WO2019008964A1 - Interferometer, fourier transform spectroscopic device, and component analyzing device - Google Patents

Interferometer, fourier transform spectroscopic device, and component analyzing device Download PDF

Info

Publication number
WO2019008964A1
WO2019008964A1 PCT/JP2018/021192 JP2018021192W WO2019008964A1 WO 2019008964 A1 WO2019008964 A1 WO 2019008964A1 JP 2018021192 W JP2018021192 W JP 2018021192W WO 2019008964 A1 WO2019008964 A1 WO 2019008964A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
polarizing element
polarized light
interferometer
birefringent crystal
Prior art date
Application number
PCT/JP2018/021192
Other languages
French (fr)
Japanese (ja)
Inventor
祐光 古川
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2019528412A priority Critical patent/JP7253801B2/en
Publication of WO2019008964A1 publication Critical patent/WO2019008964A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light

Definitions

  • the present invention relates to an interferometer, a Fourier transform spectrometer, and a component analyzer.
  • Fourier transform spectroscopy is performed by obtaining interference light by a Michelson interferometer and performing Fourier transform on the interference light.
  • the Michelson-type interferometer splits incident light into two paths with a beam splitter, reflects light from mirrors placed in each path and returns the light to the beam splitter, and obtains interference light by the optical path difference between the two paths. .
  • Patent Document 1 there are a moving mechanism for causing the reflecting mirror to reciprocate linearly and reversely, a first feedback control unit for controlling the moving mechanism according to the moving speed of the reflecting mirror, and a moving mechanism for the reflecting mirror.
  • the second feedback control unit controls the movement according to the position, and in the case of the linear movement of the reflecting mirror, the moving mechanism is controlled by the first feedback control unit, and in the case of the inverting movement of the reflecting mirror, the second feedback control
  • An interferometer is described which controls the moving mechanism by means of a part.
  • Patent No. 5947193 gazette International Publication No. 2012/140980 JP 2008-128654 A JP, 2016-142527, A JP, 2015-194359, A JP, 2010-66280, A JP 2005-250144 A
  • the conventional Michelson interferometer reciprocates one of the two mirrors to change the optical path difference to temporally form interference light.
  • the angle of the moving mirror may be slightly inclined by driving of the mirror or vibration applied from the outside, but if the angle of the mirror is slightly inclined, interference light can not be obtained.
  • Patent documents 1 to 4 propose various improvements to the Michelson interferometer, a technique for keeping the angle of two mirrors constant, a technique for stabilizing the drive of the mirror, and a technique for accurately detecting the position of the mirror. It is done. However, these techniques may lead to an increase in cost and an increase in size of the device.
  • Non-Patent Documents 1 to 3 propose a multi-channel interferometer that spatially forms interference light.
  • the Michelson interferometer temporally forms interference light
  • the multi-channel interferometer spatially forms interference light using a Wollaston prism or a Savart plate.
  • multi-channel interferometers do not move mirrors to create an optical path difference, so they have higher vibration resistance than Michelson interferometers, but if they do not detect spatially spread interference light with a photodetector Sufficient resolution can not be achieved and resolution is limited by the size of the photodetector.
  • the present invention provides an interferometer, a Fourier transform spectrometer, and a component analyzer that are high in vibration resistance, inexpensive, small, and high in resolution.
  • the interferometer includes a first polarizing element that transmits predetermined polarized light of incident light, and an incident of the light emitted from the first polarizing element, which is disposed downstream of the first polarizing element.
  • a second polarization element disposed downstream of the birefringence crystal, the second polarization element transmitting a predetermined polarization of light emitted from the birefringence crystal, and a second polarization element;
  • a light receiving element disposed downstream of the element and converting light emitted from the second polarizing element into an electric signal, wherein the first polarizing element, the birefringent crystal, the second polarizing element, and the light receiving element are linearly arranged. Be placed.
  • the first polarizing element transmits linearly polarized light in the first direction of the incident light
  • the second polarizing element transmits linearly polarized light in the second direction of the light emitted from the birefringence crystal.
  • the first direction and the second direction may be the same direction or orthogonal directions.
  • the second polarizing element separates two types of polarized light of the light emitted from the birefringent crystal and emits the polarized light in different directions
  • the light receiving element includes two types of polarized light separated by the second polarizing element. And a second element that receives the other.
  • two types of interference light having peaks in opposite directions can be obtained, and by taking the difference, noise can be reduced and interference peaks can be clarified.
  • the first polarization element transmits linearly polarized light in the first direction of the incident light
  • the second polarization element transmits linearly polarized light in the second direction of the light emitted from the birefringent crystal.
  • the linearly polarized light in three directions is separated and emitted in different directions.
  • the first direction and the second direction are the same direction or orthogonal directions
  • the first direction and the third direction are the same direction or orthogonal directions
  • the second direction and the third direction may be orthogonal to each other.
  • it further comprises a third polarization element which is disposed between the first polarization element and the birefringence crystal and separates two kinds of polarized light of the light emitted from the first polarization element and emits it in the same direction. It is also good.
  • the incident light can be made incident on the birefringent crystal without being narrowed by the slit, and the incident light can be efficiently used to obtain bright interference light.
  • the light receiving element may include a line sensor in which single channel sensors are aligned or an area sensor in which single channel sensors are aligned in a matrix.
  • temporally formed interference can be measured in parallel in space, and the measurement time can be shortened, and spatial spectral information can also be measured.
  • a Fourier transform spectroscopy device includes the interferometer of the above aspect, and a conversion unit that Fourier-transforms an electric signal.
  • a component analysis apparatus includes: the Fourier transform spectrometer of the above aspect; and an analysis unit that performs component analysis based on the Fourier-transformed electrical signal.
  • a component analyzer that can be carried and used by providing a Fourier transform spectrometer that is high in vibration resistance, inexpensive, compact, and high in resolution.
  • an interferometer a Fourier transform spectroscopy device and a component analysis device which are high in vibration resistance, inexpensive, small in size, and high in resolution.
  • FIG. 1 is a block diagram of a component analyzer 100 according to the first embodiment of the present invention.
  • the component analysis device 100 includes a Fourier transform spectroscopy device 200, and an analysis unit 30 that performs component analysis based on the electrical signal subjected to Fourier transform.
  • the Fourier transform spectrometer 200 includes an interferometer 10 and a converter 20 that Fourier-transforms an electrical signal.
  • the interferometer 10 forms interference light with respect to the light reflected by the sample 300 or the light transmitted through the sample 300, receives the interference light by the light receiving element, and outputs the light as an electric signal.
  • the component analysis apparatus 100 forms interference light by the interferometer 10, Fourier transforms the spectrum of the electric signal of the interference light by the conversion unit 20 of the Fourier transform spectroscopy apparatus 200, and decomposes the spectrum. The essential constituents.
  • the light irradiated to the sample 300 is an infrared ray.
  • the light irradiated to the sample 300 may be near infrared light, or may be light of any wavelength such as visible light or ultraviolet light.
  • the sample 300 may be any of gas, liquid and solid, and may be, for example, an organic compound.
  • the sample 300 may not be synthetic but may be a natural product such as agricultural products.
  • the component analysis apparatus 100 may analyze a chemical component contained in a natural product by using a natural product as the sample 300.
  • the sample 300 may be any target.
  • FIG. 2 is a block diagram of the interferometer 10 according to the first embodiment of the present invention.
  • the interferometer 10 includes a slit 11, a first lens 12, a first polarizing element 13, a birefringent crystal 14, a second polarizing element 15, a second lens 16 and a light receiving element 17.
  • the slit 11 narrows the incident light IN incident on the interferometer 10.
  • the slit 11 may be, for example, a pinhole.
  • the first lens 12 may be a convex lens that converts light emitted from the slit 11 into parallel light.
  • the first polarization element 13 transmits a predetermined polarization of the incident light.
  • the first polarizing element 13 may be an element that transmits linearly polarized light in the first direction among incident light.
  • the first direction may be any direction along the surface of the first polarizing element 13.
  • the light passing through the first polarizing element 13 is a straight line in the direction of 45 ° to the horizontal plane.
  • the first polarized light P1 which is polarized light and the second polarized light P2 which is linearly polarized light in the -45 ° direction with respect to the horizontal plane are included with the same intensity.
  • the birefringent crystal 14 is disposed downstream of the first polarizing element 13 and is rotatably disposed with the incident direction of the light emitted from the first polarizing element 13 as the rotation axis.
  • the incident direction of the light emitted from the first polarizing element 13 is the direction in which the first polarized light P1 and the second polarized light P2 having passed through the first polarizing element 13 are incident, and the surface of the first polarizing element 13 is And the direction orthogonal to
  • the birefringent crystal 14 is rotated at a constant angular velocity ⁇ to give a phase difference according to the angle with respect to the incident first polarized light P1 and second incident polarized light P2.
  • the phase of the second polarized light P2 is delayed by ⁇ with respect to the first polarized light P1.
  • the birefringent crystal 14 may be a uniaxial crystal, and may be formed of different materials according to the wavelength of light with which the sample 300 is irradiated.
  • calcite CaCO 3
  • YVO 4 can be used in the near infrared region
  • GaSe can be used in the infrared region.
  • the material forming the birefringent crystal 14 should be selected in consideration of not only the characteristic of birefringence but also the availability, ease of processing, ease of handling, cost and the like.
  • quartz, TiO 2 , CdSe or the like can be used besides the above-mentioned ones.
  • the second polarizing element 15 is disposed downstream of the birefringent crystal 14 and transmits predetermined polarized light of the light emitted from the birefringent crystal 14.
  • the second polarizing element 15 may be an element for transmitting linearly polarized light in the second direction among the light emitted from the birefringent crystal 14, and the first direction and the second direction may be the same direction or orthogonal directions. You may For example, when the first direction is the 0 ° direction, the second direction may be the 0 ° direction or the 90 ° direction. As a result, part of the first polarized light P1 which is linearly polarized light in the 45.degree.
  • Direction and part of the second polarized light P2 which is linearly polarized light in the -45.degree. Direction and which has the phase delay .delta. It passes through, and interference light according to the phase delay ⁇ is formed.
  • the first direction and the second direction are the same direction or orthogonal directions, it is possible to efficiently interfere the light given the phase difference by the birefringent crystal 14 and to use incident light efficiently for brightening. Interference light can be obtained.
  • the second lens 16 condenses the light that has passed through the second polarizing element 15 and emits the outgoing light OUT to the light receiving element 17.
