WO2019008873A1 - Power supply device and electronic control device - Google Patents

Power supply device and electronic control device Download PDF

Info

Publication number
WO2019008873A1
WO2019008873A1 PCT/JP2018/016526 JP2018016526W WO2019008873A1 WO 2019008873 A1 WO2019008873 A1 WO 2019008873A1 JP 2018016526 W JP2018016526 W JP 2018016526W WO 2019008873 A1 WO2019008873 A1 WO 2019008873A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
switching signal
mode
signal
circuit
Prior art date
Application number
PCT/JP2018/016526
Other languages
French (fr)
Japanese (ja)
Inventor
鳴 劉
山脇 大造
純之 荒田
泰志 杉山
隆介 佐原
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US16/619,001 priority Critical patent/US11050345B2/en
Publication of WO2019008873A1 publication Critical patent/WO2019008873A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/017Adjustment of width or dutycycle of pulses
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/033Monostable circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power supply device and an electronic control device, and, for example, to a power supply device mounted on a vehicle-mounted ECU (Electronic Control Unit).
  • ECU Electronic Control Unit
  • Patent Document 1 shows a power supply circuit capable of quickly responding to load fluctuations.
  • the power supply circuit changes the frequency of the PWM signal when a change in load is detected, and restores the frequency after a predetermined time has elapsed. At this time, the power supply circuit substantially changes the frequency after inserting a predetermined signal separately according to the change of the frequency.
  • ECUs electronice control units
  • the ECU is usually equipped with a microcontroller (abbreviated as a microcomputer) responsible for various controls and a power supply device for generating a power supply of the microcomputer.
  • the power supply device is, for example, a switching regulator type DC / DC converter that converts a DC voltage input based on a battery power supply into a different DC voltage and outputs the DC voltage.
  • the present invention has been made in view of the foregoing, and an object thereof is to provide a power supply capable of achieving a reduction in ripple, and an electronic control unit including the power supply.
  • a power supply device includes first and second controllers, a phase adjustment period setting circuit, a mode selection circuit, and a switching element.
  • a first controller generates a first switching signal using a first control mode
  • a second controller uses a second control mode to phase independent of the first switching signal.
  • the phase adjustment period setting circuit sets a phase adjustment period whose start timing is a selection timing determined at the edge of the second switching signal.
  • the mode selection circuit selects the first switching signal as the switching control signal instead of the second switching signal at the selection timing, and the logic level between the selection timing and the phase adjustment period in the switching control signal is fixed at the logic level Control.
  • the switching element is controlled on / off based on a switching control signal from the mode selection circuit to control an output voltage.
  • FIG. 1 is a circuit diagram which shows the structural example of the principal part of the electronic control unit by Embodiment 1 of this invention. It is the schematic which shows the structural example of the principal part of the power supply device by Embodiment 1 of this invention. It is a timing chart which shows the operation example at the time of load sudden change in the power supply device of FIG. It is a timing chart explaining the function of the level fixed period in FIG. It is a timing chart explaining the function of the level fixed period in FIG. (A) is a circuit diagram which shows the structural example of the fixed period production
  • FIG. 3 is a circuit diagram showing a configuration example of a level fixed period generation circuit in FIG. 2; FIG.
  • FIG. 3 is a circuit diagram showing a configuration example of a mode selection circuit in FIG. 2; It is the schematic which shows the structural example of the principal part of the power supply device by Embodiment 2 of this invention. It is the schematic which shows the structural example of the principal part of the power supply device by Embodiment 3 of this invention. It is a timing chart which shows the operation example at the time of load sudden change in the power supply device of FIG. It is the schematic which shows the structural example of the principal part of the power supply device examined as a comparative example of this invention. It is a timing chart which shows the operation example at the time of load sudden change in the power supply device of FIG.
  • the constituent elements are not necessarily essential unless explicitly stated or considered to be obviously essential in principle. Needless to say.
  • the shapes, positional relationships and the like of components etc. when referring to the shapes, positional relationships and the like of components etc., the shapes thereof are substantially the same unless particularly clearly stated and where it is apparently clearly not so in principle. It is assumed that it includes things that are similar or similar to etc. The same applies to the above numerical values and ranges.
  • FIG. 1 is a schematic view showing a configuration example of a main part of an electronic control unit according to a first embodiment of the present invention.
  • the electronic control unit 1 shown in FIG. 1 is, for example, an on-vehicle ECU.
  • the electronic control device 1 includes a DC / DC converter 10, a power supply device 11, an input interface 12, a microcontroller (microcomputer) MCU, and a driver 13, which are mounted on a wiring board.
  • the DC / DC converter 10 converts a battery voltage Vbat (e.g., 12 V) to a power supply voltage Vin (e.g., 5 V).
  • the power supply device 11 receives an input voltage (power supply voltage) Vin based on the battery power supply Vbat, and generates a predetermined output voltage (power supply voltage) Vo.
