WO2019008916A1 - 無線送信装置及び送信方法 - Google Patents

無線送信装置及び送信方法 Download PDF

Info

Publication number
WO2019008916A1
WO2019008916A1 PCT/JP2018/019005 JP2018019005W WO2019008916A1 WO 2019008916 A1 WO2019008916 A1 WO 2019008916A1 JP 2018019005 W JP2018019005 W JP 2018019005W WO 2019008916 A1 WO2019008916 A1 WO 2019008916A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
signal
wireless transmission
transmission device
sequences
Prior art date
Application number
PCT/JP2018/019005
Other languages
English (en)
French (fr)
Inventor
岩井 敬
浦部 嘉夫
中野 隆之
智史 高田
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to US16/620,722 priority Critical patent/US11212026B2/en
Priority to JP2019528388A priority patent/JP7328892B2/ja
Publication of WO2019008916A1 publication Critical patent/WO2019008916A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4904Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using self-synchronising codes, e.g. split-phase codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • H04J13/14Generation of codes with a zero correlation zone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • H04J13/22Allocation of codes with a zero correlation zone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • H04L27/04Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2637Modulators with direct modulation of individual subcarriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to a wireless transmission apparatus and transmission method.
  • Wake-up radio is used in conjunction with primary connectivity radio (PCR) and is used to wake up the PCR from sleep.
  • PCR primary connectivity radio
  • PCR for example, the method of the wireless LAN standard described in Non-Patent Document 1 or a method scheduled to be standardized in the future, such as IEEE 802.11ax, is used.
  • OOK On-Off Keying
  • Manchester code For modulation of the payload portion of the wakeup packet, it is considered to use OOK (OOK (On-Off Keying) with Manchester code) using a Manchester code. Also, set a predetermined value (coefficient) to the same parameter subcarrier (ie, OFDM (Orthogonal Frequency Division Multiplexing) subcarrier) as that of the IEEE 802.11 OFDM PHY (for example, refer to Non-Patent Document 1). It is considered to generate by.
  • the subcarrier is also referred to as "tone".
  • One aspect of the present disclosure helps to provide a wireless transmission apparatus and transmission method that can appropriately generate an OOK modulation signal using an OFDM-based Manchester code.
  • a wireless transmission device is a CAZAC (Constant Amplitude Zero Auto Correlation) sequence, in which N consecutive N subcarriers (M is an integer of 3 or more) arranged in the frequency domain are arranged at predetermined intervals. Mapping to N sub-carriers (N is an integer of 2 or more), performing Inverse Fast Fourier Transform (IFFT) processing on the mapped CAZAC sequence, and performing Manchester processing on the time domain signal generated by the IFFT processing.
  • IFFT Inverse Fast Fourier Transform
  • a signal generation circuit that generates an on-off keying (OOK) modulation signal by performing encoding, and a transmission unit that transmits the OOK modulation signal are provided.
  • OOK on-off keying
  • N constant CAZAC Constant Amplitude Zero Auto Correlation
  • M is an integer of 3 or more
  • IFFT processing Inverse Fast Fourier Transform
  • Diagram showing an example of OFDM subcarrier allocation in frequency domain A diagram showing an example of Manchester encoding processing Figure showing an example of a Manchester encoded OOK signal Diagram showing an example of spectrum before and after Manchester coding
  • a block diagram showing a part of the configuration of the wireless transmission device according to the first embodiment Block diagram showing a configuration example of a wireless transmission device according to Embodiment 1 Diagram showing an operation example of GI insertion
  • the block diagram of the wireless transmitting apparatus in the case of sharing the PCR process according to the first embodiment Block diagram showing a configuration example of a wireless reception apparatus according to Embodiment 1
  • the flowchart figure which shows the operation example of the radio transmission device which relates to the form 1 of execution A diagram showing an example of the Extension ZC and the Truncation ZC FIG.
  • FIG. 2 is a diagram showing an example of OFDM subcarrier allocation in the frequency domain according to Embodiment 1.
  • Diagram showing an example of the relationship between ZC sequence number and CM Block diagram showing a configuration example of a wireless transmission device according to Embodiment 2
  • FIG. 6 is a diagram showing an example of phase rotation processing according to Embodiment 2; Block diagram showing another configuration example of the wireless transmission device according to the second embodiment
  • a diagram showing an example of OFDM subcarrier allocation according to a modification of the second embodiment A diagram showing an example of a time domain signal of ZC sequence according to a modification of the second embodiment
  • FIG. 6 shows a configuration example and an operation example of a wireless transmission device according to a third embodiment.
  • FIG. 6 shows a configuration example and an operation example of a wireless transmission device according to a third embodiment.
  • a diagram showing an example of configuration of a wireless transmission device according to a fourth embodiment A diagram showing an example of correspondence between BSS-ID and ZC sequence number according to Embodiment 4.
  • a diagram showing an example of correspondence between terminal information and ZC cyclic shift amount according to the fourth embodiment A diagram showing an example of configuration of a wireless reception device according to a fourth embodiment
  • a diagram showing an example of correspondence between a terminal number and a ZC cyclic shift amount according to the fourth embodiment The figure which shows an example of matching with the terminal information and ZC sequence number which concern on Embodiment 4.
  • FIG. 1 shows an example of allocation of subcarriers (OFDM subcarriers) in the frequency domain to the WUR signal.
  • a central 13 subcarriers corresponding to a 4.06 MHz bandwidth
  • a 20 MHz bandwidth for example, 64-OFDM subcarriers, 31.25 kHz subcarrier spacing
  • 4 MHz It is considered to set the coefficient to
  • FIG. 2 shows an example in which a constant coefficient of 7 samples (a coefficient of all samples is an amplitude of 1.0) is allocated at an interval of 2 subcarriers as the allocation of coefficients to 13 subcarriers (see, for example, Non-Patent Document 3).
  • IFFT Inverse Fast Fourier Transform
  • FFT Fast Fourier Transform
  • the later time waveform is a waveform of 1.6 us period.
  • Manchester encoded OOK is obtained by masking out a signal of the first half section or the second half section from a 3.2 us time waveform obtained by IFFT processing and extracting a 1.6 us waveform.
  • a signal (OOK bit) is generated.
  • a 0.8 us guard interval is added to the 3.2 us waveform to obtain a 4 us symbol.
  • a CP Cyclic Prefix
  • GI Guard interval
  • FIG. 3 by adding a CP (Cyclic Prefix) of 0.4 us as GI immediately before the 1.6 us waveform corresponding to the ON signal (ON-Signal) in the Manchester encoded OOK signal, A 4us symbol consisting of a 2us ON signal and a 2us OFF signal (OFF-Signal) is obtained (see, for example, Non-Patent Document 3).
  • the WUR signal it is preferable to achieve both the flat characteristics in the frequency domain and the low CM (Cubic Metric) / PAPR (Peak to Average Power Ratio) characteristics.
  • the flat characteristic in the frequency domain has the effect of increasing the total transmission power of the WUR signal.
  • the low CM / PAPR characteristic can reduce the power consumption of the access point (AP) and the terminal.
  • CAZAC constant amplitude zero auto-correlation
  • ZC Zadoff-Chu
  • the OOK modulation signal after Manchester encoding is As shown in FIG. 4, flat characteristics in the frequency domain can not be maintained. Further, as shown in FIG. 4, the transmission spectrum extends to a band other than the 13-carrier band to which the ZC sequence coefficients are assigned, which causes interference to other communications. Such a change in spectrum shape and an increase in bandwidth are not limited to OOK modulation signals by ZC sequences, but are general problems in the case of applying Manchester encoding by mask-out.
  • a communication system includes a wireless transmission device 100 and a wireless reception device 500.
  • the wireless transmission device 100 is an access point (AP) that transmits a wakeup packet using a Manchester encoded OOK signal.
  • the wireless reception device 500 is a terminal that receives the wakeup packet.
  • FIG. 5 is a block diagram showing the configuration of part of the wireless transmission device 100 according to the embodiment of the present disclosure.
  • signal generation unit 10 sets a constant amplitude zero auto correlation (CAZAC) sequence at predetermined intervals among M adjacent subcarriers (M is an integer of 3 or more) in the frequency domain. It maps on N arranged subcarriers (N is an integer of 2 or more), performs Inverse Fast Fourier Transform (IFFT) processing on the mapped CAZAC sequence, and generates a time domain signal generated by IFFT processing. Manchester encoding is performed to generate an on-off keying (OOK) modulation signal.
  • the wireless transmission unit 107 transmits the OOK modulation signal.
  • FIG. 6 is a block diagram showing the configuration of radio transmitting apparatus 100 according to the present embodiment.
  • the wireless transmission device 100 generates wakeup packet data and transmits the wakeup packet data to the wireless reception device 500.
  • the wireless transmission device 100 includes an allocation instruction unit 101, a sequence generation unit 102, a subcarrier allocation unit 103, an IFFT unit 104, a Manchester encoding unit 105, a GI insertion unit 106, and a wireless transmission unit. And an antenna 108.
  • the assignment instructing unit 101 to the GI inserting unit 106 constitute a Manchester-coded OOK signal generation unit 10 that generates a Manchester-coded OOK signal.
  • the assignment instruction unit 101 notifies the sequence generation unit 102 and the subcarrier assignment unit 103 of information indicating the number of subcarriers and the subcarrier interval of the band to which the wakeup packet is assigned.
  • the allocation instructing unit 101 instructs the central 13 subcarriers (corresponding to the 4.06 MHz bandwidth) in the 64-OFDM subcarriers (20 MHz bandwidth) as the number of subcarriers in the band to which the wakeup packet is allocated, Two subcarrier intervals may be notified as subcarrier intervals.
  • the number of subcarriers and the subcarrier interval notified by the allocation instruction unit 101 are not limited to these values.
  • Sequence generation section 102 generates a CAZAC sequence (for example, a ZC sequence) based on the information input from allocation instruction section 101, and outputs this to subcarrier allocation section 103.
  • a CAZAC sequence for example, a ZC sequence
  • the detailed operation of the sequence generation method in sequence generation section 102 will be described later.
  • Subcarrier allocation section 103 allocates the sequence input from sequence generation section 102 to a frequency resource (subcarrier) based on the information (number of subcarriers, subcarrier interval, etc.) input from allocation instruction section 101.
  • Subcarrier allocation section 103 outputs the frequency domain signal (64-OFDM subcarrier) after subcarrier allocation to IFFT section 104. The detailed operation of the subcarrier allocation method in subcarrier allocation section 103 will be described later.
  • the IFFT unit 104 performs IFFT (Inverse Fourier Transform) processing on the frequency domain signal input from the subcarrier allocation unit 103 to obtain a time domain signal (for example, a time domain signal of 3.2 us).
  • IFFT Inverse Fourier Transform
  • the Manchester encoding unit 105 performs Manchester encoding on the time domain signal input from the IFFT unit 104.
  • the Manchester encoding unit 105 is configured to receive the time domain signal (for example, a 3.2 us signal) input from the IFFT unit 104 according to the input wakeup packet data (information symbol '0' or '1').
  • a Manchester-coded OOK signal is generated by masking out one of the 1.6 us sections of the latter half section and the first half section and extracting the waveform (ON signal) of the other 1.6 us section.
  • GI insertion section 106 adds a GI (guard interval) to the ON signal in the Manchester encoded OOK signal input from Manchester encoding section 105.
  • the GI insertion unit 106 adds a constant amplitude 0 period (referred to as blank GI) to the entire ON signal and OFF signal (entire ON + OFF signal).
  • blank GI constant amplitude 0 period
  • GI may be added to each of the ON signal and the OFF signal as shown in FIG. 7 b).
  • GI insertion unit 106 may add CP (Cyclic Prefix) obtained by copying a part of the ON signal to the head or tail as GI instead of Blank GI. Good.
  • ISI inter-symbol interference
  • the wireless transmission unit 107 performs predetermined wireless transmission processing such as D / A conversion and upconversion on the carrier frequency with respect to the Manchester encoded OOK signal input from the GI insertion unit 106, and uses the antenna signal after the wireless transmission processing as an antenna. Send via 108.
  • FIG. 8 is a block diagram showing the configuration of the wireless transmission device 150 when PCR processing and WUR processing are shared.
  • the same components as those of the wireless transmission device 100 shown in FIG. 6 are assigned the same reference numerals and descriptions thereof will be omitted.
  • the wireless transmission device 150 shown in FIG. 8 performs switching control of PCR / WUR with respect to the configuration of the wireless transmission device 100 shown in FIG. 6, and subcarrier allocation of PCR packet data And a selection unit 153 for performing PCR / WUR switching.
  • the switching control unit 151 controls the selection of the PCR / WUR and the switching of the operation of the Manchester encoding unit 105 and the GI insertion unit 106. Specifically, the switching control unit 151 performs control to turn off the function of the Manchester encoding unit 105 during PCR. Further, the switching control unit 151 controls the GI insertion unit 106 to perform GI insertion operation according to the specifications at the time of PCR and at the time of WUR. For example, when generating the WUR signal shown in c) of FIG. 7, the temporal operation (timing) of the GI insertion unit 106 is common to PCR and WUR, and the switching control unit 151 inserts CP (see At this time, I will switch between Blank GI insertion or WUR.
  • Selection unit 153 selects PCR packet data input from subcarrier allocation unit 152 at the time of PCR as output data to IFFT unit 104 according to control from switching control unit 151, and receives an input from subcarrier allocation unit 103 at the time of WUR. Select wakeup packet data to be sent.
  • the IFFT unit 104 and the GI insertion unit 106 are shared for PCR / WUR. In addition, the Manchester encoding unit 105 is turned off during PCR.
  • FIG. 9 is a block diagram showing a configuration of wireless reception apparatus 500 according to the present embodiment.
  • the wireless reception device 500 receives wakeup packet data transmitted from the wireless transmission device 100.
  • the wireless reception device 500 determines the information symbol (0 or 1) of the Manchester encoded OOK signal based on the power (signal level) (envelope detection).
  • the wireless reception device 500 includes an antenna 501, a wireless reception unit 502, a low pass filter unit 503, a GI extraction unit 504, a power detection unit 505, and an on / off determination unit 506.
  • the GI extraction unit 504, the power detection unit 505, and the on / off determination unit 506 constitute a Manchester decoding unit 50.
  • the wireless reception unit 502 receives the wakeup packet transmitted from the wireless transmission device 100 via the antenna 501, performs predetermined wireless reception processing such as A / D conversion on the received signal, and performs wireless reception processing.
  • the subsequent signal is output to the low pass filter unit 503.
  • the low pass filter unit 503 performs filter processing on the signal input from the wireless reception unit 502 to cut high frequency components so as to suppress noise components.