  • the light receiving element 17 is disposed downstream of the second polarizing element 15, and converts the outgoing light OUT into an electrical signal.
  • the birefringent crystal 14 is a uniaxial crystal, the light receiving element 17 may be continuously exposed while the birefringent crystal 14 makes a quarter rotation.
  • the electrical signal output by the light receiving element 17 is Fourier transformed by the transformation unit 20 and spectrally resolved.
  • interference light is formed every quarter rotation of the birefringent crystal 14. That is, each time the birefringent crystal 14 is rotated one time, interference light is formed four times.
  • the birefringent crystal 14 may be rotated at one constant angular velocity in one direction.
  • the end face of the birefringent crystal 14 may be slightly inclined when the birefringent crystal 14 is rotated, but even if the end face is inclined by several degrees, the formation of interference light is not affected.
  • the interferometer 10 according to the present embodiment, high-precision control is not required to rotate the birefringent crystal 14, and precise control is not required as in the conventional Michelson-type interferometer.
  • the mechanism can be simple, and the drive mechanism can be configured inexpensively.
  • the first polarization element 13, the birefringent crystal 14, the second polarization element 15, and the light receiving element 17 are linearly arranged.
  • the linear arrangement means that the directions in which light is incident on the respective optical elements are almost the same. In other words, the linear arrangement means that the optical axes of the respective optical elements almost coincide with each other. Note that the optical axis does not mean the optical axis of the birefringent crystal 14, but in the optical element, it means a virtual ray representing a light flux passing through the element.
  • An example of the case where the plurality of optical elements are not arranged linearly is that the direction in which light is incident on a certain optical element and the direction in which light is incident on another optical element are orthogonal to each other.
  • the first polarization element 13, the birefringence crystal 14, the second polarization element 15 and the light receiving element 17 are arranged in a straight line, even if some vibration can be applied to the interferometer 10, all The element vibrates in the same direction with respect to the incident direction of light, and the influence of displacement due to vibration or the like is reduced as compared with the case where the element is not arranged linearly.
  • FIG. 3 is a graph showing a spectrum A obtained by the interferometer 10 according to the first embodiment of the present invention and a spectrum B obtained by the conventional multi-channel interferometer.
  • the infrared rays irradiated to the sample 300 are made to interfere by the interferometer 10 according to the present embodiment, and infrared rays of the same wavelength are irradiated to the same sample 300 as in the case where the spectrum A is obtained by the conversion unit 20.
  • the case where interference is obtained by the multi-channel interferometer and spectrum B is obtained is shown.
  • the horizontal axis of the graph shown in the figure indicates the wave number, the unit is [1 / cm], and the vertical axis indicates non-dimensionalized energy.
  • the spectrum A obtained by the interferometer 10 according to the present embodiment shows a plurality of sharp peaks, and clearly shows that the light of a specific wavelength is absorbed by the sample 300.
  • the spectrum B obtained by the conventional multi-channel interferometer shows gentle unevenness, no sharp peak is obtained and only insufficient resolution for specifying the absorption wavelength is obtained .
  • the conventional multi-channel interferometer spatially forms interference light by about 1024 light receiving elements, so when the light irradiated to the sample 300 is in the infrared region, only part of the interference light can be received by the light receiving element And the number of sampling points is insufficient and sufficient resolution can not be obtained.
  • the interferometer 10 by configuring the interferometer 10 with the first polarizing element 13, the birefringent crystal 14, the second polarizing element 15, and the light receiving element 17, it is inexpensive and compact.
  • the interferometer 10 can be used, and the vibration resistance can be improved by arranging these elements linearly.
  • the interference light can be temporally formed by the rotatably arranged birefringent crystal 14, and sufficiently high resolution can be obtained.
  • the Fourier transform spectroscopy apparatus 200 it is possible to carry and use it by providing the interferometer 10 that is high in vibration resistance, inexpensive, small in size, and high in resolution, and has high spectral resolution.
  • a Fourier transform spectrometer is obtained.
  • the component analysis device 100 the component analysis device that can be carried and used can be obtained by providing the Fourier transform spectroscopy device 200 that is high in vibration resistance, inexpensive, small, and high in resolution. .
  • the influence of the wavelength dispersion of the birefringent crystal 14 may make it impossible to obtain a linear spectral distribution with respect to the wavenumber over the entire measurement wavelength range.
  • the measurement result may be corrected in consideration of the wavelength dispersion of the birefringent crystal 14.
  • the correction is a correction amount for offsetting the influence of wavelength dispersion of the birefringent crystal 14 by measuring the spectral distribution in advance using a laser light source having a plurality of known wavelengths or a white light source passing through a known wavelength filter or the like. May be stored in the Fourier transform spectrometer 200 and may be performed based on the correction amount.
  • the portable component analysis apparatus 100 enables nondestructive analysis of agricultural products, and chemical components contained in agricultural products Because changes in can be grasped quantitatively, it is possible to accurately measure the growing situation of agricultural products.
  • FIG. 4 is a block diagram of an interferometer 10a according to a second embodiment of the present invention.
  • the second polarizing element is configured of a Wollaston prism 18 as compared to the interferometer 10 according to the first embodiment, and the first element 17a and the first element 17a are used as light receiving elements.
  • the difference is that the two elements 17b are included.
  • the interferometer 10a according to the second embodiment has the same configuration as the interferometer 10 according to the first embodiment. The differences will be mainly described below.
  • the first polarizing element 13, the birefringent crystal 14, the Wollaston prism 18, the first element 17a and the second element 17b are linearly arranged.
  • the first element 17a and the second element 17b may be disposed with the light receiving surface slightly inclined.
  • the second polarization element of the interferometer 10 a is configured of a Wollaston prism 18 that separates two types of polarized light of the light emitted from the birefringent crystal 14 and emits the polarized light in different directions.
  • the first polarized light P1 and the second polarized light P2 of which the phase difference ⁇ is given by the birefringent crystal 14 are incident on the Wollaston prism 18.
  • the Wollaston prism 18 separates two types of polarized light contained in the first polarized light P1 and the second polarized light into the first element 17a and the second element 17b and emits them.
  • the first element 17 a receives one of the two types of polarized light separated by the Wollaston prism 18, and the second element 17 b receives the other of the two types of polarized light separated by the Wollaston prism 18.
  • the first polarization element 13 transmits linearly polarized light in the first direction of the incident light
  • the Wollaston prism 18 as the second polarization element transmits light in the second direction of the light emitted from the birefringence crystal 14.
  • Linearly polarized light and linearly polarized light in the third direction are separated and emitted in different directions.
  • the first direction and the second direction are the same direction or orthogonal directions
  • the first direction and the third direction are the same direction or orthogonal directions
  • the second direction and the third direction are orthogonal It is a direction.
  • the interferometer 10a is placed in a horizontal plane and the first direction is at 0 ° with respect to the horizontal plane, the second direction may be at 0 ° with respect to the horizontal plane, and the third direction is with respect to the horizontal plane And 90.degree. (Direction along the horizontal plane).
  • linearly polarized light in the 0 ° direction with respect to the horizontal plane is emitted by the Wollaston prism 18 as the first outgoing light OUT1 to the first element 17a side, and 45 ° direction with respect to the horizontal plane Of the first polarized light P1 which is linearly polarized light in the direction of 90 ° with respect to the horizontal plane and in the direction of ⁇ 45 ° with respect to the horizontal plane, in the horizontal plane of the second polarized light P2 having the phase delay ⁇
  • linearly polarized light in the 90 ° direction is emitted by the Wollaston prism 18 as the second outgoing light
  • Interference light corresponding to the ⁇ is measured. If the first direction is a 0 ° direction with respect to the horizontal plane, the second direction may be a 90 ° direction with respect to the horizontal plane, and the third direction may be a 0 ° direction with respect to the horizontal plane Good.
  • the first emission light OUT1 and the second emission light OUT2 have waveforms in which the peaks appear in opposite directions. Therefore, in the difference data DIFF of the first outgoing light OUT1 and the second outgoing light OUT2, the respective peaks reinforce each other, and the noise contained in the first outgoing light OUT1 and the second outgoing light OUT2 is canceled out.
  • the Wollaston prism 18 as the second polarizing element, two types of interference light having peaks in opposite directions can be obtained, and the interference light is generated by the first element 17a and the second element 17b.
  • the interferometer 10 a According to the interferometer 10 a according to the present embodiment, light having a phase difference given by the birefringent crystal 14 can be efficiently interfered, and incident light is efficiently used to have peaks in the opposite direction 2 A kind of bright interference light can be obtained, and by taking the difference, noise can be reduced and interference peaks can be clarified.
  • FIG. 6 is a block diagram of an interferometer 10b according to a third embodiment of the present invention.
  • the interferometer 10b according to the present embodiment is different from the interferometer 10 according to the first embodiment in that the third polarizing element 19 is not provided and the slit 11 is not provided.
  • the interferometer 10b according to the third embodiment has the same configuration as that of the interferometer 10 according to the first embodiment, except for the configurations described above. The differences will be mainly described below.
  • the third polarizing element 19 is disposed between the first polarizing element 13 and the birefringent crystal 14 and separates two types of polarized light of the light emitted from the first polarizing element 13 and emits the same in the same direction.
  • the third polarizing element 19 may be, for example, a Savart plate.
  • the third polarization element 19 emits linearly polarized light from the first polarization element 13 at 45 ° to the horizontal plane among the linear polarizations at 0 ° to the horizontal plane.
  • the first polarized light P1 and the second polarized light P2 which is linearly polarized light in the ⁇ 45 ° direction with respect to the horizontal plane may be separated and emitted.
  • the incident light can be made incident on the birefringent crystal 14 without being narrowed by the slit, and bright interference light can be obtained by efficiently using the incident light.
  • the light receiving element 17 may include a line sensor in which single channel sensors are aligned or an area sensor in which single channel sensors are aligned in a matrix.
  • a line sensor or an area sensor temporally formed interference can be measured in parallel in space, and the measurement time can be shortened and spatial spectral information can also be measured.
  • spatially formed interference can be measured, and since the light receiving area and the signal to noise ratio can be increased, higher resolution measurement can be performed. .
  • the converter 20 can perform Fourier transform on the electric signal of the interference light, and the analysis unit 30 can perform component analysis, so that a compact and portable component can be used.
  • An analyzer 100 can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

