倍率为2C~6C。
第二方面,本发明实施例提供一种电芯分容装置,包括:电源模块和控制器;
所述电源模块,用于对电芯进行充电,获得满电量的电芯;
所述控制器,用于根据预设放电倍率,对所述满电量的电芯进行放电,以获得所述电芯的容量;其中,所述预设放电倍率与所述电芯应用于的用电终端的放电倍率有关。
在一种可能的设计中,所述控制器,具体用于:
根据所述预设放电倍率,对所述满电量的电芯进行放电;
在所述电芯的电量放电至空电量时,获取所述电芯的放电时长;
根据所述预设放电倍率和所述放电时长,获得所述电芯的容量。
在一种可能的设计中,所述装置还包括:加热模块;所述加热模块与所述控制器电连接;
所述加热模块,用于对电芯进行加热;
所述控制器,具体用于:根据预设放电倍率,控制所述加热模块对电芯加热至预设温度下,对所述满电量的电芯进行放电;其中,所述预设温度大于室温。
在一种可能的设计中,所述预设温度介于20度到80度之间。
在一种可能的设计中,所述装置还包括:温度传感器和制冷模块;
所述温度传感器,用于检测所述电芯的温度;
所述制冷模块,用于对所述芯片进行降温;
所述控制器,具体用于:
根据所述温度传感器检测到的温度,控制所述加热模块和所述制冷模块,将电芯的温度恒定在所述预设温度下,并根据预设放电倍率,在恒定的所述预设温度下,对所述满电量的电芯进行放电。
在一种可能的设计中,所述恒定的所述预设温度为20度~80度。
在一种可能的设计中,所述电源模块包括:充电电源和预设负载;
所述充电电源,具体用于采用充电电源对所述电芯进行充电,获得满电量的电芯;
所述控制器,具体用于采用预设放电倍率,采用所述满电量的电芯对所述预设负载进行供电。
在一种可能的设计中,所述充电电源的电流大于或等于所述预设放电倍率与所述电芯的标称容量之积。
在一种可能的设计中,所述用电终端为无人机。
在一种可能的设计中,所述预设放电倍率大于等于所述用电终端工作时的最大放电倍率。
在一种可能的设计中,所述用电终端工作时的最大放电倍率为2C~3C。
在一种可能的设计中,所述预设放电倍率为2C~6C。
在一种可能的设计中,所述装置还包括:箱体;
所述箱体,用于容纳所述电芯;
所述电源模块,用于对所述箱体内容纳的所述电芯进行充电,获得满电量的电芯。
本发明实施例提供的电芯分容方法和装置,是根据与用电终端的放电倍率相关的预设放电倍率,对满电量的电芯进行放电,使得本实施例中对电芯的放电过程更接近于电芯在用电终端的运行环境,因此,通过预设放电倍率对电芯进行放电,获得的电芯的容量更接近于电芯在用户终端的实际工作时的容量,更加准确,从而将本实施例获得的相近容量的电芯组装成电池后,在用户终端的工作时,各个电芯的容量也是均衡的,不会造成电芯间的压差大的情况,保证了电池的使用安全,避免了安全事故的发生。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例提供的电芯分容方法的流程图;
图2为本发明一实施例提供的电芯分容装置的结构示意图;
图3为本发明另一实施例提供的电芯分容装置的结构示意图;
图4为本发明另一实施例提供的电芯分容装置的结构示意图;
图5为本发明另一实施例提供的电芯分容装置的结构示意图;
图6为本发明另一实施例提供的电芯分容装置的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明一实施例提供的电芯分容方法的流程图,如图1所示,本 实施例的方法可以包括:
S101、对电芯进行充电,获得满电量的电芯。
S102、根据预设放电倍率,对所述满电量的电芯进行放电,以获得所述电芯的容量;其中,所述预设放电倍率与所述电芯应用于的用电终端的放电倍率有关。
本实施例中,对电芯进行充电,直至电芯的电量充满,获得满电量的电芯,然后再对该满电量的电芯进行放电,其中,本实施例是根据预设放电倍率,对该满电量的电芯进行放电,而且该预设放电倍率与该电芯应用于的用电终端的放电倍率有关,其中,该电芯应用于的用电终端是指该用电终端所用的电池中包括该电芯。