  • the GI extracting unit 504 performs processing of removing the GI part inserted in the wireless transmission device 100 from the signal input from the low pass filter unit 503.
  • the power detection unit 505 detects the power of the signal input from the GI extraction unit 504. Specifically, the power detection unit 505 obtains total power of each of the first half 1.6 us and the second half 1.6 us of the information symbol period to perform Manchester decoding.
  • the on / off determination unit 506 compares the total power of the first half of the information symbol period obtained by the power detection unit 505 with the total power of the second half, determines the information symbol, and outputs wakeup packet data.
  • FIG. 10 is a flowchart showing the operation of the wireless transmission device 100 (FIG. 6).
  • Sequence generation section 102 generates a CAZAC sequence (ST101).
  • sequence generation section 102 generates a ZC sequence shown in the following equation (1) as a CAZAC sequence.
  • q represents the sequence number of the ZC sequence, which is an integer of 1 ⁇ q ⁇ N ZC ⁇ 1.
  • N ZC indicates the sequence length of the ZC sequence.
  • m indicates the number of the sample that constitutes the ZC sequence.
  • the N ZC is a ceil (M / P) based on the number of subcarriers (M) and the subcarrier interval (P) of the band to which the wakeup packet notified from the allocation instruction unit 101 is allocated.
  • M the number of subcarriers
  • P the subcarrier interval
  • N ZC may be a minimum prime number equal to or larger than a value obtained by dividing the number of subcarriers (M) by a predetermined interval (P).
  • the sequence generation unit 102 When ceil (M / P) and the ZC sequence length are different, the sequence generation unit 102 generates the generated ZC sequence as shown in FIG. 11 in order to match the ZC sequence length with ceil (M / P). A method of repeating a part (extension ZC) or a method of deleting a part of the generated ZC sequence (Truncation ZC) may be used.
  • subcarrier allocation section 103 allocates the ZC sequence generated in sequence generation section 102 to subcarriers based on the number of subcarriers (M) and subcarrier interval (P) of the band to which wakeup packets are allocated (M ST102 of FIG. 10).
  • IFFT section 104 performs IFFT processing on the frequency domain signal in which the ZC sequence is mapped to the subcarrier (ST 103), and Manchester encoding section 105 performs Manchester encoding on the time domain signal after IFFT processing. (Mask out) is performed to generate a Manchester encoded OOK signal (ST104). Then, wireless transmission section 107 transmits a Manchester-coded OOK signal to wireless reception apparatus 200 (ST 105).
  • the ZC sequence has a feature of maintaining the characteristics of the ZC sequence even after Fourier transform. Therefore, as a result of allocating the ZC sequence to the subcarriers at intervals of two subcarriers, the waveform in the time domain after IFFT becomes a signal in which the 1.6 us long ZC sequence is repeated two cycles. That is, the Manchester encoding unit 105 masks out one of the 1.6 us long ZC sequences (corresponding to the OFF signal) repeated two cycles and extracts the other (corresponding to the ON signal). That is, the Manchester encoded OOK signal (ON signal of the OOK modulation signal after mask out) is a ZC sequence of 1.6 us length. Thus, the Manchester-coded OOK signal has both the flat characteristic in the frequency domain of the ZC sequence and the low CM ⁇ PAPR characteristic.
  • radio transmitting apparatus 100 maps a CAZAC sequence (ZC sequence) to subcarriers at predetermined intervals, and performs IFFT processing on a frequency domain signal to which the CAZAC sequence is mapped.
  • ZC sequence ZAC sequence
  • IFFT processing By performing Manchester encoding on the time domain after IFFT processing, a Manchester encoded OOK signal is generated.
  • CM / PAPR characteristics By this processing, in the Manchester encoded OOK signal generated, flat characteristics and low CM / PAPR characteristics can be maintained in the frequency domain that is the characteristics of the ZC sequence.
  • the wireless transmission device 100 can be limited even when the power density level (for example, transmission power per 1 MHz) is limited by legal regulations. Can increase the total transmission power of the WUR signal.
  • the frequency diversity effect can improve the detection performance of the WUR signal in the wireless reception apparatus 500. As an example of a specific effect, it is possible to suppress performance deterioration due to quality deterioration of a partial band due to frequency selectivity.
  • the required average transmission power can be obtained even with a transmitter having a small maximum transmission power, thus reducing the power consumption of the wireless transmission device 100. it can.
  • the waveform in the time domain after the 128-point IFFT processing becomes a signal in which a 1.6 us long ZC sequence is repeated four cycles.
  • the Manchester encoding unit 105 generates repetition signals of the information symbol '0' by, for example, masking the second and fourth ZC sequences among the four-period ZC sequences, and generates the first and third ZC sequences. By masking the sequence, it is possible to generate a repetition signal of information symbol '1'. Also, by increasing the mask pattern, the wireless transmission device 100 can also generate a Manchester-encoded OOK signal of two symbols at a time, not only by repetition but also by combining arbitrary data.
  • inter-symbol interference sometimes called inter-symbol interference
  • ISI Inter-Symbol Interference
  • the CP portion included in the Manchester encoded OOK signal is removed and the decoding process is performed. For this reason, when the end in the ON signal is a CP, the CP portion with high transmission power is removed, and the power efficiency is reduced.
  • radio receiving apparatus 500 Since the radio receiving apparatus according to the present embodiment has the same basic configuration as radio receiving apparatus 500 according to Embodiment 1, it will be described using FIG.
  • FIG. 14 is a block diagram showing the configuration of radio transmitting apparatus 200 according to the present embodiment.
  • the same components as those in Embodiment 1 (FIG. 6) are assigned the same reference numerals and descriptions thereof will be omitted.
  • phase rotation section 201 performs phase rotation on the signal input from subcarrier allocation section 103.
  • the phase rotation unit 201 is configured such that the power peak in the time waveform in the section of the ON signal in the Manchester encoded OOK signal generated in the Manchester encoding section 105 in the subsequent stage is the central portion in the section of the ON signal Perform phase rotation on the signal in the frequency domain to be placed in Then, phase rotation section 201 outputs the signal after phase rotation to IFFT section 104.
  • phase rotation unit 201 The operation of the phase rotation unit 201 will be described in detail below.
  • phase rotation section 201 performs phase rotation on the output signal in the frequency domain input from subcarrier allocation section 103. Due to the nature of the Fourier transform, by performing phase rotation on the output signal in the frequency domain, it is possible to cyclically shift the time waveform in the time domain as shown in FIG. That is, the phase rotation unit 201 cyclically shifts the time waveform so that the portion with high transmission power does not become both ends of the time waveform. By doing this, it is possible to improve the performance degradation due to the influence of intersymbol interference (ISI) due to multipath or filter response.
  • ISI intersymbol interference
  • phase rotation unit 201 included in the wireless transmission device 200 illustrated in FIG. 14
  • a cyclic shift is performed on the time domain signal that is the output of the IFFT unit 104 as in the wireless transmission device 300 illustrated in FIG. 16.
  • the shift unit 301 may be provided.
  • the cyclic shift unit 301 shifts the cyclic shift with respect to the time domain signal such that the power peak in the time waveform in the section of the ON signal in the Manchester encoded OOK signal is disposed at the central portion in the section of the ON signal. Do. Thereby, the same effect as in the case of applying phase rotation can be obtained.
  • the phase rotation amount or cyclic shift amount for arranging the power peak in the time waveform in the section of the ON signal in the central portion of the ON signal depends on the ZC sequence number q. Therefore, the wireless transmission devices 200 and 300 may change the phase rotation amount or the cyclic shift amount for each ZC sequence number.
  • ISI intersymbol interference
  • the sequence generated by sequence generation section 102 is not limited to the ZC sequence, but may be a sequence having a constant subcarrier coefficient. For example, as shown in FIG. 2, assuming an assignment of coefficients to 13 subcarriers, and assigning a constant coefficient of 7 samples (a coefficient of which all samples have an amplitude of 1.0) at 2 subcarrier intervals (see Non-Patent Document 2) explain.
  • FIG. 17 shows an example of a sequence when the phase rotation amount for each subcarrier is ⁇ .
  • the values of subcarrier coefficients have a code such as ⁇ 1, +1, ⁇ 1, +1, ⁇ 1, +1, ⁇ 1 for every two samples. It is an inverted value.
  • the phase rotation shown in FIG. 17, as shown in FIG. 18, the power peak in the time waveform in the ON signal can be arranged in the central portion of the ON signal.
  • the coefficient which is the value obtained by inverting the code every two samples can be made to correspond to the signal point of subcarrier modulation such as BPSK in IEEE 802.11 OFDM PHY, so the modulator of OFDM PHY is used as it is for WUR signal generation. Can.
  • the configuration of the wireless transmission devices 200 and 300 can be further simplified.
  • the amount of phase rotation for each subcarrier is not limited to ⁇ , and may be a value such that the power peak in the time waveform in the ON signal is not arranged at both ends of the ON signal.
  • the values of the above-mentioned subcarrier coefficients are relative values, and can be multiplied by a constant normalization coefficient to achieve the desired transmission power. Also, as a modification having the same spectrum and CM / PAPR characteristics, values obtained by giving constant phase rotation to all coefficients may be used as subcarrier coefficients. These are not limited to the present embodiment, and are applied to all subcarrier coefficients in the present disclosure.
  • radio receiving apparatus 500 Since the radio receiving apparatus according to the present embodiment has the same basic configuration as radio receiving apparatus 500 according to Embodiment 1, it will be described using FIG.
  • FIG. 19A or FIG. 19B is a diagram showing a configuration and an operation example of the wireless transmission device 100a according to the present embodiment.
  • the same components as in the first embodiment (FIG. 6) are assigned the same reference numerals and descriptions thereof will be omitted.
  • the operation of the sequence generation unit 102a is different from that of the first embodiment.
  • Sequence generation section 102a shown in FIGS. 19A and 19B has a configuration including ZC sequence generation section 121 and sample selection section 122.
  • sequence generation section 102a generates a sequence of 13 samples respectively allocated to 13 subcarriers.
  • the phase difference between adjacent samples is represented by "mod 2 ⁇ " (modulo operation of 2 ⁇ ). That is, the phase difference between adjacent samples of the ZC sequence has a value of 0 or more and less than 2 ⁇ .
  • the wireless transmission device 100a uses a ZC sequence in which the phase difference between adjacent samples monotonously increases with an increase in samples (sample numbers).
  • the ZC sequence of sequence number q 1
  • the wireless transmission device 100a uses, as subcarrier coefficients, 13 samples in which the phase difference monotonically increases in a section where the phase difference between samples of ZC sequence is 0 to ⁇ . , Generate a first time waveform (for example, corresponding to an information symbol '0').
  • the wireless transmission device 100a uses the 13 samples in which the phase difference monotonically increases as a subcarrier coefficient in a section where the phase difference between samples of ZC sequence is from ⁇ to 2 ⁇ .
  • the time waveform (for example, corresponding to the information symbol '1') is generated.
  • a Manchester-coded OOK signal is generated in which the first half of the time waveform is an ON signal and the second half is an OFF signal.
  • a Manchester-coded OOK signal is generated in which the first half of the time waveform is an OFF signal and the second half is an ON signal.
  • the two types of time waveforms obtained in this manner can be used as a Manchester-coded OOK signal without masking in the Manchester coding unit 105.
  • mask processing may be performed in the Manchester encoding unit 105 in order to shape the time waveform, and even in this case, it is possible to reduce the disturbance of the spectrum due to the mask processing.
  • the ZC sequence generation unit 121 of the sequence generation unit 102a generates a ZC sequence whose sequence length is twice or more the number of used carriers, in order to select a sample that satisfies the above-described sequence characteristics.
  • the ZC sequence generation unit 121 generates a ZC sequence of sequence length 29 that is twice or more the number of used carriers 13.
  • the ZC sequence generated by the ZC sequence generation unit 121 is not limited to a ZC sequence having a sequence length close to twice the number of used subcarriers. If the ZC sequence generation unit 121 is a ZC sequence in which the phase difference is monotonously increasing (or monotonously decreasing), the ZC sequence having a sequence length longer than the sequence length close to twice the number of used subcarriers may be used.
  • the sample selection unit 122 selects a part of the samples in the first half or the second half of the ZC sequence (used subcarriers A range corresponding to a number may be selected.
  • extracting the first 13 samples or the latter 13 samples of the ZC sequence divides and cuts out a section of phase difference of 0 to ⁇ or a section of phase difference of ⁇ to 2 ⁇ .
  • a signal waveform in which power (amplitude) is concentrated in the first half or the second half can be obtained as a time waveform, depending on the nature of the Fourier transform.
  • the Manchester encoding unit 105 performs Manchester encoding (the first half or the second half is masked out) on the time waveform after IFFT, as in the first embodiment, to thereby perform the OOK information symbol '0' or the OOK information symbol '. Generate 1 '.
  • the transmission signal power of the OFF signal becomes 0, the power difference between the ON signal and the OFF signal by the reception process becomes large, and the signal detection accuracy in the on / off determination unit 506 of the wireless reception device 500 can be improved. it can.
  • the Manchester encoding unit 105 performs OOK information symbol '0' or OOK information symbol 'by multiplying a part of the OFF signal by a window function such as RRC (root raised cosine filter) on the time waveform after IFFT. Generate 1 '.
  • a window function such as RRC (root raised cosine filter)
  • Manchester encoding section 105 may multiply the upper and lower end subcarriers to which ZC sequence samples are allocated in the frequency domain by a predetermined coefficient smaller than one.
  • a predetermined coefficient a square root of 0.5 or 0.5 may be used. In order to obtain a good window function effect, it is preferable to set the predetermined coefficient to 0.5 or more and 0.5 square or less.
  • the Manchester encoding unit 105 generates the OOK information symbol '0' or the OOK information symbol '1' without multiplying the time waveform after the IFFT by the mask out or the window function.
  • a signal waveform in which power is concentrated in the first half or the second half of the time waveform can be obtained. Therefore, even if the mask out or window function is not multiplied, the ON signal and the OFF signal can be obtained, and the same effect as Manchester coding can be obtained.
  • the frequency characteristics (frequency flat) of the generated ZC sequence can be maintained, and the effect of reducing the interference outside the band can be obtained.