Provided are an interferometer, a Fourier transform spectroscopic device and a component analyzing device which are highly resistant to vibration, are inexpensive and compact, and have a high resolution. An interferometer 10 is provided with: a first polarizing element 13 which allows certain polarized light among incident light to pass; a birefringent crystal 14 which is arranged downstream of the first polarizing element 13 and is arranged rotatably about an axis of rotation in the incident direction of light emitted from the first polarizing element 13; a second polarizing element 15 which is arranged downstream of the birefringent crystal 14 and which allows certain polarized light among the light emitted from the birefringent crystal 14 to pass; and a light receiving element 17 which is arranged downstream of the second polarizing element 15 and which converts the light emitted from the second polarizing element 15 into an electrical signal; wherein the first polarizing element 13, the birefringent crystal 14, the second polarizing element 15 and the light receiving element 17 are arranged in a straight line.

Description

干渉計、フーリエ変換分光装置及び成分分析装置Interferometer, Fourier transform spectrometer and component analyzer
 本発明は、干渉計、フーリエ変換分光装置及び成分分析装置に関する。 The present invention relates to an interferometer, a Fourier transform spectrometer, and a component analyzer.
 従来、フーリエ変換分光法は、マイケルソン型干渉計によって干渉光を得て、干渉光をフーリエ変換することで行われている。マイケルソン型干渉計は、入射光をビームスプリッタで2つの経路に分割し、それぞれの経路に設置したミラーで光を反射してビームスプリッタに返して、2つの経路の光路差によって干渉光を得る。 Conventionally, Fourier transform spectroscopy is performed by obtaining interference light by a Michelson interferometer and performing Fourier transform on the interference light. The Michelson-type interferometer splits incident light into two paths with a beam splitter, reflects light from mirrors placed in each path and returns the light to the beam splitter, and obtains interference light by the optical path difference between the two paths. .
 例えば下記特許文献1には、反射ミラーを直線運動及び反転運動させて往復させる移動機構と、移動機構を反射ミラーの移動速に応じて制御する第1フィードバック制御部と、移動機構を反射ミラーの位置に応じて制御する第2フィードバック制御部とを有し、反射ミラーの直線運動の場合に、第1フィードバック制御部によって移動機構を制御し、反射ミラーの反転運動の場合に、第2フィードバック制御部によって移動機構を制御する干渉計が記載されている。 For example, in Patent Document 1 below, there are a moving mechanism for causing the reflecting mirror to reciprocate linearly and reversely, a first feedback control unit for controlling the moving mechanism according to the moving speed of the reflecting mirror, and a moving mechanism for the reflecting mirror. The second feedback control unit controls the movement according to the position, and in the case of the linear movement of the reflecting mirror, the moving mechanism is controlled by the first feedback control unit, and in the case of the inverting movement of the reflecting mirror, the second feedback control An interferometer is described which controls the moving mechanism by means of a part.
特許第5947193号公報Patent No. 5947193 gazette 国際公開第2012/140980号International Publication No. 2012/140980 特開2008-128654号公報JP 2008-128654 A 特開2016-142527号公報JP, 2016-142527, A 特開2015-194359号公報JP, 2015-194359, A 特開2010-66280号公報JP, 2010-66280, A 特開2005-250144号公報JP 2005-250144 A
 従来のマイケルソン型干渉計は、例えば特許文献1に記載のように、2枚のミラーのうち一方を往復運動させて、光路差を変化させることで時間的に干渉光を形成する。ここで、移動するミラーの角度は、ミラーの駆動や、外部から加えられる振動によって僅かに傾くおそれがあるが、ミラーの角度が僅かでも傾くと干渉光が得られなくなる。 For example, as described in Patent Document 1, the conventional Michelson interferometer reciprocates one of the two mirrors to change the optical path difference to temporally form interference light. Here, the angle of the moving mirror may be slightly inclined by driving of the mirror or vibration applied from the outside, but if the angle of the mirror is slightly inclined, interference light can not be obtained.
 そのため、従来のマイケルソン型干渉計は、重量のある定盤上に構成したり、室内等の振動が少ない環境で用いたりして振動を抑え、ナノメートル精度でミラーの駆動を行っている。特許文献1~4では、マイケルソン型干渉計について、2枚のミラーの角度を一定に保つ技術や、ミラーの駆動を安定させる技術、ミラーの位置を精密に検出する技術について様々な改良が提案されている。しかしながら、これらの技術は、コストの増大や装置の大型化を招くことがあった。 Therefore, the conventional Michelson interferometer is configured on a heavy plate or used in an environment with little vibration such as indoors to suppress the vibration and drive the mirror with nanometer accuracy. Patent documents 1 to 4 propose various improvements to the Michelson interferometer, a technique for keeping the angle of two mirrors constant, a technique for stabilizing the drive of the mirror, and a technique for accurately detecting the position of the mirror. It is done. However, these techniques may lead to an increase in cost and an increase in size of the device.
 マイケルソン型干渉計の欠点を克服すべく、非特許文献1~3では、空間的に干渉光を形成するマルチチャンネル干渉計が提案されている。マイケルソン型干渉計では干渉光を時間的に形成するのに対して、マルチチャンネル干渉計は、ウォラストンプリズムやサバール板を用いて空間的に干渉光を形成する。ただし、マルチチャンネル干渉計は、ミラーを移動させて光路差をつくるものではないため、マイケルソン型干渉計よりも耐振性が高いものの、空間的に広がった干渉光を光検出器で捉えなければ十分な分解能が達成できず、光検出器の大きさによって分解能が制限される。 In order to overcome the drawbacks of the Michelson interferometer, Non-Patent Documents 1 to 3 propose a multi-channel interferometer that spatially forms interference light. The Michelson interferometer temporally forms interference light, whereas the multi-channel interferometer spatially forms interference light using a Wollaston prism or a Savart plate. However, multi-channel interferometers do not move mirrors to create an optical path difference, so they have higher vibration resistance than Michelson interferometers, but if they do not detect spatially spread interference light with a photodetector Sufficient resolution can not be achieved and resolution is limited by the size of the photodetector.
 そこで、本発明は、耐振性が高く、安価で小型であり、分解能が高い干渉計、フーリエ変換分光装置及び成分分析装置を提供する。 Therefore, the present invention provides an interferometer, a Fourier transform spectrometer, and a component analyzer that are high in vibration resistance, inexpensive, small, and high in resolution.
 本発明の一態様に係る干渉計は、入射された光のうち所定の偏光を通過させる第1偏光素子と、第1偏光素子の後段に配置され、第1偏光素子から出射された光の入射方向を回転軸として回転可能に配置された複屈折結晶と、複屈折結晶の後段に配置され、複屈折結晶から出射された光のうち所定の偏光を通過させる第2偏光素子と、第2偏光素子の後段に配置され、第2偏光素子から出射された光を電気信号に変換する受光素子と、を備え、第1偏光素子、複屈折結晶、第2偏光素子及び受光素子は、直線的に配置される。 The interferometer according to an aspect of the present invention includes a first polarizing element that transmits predetermined polarized light of incident light, and an incident of the light emitted from the first polarizing element, which is disposed downstream of the first polarizing element. A second polarization element disposed downstream of the birefringence crystal, the second polarization element transmitting a predetermined polarization of light emitted from the birefringence crystal, and a second polarization element; And a light receiving element disposed downstream of the element and converting light emitted from the second polarizing element into an electric signal, wherein the first polarizing element, the birefringent crystal, the second polarizing element, and the light receiving element are linearly arranged. Be placed.
 この態様によれば、第1偏光素子、複屈折結晶、第2偏光素子及び受光素子で干渉計を構成することで、安価で小型とすることができ、これらの素子が直線的に配置されることで、耐振性を向上させることができる。また、回転可能に配置された複屈折結晶により干渉光を時間的に形成することで、十分に高い分解能を得ることができる。 According to this aspect, by configuring the interferometer with the first polarizing element, the birefringent crystal, the second polarizing element, and the light receiving element, the cost can be reduced and the size can be reduced, and these elements are linearly arranged. Thus, the vibration resistance can be improved. In addition, sufficiently high resolution can be obtained by temporally forming interference light with a birefringent crystal disposed rotatably.
 上記態様において、第1偏光素子は、入射された光のうち第1方向の直線偏光を通過させ、第2偏光素子は、複屈折結晶から出射された光のうち第2方向の直線偏光を通過させ、第1方向と第2方向は、同じ方向又は直交する方向であってもよい。 In the above aspect, the first polarizing element transmits linearly polarized light in the first direction of the incident light, and the second polarizing element transmits linearly polarized light in the second direction of the light emitted from the birefringence crystal. The first direction and the second direction may be the same direction or orthogonal directions.
 この態様によれば、複屈折結晶により位相差を与えられた光を効率的に干渉させることができ、入射光を効率的に用いて明るい干渉光を得ることができる。 According to this aspect, it is possible to efficiently interfere the light given the phase difference by the birefringent crystal, and it is possible to efficiently use the incident light to obtain bright interference light.
 上記態様において、第2偏光素子は、複屈折結晶から出射された光のうち2種類の偏光を分離して異なる方向に出射し、受光素子は、第2偏光素子により分離された2種類の偏光のうち一方を受光する第1素子と、他方を受光する第2素子とを含んでもよい。 In the above aspect, the second polarizing element separates two types of polarized light of the light emitted from the birefringent crystal and emits the polarized light in different directions, and the light receiving element includes two types of polarized light separated by the second polarizing element. And a second element that receives the other.
 この態様によれば、それぞれ逆向きにピークを持った2種類の干渉光が得られ、差分を取ることで、ノイズを低減し、干渉のピークを明確にすることができる。 According to this aspect, two types of interference light having peaks in opposite directions can be obtained, and by taking the difference, noise can be reduced and interference peaks can be clarified.
 上記態様において、第1偏光素子は、入射された光のうち第1方向の直線偏光を通過させ、第2偏光素子は、複屈折結晶から出射された光のうち第2方向の直線偏光と第3方向の直線偏光を分離して異なる方向に出射し、第1方向と第2方向は、同じ方向又は直交する方向であり、第1方向と第3方向は、同じ方向又は直交する方向であり、第2方向と第3方向は、直交する方向であってもよい。 In the above aspect, the first polarization element transmits linearly polarized light in the first direction of the incident light, and the second polarization element transmits linearly polarized light in the second direction of the light emitted from the birefringent crystal. The linearly polarized light in three directions is separated and emitted in different directions. The first direction and the second direction are the same direction or orthogonal directions, and the first direction and the third direction are the same direction or orthogonal directions, The second direction and the third direction may be orthogonal to each other.
 この態様によれば、複屈折結晶により位相差を与えられた光を効率的に干渉させることができ、入射光を効率的に用いて逆向きにピークを持った2種類の明るい干渉光を得ることができ、差分を取ることで、ノイズを低減し、干渉のピークを明確にすることができる。 According to this aspect, it is possible to efficiently interfere the light given the phase difference by the birefringent crystal, and to efficiently use the incident light to obtain two types of bright interference light having peaks in opposite directions. By taking the difference, noise can be reduced and interference peaks can be clarified.
 上記態様において、第1偏光素子と複屈折結晶の間に配置され、第1偏光素子から出射された光のうち2種類の偏光を分離して同じ方向に出射する第3偏光素子をさらに備えてもよい。 In the above-mentioned mode, it further comprises a third polarization element which is disposed between the first polarization element and the birefringence crystal and separates two kinds of polarized light of the light emitted from the first polarization element and emits it in the same direction. It is also good.
 この態様によれば、入射光をスリットで絞らずに複屈折結晶に入射させることができ、入射光を効率的に用いて明るい干渉光を得ることができる。 According to this aspect, the incident light can be made incident on the birefringent crystal without being narrowed by the slit, and the incident light can be efficiently used to obtain bright interference light.