基于上述,本实施例是根据与用电终端的放电倍率相关的预设放电倍率,对满电量的电芯进行放电,使得本实施例中对电芯的放电过程更接近于电芯在用电终端的运行环境,因此,通过预设放电倍率对电芯进行放电,获得的电芯的容量更接近于电芯在用户终端的实际工作时的容量,更加准确,从而将本实施例获得的相近容量的电芯组装成电池后,在用户终端的工作时,各个电芯的容量也是均衡的,不会造成电芯间的压差大的情况,保证了电池的使用安全,避免了安全事故的发生。
可选地,在一种可能的实现方式中,上述S102可以包括S1021-S1023:
S1021、根据所述预设放电倍率,对所述满电量的电芯进行放电。
S1022、在所述电芯的电量放电至空电量时,获取所述电芯的放电时长。
S1023、根据所述预设放电倍率和所述放电时长,获得所述电芯的容量。
本实施例中,根据预设放电倍率,对满电量的电芯进行放电,直至电芯的电量为空电量时,获取电芯的放电时长,即电芯以预设放电倍率,从满电量放电至空电量时的放电时长。然后根据上述预设放电倍率和获得的放电时长,获得电芯的容量,其中,如何根据预设放电倍率和放电时长得到电芯的容量可以参见现有技术中的相关描述,此处不再赘述。
可选地,上述的根据预设放电倍率,对所述满电量的电芯进行放电的一种可行的实现方式为:根据预设放电倍率,在预设温度下对所述满电量的电芯进行放电;其中,所述预设温度大于室温。
本实施例中在以预设放电倍率对满电量的电芯进行放电的过程中,还使 得电芯处于预设温度下,并且,该预设温度大于室温。这是由于电芯应用于用电终端时,用电终端在实际工作过程中,电芯处于放电过程,电芯会产生大量热量,使得此时电芯在用电终端中的温度大于室温。因此,为了进一步使本实施例对电芯的放电过程接近于电芯在用户终端中的实际工作环境,本实施例在预设温度下对电芯进行放电。
可选地,该预设温度介于20度到80度之间,这个温度接近于在用户终端实际工作时电芯的温度,从而实现了在检测电芯的容量时,真实模拟了电芯在用电终端中的实际工作环境。
可选地,上述的根据预设放电倍率,在预设温度下对所述满电量的电芯进行放电的一种可行的实现方式为:根据预设放电倍率,在恒定的所述预设温度下对所述满电量的电芯进行放电。本实施例中,在根据预设放电倍率对满电量的电芯进行放电的过程中,不仅将电芯处于预设温度下,而且还是将电芯处于恒定的预设温度下,使得电芯在放电过程中处于恒定的温度下。由于电芯在用电终端处于实际工作时,电芯产生大量热量,使得电芯的温度持续处于高温,因此,为了使在对电芯进行分容时,使电芯更加接近真实工作环境,在对电芯的放电过程中将电芯处于恒定的预设温度下,这样获得的电芯的容量与电芯应用于用电终端时的容量更加接近。
可选地,上述恒定的预设温度为20度~80度,其中,此处的恒定的预设温度是指预设温度为20度~80度的范围内的某一温度,例如恒定的预设温度例如为45度,或者,恒定的预设温度例如为60度。需要说明的是,在实际操作过程中,恒定的预设温度允许存在一定误差范围的温度波动。
可选地,上述S101的一种可行的实现方式为:采用充电电源对所述电芯进行充电,获得满电量的电芯。
可选地,上述的采用预设放电倍率,对所述满电量的电芯进行放电的一种可行的实现方式为:根据所述预设放电倍率,采用所述满电量的电芯对预设负载进行供电。在采用该电芯对预设负载进行供电的过程中,即为电芯的放电过程。
可选地,上述的充电电源与预设负载可以集成为一个装置,即为电源模块,该电源模块具有对电芯的充电功能也具有对电芯的放电功能,相当于,电源模块对电芯进行供电,也可以对电芯进行放电,将电芯的电量吸收回来 并存储,存储的电量仍可以对电芯进行供电,使得电量可以循环利用,避免浪费电量,环保节能。
可选地,充电电源的电流大于或等于所述预设放电倍率与所述电芯的标称容量之积,这样可以保证能以预设放电倍率对电芯进行放电。例如:预设放电倍率为3C,电芯的标称容量为6AH,则充电电源的电流例如为20A。
可选地,上述的预设放电倍率大于等于所述用电终端工作时的最大放电倍率。为了使电芯的分容过程中获得的电芯的容量更加准确地接近到电芯应用于用电终端时的容量,本实施例的预设放电倍率与用电终端工作时的最大放电倍率有关,如预设放电倍率大于或等于用电终端工作时的最大放电倍率。
可选地,所述用电终端工作时的最大放电倍率为2C~3C。
可选地,所述预设放电倍率为2C~6C。
可选地,上述的用电终端为无人机。
图2为本发明一实施例提供的电芯分容装置的结构示意图,如图2所示,本实施例的电芯分容装置200可以包括:电源模块201和控制器202。