  • the Manchester encoding unit 105 may switch the Manchester encoding methods 1, 2 and 3 according to the allocation status of other signals in resources around the resource to which the WUR signal is allocated. For example, when there is no signal assignment in the peripheral resources (if the influence of the interference is small out of band), the use of Manchester encoding method 1 can improve the reception performance of the WUR signal. In addition, when there is signal allocation in peripheral resources (when the influence of out-of-band interference is large), the use of Manchester encoding method 2 or 3 can reduce out-of-band interference.
  • the Manchester encoding method 2 is not limited to the present embodiment, and may be used instead of the mask out in the first embodiment and the second embodiment.
  • spectrum disturbance can be made smaller than mask out, so that the interference outside the band can be reduced and the frequency flatness within the band can be improved.
  • the wireless transmission device 100a selects between adjacent samples among a plurality of samples.
  • the phase difference of Z uses a ZC sequence in which the phase difference monotonously increases or decreases as the sample number m increases. Specifically, when the phase difference is represented by an interval of 0 to 2 ⁇ (when the phase difference is represented by “mod 2 ⁇ ”), the wireless transmission device 100 a uses samples in an interval of 0 to ⁇ as sub-carriers.
  • Each mapping generates a Manchester-encoded OOK signal having a time waveform corresponding to the information symbol '0', and the information symbol is mapped to the sub-carriers by mapping the samples in the section with a phase difference of ⁇ to 2 ⁇ .
  • a Manchester encoded OOK signal having a temporal waveform corresponding to '1' is generated.
  • the wireless transmission device 100a can generate an OOK waveform having flat characteristics in the frequency domain and low CM / PAPR characteristics.
  • phase difference between the samples of the ZC sequence does not have to be strictly monotonously increasing (or monotonously decreasing), and monotonously increases (mostly 80% or more) except for some of the sections.
  • Substantial monotonous increase (or monotonous decrease) that results in monotonous decrease) may be used.
  • the wireless transmission device 100a generates a first waveform (for example, corresponding to the information symbol '0') using samples whose phase difference between samples becomes a constant value in a section of 0 to ⁇ as subcarrier coefficients.
  • ⁇ / 2 may be used as a constant value.
  • the wireless transmission device 100a generates a second waveform (for example, corresponding to the information symbol '1') using a sample whose phase difference between samples is a constant value in a section between ⁇ and 2 ⁇ as a subcarrier coefficient.
  • a second waveform for example, corresponding to the information symbol '1'
  • a sample whose phase difference between samples is a constant value in a section between ⁇ and 2 ⁇ as a subcarrier coefficient.
  • (3/2) ⁇ may be used as a constant value.
  • - ⁇ / 2 may be used as a constant value.
  • the wireless transmission device 100 a repeatedly assigns a sample sequence [ ⁇ 1, ⁇ j, +1, + j] with a phase difference of ⁇ / 2 to subcarriers as subcarrier coefficients to generate a first waveform
  • the second waveform may be generated by repeatedly assigning a sample sequence [ ⁇ 1, j, +1, ⁇ j] having a phase difference of ⁇ / 2 to subcarriers as subcarrier coefficients.
  • j is an imaginary unit.
  • the wireless transmission device 100a may use a sample sequence obtained by rotating the above samples by a fixed amount (eg, ⁇ / 4).
  • the modulator of OFDM PHY is used as it is for generation of WUR signal. Can.
  • the configuration of the wireless transmission device 100a can be further simplified.
  • Embodiment 4 it is assumed that correlation detection is performed in the wireless reception apparatus, and the WUR signal is transmitted using any of a plurality of sequence numbers or a cyclic shift (CS) cyclic sequence (CS) in the wireless transmission apparatus. The method will be described.
  • CS cyclic shift
  • CS cyclic sequence
  • FIG. 20 is a block diagram showing a configuration example of a wireless transmission device 400 according to the present embodiment.
  • the same components as those in Embodiment 1 (FIG. 6) or Embodiment 2 (FIG. 16) are assigned the same reference numerals and descriptions thereof will be omitted.
  • terminal information for example, BSS-ID or transmission buffer size
  • ZC sequences Different ZC sequence numbers or different cyclic shift amounts are associated.
  • FIG. 21 shows the correspondence between the BSS-ID and the ZC sequence
  • FIG. 22 shows the correspondence between the transmission buffer size and the cyclic shift amount of the ZC sequence.
  • the association between terminal information and ZC sequence information is not limited to the examples shown in FIGS. 21 and 22.
  • the terminal information is not limited to the examples (BSS-ID, transmission buffer size) shown in FIG. 21 and FIG. 22, and wireless transmitting apparatus 500 (for example, WUR schedule information (duty cycle or period)) etc. It may be parameter information to be exchanged between the AP) and the wireless reception device 600 (terminal).
  • Sequence generation section 402 generates a ZC sequence based on the ZC sequence number determined in terminal information mapping table 401, and cyclic shift section 403 performs based on the cyclic shift amount determined in terminal information mapping table 401. In the same manner as in mode 2 (see FIG. 16), cyclic shift of the signal after IFFT is performed.
  • FIG. 23 is a block diagram showing a configuration example of a wireless reception device 600 according to the present embodiment.
  • the same components as those in Embodiment 1 (FIG. 9) are assigned the same reference numerals and descriptions thereof will be omitted.
  • sequence generation section 601 In radio reception apparatus 600, sequence generation section 601 generates a ZC sequence which may be used by radio transmission apparatus 500 for generation of wakeup packet data (Manchester encoded OOK signal). Specifically, sequence generation section 601 selects a plurality of ZC sequence numbers or a plurality of cyclic shift amounts, and generates a plurality of ZC sequences respectively corresponding to the selected ZC sequence numbers or the cyclic shift amounts.
  • the correlation detection unit 602 performs correlation detection with the received signal after GI extraction, which is input from the GI extraction unit 504, using the plurality of ZC sequences generated by the sequence generation unit 601, and determines a plurality of correlation values. Output to the part 603.
  • the determination unit 603 compares a plurality of correlation values (a plurality of sequence numbers and correlation values corresponding to cyclic shift amounts) input from the correlation detection unit 602, and determines which sequence number or which cyclic as wakeup packet data. It is determined whether the shift amount is used, and the determination result is output to the terminal information mapping table 604.
  • the terminal information mapping table 604 associates terminal information with ZC sequence information (ZC sequence number or cyclic shift amount) (for example, see FIG. 21 or 22).
  • the terminal information mapping table 604 reads and outputs terminal information (BBS-ID, transmission buffer size, etc.) associated with the sequence number or the cyclic shift amount determined by the determination unit 603.
  • terminal information mapping table 604 reads the BSS-ID associated with the determined sequence number.
  • the terminal information mapping table 604 reads the transmission buffer size associated with the determined cyclic shift amount.
  • Example 4-1 In the terminal information mapping table 401 of the wireless transmission device 400, ZC sequence numbers are set to be different between adjacent BSSs.
  • a plurality of ZC sequences having different ZC sequence numbers q are respectively associated with different BSSs (BSS-IDs).
  • the wireless reception device 600 can obtain the BSS-ID from the ZC sequence number determined by the determination unit 603 and the terminal information mapping (for example, see FIG. 21) of the terminal information mapping table 604.
  • Example 4-2 As shown in FIG. 24, in the terminal information mapping table 401 of the wireless transmission device 400, the amount of cyclic shift to be selected is different for each terminal (wireless reception device 600) for which a wakeup packet is to be transmitted. That is, a plurality of ZC sequences are respectively associated with different terminals.
  • each terminal can extract a signal component addressed to itself. That is, the wireless transmission device 400 can CDM multiplex signals for a plurality of terminals.
  • a plurality of ZC sequences (which may be ZC sequence numbers q or cyclic shift amounts) are uniquely associated with predetermined terminal information (for example, transmission buffer size).
  • the wireless transmission device 400 uses the ZC sequence (ZC sequence number q) associated with the terminal information to be notified to the terminal (wireless reception device 600) that transmits wakeup packet data, and transmits the Manchester encoded OOK signal. Generate That is, the wireless transmission device 400 implicitly notifies the wireless reception device 600 of another parameter (here, the transmission buffer size) using wakeup packet data.
  • ZC sequence ZC sequence number q
  • the wireless transmission device 400 identifies terminal information (here, transmission buffer size) associated with the ZC sequence (ZC sequence number q) used for the received wakeup packet data.
  • the present invention can be applied to OOK signal waveform generation using OFDM modulation when Manchester encoding is not performed.
  • the ON signal and the OFF signal are allocated one to one to each of the information symbols '0' and '1', or the combination of the ON / OFF signal is allocated to each of the information symbols '0' and '1'.
  • the case is also included.
  • Embodiments 1 to 3 may be combined with Embodiments 1 to 3.
  • FIG. 20 describes the case where the wireless transmission device 400 includes the cyclic shift unit 403, the wireless transmission device 400 may not include the cyclic shift unit as in the first embodiment (FIG. 6).
  • the terminal information mapping table 401 the correspondence between the terminal information and the ZC sequence number is determined.
  • the parameter associated with ZC sequence is not limited to BSS-ID, for example, AP or a group of cells Good.
  • the OFDM PHY modulation unit can be used for WUP signal generation, and the configuration of the wireless transmission apparatus can be simplified.
  • the present disclosure is applicable not only to WUR but also to other wireless communication systems such as ultra low power consumption wireless communication.
  • a ZC sequence is used as a CAZAC sequence
  • the present invention is not limited to the ZC sequence, and another sequence may be used.
  • Each functional block used in the description of the above embodiment is partially or entirely realized as an LSI which is an integrated circuit, and each process described in the above embodiment is partially or totally It may be controlled by one LSI or a combination of LSIs.
  • the LSI may be configured from individual chips, or may be configured from one chip so as to include some or all of the functional blocks.
  • the LSI may have data inputs and outputs.
  • An LSI may be called an IC, a system LSI, a super LSI, or an ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry, general purpose processors, or dedicated processors is also possible.
  • an FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure connection and setting of circuit cells in the LSI may be used.
  • the present disclosure may be implemented as digital processing or analog processing.
  • integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. The application of biotechnology etc. may be possible.
  • the radio transmitting apparatus can set a constant amplitude zero auto correlation (CAZAC) sequence to N subcarriers arranged at predetermined intervals among M subcarriers (M is an integer of 3 or more) adjacent to each other in the frequency domain. (N is an integer of 2 or more) is mapped, Inverse Fast Fourier Transform (IFFT) processing is performed on the mapped CAZAC sequence, and Manchester encoding is performed on a time domain signal generated by the IFFT processing.
  • IFFT Inverse Fast Fourier Transform
  • IFFT Inverse Fast Fourier Transform
  • Manchester encoding is performed on a time domain signal generated by the IFFT processing.
  • a signal generation circuit that generates an on-off keying (OOK) modulation signal and a transmission unit that transmits the OOK modulation signal are provided.
  • OOK on-off keying
  • the predetermined interval is an interval of two subcarriers
  • the signal generation circuit masks out one of the first half period and the second half period of the time domain signal in the Manchester coding.
  • the OOK modulation signal is generated.
  • the CAZAC sequence is one of a plurality of ZC (Zadoff-Chu) sequences of sequence length N ZC , and M is the number of subcarriers included in a bandwidth for transmitting the OOK modulation signal,
  • the sequence length N ZC is a minimum prime number equal to or larger than a value obtained by dividing M by the predetermined interval.
  • the CAZAC sequence is one of a plurality of ZC (Zadoff-Chu) sequences of sequence length N ZC
  • the signal generation circuit is a sequence number of the plurality of ZC sequences.
  • the signal generation circuit is further mapped such that a power peak in a time waveform in an ON interval in the OOK modulation signal is arranged in a central portion in the ON interval. Phase rotation is performed on the CAZAC sequence.
  • the signal generation circuit further includes the time waveform such that a power peak in a time waveform in an ON interval in the OOK modulation signal is disposed at a central portion in the ON interval. Perform a cyclic shift on.
  • the predetermined interval is one subcarrier interval
  • the CAZAC sequence is a ZC (Zadoff-Chu) sequence, and among a plurality of samples constituting the ZC sequence, between adjacent samples.
  • the phase difference monotonously increases or monotonically decreases with the increase of the sample number
  • the signal generation circuit represents the phase difference in the interval of 0 to 2 ⁇
  • the phase difference is in the interval of 0 to ⁇ .
  • the OOK modulation signal having a first time waveform is generated by mapping a plurality of samples in which the phase difference is monotonously increasing or monotonically decreasing to the sub-carriers, and in the section where the phase difference is ⁇ to 2 ⁇ , the OOK modulation signal is generated.
  • the ON signal and the OFF signal are inverted with respect to the first time waveform by respectively mapping a plurality of samples in which the phase difference is monotonously increasing or monotonically decreasing on the subcarrier. Generating the OOK modulation signal having a second time waveform.
  • the signal generation circuit generates the OOK modulation signal using one CAZAC sequence of a plurality of the CAZAC sequences.
  • the plurality of CAZAC sequences are a plurality of ZC (Zadoff-Chu) sequences having different sequence numbers or cyclic shift amounts, and the plurality of ZC sequences are respectively associated with different groups. There is.
  • the plurality of CAZAC sequences are a plurality of ZC (Zadoff-Chu) sequences having different sequence numbers or cyclic shift amounts, and the plurality of ZC sequences are respectively associated with different wireless reception devices. It is done.
  • the plurality of CAZAC sequences are a plurality of ZC (Zadoff-Chu) sequences having different sequence numbers or cyclic shift amounts, and each of the plurality of ZC sequences uniquely corresponds to parameter information.
  • the signal generation circuit generates the OOK modulation signal using the ZC sequence associated with the parameter information to be notified to the wireless reception device among the plurality of ZC sequences.
  • CAZAC Constant Amplitude Zero Auto Correlation
  • M is an integer of 3 or more
  • IFFT processing is performed on the mapped CAZAC sequence
  • Manchester encoding is performed on the time domain signal generated by the IFFT processing.
  • OOK On-Off Keying
  • One aspect of the present disclosure is useful for a mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