 上記態様において、受光素子は、シングルチャンネルセンサを一列に並べたラインセンサ又はシングルチャンネルセンサをマトリクス状に並べたエリアセンサを含んでもよい。 In the above aspect, the light receiving element may include a line sensor in which single channel sensors are aligned or an area sensor in which single channel sensors are aligned in a matrix.
 この態様によれば、時間的に形成される干渉を、空間的に並列して測定することができ、測定時間が短縮されるとともに、空間的な分光情報を測定することもできる。 According to this aspect, temporally formed interference can be measured in parallel in space, and the measurement time can be shortened, and spatial spectral information can also be measured.
 本発明の他の態様に係るフーリエ変換分光装置は、上記態様の干渉計と、電気信号をフーリエ変換する変換部と、を備える。 A Fourier transform spectroscopy device according to another aspect of the present invention includes the interferometer of the above aspect, and a conversion unit that Fourier-transforms an electric signal.
 この態様によれば、耐振性が高く、安価で小型であり、分解能が高い干渉計を備えることで、持ち運んで使用することのできる、スペクトル分解能の高いフーリエ変換分光装置が得られる。 According to this aspect, by providing an interferometer that is high in vibration resistance, inexpensive, compact, and high in resolution, it is possible to obtain a Fourier transform spectrometer with high spectral resolution that can be carried and used.
 本発明の他の態様に係る成分分析装置は、上記態様のフーリエ変換分光装置と、フーリエ変換された電気信号に基づいて、成分分析を行う分析部と、を備える。 A component analysis apparatus according to another aspect of the present invention includes: the Fourier transform spectrometer of the above aspect; and an analysis unit that performs component analysis based on the Fourier-transformed electrical signal.
 この態様によれば、耐振性が高く、安価で小型であり、分解能が高いフーリエ変換分光装置を備えることで、持ち運んで使用することのできる成分分析装置が得られる。 According to this aspect, it is possible to obtain a component analyzer that can be carried and used by providing a Fourier transform spectrometer that is high in vibration resistance, inexpensive, compact, and high in resolution.
 本発明によれば、耐振性が高く、安価で小型であり、分解能が高い干渉計、フーリエ変換分光装置及び成分分析装置を提供することができる。 According to the present invention, it is possible to provide an interferometer, a Fourier transform spectroscopy device and a component analysis device which are high in vibration resistance, inexpensive, small in size, and high in resolution.
本発明の第1実施形態に係る成分分析装置の構成図である。It is a block diagram of the component analyzer which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る干渉計の構成図である。It is a block diagram of the interferometer which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る干渉計により得られるスペクトルと、従来のマルチチャンネル干渉計により得られるスペクトルを示すグラフである。It is a graph which shows the spectrum obtained by the interferometer which concerns on 1st Embodiment of this invention, and the spectrum obtained by the conventional multi-channel interferometer. 本発明の第2実施形態に係る干渉計の構成図である。It is a block diagram of the interferometer which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る干渉計により得られる干渉光を示す図である。It is a figure which shows the interference light obtained by the interferometer which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る干渉計の構成図である。It is a block diagram of the interferometer which concerns on 3rd Embodiment of this invention.
 添付図面を参照して、本発明の実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。 Embodiments of the present invention will be described with reference to the accompanying drawings. In addition, what attached the same code | symbol in each figure has the same or same structure.
[第1実施形態]
 図1は、本発明の第1実施形態に係る成分分析装置100の構成図である。本実施形態に係る成分分析装置100は、フーリエ変換分光装置200と、フーリエ変換された電気信号に基づいて、成分分析を行う分析部30と、を備える。フーリエ変換分光装置200は、干渉計10と、電気信号をフーリエ変換する変換部20と、を備える。干渉計10は、試料300で反射された光又は試料300を透過した光について干渉光を形成して、干渉光を受光素子で受光し、電気信号として出力する。成分分析装置100は、干渉計10によって干渉光を形成し、フーリエ変換分光装置200の変換部20によって干渉光の電気信号をフーリエ変換してスペクトル分解し、分析部30によって試料300に含まれる化学的成分を分析する。
First Embodiment
FIG. 1 is a block diagram of a component analyzer 100 according to the first embodiment of the present invention. The component analysis device 100 according to the present embodiment includes a Fourier transform spectroscopy device 200, and an analysis unit 30 that performs component analysis based on the electrical signal subjected to Fourier transform. The Fourier transform spectrometer 200 includes an interferometer 10 and a converter 20 that Fourier-transforms an electrical signal. The interferometer 10 forms interference light with respect to the light reflected by the sample 300 or the light transmitted through the sample 300, receives the interference light by the light receiving element, and outputs the light as an electric signal. The component analysis apparatus 100 forms interference light by the interferometer 10, Fourier transforms the spectrum of the electric signal of the interference light by the conversion unit 20 of the Fourier transform spectroscopy apparatus 200, and decomposes the spectrum. The essential constituents.
 本実施形態に係る成分分析装置100において、試料300に照射する光は、赤外線である。もっとも、試料300に照射する光は、近赤外線であってもよいし、可視光や紫外線等任意の波長の光であってよい。また、試料300は、気体、液体及び固体のいずれであってもよく、例えば有機化合物であってよい。試料300は、合成されたものでなくて、例えば農産物等の天然物であってもよい。成分分析装置100は、試料300として天然物を対象として、天然物に含まれる化学成分を分析することとしてもよい。もっとも、試料300は、どのような対象であってもよい。 In the component analyzer 100 according to the present embodiment, the light irradiated to the sample 300 is an infrared ray. However, the light irradiated to the sample 300 may be near infrared light, or may be light of any wavelength such as visible light or ultraviolet light. The sample 300 may be any of gas, liquid and solid, and may be, for example, an organic compound. The sample 300 may not be synthetic but may be a natural product such as agricultural products. The component analysis apparatus 100 may analyze a chemical component contained in a natural product by using a natural product as the sample 300. However, the sample 300 may be any target.
 図2は、本発明の第1実施形態に係る干渉計10の構成図である。干渉計10は、スリット11、第1レンズ12、第1偏光素子13、複屈折結晶14、第2偏光素子15、第2レンズ16及び受光素子17を備える。 FIG. 2 is a block diagram of the interferometer 10 according to the first embodiment of the present invention. The interferometer 10 includes a slit 11, a first lens 12, a first polarizing element 13, a birefringent crystal 14, a second polarizing element 15, a second lens 16 and a light receiving element 17.
 スリット11は、干渉計10に入射する入射光INを絞る。スリット11は、例えばピンホールであってよい。第1レンズ12は、スリット11から出射された光を平行光に変換する凸レンズであってよい。 The slit 11 narrows the incident light IN incident on the interferometer 10. The slit 11 may be, for example, a pinhole. The first lens 12 may be a convex lens that converts light emitted from the slit 11 into parallel light.
 第1偏光素子13は、入射された光のうち所定の偏光を通過させる。第1偏光素子13は、入射された光のうち第1方向の直線偏光を通過させる素子であってよい。ここで、第1方向は、第1偏光素子13の表面に沿った任意の方向であってよい。例えば、干渉計10が水平面に置かれ、第1方向が水平面に対して垂直方向(0°方向)である場合、第1偏光素子13を通過した光は、水平面に対して45°方向の直線偏光である第1偏光P1と、水平面に対して-45°方向の直線偏光である第2偏光P2とを同じ強度で含む。 The first polarization element 13 transmits a predetermined polarization of the incident light. The first polarizing element 13 may be an element that transmits linearly polarized light in the first direction among incident light. Here, the first direction may be any direction along the surface of the first polarizing element 13. For example, when the interferometer 10 is placed on a horizontal plane and the first direction is a direction perpendicular to the horizontal plane (0 ° direction), the light passing through the first polarizing element 13 is a straight line in the direction of 45 ° to the horizontal plane The first polarized light P1 which is polarized light and the second polarized light P2 which is linearly polarized light in the -45 ° direction with respect to the horizontal plane are included with the same intensity.
 複屈折結晶14は、第1偏光素子13の後段に配置され、第1偏光素子13から出射された光の入射方向を回転軸として回転可能に配置される。ここで、第1偏光素子13から出射された光の入射方向とは、第1偏光素子13を通過した第1偏光P1及び第2偏光P2が入射する方向であり、第1偏光素子13の表面と直交する方向である。複屈折結晶14は、一定の角速度ωで回転されて、入射する第1偏光P1及び第2偏光P2に対して、角度に応じた位相差を与える。本例では、第2偏光P2は、第1偏光P1に対して、δだけ位相が遅れている。 The birefringent crystal 14 is disposed downstream of the first polarizing element 13 and is rotatably disposed with the incident direction of the light emitted from the first polarizing element 13 as the rotation axis. Here, the incident direction of the light emitted from the first polarizing element 13 is the direction in which the first polarized light P1 and the second polarized light P2 having passed through the first polarizing element 13 are incident, and the surface of the first polarizing element 13 is And the direction orthogonal to The birefringent crystal 14 is rotated at a constant angular velocity ω to give a phase difference according to the angle with respect to the incident first polarized light P1 and second incident polarized light P2. In this example, the phase of the second polarized light P2 is delayed by δ with respect to the first polarized light P1.
 複屈折結晶14は、一軸性結晶であってよく、試料300に照射する光の波長に応じて異なる材料で形成してよい。例えば、可視光領域では方解石(CaCO3)を用いることができ、近赤外領域ではYVO4を用いることができ、赤外領域ではGaSeを用いることができる。複屈折結晶14を形成する材料は、複屈折の特性だけではなく、入手の容易さや加工のしやすさ、扱いやすさ、価格等を考慮して選択するべきものである。複屈折結晶14の材料としては、上述のもの以外に、クォーツやTiO2、CdSe等を用いることもできる。 The birefringent crystal 14 may be a uniaxial crystal, and may be formed of different materials according to the wavelength of light with which the sample 300 is irradiated. For example, calcite (CaCO 3 ) can be used in the visible light region, YVO 4 can be used in the near infrared region, and GaSe can be used in the infrared region. The material forming the birefringent crystal 14 should be selected in consideration of not only the characteristic of birefringence but also the availability, ease of processing, ease of handling, cost and the like. As a material of the birefringent crystal 14, quartz, TiO 2 , CdSe or the like can be used besides the above-mentioned ones.
 第2偏光素子15は、複屈折結晶14の後段に配置され、複屈折結晶14から出射された光のうち所定の偏光を通過させる。第2偏光素子15は、複屈折結晶14から出射された光のうち第2方向の直線偏光を通過させる素子であってよく、第1方向と第2方向は、同じ方向又は直交する方向であってよい。例えば、第1方向が0°方向の場合、第2方向は、0°方向又は90°方向であってよい。これにより、45°方向の直線偏光である第1偏光P1の一部と、-45°方向の直線偏光であり、位相遅れδを有する第2偏光P2の一部とが第2偏光素子15を通過することとなり、位相遅れδに応じた干渉光が形成される。第1方向と第2方向を同じ方向又は直交する方向とすることにより、複屈折結晶14により位相差を与えられた光を効率的に干渉させることができ、入射光を効率的に用いて明るい干渉光を得ることができる。 The second polarizing element 15 is disposed downstream of the birefringent crystal 14 and transmits predetermined polarized light of the light emitted from the birefringent crystal 14. The second polarizing element 15 may be an element for transmitting linearly polarized light in the second direction among the light emitted from the birefringent crystal 14, and the first direction and the second direction may be the same direction or orthogonal directions. You may For example, when the first direction is the 0 ° direction, the second direction may be the 0 ° direction or the 90 ° direction. As a result, part of the first polarized light P1 which is linearly polarized light in the 45.degree. Direction and part of the second polarized light P2 which is linearly polarized light in the -45.degree. Direction and which has the phase delay .delta. It passes through, and interference light according to the phase delay δ is formed. By setting the first direction and the second direction to be the same direction or orthogonal directions, it is possible to efficiently interfere the light given the phase difference by the birefringent crystal 14 and to use incident light efficiently for brightening. Interference light can be obtained.