所述电源模块201,用于对电芯进行充电,获得满电量的电芯。
所述控制器202,用于根据预设放电倍率,对所述满电量的电芯进行放电,以获得所述电芯的容量;其中,所述预设放电倍率与所述电芯应用于的用电终端的放电倍率有关。
可选地,电源模块201与控制器202可以电连接。
可选地,所述控制器202,具体用于:
根据所述预设放电倍率,对所述满电量的电芯进行放电;
在所述电芯的电量放电至空电量时,获取所述电芯的放电时长;
根据所述预设放电倍率和所述放电时长,获得所述电芯的容量。
本实施例的装置,可以用于执行本发明上述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图3为本发明另一实施例提供的电芯分容装置的结构示意图,如图3所示,本实施例的装置在图2所示装置实施例的基础上,还包括:加热模块203;所述加热模块203与所述控制器202电连接。
所述加热模块203,用于对电芯进行加热。
所述控制器202,具体用于:根据预设放电倍率,控制所述加热模块203 对电芯加热至预设温度下,对所述满电量的电芯进行放电;其中,所述预设温度大于室温。
可选地,所述预设温度介于20度到80度之间。
本实施例的装置,可以用于执行本发明上述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图4为本发明另一实施例提供的电芯分容装置的结构示意图,如图4所示,本实施例的装置在图3所示装置实施例的基础上,还包括:温度传感器204和制冷模块205。
所述温度传感器204,用于检测所述电芯的温度。
所述制冷模块205,用于对所述芯片进行降温;
所述控制器202,具体用于:
根据所述温度传感器204检测到的温度,控制所述加热模块203和所述制冷模块205,将电芯的温度恒定在所述预设温度下,并根据预设放电倍率,在恒定的所述预设温度下,对所述满电量的电芯进行放电。
可选地,所述恒定的所述预设温度为20度~80度。
本实施例的装置,可以用于执行本发明上述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图5为本发明另一实施例提供的电芯分容装置的结构示意图,如图5所示,本实施例的装置在图2-图4任一实施例的基础上,其中,如图5在图4的基础上示出,本实施例的电源模块201包括:充电电源2011和预设负载2012。
所述充电电源2011,具体用于对所述电芯进行充电,获得满电量的电芯;
所述控制器202,具体用于采用预设放电倍率,采用所述满电量的电芯对所述预设负载2012进行供电。
可选地,所述充电电源的电流大于或等于所述预设放电倍率与所述电芯的标称容量之积。
可选地,所述用电终端为无人机。
可选地,所述预设放电倍率大于等于所述用电终端工作时的最大放电倍率。
可选地,所述用电终端工作时的最大放电倍率为2C~3C。
可选地,所述预设放电倍率为2C~6C。
本实施例的装置,可以用于执行本发明上述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图6为本发明另一实施例提供的电芯分容装置的结构示意图,如图6所示,本实施例的装置在图2-图5任一实施例的基础上,其中,如图6在图5的基础上示出,本实施例的装置还包括:箱体206。
所述箱体206,用于容纳所述电芯。
所述电源模块201,用于对所述箱体206内容纳的所述电芯进行充电,获得满电量的电芯。
可选地,在上述加热模块203可以对箱体206加热,使箱体206达到预设温度,相应地,箱体206内容纳的电芯处于预设温度下。
可选地,上述的温度传感器204可以用于检测箱体206内的温度,将箱体206内的温度作为电芯的温度,制冷模块205可以用于对箱体206进行降温,从而保证箱体206内的温度达到恒定,相应地,箱体206内容纳的电芯处于恒定的预设温度下。
因此,通过将电芯放置在箱体206内,通过加热箱体206达到加热电芯的目的。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:只读内存(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (25)