信号生成部10は、CAZAC(Constant Amplitude Zero Auto Correlation)系列を、周波数領域において隣接するM個のサブキャリア(Mは3以上の整数)のうち所定間隔に配置されたN個のサブキャリア(Nは2以上の整数)にマッピングし、マッピングされたCAZAC系列に対してInverse Fast Fourier Transform(IFFT)処理を行い、IFFT処理により生成された時間領域信号に対してマンチェスタ符号化を行うことにより、OOK(On-Off Keying)変調信号を生成する。無線送信部107は、OOK変調信号を送信する。

Description

無線送信装置及び送信方法
 本開示は、無線送信装置及び送信方法に関する。
 IEEE(the Institute of Electrical and Electronics Engineers) 802.11 Working GroupのTask Group baにおいて、端末の低消費電力化を目的としたIEEE 802.11ba(以下、「11ba」と呼ぶ)の技術仕様策定がWUR (Wake-up Radio) Study Groupにおいて進められている。
 ウェイクアップ無線(WUR)は、主接続無線(PCR: primary connectivity radio)と共に用いられ、PCRをスリープ状態からウェイクアップするために使用される。PCRには、例えば非特許文献1に記載されている無線LAN標準規格の方式、又は、IEEE802.11axのような将来規格化予定の方式が使用される。
 また、11baでは、制御情報のみを伝送する「ウェイクアップパケット」の規格化が進められている。ウェイクアップパケットの受信によりPCRがスリープ状態からウェイクアップされることになる。
 ウェイクアップパケットのペイロード部分の変調は、マンチェスタ符号を用いたOOK(OOK(オンオフ変調:On-Off Keying)with Manchester code)を使用することが検討されている。また、OOK波形はIEEE802.11 OFDM PHY(例えば、非特許文献1を参照)と同一パラメータのサブキャリア(すなわち、OFDM(Orthogonal Frequency Division Multiplexing)サブキャリア)に所定の値(係数)を設定することにより生成することが検討されている。なお、サブキャリアは「トーン(tone)」とも呼ばれる。
IEEE Std 802.11TM-2016 IEEE 802.11ba framework (17/0575r1) IEEE 802.11-16/1144r0 "Further Investigation on WUR Performance" IEEE 802.11-17/0084r0 "High Level PHY Design"
 しかしながら、OFDMベースのマンチェスタ符号を用いたOOK変調信号の生成方法については十分に検討がなされていない。
 本開示の一態様は、OFDMベースのマンチェスタ符号を用いたOOK変調信号を適切に生成することができる無線送信装置及び送信方法の提供に資する。
 本開示の一態様に係る無線送信装置は、CAZAC(Constant Amplitude Zero Auto Correlation)系列を、周波数領域において隣接するM個のサブキャリア(Mは3以上の整数)のうち所定間隔に配置されたN個のサブキャリア(Nは2以上の整数)にマッピングし、前記マッピングされたCAZAC系列に対してInverse Fast Fourier Transform(IFFT)処理を行い、前記IFFT処理により生成された時間領域信号に対してマンチェスタ符号化を行うことにより、OOK(On-Off Keying)変調信号を生成する信号生成回路と、前記OOK変調信号を送信する送信部と、を具備する。
 本開示の一態様に係る送信方法は、CAZAC(Constant Amplitude Zero Auto Correlation)系列を、周波数領域において隣接するM個のサブキャリア(Mは3以上の整数)のうち所定間隔に配置されたN個のサブキャリア(Nは2以上の整数)にマッピングし、前記マッピングされたCAZAC系列に対してInverse Fast Fourier Transform(IFFT処理)を行い、前記IFFT処理により生成された時間領域信号に対してマンチェスタ符号化を行うことにより、OOK(On-Off Keying)変調信号を生成し、前記生成されたOOK信号変調を送信する。
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一態様によれば、OFDMベースのマンチェスタ符号を用いたOOK変調信号を適切に生成することができる。
 本開示の一態様における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
周波数領域におけるOFDMサブキャリア割当例を示す図 マンチェスタ符号化処理の一例を示す図 マンチェスタ符号化OOK信号の一例を示す図 マンチェスタ符号化前後のスペクトラムの一例を示す図 実施の形態1に係る無線送信装置の一部の構成を示すブロック図 実施の形態1に係る無線送信装置の構成例を示すブロック図 GI挿入の動作例を示す図 実施の形態1に係るPCR処理と共用する場合の無線送信装置の構成例を占めずブロック図 実施の形態1に係る無線受信装置の構成例を示すブロック図 実施の形態1に係る無線送信装置の動作例を示すフローチャート図 Extension ZC及びTruncation ZCの一例を示す図 実施の形態1に係る周波数領域におけるOFDMサブキャリア割当例を示す図 実施の形態1に係るZC系列の一例を示す図 ZC系列番号とCMとの関係の一例を示す図 実施の形態2に係る無線送信装置の構成例を示すブロック図 実施の形態2に係る位相回転処理の一例を示す図 実施の形態2に係る無線送信装置の他の構成例を示すブロック図 実施の形態2の変形例に係るOFDMサブキャリア割当例を示す図 実施の形態2の変形例に係るZC系列の時間領域信号の一例を示す図 実施の形態3に係る無線送信装置の構成例及び動作例を示す図 実施の形態3に係る無線送信装置の構成例及び動作例を示す図 実施の形態4に係る無線送信装置の構成例を示す図 実施の形態4に係るBSS-IDとZC系列番号との対応付けの一例を示す図 実施の形態4に係る端末情報とZC巡回シフト量との対応付けの一例を示す図 実施の形態4に係る無線受信装置の構成例を示す図 実施の形態4に係る端末番号とZC巡回シフト量との対応付けの一例を示す図 実施の形態4に係る端末情報とZC系列番号との対応付けの一例を示す図
 以下、本開示の実施の形態について図面を参照して詳細に説明する。
 図1は、WUR信号に対する周波数領域におけるサブキャリア(OFDMサブキャリア)の割当例を示す。図1に示すように、20MHz帯域幅(例えば、64-OFDMサブキャリア、サブキャリア間隔312.5kHz)内の中央部の13サブキャリア(4.06MHz帯域幅に相当。以下、単に「4MHz」と表記する)に係数を設定することが検討されている(例えば、非特許文献2、3、4を参照)。
 11baにおいて検討中の時間領域のマンチェスタ符号を用いたOOK変調信号(以下、「マンチェスタ符号化OOK信号(Manchester coded OOK signal)」と呼ぶ)の情報シンボル「0/1」の生成方法の一例が非特許文献3に開示されている。具体的には、情報シンボル‘0’は、シンボル内の信号レベルの高(ON)から低(OFF)への遷移として定義され、情報シンボル‘1’は、シンボル内の信号レベルの低(OFF)から高(ON)への遷移として定義される。
 図2は、13サブキャリアへの係数の割当として、7サンプルの一定係数(全サンプルが振幅1.0の係数)を2サブキャリア間隔で割り当てた例を示す(例えば、非特許文献3を参照)。図2に示すように、4MHz帯域内において2サブキャリア間隔のサブキャリア(偶数サブキャリア)に係数が割り当てられることにより、3.2usのFFT(Fast Fourier Transform)区間におけるIFFT(Inverse Fast Fourier Transform)処理後の時間波形は1.6us周期の波形となる。また、図2に示すマンチェスタ符号化において、IFFT処理によって得られた3.2usの時間波形から、前半区間又は後半区間の信号をマスクアウトして1.6usの波形を抽出することにより、マンチェスタ符号化OOK信号(OOK bit)が生成される。
 なお、IEEE802.11 OFDM PHYと同様、3.2usの波形に、0.8usのガードインターバル(GI)が付加されることにより、4usのシンボルが得られる。例えば、図3に示すように、マンチェスタ符号化OOK信号内のON信号(ON-Signal)に対応する1.6usの波形の直前に、GIとして0.4usのCP(Cyclic Prefix)を付加することにより、2usのON信号と2usのOFF信号(OFF-Signal)とから成る4usのシンボルが得られる(例えば、非特許文献3を参照)。
 WUR信号としては、周波数領域におけるフラットな特性、及び、低CM(Cubic Metric)/PAPR(Peak to Average Power Ratio)特性の2つの特性を両立することが好ましい。周波数領域におけるフラットな特性により、WUR信号の総送信電力を大きくできる効果が得られる。また、低CM/PAPR特性により、アクセスポイント(AP)、端末の消費電力を低減できる効果が得られる。
 周波数領域におけるフラットな特性と、低CM/PAPR特性とを有する系列として、CAZAC(Constant Amplitude Zero Auto- Correlation)系列がある。また、CAZAC系列の一つとして、例えば、Zadoff-Chu(ZC)系列がある。
 ただし、ZC系列を用いる場合のマンチェスタ符号化OOK信号の生成方法の詳細については十分に検討がなされていない。
 例えば、図1と同様に、WUR信号に対して13サブキャリアを割り当てる際、単純に系列長13のZC系列を適用した場合には、マンチェスタ符号化後(マスクアウト後)のOOK変調信号は、図4に示すように周波数領域でのフラットな特性を維持できない。また、図4に示すように、ZC系列の係数が割り当てられた13キャリアの帯域以外に送信スペクトルが広がるため、他の通信への干渉の原因となる。このようなスペクトル形状の変化及び帯域幅の拡大は、ZC系列によるOOK変調信号に限るものではなく、マスクアウトによるマンチェスタ符号化を適用する場合の一般的な課題である。
 そこで、本開示の一態様では、周波数領域におけるフラットな特性及び低CM/PAPR特性を有するZC系列を用いたマンチェスタ符号化OOK信号生成方法について説明する。
 [通信システムの概要]
 本開示の一実施の形態に係る通信システムは、無線送信装置100及び無線受信装置500を備える。例えば、無線送信装置100は、マンチェスタ符号化OOK信号を用いたウェイクアップパケットを送信するアクセスポイント(AP)である。また、無線受信装置500は、当該ウェイクアップパケットを受信する端末である。
 図5は本開示の実施の形態に係る無線送信装置100の一部の構成を示すブロック図である。図5に示す無線送信装置100において、信号生成部10は、CAZAC(Constant Amplitude Zero Auto Correlation)系列を、周波数領域において隣接するM個のサブキャリア(Mは3以上の整数)のうち所定間隔に配置されたN個のサブキャリア(Nは2以上の整数)にマッピングし、前記マッピングされたCAZAC系列に対してInverse Fast Fourier Transform(IFFT)処理を行い、IFFT処理により生成された時間領域信号に対してマンチェスタ符号化を行うことにより、OOK(On-Off Keying)変調信号を生成する。無線送信部107は、OOK変調信号を送信する。
 [無線送信装置の構成]
 図6は、本実施の形態に係る無線送信装置100の構成を示すブロック図である。無線送信装置100は、ウェイクアップパケットデータを生成し、無線受信装置500へ送信する。
 図6において、無線送信装置100は、割当指示部101と、系列生成部102と、サブキャリア割当部103と、IFFT部104と、マンチェスタ符号化部105と、GI挿入部106と、無線送信部107と、アンテナ108と、を有する。なお、割当指示部101~GI挿入部106は、マンチェスタ符号化OOK信号を生成するマンチェスタ符号化OOK信号生成部10を構成する。
 割当指示部101は、ウェイクアップパケットを割り当てる帯域のサブキャリア数及びサブキャリア間隔を示す情報を系列生成部102及びサブキャリア割当部103に通知する。例えば、割当指示部101は、ウェイクアップパケットを割り当てる帯域のサブキャリア数として、64-OFDMサブキャリア(20MHz帯域幅)内の中央部の13サブキャリア(4.06MHz帯域幅に相当)を指示し、サブキャリア間隔として2サブキャリア間隔を通知してもよい。なお、割当指示部101が通知するサブキャリア数及びサブキャリア間隔は、これらの値に限定されるものではない。
 系列生成部102は、割当指示部101から入力される情報に基づいてCAZAC系列(例えば、ZC系列)を生成し、サブキャリア割当部103へ出力する。なお、系列生成部102における系列生成方法の詳細な動作については後述する。
 サブキャリア割当部103は、割当指示部101から入力される情報(サブキャリア数、サブキャリア間隔等)に基づいて、系列生成部102から入力される系列を周波数リソース(サブキャリア)に割り当てる。サブキャリア割当部103は、サブキャリア割当後の周波数領域信号(64-OFDMサブキャリア)をIFFT部104に出力する。なお、サブキャリア割当部103におけるサブキャリア割当方法の詳細な動作については後述する。
 IFFT部104は、サブキャリア割当部103から入力される周波数領域信号に対してIFFT(逆フーリエ変換)処理を行い、時間領域信号(例えば、3.2usの時間領域信号)を得る。
 マンチェスタ符号化部105は、IFFT部104から入力される時間領域信号に対してマンチェスタ符号化を行う。例えば、マンチェスタ符号化部105は、入力されるウェイクアップパケットデータ(情報シンボル‘0’又は‘1’)に応じて、IFFT部104から入力される時間領域信号(例えば、3.2usの信号)の後半区間及び前半区間の何れか一方の1.6us区間をマスクアウトして、他方の1.6us区間の波形(ON信号)を抽出することにより、マンチェスタ符号化OOK信号を生成する。