 第2レンズ16は、第2偏光素子15を通過した光を集光して、受光素子17に対して出射光OUTを出射する。受光素子17は、第2偏光素子15の後段に配置され、出射光OUTを電気信号に変換する。受光素子17は、複屈折結晶14が一軸性結晶の場合、複屈折結晶14が4分の1回転する間、継続的に露光されてよい。受光素子17により出力される電気信号は、変換部20によってフーリエ変換され、スペクトル分解される。 The second lens 16 condenses the light that has passed through the second polarizing element 15 and emits the outgoing light OUT to the light receiving element 17. The light receiving element 17 is disposed downstream of the second polarizing element 15, and converts the outgoing light OUT into an electrical signal. When the birefringent crystal 14 is a uniaxial crystal, the light receiving element 17 may be continuously exposed while the birefringent crystal 14 makes a quarter rotation. The electrical signal output by the light receiving element 17 is Fourier transformed by the transformation unit 20 and spectrally resolved.
 本実施形態に係る干渉計10では、複屈折結晶14を一軸性結晶で構成する場合、複屈折結晶14を4分の1回転させる毎に、干渉光が形成される。すなわち、複屈折結晶14を1回転させる毎に、干渉光が4回形成される。ここで、複屈折結晶14は、一方向に等角速度で回転させればよい。また、複屈折結晶14を回転させる際に複屈折結晶14の端面が僅かに傾くことがあり得るが、仮に端面が数度程度傾いたとしても、干渉光の形成に影響は無い。そのため、本実施形態に係る干渉計10では、複屈折結晶14を回転させるために高精度な制御は求められず、従来のマイケルソン型干渉計のように精密な制御を必要としないため、駆動機構が簡単でよく、駆動機構を安価に構成することができる。 In the interferometer 10 according to the present embodiment, when the birefringent crystal 14 is formed of a uniaxial crystal, interference light is formed every quarter rotation of the birefringent crystal 14. That is, each time the birefringent crystal 14 is rotated one time, interference light is formed four times. Here, the birefringent crystal 14 may be rotated at one constant angular velocity in one direction. In addition, the end face of the birefringent crystal 14 may be slightly inclined when the birefringent crystal 14 is rotated, but even if the end face is inclined by several degrees, the formation of interference light is not affected. Therefore, in the interferometer 10 according to the present embodiment, high-precision control is not required to rotate the birefringent crystal 14, and precise control is not required as in the conventional Michelson-type interferometer. The mechanism can be simple, and the drive mechanism can be configured inexpensively.
 本実施形態に係る干渉計10では、第1偏光素子13、複屈折結晶14、第2偏光素子15及び受光素子17は、直線的に配置される。ここで、直線的に配置とは、それぞれの光学素子に対して光が入射する方向がほとんど揃っていることを意味する。言い換えると、直線的に配置とは、それぞれの光学素子の光軸がほとんど一致することを意味する。なお、光軸とは、複屈折結晶14の光学軸を意味するものではなく、光学素子において、素子を通過する光束の代表となる仮想的な光線をいう。複数の光学素子が直線的に配置されていない場合の一例は、ある光学素子に対して光が入射する方向と、他の光学素子に対して光が入射する方向が直交する場合である。第1偏光素子13、複屈折結晶14、第2偏光素子15及び受光素子17が、直線的に配置されることで、干渉計10に多少の振動が加えられえた場合であっても、全ての素子が光の入射方向に対して同じ方向に振動することとなり、素子が直線的に配置されない場合と比較して振動による位置ずれ等の影響が低減される。 In the interferometer 10 according to the present embodiment, the first polarization element 13, the birefringent crystal 14, the second polarization element 15, and the light receiving element 17 are linearly arranged. Here, the linear arrangement means that the directions in which light is incident on the respective optical elements are almost the same. In other words, the linear arrangement means that the optical axes of the respective optical elements almost coincide with each other. Note that the optical axis does not mean the optical axis of the birefringent crystal 14, but in the optical element, it means a virtual ray representing a light flux passing through the element. An example of the case where the plurality of optical elements are not arranged linearly is that the direction in which light is incident on a certain optical element and the direction in which light is incident on another optical element are orthogonal to each other. By arranging the first polarization element 13, the birefringence crystal 14, the second polarization element 15 and the light receiving element 17 in a straight line, even if some vibration can be applied to the interferometer 10, all The element vibrates in the same direction with respect to the incident direction of light, and the influence of displacement due to vibration or the like is reduced as compared with the case where the element is not arranged linearly.
 図3は、本発明の第1実施形態に係る干渉計10により得られるスペクトルAと、従来のマルチチャンネル干渉計により得られるスペクトルBを示すグラフである。同図は、本実施形態に係る干渉計10によって試料300に照射された赤外線を干渉させ、変換部20によってスペクトルAを得た場合と、同じ試料300に同じ波長の赤外線を照射して従来のマルチチャンネル干渉計によって干渉させ、スペクトルBを得た場合とを示している。同図に示すグラフの横軸は、波数を示しており、単位が[1/cm]であり、縦軸は、無次元化されたエネルギーを示す。 FIG. 3 is a graph showing a spectrum A obtained by the interferometer 10 according to the first embodiment of the present invention and a spectrum B obtained by the conventional multi-channel interferometer. In the figure, the infrared rays irradiated to the sample 300 are made to interfere by the interferometer 10 according to the present embodiment, and infrared rays of the same wavelength are irradiated to the same sample 300 as in the case where the spectrum A is obtained by the conversion unit 20. The case where interference is obtained by the multi-channel interferometer and spectrum B is obtained is shown. The horizontal axis of the graph shown in the figure indicates the wave number, the unit is [1 / cm], and the vertical axis indicates non-dimensionalized energy.
 本実施形態に係る干渉計10により得られるスペクトルAは、複数の鋭いピークを示しており、試料300によって特定の波長の光が吸収されていることを明確に示している。一方で、従来のマルチチャンネル干渉計により得られるスペクトルBは、なだらかな凹凸を示しているものの、鋭いピークは得られておらず、吸収波長を特定するには不十分な分解能しか得られていない。従来のマルチチャンネル干渉計は、1024個程度の受光素子によって空間的に干渉光を形成するため、試料300に照射する光が赤外領域となると、干渉光の一部しか受光素子によって受光できず、サンプリング点数が不十分となり、十分な分解能が得られない。 The spectrum A obtained by the interferometer 10 according to the present embodiment shows a plurality of sharp peaks, and clearly shows that the light of a specific wavelength is absorbed by the sample 300. On the other hand, although the spectrum B obtained by the conventional multi-channel interferometer shows gentle unevenness, no sharp peak is obtained and only insufficient resolution for specifying the absorption wavelength is obtained . The conventional multi-channel interferometer spatially forms interference light by about 1024 light receiving elements, so when the light irradiated to the sample 300 is in the infrared region, only part of the interference light can be received by the light receiving element And the number of sampling points is insufficient and sufficient resolution can not be obtained.
 このように、本実施形態に係る干渉計10によれば、第1偏光素子13、複屈折結晶14、第2偏光素子15及び受光素子17で干渉計10を構成することで、安価で小型な干渉計10とすることができ、これらの素子が直線的に配置されることで、耐振性を向上させることができる。また、回転可能に配置された複屈折結晶14により干渉光を時間的に形成することができ、十分に高い分解能を得ることができる。さらに、本実施形態に係るフーリエ変換分光装置200によれば、耐振性が高く、安価で小型であり、分解能が高い干渉計10を備えることで、持ち運んで使用することのできる、スペクトル分解能の高いフーリエ変換分光装置が得られる。本実施形態に係る成分分析装置100によれば、耐振性が高く、安価で小型であり、分解能が高いフーリエ変換分光装置200を備えることで、持ち運んで使用することのできる成分分析装置が得られる。 As described above, according to the interferometer 10 according to the present embodiment, by configuring the interferometer 10 with the first polarizing element 13, the birefringent crystal 14, the second polarizing element 15, and the light receiving element 17, it is inexpensive and compact. The interferometer 10 can be used, and the vibration resistance can be improved by arranging these elements linearly. In addition, the interference light can be temporally formed by the rotatably arranged birefringent crystal 14, and sufficiently high resolution can be obtained. Furthermore, according to the Fourier transform spectroscopy apparatus 200 according to the present embodiment, it is possible to carry and use it by providing the interferometer 10 that is high in vibration resistance, inexpensive, small in size, and high in resolution, and has high spectral resolution. A Fourier transform spectrometer is obtained. According to the component analysis device 100 according to the present embodiment, the component analysis device that can be carried and used can be obtained by providing the Fourier transform spectroscopy device 200 that is high in vibration resistance, inexpensive, small, and high in resolution. .
 なお、分光分析では広い波長領域が必要となることが多いが、複屈折結晶14の波長分散の影響で、測定波長全域にわたり、波数に対してリニアなスペクトル分布が得られないこともある。そのような場合には、複屈折結晶14の波長分散を考慮して、測定結果を補正することとしてもよい。補正は、複数の既知の波長を有するレーザ光源又は既知の波長フィルターを通した白色光源等を用いてスペクトル分布をあらかじめ測定して、複屈折結晶14の波長分散の影響を相殺するための補正量をフーリエ変換分光装置200に記憶し、当該補正量に基づいて行うこととしてもよい。 Although a wide wavelength region is often required in the spectral analysis, the influence of the wavelength dispersion of the birefringent crystal 14 may make it impossible to obtain a linear spectral distribution with respect to the wavenumber over the entire measurement wavelength range. In such a case, the measurement result may be corrected in consideration of the wavelength dispersion of the birefringent crystal 14. The correction is a correction amount for offsetting the influence of wavelength dispersion of the birefringent crystal 14 by measuring the spectral distribution in advance using a laser light source having a plurality of known wavelengths or a white light source passing through a known wavelength filter or the like. May be stored in the Fourier transform spectrometer 200 and may be performed based on the correction amount.
 また、試料300として農産物を対象とする場合、本実施形態に係る成分分析装置100によれば、携帯可能な成分分析装置100によって、農産物の非破壊成分分析が可能となり、農産物に含まれる化学成分の変化を定量的に把握することができるため、農産物の育成状況を精度良く測定することができる。 Further, when agricultural products are used as the sample 300, according to the component analysis apparatus 100 according to the present embodiment, the portable component analysis apparatus 100 enables nondestructive analysis of agricultural products, and chemical components contained in agricultural products Because changes in can be grasped quantitatively, it is possible to accurately measure the growing situation of agricultural products.
[第2実施形態]
 図4は、本発明の第2実施形態に係る干渉計10aの構成図である。本実施形態に係る干渉計10aは、第1実施形態に係る干渉計10と比較して、第2偏光素子がウォラストンプリズム(Wollaston prism)18で構成され、受光素子として第1素子17aと第2素子17bを含む点で相違する。それら以外の構成について、第2実施形態に係る干渉計10aは、第1実施形態に係る干渉計10と同様の構成を有する。以下では、主に相違点について説明する。なお、本実施形態に係る干渉計10aにおいても、第1偏光素子13、複屈折結晶14、ウォラストンプリズム18、第1素子17a及び第2素子17bは、直線的に配置される。もっとも、第1素子17a及び第2素子17bは、受光面を僅かに傾けて配置されてもよい。
Second Embodiment
FIG. 4 is a block diagram of an interferometer 10a according to a second embodiment of the present invention. In the interferometer 10a according to the present embodiment, the second polarizing element is configured of a Wollaston prism 18 as compared to the interferometer 10 according to the first embodiment, and the first element 17a and the first element 17a are used as light receiving elements. The difference is that the two elements 17b are included. Regarding the configuration other than them, the interferometer 10a according to the second embodiment has the same configuration as the interferometer 10 according to the first embodiment. The differences will be mainly described below. Also in the interferometer 10a according to the present embodiment, the first polarizing element 13, the birefringent crystal 14, the Wollaston prism 18, the first element 17a and the second element 17b are linearly arranged. However, the first element 17a and the second element 17b may be disposed with the light receiving surface slightly inclined.