  1. 一种电芯分容方法,其特征在于,包括:
    对电芯进行充电,获得满电量的电芯;
    根据预设放电倍率,对所述满电量的电芯进行放电,以获得所述电芯的容量;其中,所述预设放电倍率与所述电芯应用于的用电终端的放电倍率有关。
  2. 根据权利要求1所述的方法,其特征在于,所述根据预设放电倍率,对所述满电量的电芯进行放电,以获得所述电芯的容量,包括:
    根据所述预设放电倍率,对所述满电量的电芯进行放电;
    在所述电芯的电量放电至空电量时,获取所述电芯的放电时长;
    根据所述预设放电倍率和所述放电时长,获得所述电芯的容量。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据预设放电倍率,对所述满电量的电芯进行放电,包括:
    根据预设放电倍率,在预设温度下对所述满电量的电芯进行放电;其中,所述预设温度大于室温。
  4. 根据权利要求3所述的方法,其特征在于,所述预设温度介于20度到80度之间。
  5. 根据权利要求3或4所述的方法,其特征在于,所述根据预设放电倍率,在预设温度下对所述满电量的电芯进行放电,包括:
    根据预设放电倍率,在恒定的所述预设温度下对所述满电量的电芯进行放电。
  6. 根据权利要求5所述的方法,其特征在于,所述恒定的所述预设温度为20度~80度。
  7. 根据权利要求1-6任意一项所述的方法,其特征在于,所述对电芯进行充电,获得满电量的电芯,包括:
    采用充电电源对所述电芯进行充电,获得满电量的电芯;
    采用预设放电倍率,对所述满电量的电芯进行放电,包括:
    根据所述预设放电倍率,采用所述满电量的电芯对预设负载进行供电。
  8. 根据权利要求7所述的方法,其特征在于,所述充电电源的电流大于或等于所述预设放电倍率与所述电芯的标称容量之积。
  9. 根据权利要求1-8任意一项所述的方法,其特征在于,所述用电终端为无人机。
  10. 根据权利要求1-9任意一项所述的方法,其特征在于,所述预设放电倍率大于等于所述用电终端工作时的最大放电倍率。
  11. 根据权利要求10所述的方法,其特征在于,所述用电终端工作时的最大放电倍率为2C~3C。
  12. 根据权利要求9或11所述的方法,其特征在于,所述预设放电倍率为2C~6C。
  13. 一种电芯分容装置,其特征在于,包括:电源模块和控制器;
    所述电源模块,用于对电芯进行充电,获得满电量的电芯;
    所述控制器,用于根据预设放电倍率,对所述满电量的电芯进行放电,以获得所述电芯的容量;其中,所述预设放电倍率与所述电芯应用于的用电终端的放电倍率有关。
  14. 根据权利要求13所述的装置,其特征在于,所述控制器,具体用于:
    根据所述预设放电倍率,对所述满电量的电芯进行放电;
    在所述电芯的电量放电至空电量时,获取所述电芯的放电时长;
    根据所述预设放电倍率和所述放电时长,获得所述电芯的容量。