 GI挿入部106は、マンチェスタ符号化部105から入力されるマンチェスタ符号化OOK信号内のON信号にGI(ガード区間)を付加する。GI挿入部106は、例えば、図7のa),c)に示すように、一定の振幅0期間(Blank GIと呼ばれる)をON信号及びOFF信号全体(ON+OFF信号全体)に付加してもよく、図7のb)に示すようにGIをON信号及びOFF信号のそれぞれに付加してもよい。または、GI挿入部106は、図7のd),e)に示すように、Blank GI ではなく、ON信号の一部を先頭又は後尾にコピーしたCP(Cyclic Prefix)をGIとして付加してもよい。GIを付加することで、マルチパス又はフィルタ応答による符号間干渉(ISI; Inter-Symbol Interference)を低減できる。
 無線送信部107は、GI挿入部106から入力されるマンチェスタ符号化OOK信号に対してD/A変換、キャリア周波数にアップコンバート等の所定の無線送信処理を施し、無線送信処理後の信号をアンテナ108を介して送信する。
 [PCR処理と共用する場合の無線送信装置の構成]
 図8は、PCR処理とWUR処理とを共用する場合の無線送信装置150の構成を示すブロック図である。なお、図8において、図6に示す無線送信装置100と同様の構成には同一の符号を付し、その説明を省略する。
 具体的には、図8に示す無線送信装置150は、図6に示す無線送信装置100の構成に対して、PCR/WURの切り替え制御を行う切替制御部151と、PCRパケットデータのサブキャリア割当を行うPCRサブキャリア割当部152と、PCR/WUR切替を行う選択部153とが新たに設けられる。
 切替制御部151は、PCR/WURの選択、及び、マンチェスタ符号化部105及びGI挿入部106の動作の切替を制御する。具体的には、切替制御部151は、PCR時には、マンチェスタ符号化部105の機能をOFFにする制御を行う。また、切替制御部151は、GI挿入部106に対して、PCR時及びWUR時の各仕様に従ったGIの挿入動作を制御する。例えば、図7のc)に示すWUR信号を生成する場合、GI挿入部106の時間的な動作(タイミング)はPCR時とWUR時とで共通となり、切替制御部151は、CP挿入か(PCR時)、Blank GI挿入か(WUR時)を切り替えることになる。
 選択部153は、切替制御部151からの制御に従って、IFFT部104への出力データとして、PCR時にはサブキャリア割当部152から入力されるPCRパケットデータを選択し、WUR時にはサブキャリア割当部103から入力されるウェイクアップパケットデータを選択する。
 IFFT部104及びGI挿入部106は、PCR/WURに対して共用となる。また、マンチェスタ符号化部105はPCR時には機能OFFとなる。
 [無線受信装置の構成]
 図9は、本実施の形態に係る無線受信装置500の構成を示すブロック図である。無線受信装置500は、無線送信装置100から送信されるウェイクアップパケットデータを受信する。なお、無線受信装置500は、電力(信号レベル)に基づいてマンチェスタ符号化OOK信号の情報シンボル(0又は1)の判定を行う(envelop detection)。
 図9において、無線受信装置500は、アンテナ501と、無線受信部502と、低域通過フィルタ部503と、GI抜去部504と、電力検出部505と、オンオフ判定部506とを有する。なお、GI抜去部504、電力検出部505及びオンオフ判定部506は、マンチェスタ復号部50を構成する。
 無線受信部502は、無線送信装置100から送信されたウェイクアップパケットをアンテナ501を介して受信し、受信した信号にダウンコンバート、A/D変換等の所定の無線受信処理を施し、無線受信処理後の信号を低域通過フィルタ部503に出力する。
 低域通過フィルタ部503は、無線受信部502から入力される信号に対して、雑音成分を抑圧するように高域周波数成分をカットするフィルタ処理を行う。
 GI抜去部504は、低域通過フィルタ部503から入力される信号から、無線送信装置100にて挿入されたGI部分を取り除く処理を行う。
 電力検出部505は、GI抜去部504から入力される信号の電力を検出する。具体的には、電力検出部505は、マンチェスタ復号を行うために、情報シンボル区間の前半1.6us及び後半1.6usのそれぞれの総電力を求める。
 オンオフ判定部506は、電力検出部505で求められた情報シンボル区間の前半の総電力と後半の総電力とを大小比較し、情報シンボルの判定を行い、ウェイクアップパケットデータを出力する。
 [無線送信装置100の動作]
 次に、上述した無線送信装置100の動作について詳細に説明する。
 図10は、無線送信装置100(図6)の動作を示すフローチャートである。
 系列生成部102は、CAZAC系列を生成する(ST101)。
 例えば、系列生成部102は、CAZAC系列として、次式(1)に示すZC系列を生成する。
Figure JPOXMLDOC01-appb-M000001
 ここで、qはZC系列の系列番号を示し、1≦q≦NZC-1の整数である。また、NZCはZC系列の系列長を示す。また、mはZC系列を構成するサンプルの番号を示す。
 例えば、NZCは、割当指示部101から通知されたウェイクアップパケットを割り当てる帯域のサブキャリア数(M)及びサブキャリア間隔(P)に基づいてceil(M/P)(ただし、関数ceil(x)はx以上の整数の最小値を返す関数である)の値に近い素数の値でもよい。すなわち、系列長NZCは、サブキャリア数(M)を所定間隔(P)で割ることにより得られる値以上の最小の素数でもよい。
 一例として、本実施の形態では、M=13、P=2とし、ceil(13/2) (=7)の値に近い素数である7をNZCとする。なお、ceil(M/P)とZC系列長とが異なる場合、系列生成部102は、ZC系列長をceil(M/P)に合わせるために、図11に示すように、生成したZC系列の一部を繰り返す方法(extension ZC)又は生成したZC系列の一部を削除する方法(Truncation ZC)を用いてもよい。
 次に、サブキャリア割当部103は、ウェイクアップパケットを割り当てる帯域のサブキャリア数(M)及びサブキャリア間隔(P)に基づいて、系列生成部102において生成されたZC系列をサブキャリアに割り当てる(図10のST102)。
 図12Aは、ウェイクアップパケットを割り当てる帯域のサブキャリア数M=13とし、サブキャリア間隔P=2とし、ZC系列の系列長NZC=7とした場合のZC系列のサブキャリア割当例を示す。また、図12Bは、一例として、系列長NZC=7、系列番号q=1のZC系列の各サンプルm=0~6の値を示す。
 サブキャリア割当部103は、図12Aに示すように、割当指示部101から通知されたウェイクアップパケットを割り当てる帯域のサブキャリア(M=13)の位置に、2サブキャリア間隔(P=2)でZC系列を割り当てる。すなわち、サブキャリア割当部103は、周波数領域において隣接する13個(M=13)のサブキャリアのうち所定間隔(P=2)に配置された7個(N=7)のサブキャリアにZC系列をマッピングする。
 そして、IFFT部104は、ZC系列がサブキャリアにマッピングされた周波数領域信号に対してIFFT処理を行い(ST103)、マンチェスタ符号化部105は、IFFT処理後の時間領域信号に対してマンチェスタ符号化(マスクアウト)を行ってマンチェスタ符号化OOK信号を生成する(ST104)。そして、無線送信部107は、マンチェスタ符号化OOK信号を無線受信装置200へ送信する(ST105)。
 ここで、ZC系列は、フーリエ変換後もZC系列の特性を維持する特徴を有する。よって、2サブキャリア間隔でZC系列をサブキャリアに割り当てた結果、IFFT後の時間領域の波形は、1.6us長のZC系列を2周期繰り返した信号となる。すなわち、マンチェスタ符号化部105は、2周期繰り返される1.6us長のZC系列の何れか一方(OFF信号に相当)をマスクアウトし、他方(ON信号に相当)を抽出する。つまり、マンチェスタ符号化OOK信号(マスクアウト後のOOK変調信号のON信号)は1.6us長のZC系列となる。これにより、マンチェスタ符号化OOK信号は、ZC系列が有する周波数領域でのフラットな特性、及び、低CM・PAPR特性の双方を有する。
 以上説明したように、本実施の形態では、無線送信装置100は、CAZAC系列(ZC系列)を所定間隔のサブキャリアにマッピングし、CAZAC系列がマッピングされた周波数領域信号に対してIFFT処理を行い、IFFT処理後の時間領域に対してマンチェスタ符号化を行うことにより、マンチェスタ符号化OOK信号を生成する。この処理により、生成されるマンチェスタ符号化OOK信号では、ZC系列の特性である周波数領域でフラットな特性と低CM/PAPR特性とを維持することができる。
 よって、本実施の形態によれば、OFDMベースのマンチェスタ符号を用いたOOK変調信号を適切に生成することができる。これにより、WURの受信性能を向上させることができる。
 また、マンチェスタ符号化OOK信号(つまり、WUR信号)において周波数領域でフラットな特性を得ることにより、法規制等によって電力密度レベル(例えば1MHz当たりの送信電力)に制限がある場合でも無線送信装置100におけるWUR信号の総送信電力を大きくすることができる。また、周波数ダイバーシチ効果によって、無線受信装置500におけるWUR信号の検出性能を改善することができる。具体的な効果の例としては、周波数選択性による一部帯域の品質劣化による性能劣化を抑えることができる。
 また、マンチェスタ符号化OOK信号(つまり、WUR信号)において低CM/PAPR特性を得ることにより、最大送信電力の小さい送信機でも所要平均送信電力が得られるため、無線送信装置100の消費電力を低減できる。
 <実施の形態1の変形例1>
 なお、本実施の形態では、CAZAC系列がマッピングされるサブキャリアの間隔を2サブキャリア間隔とする場合について説明した。しかし、CAZAC系列がマッピングされるサブキャリアの間隔は2サブキャリア間隔に限定されない。例えば、サブキャリア間隔(P=4)の場合、無線送信装置100は、マンチェスタ符号化OOK信号をレピティションした信号を生成してもよい。具体的には、無線送信装置100は、系列NZC=3のZC系列を、4サブキャリア間隔で4MHz帯域にマッピングしてもよい。これにより、128点IFFT処理後の時間領域の波形は、1.6us長のZC系列が4周期繰り返した信号となる。マンチェスタ符号化部105は、例えば、4周期のZC系列のうち、2番目と4番目のZC系列をマスクすることにより情報シンボル‘0’のレピティション信号を生成し、1番目と3番目のZC系列をマスクすることにより情報シンボル‘1’のレピティション信号を生成することが可能となる。また、無線送信装置100は、マスクのパターンを増やすことにより、レピティションに限らず任意のデータの組み合わせによる2シンボルのマンチェスタ符号化OOK信号を一度に生成することもできる。
 <実施の形態1の変形例2>
 系列生成部102で生成されるZC系列は、系列番号によってCM/PAPRが異なる。そこで、無線送信装置100は、CM/PAPRが最も低い系列番号を用いてマンチェスタ符号化OOK信号を生成することで、無線受信装置500(端末)の消費電力をより低減できる効果がある。例えば、図13に示すように、系列長が7のZC系列(Nzc = 7)は、系列番号「q=1又はNzc-1」を用いた場合にCMが最も低くなる。Nzc = 8~97でも同様に系列番号「q=1又はNzc-1」を用いた場合にCMが最も低くなる。そこで、無線送信装置100(系列生成部102)は系列番号「q=1又はNzc-1」のZC系列を用いてマンチェスタ符号化OOK信号を生成してもよい。このように、系列番号「q=1又はNzc-1」のZC系列に限定することで、無線受信装置500(端末)の消費電力をより低減することができる。
 (実施の形態2)
 マンチェスタ符号化OOK信号のON信号内の端部の送信電力が高い場合、マルチパス又はフィルタ応答による符号間干渉(シンボル間干渉と呼ばれることもある)(ISI: Inter-Symbol Interference)の影響により、高い電力領域の信号成分が、隣接するOFF信号領域に重畳して干渉となり、WUR性能が劣化してしまう。
 また、受信側では、マンチェスタ符号化OOK信号に含まれるCP部分を取り除いて復号処理を行う。このため、ON信号内の端部がCPである場合、送信電力が高いCP部分が取り除かれてしまい、電力効率が低下してしまう。
 そこで、本実施の形態では、マンチェスタ符号化OOK信号内のON信号の波形内における送信電力の増減に伴うWUR性能の劣化又は電力効率の低下を防止する方法について説明する。
 なお、本実施の形態に係る無線受信装置は、実施の形態1に係る無線受信装置500と基本構成が共通するので、図9を援用して説明する。
 [無線送信装置の構成]
 図14は、本実施の形態に係る無線送信装置200の構成を示すブロック図である。なお、図14において、実施の形態1(図6)と同様の構成には同一の符号を付し、その説明を省略する。
 無線送信装置200において、位相回転部201は、サブキャリア割当部103から入力される信号に対して位相回転を施す。具体的には、位相回転部201は、後段のマンチェスタ符号化部105において生成されるマンチェスタ符号化OOK信号内のON信号の区間内の時間波形における電力ピークが当該ON信号の区間内の中央部分に配置されるように周波数領域の信号に対して位相回転を実施する。そして、位相回転部201は、位相回転後の信号をIFFT部104に出力する。
 以下、位相回転部201の動作について詳細に説明する。
 ここでは、系列生成部102において生成される系列として、ZC系列を用いる場合について説明する。
 図15は、系列長Nzc=7、系列番号q=1のZC系列を割当帯域のサブキャリア(M=13)の位置にサブキャリア間隔P=2で割り当てた場合の周波数スペクトラム及び時間波形を示す。
 図15に示すように、周波数領域ではサブキャリア間隔(P=2)毎に一定振幅(1.0)となっているが、オーバサンプリングの影響により、IFFT後の時間波形は一定とならない。このため、送信電力が高い部分が時間波形の両端部にある場合、マルチパス又はフィルタ応答による符号間干渉(ISI)の影響により、高い電力領域の信号成分がマンチェスタ符号化後のOFF信号領域に重畳して干渉となり、WUR性能が劣化してしまう。
 これに対して、無線送信装置200では、位相回転部201は、サブキャリア割当部103から入力される周波数領域の出力信号に対して位相回転を行う。フーリエ変換の性質により、周波数領域の出力信号に対して位相回転を行うことによって、時間領域では、図15に示すように、時間波形を巡回シフトすることができる。すなわち、位相回転部201は、送信電力の高い部分が時間波形の両端部とならないように時間波形を巡回シフトする。こうすることにより、マルチパス又はフィルタ応答による符号間干渉(ISI)の影響による性能劣化を改善することができる。