 本実施形態に係る干渉計10aの第2偏光素子は、複屈折結晶14から出射された光のうち2種類の偏光を分離して異なる方向に出射するウォラストンプリズム18で構成される。ウォラストンプリズム18には、複屈折結晶14によって位相差δを与えられた第1偏光P1と第2偏光P2が入射される。ウォラストンプリズム18は、第1偏光P1及び第2偏光に含まれる2種類の偏光を、第1素子17aと第2素子17bにそれぞれ分離して出射する。第1素子17aは、ウォラストンプリズム18により分離された2種類の偏光のうち一方を受光し、第2素子17bは、ウォラストンプリズム18により分離された2種類の偏光のうち他方を受光する。 The second polarization element of the interferometer 10 a according to the present embodiment is configured of a Wollaston prism 18 that separates two types of polarized light of the light emitted from the birefringent crystal 14 and emits the polarized light in different directions. The first polarized light P1 and the second polarized light P2 of which the phase difference δ is given by the birefringent crystal 14 are incident on the Wollaston prism 18. The Wollaston prism 18 separates two types of polarized light contained in the first polarized light P1 and the second polarized light into the first element 17a and the second element 17b and emits them. The first element 17 a receives one of the two types of polarized light separated by the Wollaston prism 18, and the second element 17 b receives the other of the two types of polarized light separated by the Wollaston prism 18.
 第1偏光素子13は、入射された光のうち第1方向の直線偏光を通過させ、第2偏光素子であるウォラストンプリズム18は、複屈折結晶14から出射された光のうち第2方向の直線偏光と第3方向の直線偏光を分離して異なる方向に出射する。ここで、第1方向と第2方向は、同じ方向又は直交する方向であり、第1方向と第3方向は、同じ方向又は直交する方向であり、第2方向と第3方向は、直交する方向である。例えば、干渉計10aが水平面に置かれ、第1方向が水平面に対して0°方向の場合、第2方向は、水平面に対して0°方向であってよく、第3方向は、水平面に対して90°方向(水平面に沿った方向)であってよい。このような構成によって、水平面に対して45°方向の直線偏光である第1偏光P1のうち水平面に対して0°方向の直線偏光と、水平面に対して-45°方向の直線偏光であり、位相遅れδを有する第2偏光P2のうち水平面に対して0°方向の直線偏光とがウォラストンプリズム18によって第1素子17a側に第1出射光OUT1として出射され、水平面に対して45°方向の直線偏光である第1偏光P1のうち水平面に対して90°方向の直線偏光と、水平面に対して-45°方向の直線偏光であり、位相遅れδを有する第2偏光P2のうち水平面に対して90°方向の直線偏光とがウォラストンプリズム18によって第2素子17b側に第2出射光OUT2として出射されて、第1素子17a及び第2素子17bによってそれぞれ位相遅れδに応じた干渉光が測定される。なお、第1方向が水平面に対して0°方向の場合、第2方向は、水平面に対して90°方向であってもよく、第3方向は、水平面に対して0°方向であってもよい。 The first polarization element 13 transmits linearly polarized light in the first direction of the incident light, and the Wollaston prism 18 as the second polarization element transmits light in the second direction of the light emitted from the birefringence crystal 14. Linearly polarized light and linearly polarized light in the third direction are separated and emitted in different directions. Here, the first direction and the second direction are the same direction or orthogonal directions, the first direction and the third direction are the same direction or orthogonal directions, and the second direction and the third direction are orthogonal It is a direction. For example, if the interferometer 10a is placed in a horizontal plane and the first direction is at 0 ° with respect to the horizontal plane, the second direction may be at 0 ° with respect to the horizontal plane, and the third direction is with respect to the horizontal plane And 90.degree. (Direction along the horizontal plane). With such a configuration, of the first polarized light P1 which is linearly polarized light in the 45 ° direction with respect to the horizontal plane, linearly polarized light in the 0 ° direction with respect to the horizontal plane and linearly polarized light in the −45 ° direction with respect to the horizontal plane Of the second polarized light P2 having a phase delay δ, linearly polarized light in the 0 ° direction with respect to the horizontal plane is emitted by the Wollaston prism 18 as the first outgoing light OUT1 to the first element 17a side, and 45 ° direction with respect to the horizontal plane Of the first polarized light P1 which is linearly polarized light in the direction of 90 ° with respect to the horizontal plane and in the direction of −45 ° with respect to the horizontal plane, in the horizontal plane of the second polarized light P2 having the phase delay δ On the other hand, linearly polarized light in the 90 ° direction is emitted by the Wollaston prism 18 as the second outgoing light OUT2 to the second element 17b side, and the first element 17a and the second element 17b respectively delay the phase. Interference light corresponding to the δ is measured. If the first direction is a 0 ° direction with respect to the horizontal plane, the second direction may be a 90 ° direction with respect to the horizontal plane, and the third direction may be a 0 ° direction with respect to the horizontal plane Good.
 図5は、本発明の第2実施形態に係る干渉計10aにより得られる干渉光を示す図である。同図の上側のグラフは、第1素子17aによって受光される第1出射光OUT1及び第2素子17bによって受光される第2出射光OUT2を示している。また、下側のグラフは、第1出射光OUT1と第2出射光OUT2の差分データDIFFを示している。 FIG. 5 is a view showing interference light obtained by the interferometer 10 a according to the second embodiment of the present invention. The upper graph in the figure shows the first outgoing light OUT1 received by the first element 17a and the second outgoing light OUT2 received by the second element 17b. Further, the lower graph shows difference data DIFF of the first emission light OUT1 and the second emission light OUT2.
 同図に示すように、第1出射光OUT1と第2出射光OUT2は、互いにピークが逆向きに表れる波形となっている。そのため、第1出射光OUT1と第2出射光OUT2の差分データDIFFでは、それぞれのピークが互いに強め合い、第1出射光OUT1と第2出射光OUT2に含まれるノイズは相殺することなる。このように、第2偏光素子としてウォラストンプリズム18を用いることで、それぞれ逆向きにピークを持った2種類の干渉光を得ることができ、第1素子17a及び第2素子17bでそれぞれ干渉光を受光し、差分を取ることで、ノイズを低減し、干渉のピークを明確にすることができる。 As shown in the figure, the first emission light OUT1 and the second emission light OUT2 have waveforms in which the peaks appear in opposite directions. Therefore, in the difference data DIFF of the first outgoing light OUT1 and the second outgoing light OUT2, the respective peaks reinforce each other, and the noise contained in the first outgoing light OUT1 and the second outgoing light OUT2 is canceled out. As described above, by using the Wollaston prism 18 as the second polarizing element, two types of interference light having peaks in opposite directions can be obtained, and the interference light is generated by the first element 17a and the second element 17b. By receiving the difference and taking the difference, it is possible to reduce the noise and make the interference peak clear.
 本実施形態に係る干渉計10aによれば、複屈折結晶14により位相差を与えられた光を効率的に干渉させることができ、入射光を効率的に用いて逆向きにピークを持った2種類の明るい干渉光を得ることができ、差分を取ることで、ノイズを低減し、干渉のピークを明確にすることができる。 According to the interferometer 10 a according to the present embodiment, light having a phase difference given by the birefringent crystal 14 can be efficiently interfered, and incident light is efficiently used to have peaks in the opposite direction 2 A kind of bright interference light can be obtained, and by taking the difference, noise can be reduced and interference peaks can be clarified.
[第3実施形態]
 図6は、本発明の第3実施形態に係る干渉計10bの構成図である。本実施形態に係る干渉計10bは、第1実施形態に係る干渉計10と比較して、スリット11を備えず、第3偏光素子19を備える点で相違する。それら以外の構成について、第3実施形態に係る干渉計10bは、第1実施形態に係る干渉計10と同様の構成を有する。以下では、主に相違点について説明する。
Third Embodiment
FIG. 6 is a block diagram of an interferometer 10b according to a third embodiment of the present invention. The interferometer 10b according to the present embodiment is different from the interferometer 10 according to the first embodiment in that the third polarizing element 19 is not provided and the slit 11 is not provided. The interferometer 10b according to the third embodiment has the same configuration as that of the interferometer 10 according to the first embodiment, except for the configurations described above. The differences will be mainly described below.
 第3偏光素子19は、第1偏光素子13と複屈折結晶14の間に配置され、第1偏光素子13から出射された光のうち2種類の偏光を分離して同じ方向に出射する。第3偏光素子19は、例えばサバール板(Savart plate)であってよい。第3偏光素子19は、干渉計10bが水平面に置かれる場合、第1偏光素子13から出射された、水平面に対して0°方向の直線偏光のうち、水平面に対して45°方向の直線偏光である第1偏光P1と、水平面に対して-45°方向の直線偏光である第2偏光P2とを分離して出射するものであってよい。 The third polarizing element 19 is disposed between the first polarizing element 13 and the birefringent crystal 14 and separates two types of polarized light of the light emitted from the first polarizing element 13 and emits the same in the same direction. The third polarizing element 19 may be, for example, a Savart plate. When the interferometer 10b is placed on a horizontal plane, the third polarization element 19 emits linearly polarized light from the first polarization element 13 at 45 ° to the horizontal plane among the linear polarizations at 0 ° to the horizontal plane. The first polarized light P1 and the second polarized light P2 which is linearly polarized light in the −45 ° direction with respect to the horizontal plane may be separated and emitted.
 本実施形態に係る干渉計10bによれば、入射光をスリットで絞らずに複屈折結晶14に入射させることができ、入射光を効率的に用いて明るい干渉光を得ることができる。 According to the interferometer 10b according to the present embodiment, the incident light can be made incident on the birefringent crystal 14 without being narrowed by the slit, and bright interference light can be obtained by efficiently using the incident light.
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。 The embodiments described above are for the purpose of facilitating the understanding of the present invention, and are not for the purpose of limiting the present invention. The elements included in the embodiment and the arrangement, the material, the conditions, the shape, the size, and the like of the elements are not limited to those illustrated, and can be changed as appropriate. In addition, configurations shown in different embodiments can be partially substituted or combined with each other.
 例えば、受光素子17は、シングルチャンネルセンサを一列に並べたラインセンサ又はシングルチャンネルセンサをマトリクス状に並べたエリアセンサを含んでよい。ラインセンサやエリアセンサを用いることで、時間的に形成される干渉を、空間的に並列して測定することができ、測定時間が短縮されるとともに、空間的な分光情報を測定することもできる。また、時間的に形成される干渉だけでなく、空間的に形成される干渉をも測定することができ、受光面積や信号対雑音比を増加させることができるため、より分解能の高い測定ができる。 For example, the light receiving element 17 may include a line sensor in which single channel sensors are aligned or an area sensor in which single channel sensors are aligned in a matrix. By using a line sensor or an area sensor, temporally formed interference can be measured in parallel in space, and the measurement time can be shortened and spatial spectral information can also be measured. . Moreover, not only temporally formed interference but also spatially formed interference can be measured, and since the light receiving area and the signal to noise ratio can be increased, higher resolution measurement can be performed. .
 また、いずれの実施形態に係る干渉計を用いる場合であっても、変換部20によって干渉光の電気信号をフーリエ変換し、分析部30によって成分分析を行うことができ、小型で持ち運び可能な成分分析装置100を提供することができる。 Further, even in the case of using the interferometer according to any of the embodiments, the converter 20 can perform Fourier transform on the electric signal of the interference light, and the analysis unit 30 can perform component analysis, so that a compact and portable component can be used. An analyzer 100 can be provided.
 10…干渉計、11…スリット、12…第1レンズ、13…第1偏光素子、14…複屈折結晶、15…第2偏光素子、16…第2レンズ、17…受光素子、18…ウォラストンプリズム、19…第3偏光素子、20…変換部、30…分析部、100…成分分析装置、200…フーリエ変換分光装置、300…試料 DESCRIPTION OF SYMBOLS 10 ... Interferometer, 11 ... Slit, 12 ... 1st lens, 13 ... 1st polarization element, 14 ... Birefringent crystal, 15 ... 2nd polarization element, 16 ... 2nd lens, 17 ... Light receiving element, 18 ... Wollaston Prism, 19 third polarization element, 20 conversion unit, 30 analysis unit, 100 component analysis device, 200 Fourier transform spectroscopy device, 300 sample