  15. 根据权利要求13或14所述的装置,其特征在于,所述装置还包括:加热模块;所述加热模块与所述控制器电连接;
    所述加热模块,用于对电芯进行加热;
    所述控制器,具体用于:根据预设放电倍率,控制所述加热模块对电芯加热至预设温度下,对所述满电量的电芯进行放电;其中,所述预设温度大于室温。
  16. 根据权利要求15所述的装置,其特征在于,所述预设温度介于20度到80度之间。
  17. 根据权利要求15或16所述的装置,其特征在于,所述装置还包括:温度传感器和制冷模块;
    所述温度传感器,用于检测所述电芯的温度;
    所述制冷模块,用于对所述芯片进行降温;
    所述控制器,具体用于:
    根据所述温度传感器检测到的温度,控制所述加热模块和所述制冷模块,将所述电芯的温度恒定在所述预设温度下,并根据预设放电倍率,在恒定的所述预设温度下,对所述满电量的电芯进行放电。
  18. 根据权利要求17所述的装置,其特征在于,所述恒定的所述预设温度为20度~80度。
  19. 根据权利要求13-18任意一项所述的装置,其特征在于,所述电源模块包括:充电电源和预设负载;
    所述充电电源,具体用于采用充电电源对所述电芯进行充电,获得满电量的电芯;
    所述控制器,具体用于采用预设放电倍率,采用所述满电量的电芯对所述预设负载进行供电。
  20. 根据权利要求19所述的装置,其特征在于,所述充电电源的电流大于或等于所述预设放电倍率与所述电芯的标称容量之积。
  21. 根据权利要求13-20任意一项所述的装置,其特征在于,所述用电终端为无人机。
  22. 根据权利要求13-21任意一项所述的装置,其特征在于,所述预设放电倍率大于等于所述用电终端工作时的最大放电倍率。
  23. 根据权利要求22所述的装置,其特征在于,所述用电终端工作时的最大放电倍率为2C~3C。
  24. 根据权利要求21或23所述的装置,其特征在于,所述预设放电倍率为2C~6C。
  25. 根据权利要求13-24任意一项所述的装置,其特征在于,所述装置还包括:箱体;
    所述箱体,用于容纳所述电芯;
    所述电源模块,用于对所述箱体内容纳的所述电芯进行充电,获得满电量的电芯。
PCT/CN2017/092674 2017-07-12 2017-07-12 电芯分容方法和装置 WO2019010657A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/092674 WO2019010657A1 (zh) 2017-07-12 2017-07-12 电芯分容方法和装置
CN201780007658.7A CN108701877A (zh) 2017-07-12 2017-07-12 电芯分容方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/092674 WO2019010657A1 (zh) 2017-07-12 2017-07-12 电芯分容方法和装置