 このように、本実施の形態によれば、ON信号の時間波形内における送信電力の増減に伴うISIを低減でき、WUR性能を向上させることができる。また、CPを用いる場合は、電力効率も改善できる。
 なお、図14に示す無線送信装置200が備える位相回転部201の代わりに、図16に示す無線送信装置300のように、IFFT部104の出力である時間領域信号に対して巡回シフトを行う巡回シフト部301を備えてもよい。巡回シフト部301は、マンチェスタ符号化OOK信号内のON信号の区間内の時間波形における電力ピークが当該ON信号の区間内の中央部分に配置されるように、時間領域信号に対して巡回シフトを行う。これにより、位相回転を施す場合と同様の効果を得ることができる。
 また、ZC系列を用いる場合、ON信号の区間内の時間波形における電力ピークをON信号の中央部分に配置するための位相回転量又は巡回シフト量についてはZC系列番号qに依存する。そこで、無線送信装置200,300は、ZC系列番号毎に、位相回転量又は巡回シフト量を変えてもよい。これにより、全ての系列番号において、時間波形における電力のピーク値を中央部分に配置することができるので、マルチパス又はフィルタ応答による符号間干渉(ISI)の影響による性能劣化を改善することができる。
 <実施の形態2の変形例>
 系列生成部102で生成される系列はZC系列に限らず、サブキャリア係数が一定の系列でもよい。例えば、図2に示すように、13サブキャリアへの係数の割り当てとし、7サンプルの一定係数(全サンプルが振幅1.0の係数)を2サブキャリア間隔で割り当てる例(非特許文献2を参照)について説明する。
 図17は、サブキャリア毎のの位相回転量をπとした場合の系列の一例を示す。位相回転量がπの場合、図17に示すように、サブキャリア係数の値は、2サンプル毎に-1, +1, -1, +1, -1, +1, -1のように符号反転した値となる。図17に示す位相回転により、図18に示すように、ON信号内の時間波形における電力ピークをON信号の中央部分に配置することができる。2サンプル毎に符号反転した値となる係数は、IEEE 802.11 OFDM PHYにおけるBPSK等のサブキャリア変調の信号点に対応させることができるので、OFDM PHYの変調部をそのままWUR信号の生成に使用することができる。これにより、無線送信装置200,300の構成を更に簡略化できる効果がある。
 なお、サブキャリア毎の位相回転量は、πに限定されず、ON信号内の時間波形における電力ピークがON信号の両端部分に配置されない値であればよい。
 また、上述サブキャリア係数の値は相対的な値であり、所望の送信電力を実現するために一定の正規化係数を乗算することができる。また、同等のスペクトル及びCM/PAPR特性を有する変形として、全係数に一定の位相回転を与えて得られる値をサブキャリア係数として使用してもよい。これらは本実施の形態に限るものではなく、本開示における全てのサブキャリア係数に適用される。
 (実施の形態3)
 本実施の形態では、ZC系列を用いて、ウェイクアップパケットを割り当てる13サブキャリア全てに係数を割り当てる場合(つまり、1サブキャリア間隔で係数を割り当てる場合)でも、周波数領域においてフラットな特性と低CM/PAPR特性とを有するOOK波形を生成する方法について説明する。
 なお、本実施の形態に係る無線受信装置は、実施の形態1に係る無線受信装置500と基本構成が共通するので、図9を援用して説明する。
 図19A又は図19Bは、本実施の形態に係る無線送信装置100aの構成及び動作例を示す図である。なお、図19A及び図19Bにに示す無線送信装置100aにおいて、実施の形態1(図6)と同様の構成には同一の符号を付し、その説明を省略する。具体的には、無線送信装置100aにおいて、系列生成部102aの動作が実施の形態1と異なる。
 図19A及び図19Bに示す系列生成部102aは、ZC系列生成部121とサンプル選択部122を備える構成を採る。
 なお、図19A及び図19Bでは、ウェイクアップパケットデータが13サブキャリア全てに割り当てられる例を示す。すなわち、図19A及び図19Bでは、系列生成部102aは、13サブキャリアにそれぞれ割り当てられる13サンプルの系列を生成する。
 また、以下では、系列生成部102aにおいて生成されるZC系列を構成する複数のサンプルのうち、隣接するサンプル間の位相差を「mod 2π」(2πのモジュロ演算)で表す。すなわち、ZC系列の隣接するサンプル間の位相差は0以上2π未満の値となる。
 この場合、無線送信装置100aは、図19A及び図19Bに示すように、隣接するサンプル間の位相差が、サンプル(サンプル番号)の増加に伴って単調増加するZC系列を用いる。例えば、図19A及び図19Bでは、系列番号q=1のZC系列において、サンプルm=0からm=28に渡って、隣接するサンプル間の位相差が、0~2πの区間において単調増加している。
 具体的には、図19Aに示すように、無線送信装置100aは、ZC系列のサンプル間の位相差が0からπとなる区間において、位相差が単調増加する13サンプルをサブキャリア係数として用いて、第一の時間波形(例えば、情報シンボル‘0’に相当)を生成する。
 一方、図19Bに示すように、無線送信装置100aは、ZC系列のサンプル間の位相差がπから2πとなる区間において、位相差が単調増加する13サンプルをサブキャリア係数として用いて、第二の時間波形(例えば、情報シンボル‘1’に相当)を生成する。
 このようにサンプル間の位相差の区間のうち、前半区間(0からπ)又は後半区間(πから2π)の区間の位相差が単調増加するサンプルをサブキャリアに割り当てた場合、フーリエ変換の性質により、IFFT処理後の時間領域の信号波形として、信号成分が前半又は後半に集中した時間波形が得られる。具体的には、図19Aでは、信号成分が前半に集中した第一の時間波形が得られ、図19Bでは、信号成分が後半に集中した第二の時間波形が得られる。つまり、図19Aでは、時間波形の前半区間をON信号とし、後半区間をOFF信号とするマンチェスタ符号化OOK信号が生成される。同様に、図19Bでは、時間波形の前半区間をOFF信号とし、後半区間をON信号とするマンチェスタ符号化OOK信号が生成される。
 よって、このようにして得られた2種類の時間波形は、マンチェスタ符号化部105においてマスク処理をしなくてもマンチェスタ符号化OOK信号として使用することができる。なお、マンチェスタ符号化部105において時間波形を整形するためにマスク処理を施してもよく、この場合でも、マスク処理によるスペクトルの乱れを低減することができる。
 より具体的には、系列生成部102aのZC系列生成部121は、上述した系列の性質を満たすサンプルを選定するために、系列長が使用キャリア数の2倍以上であるZC系列を生成する。図19A及び図19Bでは、ZC系列生成部121は、使用キャリア数13の2倍以上である系列長29のZC系列を生成する。この際、ZC系列生成部121は、上述したように、CM/PAPRが最も低い系列番号「q=1又はNZC-1」のZC系列を生成してもよい。
 また、系列生成部102aのサンプル選択部122は、入力されるウェイクアップパケットデータ(情報シンボル‘0’又は‘1’)に応じて、ZC系列生成部121から入力されるZC系列の前半部分(図19Aでは前半のm=0~13)又は後半部分(図19Bでは後半のm=14~28)から、位相差が単調増加する13サンプルを選択し、帯域中央の所定範囲の全サブキャリア(13サブキャリア)に割り当てるサブキャリア係数を生成する。
 なお、図19A及び図19Bでは、サンプル間の位相差が単調増加するZC系列(例えば、系列番号q=1)について説明したが、サンプル間の位相差が単調減少するZC系列(例えば、系列番号q=NZC-1)についても同様である。
 また、図19A及び図19Bでは、ウェイクアップパケットデータが割り当てられるサブキャリア数(13サブキャリア)の2倍に近い系列長NZC=29のZC系列を生成する場合について説明した。しかし、ZC系列生成部121が生成するZC系列は、使用サブキャリア数の2倍に近い系列長のZC系列に限定されない。ZC系列生成部121は、位相差が単調増加(又は単調減少)するZC系列であれば、使用サブキャリア数の2倍に近い系列長よりも更に長い系列長のZC系列を用いてもよい。
 ZC系列の前半又は後半のサンプル数が、ウェイクアップパケットデータが割り当てられるサブキャリア数より多い場合、サンプル選択部122は、ZC系列を構成する前半又は後半のサンプルの中の一部(使用サブキャリア数に相当する範囲)を選択してもよい。図19A及び図19Bに示すように、ZC系列の前半13サンプル又は後半13サンプルを抜き取ることは、0からπの位相差の区間又はπから2πの位相差の区間を区切って切り出すことになる。これにより、フーリエ変換の性質によって、図19A及び図19Bに示すように、時間波形として、前半又は後半に電力(振幅)が集中した信号波形が得られる。
 次に、マンチェスタ符号化部105の動作について詳細に説明する。以下、本実施の形態に係るマンチェスタ符号化方法1、2及び3についてそれぞれ説明する。
 <マンチェスタ符号化方法1>
 マンチェスタ符号化部105は、IFFT後の時間波形に対して、実施の形態1と同様に、マンチェスタ符号化(前半又は後半をマスクアウト)することにより、OOK情報シンボル‘0’又はOOK情報シンボル‘1’を生成する。
 これにより、OFF信号の送信信号電力が0となるため、受信処理によるON信号とOFF信号との電力差が大きくなり、無線受信装置500のオンオフ判定部506での信号検出精度を向上させることができる。
 <マンチェスタ符号化方法2>
 マンチェスタ符号化部105は、IFFT後の時間波形に対して、RRC(ルートレイズドコサインフィルタ)等の窓関数をOFF信号の一部に乗算することにより、OOK情報シンボル‘0’又はOOK情報シンボル‘1’を生成する。
 これにより、時間波形の連続性が維持され、帯域外への与干渉を低減し、帯域内の周波数フラット性が向上するという効果が得られる。窓関数の最もシンプルな例として、マンチェスタ符号化部105は、周波数領域においてZC系列のサンプルが割り当てられる上端及び下端のサブキャリアに、1より小さい所定の係数を乗算してもよい。所定の係数として、0.5又は0.5の平方根を用いてもよい。良好な窓関数効果を得るためには、所定の係数を、0.5以上、0.5の平方根以下とするのが好ましい。
 <マンチェスタ符号化方法3>
 マンチェスタ符号化部105は、IFFT後の時間波形に対して、マスクアウト又は窓関数を乗算せずに、OOK情報シンボル‘0’又はOOK情報シンボル‘1’を生成する。
 上述したように、本実施の形態に係る系列生成方法では、時間波形の前半又は後半に電力が集中した信号波形が得られる。このため、マスクアウト又は窓関数が乗算されなくても、ON信号及びOFF信号を得ることができ、マンチェスタ符号化と同様な効果を得ることができる。
 これにより、生成したZC系列の周波数特性(周波数フラット)が維持され、帯域外への与干渉を低減することができるという効果が得られる。
 以上、マンチェスタ符号化方法1、2及び3について説明した。
 なお、マンチェスタ符号化部105は、WUR信号が割り当てられるリソースの周辺のリソースにおける他の信号の割当状況に応じて、マンチェスタ符号化方法1、2及び3を切り替えてもよい。例えば、周辺リソースにおける信号の割り当てがない場合(帯域外へ与干渉の影響が小さい場合)、マンチェスタ符号化方法1の使用により、WUR信号の受信性能を向上させことができる。また、周辺リソースにおける信号の割り当てがある場合(帯域外への与干渉の影響が大きい場合)、マンチェスタ符号化方法2又は3の使用により、帯域外への与干渉を低減させることができる。
 また、マンチェスタ符号化方法2は、本実施形態に限らず、実施の形態1及び実施の形態2におけるマスクアウトの代わりに使用されてもよい。これにより、スペクトルの乱れをマスクアウトよりも小さくできるため、帯域外へ与干渉を低減し、帯域内の周波数フラット性を向上させることができる。
 このように、本実施の形態では、ウェイクアップパケットデータを割り当てる全サブキャリアに係数を設定する場合(1サブキャリア間隔の場合)に、無線送信装置100aは、複数のサンプルのうち隣接するサンプル間の位相差が、サンプル番号mの増加に伴って単調増加又は単調減少するZC系列を用いる。具体的には、無線送信装置100aは、位相差を0から2πの区間で表す場合(位相差を「mod 2π」で表す場合)、位相差が0からπの区間内のサンプルをサブキャリアにそれぞれマッピングすることにより、情報シンボル‘0’に対応する時間波形を有するマンチェスタ符号化OOK信号を生成し、位相差がπから2πの区間内のサンプルをサブキャリアにそれぞれマッピングすることにより、情報シンボル‘1’に対応する時間波形を有するマンチェスタ符号化OOK信号を生成する。
 これにより、本実施の形態によれば、ZC系列を用いて、ウェイクアップパケットを割り当てる13サブキャリア全てに係数を割り当てる場合でも、周波数領域においてフラットな特性と低CM/PAPR特性とを有するOOK波形を生成することができる。
 なお、本実施の形態ではZC系列を用いる例について説明したが、本実施の形態において設定されるサブキャリア係数はZC系列に限定せず、上述した位相差の特性を有する系列に対しても同様に適用することができる。上述した位相差の特性を有する系列を用いることで、無線送信装置100aは、周波数領域におけるフラットな特性と低CM/PAPR特性とを有するOOK波形を生成することができる。
 また、ZC系列のサンプル間の位相差は、厳密な単調増加(又は単調減少)でなくてもよく、一部の区間を除いた大半の区間(好ましくは80%以上の区間)において単調増加(単調減少)となるような、実質的な単調増加(又は単調減少)であればよい。
 以下では、特殊な例として、サンプル間の位相差が一定、すなわち単調増加の増加量を0とした場合について説明する。
 無線送信装置100aは、サンプル間の位相差が0からπの区間内の一定値になるサンプルをサブキャリア係数として用いて第一の波形(例えば、情報シンボル‘0’に相当)を生成する。好ましくは、一定の値としてπ/2を用いてもよい。
 また、無線送信装置100aは、サンプル間の位相差がπから2πの区間内の一定値になるサンプルをサブキャリア係数として用いて第二の波形(例えば、情報シンボル‘1’に相当)を生成する。好ましくは、一定の値として(3/2)πを用いてもよい。または、等価的に、一定の値として-π/2を用いてもよい。
 具体例として、無線送信装置100aは、位相差がπ/2となるサンプル列[-1,-j,+1,+j]を繰り返しサブキャリア係数としてサブキャリアに割り当てて第一の波形を生成し、位相差が-π/2になるサンプル列[-1,j,+1,-j]を繰り返しサブキャリア係数としてサブキャリアに割り当てて第二の波形を生成してもよい。ただし、jは虚数単位である。または、無線送信装置100aは上記サンプルを一定量(例えばπ/4)位相回転させたサンプル列を用いてもよい。