Claims (8)

  1.  入射された光のうち所定の偏光を通過させる第1偏光素子と、
     前記第1偏光素子の後段に配置され、前記第1偏光素子から出射された光の入射方向を回転軸として回転可能に配置された複屈折結晶と、
     前記複屈折結晶の後段に配置され、前記複屈折結晶から出射された光のうち所定の偏光を通過させる第2偏光素子と、
     前記第2偏光素子の後段に配置され、前記第2偏光素子から出射された光を電気信号に変換する受光素子と、を備え、
     前記第1偏光素子、前記複屈折結晶、前記第2偏光素子及び前記受光素子は、直線的に配置される、
     干渉計。
    A first polarization element that passes predetermined polarized light of incident light;
    A birefringent crystal disposed downstream of the first polarizing element, and rotatably disposed about the incident direction of the light emitted from the first polarizing element as a rotational axis;
    A second polarization element disposed downstream of the birefringent crystal and transmitting predetermined polarized light of light emitted from the birefringent crystal;
    And a light receiving element disposed downstream of the second polarizing element for converting light emitted from the second polarizing element into an electric signal.
    The first polarizing element, the birefringent crystal, the second polarizing element, and the light receiving element are linearly arranged.
    Interferometer.
  2.  前記第1偏光素子は、前記入射された光のうち第1方向の直線偏光を通過させ、
     前記第2偏光素子は、前記複屈折結晶から出射された光のうち第2方向の直線偏光を通過させ、
     前記第1方向と前記第2方向は、同じ方向又は直交する方向である、
     請求項1に記載の干渉計。
    The first polarization element transmits linearly polarized light in a first direction of the incident light,
    The second polarization element transmits linearly polarized light in a second direction of the light emitted from the birefringence crystal,
    The first direction and the second direction may be the same direction or orthogonal directions.
    The interferometer according to claim 1.
  3.  前記第2偏光素子は、前記複屈折結晶から出射された光のうち2種類の偏光を分離して異なる方向に出射し、
     前記受光素子は、前記第2偏光素子により分離された2種類の偏光のうち一方を受光する第1素子と、他方を受光する第2素子とを含む、
     請求項1に記載の干渉計。
    The second polarizing element separates two types of polarized light of the light emitted from the birefringent crystal and emits the polarized light in different directions.
    The light receiving element includes a first element that receives one of two types of polarized light separated by the second polarizing element, and a second element that receives the other.
    The interferometer according to claim 1.
  4.  前記第1偏光素子は、前記入射された光のうち第1方向の直線偏光を通過させ、
     前記第2偏光素子は、前記複屈折結晶から出射された光のうち第2方向の直線偏光と第3方向の直線偏光を分離して異なる方向に出射し、
     前記第1方向と前記第2方向は、同じ方向又は直交する方向であり、
     前記第1方向と前記第3方向は、同じ方向又は直交する方向であり、
     前記第2方向と前記第3方向は、直交する方向である、
     請求項3に記載の干渉計。
    The first polarization element transmits linearly polarized light in a first direction of the incident light,
    The second polarizing element separates linearly polarized light in the second direction and linearly polarized light in the third direction out of light emitted from the birefringent crystal and emits the light in different directions.
    The first direction and the second direction are the same direction or orthogonal directions,
    The first direction and the third direction are the same direction or orthogonal directions,
    The second direction and the third direction are orthogonal to each other,
    The interferometer according to claim 3.
  5.  前記第1偏光素子と前記複屈折結晶の間に配置され、前記第1偏光素子から出射された光のうち2種類の偏光を分離して同じ方向に出射する第3偏光素子をさらに備える、
     請求項1から4のいずれか一項に記載の干渉計。
    The light emitting device further comprises a third polarizing element disposed between the first polarizing element and the birefringent crystal and configured to separate two types of polarized light of light emitted from the first polarizing element and emit the polarized light in the same direction.
    The interferometer according to any one of claims 1 to 4.
  6.  前記受光素子は、シングルチャンネルセンサを一列に並べたラインセンサ又はシングルチャンネルセンサをマトリクス状に並べたエリアセンサを含む、
     請求項1から5のいずれか一項に記載の干渉計。
    The light receiving element includes a line sensor in which single channel sensors are aligned or an area sensor in which single channel sensors are aligned in a matrix.
    The interferometer according to any one of claims 1 to 5.
  7.  請求項1から6のいずれか一項に記載の干渉計と、
     前記電気信号をフーリエ変換する変換部と、
     を備えるフーリエ変換分光装置。
    An interferometer according to any one of claims 1 to 6;
    A converter for Fourier transforming the electrical signal;
    Fourier transform spectroscopy apparatus comprising:
  8.  請求項7に記載のフーリエ変換分光装置と、
     フーリエ変換された前記電気信号に基づいて、成分分析を行う分析部と、
     を備える成分分析装置。
    A Fourier transform spectrometer according to claim 7;
    An analysis unit that performs component analysis on the basis of the Fourier-transformed electric signal;
    A component analyzer comprising:
PCT/JP2018/021192 2017-07-03 2018-06-01 Interferometer, fourier transform spectroscopic device, and component analyzing device WO2019008964A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019528412A JP7253801B2 (en) 2017-07-03 2018-06-01 Interferometer, Fourier transform spectrometer and component analyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017130410 2017-07-03
JP2017-130410 2017-07-03