Publications (1)

Publication Number Publication Date
WO2019010657A1 true WO2019010657A1 (zh) 2019-01-17

Family

ID=63843813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092674 WO2019010657A1 (zh) 2017-07-12 2017-07-12 电芯分容方法和装置

Country Status (2)

Country Link
CN (1) CN108701877A (zh)
WO (1) WO2019010657A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467240A (zh) * 2020-12-21 2021-03-09 潍坊聚能电池有限公司 一种锂离子电池的高温分容及配组工艺
CN114405843A (zh) * 2021-12-18 2022-04-29 潍坊聚能电池有限公司 一种挑选分容过程中异常锂离子电池的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111613843B (zh) * 2020-05-29 2021-04-02 重庆金康新能源汽车有限公司 修改电动车辆内的电池的放电c倍率的方法和系统
CN116387658B (zh) * 2023-06-01 2023-08-08 深圳和润达科技有限公司 实现能源均衡调度策略的系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202474128U (zh) * 2012-01-18 2012-10-03 杭州高特电子设备有限公司 一种基于聚类分析的电池单元配组系统
CN104037461A (zh) * 2014-06-16 2014-09-10 张晶晶 车用动力锂离子电池配组方法
CN104409778A (zh) * 2014-11-17 2015-03-11 东莞市久森新能源有限公司 一种异形锂离子电池的分容方法
JP2015114275A (ja) * 2013-12-13 2015-06-22 三菱重工業株式会社 容量推定装置、容量推定方法及びプログラム
CN105304954A (zh) * 2015-09-30 2016-02-03 东莞市致格电池科技有限公司 一种电池的配组方法及其配组系统
CN106450471A (zh) * 2016-10-14 2017-02-22 四川赛尔雷新能源科技有限公司 一种基于高温压力夹具的锂电池裸电芯化成分容方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178306B (zh) * 2011-12-26 2015-03-25 广州丰江电池新技术股份有限公司 一种锂二次电池均衡配组方法及系统
CN104617339B (zh) * 2014-11-18 2017-01-11 中国南方电网有限责任公司调峰调频发电公司 锂离子电池配组方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202474128U (zh) * 2012-01-18 2012-10-03 杭州高特电子设备有限公司 一种基于聚类分析的电池单元配组系统
JP2015114275A (ja) * 2013-12-13 2015-06-22 三菱重工業株式会社 容量推定装置、容量推定方法及びプログラム
CN104037461A (zh) * 2014-06-16 2014-09-10 张晶晶 车用动力锂离子电池配组方法
CN104409778A (zh) * 2014-11-17 2015-03-11 东莞市久森新能源有限公司 一种异形锂离子电池的分容方法
CN105304954A (zh) * 2015-09-30 2016-02-03 东莞市致格电池科技有限公司 一种电池的配组方法及其配组系统
CN106450471A (zh) * 2016-10-14 2017-02-22 四川赛尔雷新能源科技有限公司 一种基于高温压力夹具的锂电池裸电芯化成分容方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467240A (zh) * 2020-12-21 2021-03-09 潍坊聚能电池有限公司 一种锂离子电池的高温分容及配组工艺
CN112467240B (zh) * 2020-12-21 2022-04-29 潍坊聚能电池有限公司 一种锂离子电池的高温分容及配组工艺
CN114405843A (zh) * 2021-12-18 2022-04-29 潍坊聚能电池有限公司 一种挑选分容过程中异常锂离子电池的方法
CN114405843B (zh) * 2021-12-18 2023-09-08 潍坊聚能电池有限公司 一种挑选分容过程中异常锂离子电池的方法

Also Published As

Publication number Publication date
CN108701877A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
WO2019010657A1 (zh) 电芯分容方法和装置
US9524018B2 (en) Adaptive integral battery pack and voltage regulator
US20210221251A1 (en) Adaptive balancing for battery management
US7199556B1 (en) Method for extending power duration for lithium ion batteries
US7279867B2 (en) Method for balancing cells or groups of cells in a battery pack
KR102205841B1 (ko) 배터리의 상태를 추정하는 방법 및 장치
WO2021217315A1 (zh) 充电控制方法、充电器、充电系统及存储介质
KR102210282B1 (ko) 릴레이 상태 검출 방법 및 장치
EP2994989B1 (en) Pre-charging and voltage supply system for a dc-ac inverter
KR102052241B1 (ko) 밸런싱 배터리를 이용한 배터리 관리 시스템 및 방법
US20160111905A1 (en) Systems and methods for charging energy storage devices
US7157881B1 (en) Safety device for managing batteries
US11139514B2 (en) Battery pack heating apparatus for double vehicle heating and control method
WO2021083149A1 (zh) 充电方法和充电系统
JP2022538573A (ja) 電池パックの安全処理装置、電気エネルギー貯蔵装置及びその制御方法
CN103683439A (zh) 锂电池组充电控制系统及方法
EP3160002B1 (en) Active equalizing charging device
CN107994278A (zh) 一种电池均衡装置、方法及无人机
JP6612022B2 (ja) 電池セル平衡システムを有する充電スタンド
KR102171102B1 (ko) 안전 플러그의 상태를 검출하는 방법 및 장치
EP3985404A1 (en) Battery management device, battery management method, and battery pack
US20170155173A1 (en) Resonating lithium battery device with damping function
KR20170012021A (ko) 배터리 팩, 배터리 충전기 및 배터리 충전기 시스템
WO2018119798A1 (zh) 电池充电方法、充电系统、充电器及电池
KR102205315B1 (ko) 사용자 설정 배터리 관리 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917276

Country of ref document: EP

Kind code of ref document: A1