 上記具体例によれば、サブキャリア係数をIEEE 802.11 OFDM PHYにおけるQPSK又はQAM等のサブキャリア変調の信号点に対応させることができるので、OFDM PHYの変調部をそのままWUR信号の生成に使用することができる。これにより、無線送信装置100aの構成をさらに簡略化できる効果がある。
 (実施の形態4)
 本実施の形態では、無線受信装置において相関検出することを前提とし、無線送信装置において複数の系列番号又は巡回シフト(CS:Cyclic-shift)のZC系列の何れかを用いてWUR信号を送信する方法について説明する。
 [無線送信装置の構成]
 図20は、本実施の形態に係る無線送信装置400の構成例を示すブロック図である。なお、図20において、実施の形態1(図6)又は実施の形態2(図16)と同様の構成には同一の符号を付し、その説明を省略する。
 無線送信装置400において、端末情報マッピングテーブル401では、端末(後述する無線受信装置600)に通知するパラメータ情報である端末情報(例えば、BSS-ID又は送信バッファサイズ等)と、複数のZC系列(異なるZC系列番号又は異なる巡回シフト量)とが対応付けられる。一例として、図21は、BSS-IDとZC系列との対応付けを示し、図22は、送信バッファサイズとZC系列の巡回シフト量との対応付けを示す。
 なお、端末情報とZC系列情報(ZC系列番号又は巡回シフト量)との対応付けは図21、図22に示す例に限定されるものではない。また、端末情報も図21、図22に示す例(BSS-ID、送信バッファサイズ)に限定されず、他の情報(例えば、WURスケジュール情報(デューティサイクル又は期間))等の無線送信装置500(AP)と無線受信装置600(端末)との間でやり取りしたいパラメータ情報でもよい。
 系列生成部402は、端末情報マッピングテーブル401において決定されたZC系列番号に基づいてZC系列を生成し、巡回シフト部403は、端末情報マッピングテーブル401において決定された巡回シフト量に基づいて、実施の形態2(図16を参照)と同様にしてIFFT後の信号の巡回シフトを行う。
 [無線受信装置の構成]
 図23は、本実施の形態に係る無線受信装置600の構成例を示すブロック図である。なお、図23において、実施の形態1(図9)と同様の構成には同一の符号を付し、その説明を省略する。
 無線受信装置600において、系列生成部601は、無線送信装置500がウェイクアップパケットデータ(マンチェスタ符号化OOK信号)の生成に用いる可能性のあるZC系列を生成する。具体的には、系列生成部601は、複数のZC系列番号又は複数の巡回シフト量を選択し、選択したZC系列番号又は巡回シフト量にそれぞれ対応する複数のZC系列を生成する。
 相関検出部602は、系列生成部601で生成された複数のZC系列を用いて、GI抜去部504から入力される、GI抜去後の受信信号との相関検出を行い、複数の相関値を判定部603に出力する。
 判定部603は、相関検出部602から入力される、複数の相関値(複数の系列番号・巡回シフト量に対応した相関値)を比較して、ウェイクアップパケットデータとして、どの系列番号又はどの巡回シフト量が使用されているかを判定し、判定結果を端末情報マッピングテーブル604に出力する。
 端末情報マッピングテーブル604には、端末情報マッピングテーブル401と同様、端末情報とZC系列情報(ZC系列番号又は巡回シフト量)とが対応付けられている(例えば、図21又は図22を参照)。端末情報マッピングテーブル604は、判定部603において判定された系列番号又は巡回シフト量に対応付けられた端末情報(BBS-ID、送信バッファサイズ等)を読み取って出力する。例えば、図21に示す端末情報マッピング例の場合、端末情報マッピングテーブル604は、判定された系列番号に対応付けられたBSS-IDを読み取る。また、図22に示す端末情報マッピング例の場合、端末情報マッピングテーブル604は、判定された巡回シフト量に対応付けられた送信バッファサイズを読み取る。
 次に、端末情報とZC系列とのマッピングの具体例4-1、4-2、4-3についてそれぞれ説明する。
 <具体例4-1>
 無線送信装置400の端末情報マッピングテーブル401では、隣接BSS間でZC系列番号が異なるように設定される。
 例えば、図21に示すように、ZC系列番号qが異なる複数のZC系列は、異なるBSS(BSS-ID)にそれぞれ対応付けられる。
 無線受信装置600は、判定部603で判定されたZC系列番号と、端末情報マッピングテーブル604の端末情報マッピング(例えば、図21を参照)とからBSS-IDを得ることができる。
 異なるZC系列番号のZC系列間の相互相関は低い(理想的には1/√Nzcとなる)ので、隣接BSSからの干渉を低減できる効果がある。
 <具体例4-2>
 図24に示すように、無線送信装置400の端末情報マッピングテーブル401では、ウェイクアップパケットを送信する対象の端末(無線受信装置600)毎に、選択される巡回シフト量が異なる。すなわち、複数のZC系列は、異なる端末にそれぞれ対応付けられる。
 異なる巡回シフト量のZC系列は受信側で直交するため、各端末(無線受信装置600)は、自機宛ての信号成分を抽出することができる。すなわち、無線送信装置400は、複数の端末向けの信号をCDM多重することができる。
 これにより、収容端末数を増加することができる効果がある。
 <具体例4-3>
 図25に示すように、複数のZC系列(ZC系列番号q、又は巡回シフト量でもよい)は、所定の端末情報(例えば、送信バッファサイズ)に一意に対応付けられる。
 無線送信装置400は、ウェイクアップパケットデータを送信する端末(無線受信装置600)に対して通知する端末情報に対応付けられたZC系列(ZC系列番号q)を用いて、マンチェスタ符号化OOK信号を生成する。すなわち、無線送信装置400は、ウェイクアップパケットデータを用いて、他のパラメータ(ここでは送信バッファサイズ)を無線受信装置600へ暗黙的に通知する。
 また、複数の系列番号は、複素共役の関係となるq=Xとq=NZC-Xとしてもよい。これにより、受信処理を簡易化することができる。Xの値としては、上述したように、低CM/PAPR特性を有するX=1(すなわち、q=1又はNZC-1)でもよい。
 無線送信装置400は、受信したウェイクアップパケットデータに使用されたZC系列(ZC系列番号q)に対応付けられた端末情報(ここでは送信バッファサイズ)を特定する。
 このように、具体例4-3によれば、新たなシグナリング情報の追加なく、マンチェスタ符号化OOK信号を用いて端末情報を通知することができる。
 以上、具体例4-1、4-2、4-3について説明した。
 なお、本実施の形態では、マンチェスタ符号化を用いる場合について説明したが、マンチェスタ符号化を行わない場合のOFDM変調を用いたOOK信号波形生成にも適用することができる。例えば、情報シンボル‘0’及び‘1’のそれぞれにON信号とOFF信号とを1対1で割り当てる場合、又は、情報シンボル‘0’及び‘1’のそれぞれにON/OFF信号の組み合わせを割り当てる場合等も含む。
 また、本実施の形態は、実施の形態1~3と組み合わせてもよい。
 また、図20では、無線送信装置400が巡回シフト部403を備える場合について説明したが、無線送信装置400は、実施の形態1(図6)と同様、巡回シフト部を備えない構成でもよい。この場合、端末情報マッピングテーブル401では、端末情報とZC系列番号との対応付けが決定される。
 また、本実施の形態では、一例として、BSS-IDとZC系列とを対応付ける場合について説明したが、ZC系列に対応付けられるパラメータは、BSS-IDに限らず、例えば、AP又はセルのグループでもよい。
 以上、本開示の一実施の形態について説明した。
 なお、上記実施の形態では、13個(M=13)のサブキャリア(4.06MHz帯域幅に相当)に対して系列長が7(N=7)のZC系列を適用する場合(すなわち、7個のサブキャリアにZC系列をマッピングする場合)について説明した(ただし、Mは3以上の整数、Nは2以上の整数)。しかし、サブキャリア数が13以外の数Mに対してZC系列を割り当てる場合も同様に、系列長(M+1)/2(M:奇数)又はM/2(M:偶数)のZC系列を適用してもよい。
 また、複素数で表されるZC系列のサンプル値をそのままサブキャリア係数として用いる代わりに、例えば、IEEE 802.11 OFDM PHYで用いられるQAMの信号空間にマッピングして、コンスタレーションを構成する信号点で近似してもよい。これにより、OFDM PHY変調部をWUP信号の生成にも利用することができ、無線送信装置の構成を簡略化することができる。
 また、本開示はWURに限らず、超低消費電力無線通信など、他の無線通信システムにも適用可能である。
 また、上記実施の形態では、CAZAC系列としてZC系列を用いる場合について説明したが、ZC系列に限定されず、他の系列を用いてもよい。
 本開示はソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。集積回路化の手法はLSIに限るものではなく、専用回路、汎用プロセッサ又は専用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 本開示の無線送信装置は、CAZAC(Constant Amplitude Zero Auto Correlation)系列を、周波数領域において隣接するM個のサブキャリア(Mは3以上の整数)のうち所定間隔に配置されたN個のサブキャリア(Nは2以上の整数)にマッピングし、前記マッピングされたCAZAC系列に対してInverse Fast Fourier Transform(IFFT)処理を行い、前記IFFT処理により生成された時間領域信号に対してマンチェスタ符号化を行うことにより、OOK(On-Off Keying)変調信号を生成する信号生成回路と、前記OOK変調信号を送信する送信部と、を具備する。
 本開示の無線送信装置において、前記所定間隔は、2サブキャリア間隔であり、前記信号生成回路は、前記マンチェスタ符号化において、前記時間領域信号の前半区間及び後半区間の何れか一方をマスクアウトすることにより、前記OOK変調信号を生成する。
 前記CAZAC系列は、系列長NZCの複数のZC(Zadoff-Chu)系列のうちの一つであり、前記Mは、前記OOK変調信号を送信する帯域幅に含まれるサブキャリア数であり、前記系列長NZCは、前記Mを前記所定間隔で割ることにより得られる値以上の最小の素数である。
 本開示の無線送信装置において、前記CAZAC系列は、系列長NZCの複数のZC(Zadoff-Chu)系列のうちの一つであり、前記信号生成回路は、前記複数のZC系列のうち系列番号が1又はNZC-1の前記ZC系列を用いて、前記OOK変調信号を生成する。
 本開示の無線送信装置において、前記信号生成回路は、更に、前記OOK変調信号内のON区間内の時間波形における電力ピークが、当該ON区間内の中央部分に配置されるように、前記マッピングされたCAZAC系列に対して位相回転を行う。
 本開示の無線送信装置において、前記信号生成回路は、更に、前記OOK変調信号内のON区間内の時間波形における電力ピークが、当該ON区間内の中央部分に配置されるように、前記時間波形に対して巡回シフトを行う。
 本開示の無線送信装置において、前記所定間隔は1サブキャリア間隔であり、前記CAZAC系列はZC(Zadoff-Chu)系列であって、前記ZC系列を構成する複数のサンプルのうち隣接するサンプル間の位相差が、前記サンプル番号の増加に伴って単調増加又は単調減少し、前記信号生成回路は、前記位相差を0から2πの区間で表す場合、前記位相差が0からπの区間において、前記位相差が単調増加又は単調減少する複数のサンプルを前記サブキャリアにそれぞれマッピングすることにより、第1の時間波形を有する前記OOK変調信号を生成し、前記位相差がπから2πの区間において、前記位相差が単調増加又は単調減少する複数のサンプルを前記サブキャリアにそれぞれマッピングすることにより、前記第1の時間波形に対してON信号及びOFF信号が反転した第2の時間波形を有する前記OOK変調信号を生成する。
 本開示の無線送信装置において、前記信号生成回路は、複数の前記CAZAC系列のうちの1つのCAZAC系列を用いて前記OOK変調信号を生成する。
 本開示の無線送信装置において、前記複数のCAZAC系列は、系列番号又は巡回シフト量が異なる複数のZC(Zadoff-Chu)系列であり、前記複数のZC系列は、異なるグループにそれぞれ対応付けられている。
 本開示の無線送信装置において、前記複数のCAZAC系列は、系列番号又は巡回シフト量が異なる複数のZC(Zadoff-Chu)系列であり、前記複数のZC系列は、異なる無線受信装置にそれぞれ対応付けられている。
 本開示の無線送信装置において、前記複数のCAZAC系列は、系列番号又は巡回シフト量が異なる複数のZC(Zadoff-Chu)系列であり、前記複数のZC系列の各々は、パラメータ情報に一意に対応付けられ、前記信号生成回路は、前記複数のZC系列のうち、前記無線受信装置へ通知する前記パラメータ情報に対応付けられた前記ZC系列を用いて前記OOK変調信号を生成する。
 本開示の送信方法は、CAZAC(Constant Amplitude Zero Auto Correlation)系列を、周波数領域において隣接するM個のサブキャリア(Mは3以上の整数)のうち所定間隔に配置されたN個のサブキャリア(Nは2以上の整数)にマッピングし、前記マッピングされたCAZAC系列に対してInverse Fast Fourier Transform(IFFT処理)を行い、前記IFFT処理により生成された時間領域信号に対してマンチェスタ符号化を行うことにより、OOK(On-Off Keying)変調信号を生成し、前記生成されたOOK信号変調を送信する。
 本開示の一態様は、移動通信システムに有用である。
 100,100a,150,200,300,400 無線送信装置
 101 割当指示部
 102,102a,402,601 系列生成部
 103,152 サブキャリア割当部
 104 IFFT部
 105 マンチェスタ符号化部
 106 GI挿入部
 107 無線送信部
 108,501 アンテナ
 121 ZC系列生成部
 122 サンプル選択部
 151 切替制御部
 153 選択部
 500,600 無線受信装置
 502 無線受信部
 503 低域通過フィルタ部
 504 GI抜去部
 505 電力検出部
 506 オンオフ判定部
 201 位相回転部
 301,403 巡回シフト部
 401,604 端末情報マッピングテーブル
 602 相関検出部
 603 判定部