Publications (1)

Publication Number Publication Date
WO2019008964A1 true WO2019008964A1 (en) 2019-01-10

Family

ID=64949943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021192 WO2019008964A1 (en) 2017-07-03 2018-06-01 Interferometer, fourier transform spectroscopic device, and component analyzing device

Country Status (2)

Country Link
JP (1) JP7253801B2 (en)
WO (1) WO2019008964A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221993A (en) * 1993-01-27 1994-08-12 Sumitomo Electric Ind Ltd Method and apparatus for measuring extinction ratio of polarizer
US20130194558A1 (en) * 2010-10-27 2013-08-01 Korea Research Institute Of Standards And Science Apparatus for forming fine patterns capable of switching direction of polarization interference pattern in laser scanning method and method of forming fine patterns using the same
JP2015194359A (en) * 2014-03-31 2015-11-05 国立研究開発法人産業技術総合研究所 Scatterer spectroscopic analyzer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5493509B2 (en) * 2009-06-30 2014-05-14 株式会社リコー Spectroscopic apparatus and spectral method
JP6221993B2 (en) 2014-08-08 2017-11-01 マツダ株式会社 Engine control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221993A (en) * 1993-01-27 1994-08-12 Sumitomo Electric Ind Ltd Method and apparatus for measuring extinction ratio of polarizer
US20130194558A1 (en) * 2010-10-27 2013-08-01 Korea Research Institute Of Standards And Science Apparatus for forming fine patterns capable of switching direction of polarization interference pattern in laser scanning method and method of forming fine patterns using the same
JP2015194359A (en) * 2014-03-31 2015-11-05 国立研究開発法人産業技術総合研究所 Scatterer spectroscopic analyzer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIKUCHI, TAKAHIRO ET AL.: "Study on ultraviolet fourier-transform spectral measurement using polarization interferometer", PROCEEDINGS OF 2001 ANNUAL CONFERENCE OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN, vol. 252, 2001 *

Also Published As

Publication number Publication date
JPWO2019008964A1 (en) 2020-03-26
JP7253801B2 (en) 2023-04-07

Similar Documents

Publication Publication Date Title
FI109149B (en) Spectrometer and method for measuring optical spectrum
JP6893667B2 (en) Integrated polarization interferometer and snapshot spectroscopic polarization meter to which it is applied
JP5635624B2 (en) Compact interference spectrometer
US8125641B2 (en) Method and apparatus for phase-compensated sensitivity-enhanced spectroscopy (PCSES)
CA2878354C (en) Dual spectrometer
WO2005082007A2 (en) Fourier transform spectrometer apparatus multi-element mems
JP5722094B2 (en) Circular dichroism measuring apparatus and circular dichroism measuring method
JP7316355B2 (en) Vertical Incidence Ellipsometer and Method for Measuring Optical Properties of Specimen Using Same
WO2019111800A1 (en) Spectroscopic analyzer
CN112368566A (en) Apparatus and method for determining the presence of a gas
JP2007139751A (en) Polarization modulation type imaging ellipsometer
US20170045397A1 (en) Device for analysing a specimen and corresponding method
US10458917B2 (en) Method of measuring Raman scattering and related spectrometers and laser sources
KR101987402B1 (en) Optical measuring system for thicknesses of thin and thick films and 3D surface profile using a polarized pixel array
JP4284284B2 (en) Photothermal conversion measuring apparatus and method
KR102139995B1 (en) Normal-incidence and non-normal-incidence combination ellipsometer and method for measuring optical properties of the sample using the same
JP7253801B2 (en) Interferometer, Fourier transform spectrometer and component analyzer
AU2019302563A1 (en) Multi-function spectrometer
CN103185638B (en) Broadband polarization spectrograph and optical measuring system
US7515262B2 (en) Crystal grating apparatus
JP2015187587A (en) Polarization modulation fourier transform infrared spectroscope, polarization modulation measurement unit for fourier transform infrared spectroscope, and polarization modulation fourier transform infrared spectroscopy
US6373569B1 (en) Method and device for the spectral analysis of light
JP4700667B2 (en) Measuring device and measuring method
CN113654996A (en) Device and method for measuring phase retardation of composite achromatic wave plate
JP5176937B2 (en) Optical spectrum analyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18827413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019528412

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18827413

Country of ref document: EP

Kind code of ref document: A1