Claims (12)

  1.  CAZAC(Constant Amplitude Zero Auto Correlation)系列を、周波数領域において隣接するM個のサブキャリア(Mは3以上の整数)のうち所定間隔に配置されたN個のサブキャリア(Nは2以上の整数)にマッピングし、前記マッピングされたCAZAC系列に対してInverse Fast Fourier Transform(IFFT)処理を行い、前記IFFT処理により生成された時間領域信号に対してマンチェスタ符号化を行うことにより、OOK(On-Off Keying)変調信号を生成する信号生成回路と、
     前記OOK変調信号を送信する送信部と、
     を具備する無線送信装置。
  2.  前記所定間隔は、2サブキャリア間隔であり、
     前記信号生成回路は、前記マンチェスタ符号化において、前記時間領域信号の前半区間及び後半区間の何れか一方をマスクアウトすることにより、前記OOK変調信号を生成する、
     請求項1に記載の無線送信装置。
  3.  前記CAZAC系列は、系列長NZCの複数のZC(Zadoff-Chu)系列のうちの一つであり、
     前記Mは、前記OOK変調信号を送信する帯域幅に含まれるサブキャリア数であり、
     前記系列長NZCは、前記Mを前記所定間隔で割ることにより得られる値以上の最小の素数である、
     請求項1に記載の無線送信装置。
  4.  前記CAZAC系列は、系列長NZCの複数のZC(Zadoff-Chu)系列のうちの一つであり、
     前記信号生成回路は、前記複数のZC系列のうち系列番号が1又はNZC-1の前記ZC系列を用いて、前記OOK変調信号を生成する、
     請求項1に記載の無線送信装置。
  5.  前記信号生成回路は、更に、前記OOK変調信号内のON区間内の時間波形における電力ピークが、当該ON区間内の中央部分に配置されるように、前記マッピングされたCAZAC系列に対して位相回転を行う、
     請求項1に記載の無線送信装置。
  6.  前記信号生成回路は、更に、前記OOK変調信号内のON区間内の時間波形における電力ピークが、当該ON区間内の中央部分に配置されるように、前記時間波形に対して巡回シフトを行う、
     請求項1に記載の無線送信装置。
  7.  前記所定間隔は1サブキャリア間隔であり、
     前記CAZAC系列はZC(Zadoff-Chu)系列であって、前記ZC系列を構成する複数のサンプルのうち隣接するサンプル間の位相差が、前記サンプル番号の増加に伴って単調増加又は単調減少し、
     前記信号生成回路は、前記位相差を0から2πの区間で表す場合、前記位相差が0からπの区間において、前記位相差が単調増加又は単調減少する複数のサンプルを前記サブキャリアにそれぞれマッピングすることにより、第1の時間波形を有する前記OOK変調信号を生成し、前記位相差がπから2πの区間において、前記位相差が単調増加又は単調減少する複数のサンプルを前記サブキャリアにそれぞれマッピングすることにより、前記第1の時間波形に対してON信号及びOFF信号が反転した第2の時間波形を有する前記OOK変調信号を生成する、
     請求項1に記載の無線送信装置。
  8.  前記信号生成回路は、複数の前記CAZAC系列のうちの1つのCAZAC系列を用いて前記OOK変調信号を生成する、
     請求項1に記載の無線送信装置。
  9.  前記複数のCAZAC系列は、系列番号又は巡回シフト量が異なる複数のZC(Zadoff-Chu)系列であり、
     前記複数のZC系列は、異なるグループにそれぞれ対応付けられている、
     請求項8に記載の無線送信装置。
  10.  前記複数のCAZAC系列は、系列番号又は巡回シフト量が異なる複数のZC(Zadoff-Chu)系列であり、
     前記複数のZC系列は、異なる無線受信装置にそれぞれ対応付けられている、
     請求項8に記載の無線送信装置。
  11.  前記複数のCAZAC系列は、系列番号又は巡回シフト量が異なる複数のZC(Zadoff-Chu)系列であり、
     前記複数のZC系列の各々は、パラメータ情報に一意に対応付けられ、
     前記信号生成回路は、前記複数のZC系列のうち、無線受信装置へ通知する前記パラメータ情報に対応付けられた前記ZC系列を用いて前記OOK変調信号を生成する、
     請求項8に記載の無線送信装置。
  12.  CAZAC(Constant Amplitude Zero Auto Correlation)系列を、周波数領域において隣接するM個のサブキャリア(Mは3以上の整数)のうち所定間隔に配置されたN個のサブキャリア(Nは2以上の整数)にマッピングし、前記マッピングされたCAZAC系列に対してInverse Fast Fourier Transform(IFFT処理)を行い、前記IFFT処理により生成された時間領域信号に対してマンチェスタ符号化を行うことにより、OOK(On-Off Keying)変調信号を生成し、
     前記生成されたOOK信号変調を送信する、
     送信方法。
PCT/JP2018/019005 2017-07-07 2018-05-17 無線送信装置及び送信方法 WO2019008916A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/620,722 US11212026B2 (en) 2017-07-07 2018-05-17 Radio transmission device and transmission method
JP2019528388A JP7328892B2 (ja) 2017-07-07 2018-05-17 通信装置、通信方法及び集積回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017133818 2017-07-07
JP2017-133818 2017-07-07

Publications (1)

Publication Number Publication Date
WO2019008916A1 true WO2019008916A1 (ja) 2019-01-10

Family

ID=64949934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019005 WO2019008916A1 (ja) 2017-07-07 2018-05-17 無線送信装置及び送信方法

Country Status (3)

Country Link
US (1) US11212026B2 (ja)
JP (1) JP7328892B2 (ja)
WO (1) WO2019008916A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111119866A (zh) * 2019-12-18 2020-05-08 中海石油(中国)有限公司湛江分公司 有缆遥传短节

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10644820B2 (en) * 2017-02-06 2020-05-05 Huawei Technologies Co., Ltd. Waveform-coding for multicarrier wake up radio frame
US11063797B2 (en) 2017-11-03 2021-07-13 Telefonaktiebolaget Lm Ericsson (Publ) Transmitter, network node, method and computer program
WO2019086178A1 (en) * 2017-11-03 2019-05-09 Telefonaktiebolaget Lm Ericsson (Publ) Receiver, communication apparatus, method and computer program for receiving binary information
US11656320B2 (en) * 2018-01-15 2023-05-23 Metawave Corporation Method and apparatus for radar waveforms using orthogonal sequence sets
US11160020B2 (en) * 2018-05-01 2021-10-26 Qualcomm Incorporated Multicarrier on-off keying symbol randomizer
US11533206B2 (en) * 2018-10-15 2022-12-20 Telefonaktiebolaget Lm Ericsson (Publ) Method, transmitter, structure, transceiver and access point for provision of multi-carrier on-off keying signal
US20240107451A1 (en) * 2022-09-27 2024-03-28 Nokia Technologies Oy Signalling for Activating Usage of Radio Resources
CN117641543B (zh) * 2024-01-26 2024-05-24 荣耀终端有限公司 一种信号生成方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041446A (ja) * 2008-08-06 2010-02-18 Sanyo Electric Co Ltd 無線装置及び信号変調方法
JP2010067727A (ja) * 2008-09-09 2010-03-25 Toda Kogyo Corp ナノインク前駆体、ナノインク及び該ナノインクを用いて形成した膜
WO2010067727A1 (ja) * 2008-12-08 2010-06-17 三洋電機株式会社 無線装置
EP2202933B1 (en) * 2008-12-23 2016-10-26 Telefonaktiebolaget LM Ericsson (publ) Technique for generating an sc-fdma signal
JP5827311B2 (ja) * 2010-04-01 2015-12-02 エルジー エレクトロニクス インコーポレイティド 制御情報を伝送する方法及びそのための装置
US10129064B1 (en) * 2016-08-02 2018-11-13 Newracom, Inc. Wireless device low power wake up
US10389567B2 (en) * 2016-11-03 2019-08-20 Samsung Electronics Co., Ltd. Method and apparatus for synchronization signal design

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"On the Coexistence of 802.11ax and 802.11ba Signals", IEEE 802.11-17/0659R3, 11 May 2017 (2017-05-11), Retrieved from the Internet <URL:https://mentor.ieee.org/802.11/dcn/17/11-17-0659-03-00ba-on-the-coexistence-of-802-11ax-and-802-11ba-signals.pptx> *
LG ELECTRONICS: "Further Investigation on WUR Performance", IEEE 802.11-16/1144R0, 12 September 2016 (2016-09-12), Retrieved from the Internet <URL:https://mentor.ieee.org/802.11/den/16/11-16-1144-00-0wur-further-investigation-on-wur-performance.ppt> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111119866A (zh) * 2019-12-18 2020-05-08 中海石油(中国)有限公司湛江分公司 有缆遥传短节

Also Published As

Publication number Publication date
US11212026B2 (en) 2021-12-28
US20200127756A1 (en) 2020-04-23
JP7328892B2 (ja) 2023-08-17
JPWO2019008916A1 (ja) 2020-05-07

Similar Documents

Publication Publication Date Title
JP7328892B2 (ja) 通信装置、通信方法及び集積回路
JP5062852B2 (ja) パイロット信号伝送の方法
RU2436252C2 (ru) Способ передачи управляющих сигналов в системе беспроводной связи
EP1790190B1 (en) Method and apparatus for sending and receiving data blocks associated with different multiple access techniques
US9036538B2 (en) Frequency hopping design for single carrier FDMA systems
US8582548B2 (en) Frequency division multiple access schemes for wireless communication
EP3289689B1 (en) Method and system for low data rate transmission
TWI383633B (zh) 用於在多載波系統中傳送及接收資料的方法
KR101445388B1 (ko) 반복 코딩을 이용한 데이터 전송 방법
EP2347538B1 (en) Method and apparatus for generating a preamble for use in cable transmission systems
US8649364B2 (en) Hybrid subcarrier mapping method and system
CN109391576B (zh) 基于序列的信号处理方法、通信设备及通信系统
JP7145273B2 (ja) 無線送信装置、及び、送信方法
WO2018054495A1 (en) Radio transmitter and receiver devices processing signal waveforms with selected pulse shaping scheme
JP2022160416A (ja) マルチキャリアオンオフキーイング信号の提供のための方法、送信機、構造、トランシーバおよびアクセスポイント
WO2017121412A1 (zh) 多载波系统的数据调制、解调方法、帧生成方法及节点
KR20080042421A (ko) 프리앰블 심벌을 이용한 직교 주파수 분할 다중화 시스템 및 그 생성 방법 및 타이밍/주파수 동기 획득하는 방법
WO2009043311A1 (fr) Procédé et appareil d&#39;étalement de fréquence temporelle dans un système ofdma
CN112019470B (zh) 一种数据传输方法及装置
CN111262805B (zh) 数据传输方法、装置及系统
JP7326550B2 (ja) 低複雑度実装に好適な構造、方法、送信機、トランシーバおよびアクセスポイント
KR20050102852A (ko) 다중 반송파 시스템의 송신 장치, 수신 장치 및 그의부반송파 할당 방법
CN116266806A (zh) 一种通信方法及装置
GB2426420A (en) Reducing peak to average power ratio (PAPR) in an orthogonal frequency division multiplexing transmitter
JP6780823B2 (ja) 信号伝送方法及び信号伝送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828150

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019528388

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828150

Country of ref document: EP

Kind code of ref document: A1