  • the output voltage Vo is, for example, 1 V or the like.
  • the microcomputer MCU operates using the output voltage Vo of the power supply device 11 as a power supply.
  • the microcomputer MCU includes, for example, a plurality of MPU cores 15 [1] to 15 [n], a memory 16, an analog-to-digital converter (ADC) 17, and various peripheral circuits 18.
  • the microcomputer MCU receives various sensor signals Sin from the outside of the apparatus through the input interface 12, generates various control signals Sout corresponding to the signals using program processing and the like, and transmits the control signals Sout to the outside of the apparatus through the driver 13. . Outside the apparatus, various actuators and the like that operate in response to the various control signals Sout are provided.
  • the various sensor signals Sin are, for example, detection results of operating states of various actuators.
  • the microcomputer MCU activates only necessary circuit blocks (for example, some MPU cores) in a necessary period, and sets unnecessary circuit blocks in the sleep mode. It may have a function. In this case, the rapid change rate of the load current (current consumption of the microcomputer MCU) viewed from the power supply device 11 increases.
  • the power supply device 11 is required to improve the response speed to sudden load change (and reduce the ripple).
  • FIG. 12 is a schematic view showing a configuration example of main parts of a power supply device examined as a comparative example of the present invention.
  • the power supply device shown in FIG. 12 includes a switching circuit SWU and a switching control circuit SWC ', and supplies the generated output voltage Vo to an external load LD (for example, the microcomputer MCU in FIG. 1).
  • the switching control circuit SWC ' uses the output voltage Vo as a feedback input to generate a switching control signal Ssw for keeping the output voltage Vo constant.
  • the switching circuit SWU includes a driver 21, a high side switching element SWh and a low side switching element SW1, an inductor L1, and a smoothing output capacitor C1.
  • Switching element SWh is coupled between input voltage Vin and the output node
  • switching element SWl is coupled between the output node and ground power supply voltage GND.
  • the driver 21 receives the switching control signal Ssw, and complementarily controls the on / off of the high side switching element SWh and the low side switching element SWl.
  • the switching elements SWh and SWl control the output voltage Vo.
  • the switching element SWh is turned on and the switching element SWl is turned off. In this period, power from the input voltage Vin is accumulated in the inductor L1 and supplied to the load LD.
  • the switching element SWh is turned off and the switching element SWl is turned on. In this period, the power stored in the inductor L1 is supplied to the load LD.
  • the output voltage Vo is controlled by the ratio (ie, the duty) of the high level period in one cycle (the sum of the high level period and the low level period) of the switching control signal Ssw.
  • the smoothing output capacitor C1 has a function of suppressing the ripple of the output voltage Vo.
  • the switching control circuit SWC ' includes a PWM controller 25, a PFM controller 26, a mode selection circuit 28' and a mode switching control circuit MDC '.
  • the PWM controller 25 uses the PWM control mode to generate a PWM signal (switching signal) Spwm whose frequency is constant and the pulse width changes according to the feedback input from the output voltage Vo.
  • a PWM signal switching signal
  • the PWM controller 25 is not shown, various circuit systems are known, and any circuit system may be used.
  • a method of determining the duty of the PWM signal by directly generating a triangular wave (or sawtooth wave) and comparing the triangular wave (sawtooth wave) with an error signal based on the output voltage Vo;
  • a system etc. which are generated using inductor current IL which flows into L1 are mentioned.
  • the PFM controller 26 generates a PFM signal (switching signal) Spfm whose frequency changes according to the feedback input from the output voltage Vo using the PFM control mode.
  • PFM controller 26 is not shown, various circuit systems are known, and any circuit system may be used.
  • a method of setting two threshold voltages and determining a high level / low level period of the PFM signal Spfm so that the output voltage Vo falls within the range of the two threshold voltages, or one threshold voltage There is a method of setting and outputting a high pulse of a fixed pulse width when the output voltage Vo reaches the threshold voltage.
  • the mode switching control circuit MDC asserts the mode switching signal Smd when the output voltage Vo deviates from the predetermined voltage range, recovers the output voltage Vo, and negates the mode switching signal Smd after a predetermined period has elapsed.
  • the mode switching control circuit MDC includes a load abrupt change detection circuit 30 and a generation circuit 31' for a fixed period.
  • the load sudden change detection circuit 30 includes, for example, two comparator circuits that detect whether the output voltage Vo deviates from a predetermined voltage range.
  • One comparator circuit asserts the sudden load change detection signal Sdet in a period in which the output voltage Vo is lower than the threshold voltage, using a threshold voltage (load abrupt threshold voltage) whose voltage level is lower than the output voltage Vo. . That is, the assertion of the sudden load change detection signal Sdet means detection of a sudden increase in load.
  • the other comparator circuit asserts the sudden load change detection signal Sdet in a period in which the output voltage Vo is higher than the threshold voltage, using a threshold voltage (a rapid load reduction threshold voltage) whose voltage level is higher than the output voltage Vo. . That is, the assertion of the sudden load change detection signal Sdet means detection of a sudden drop in load.
  • the generation circuit 31 asserts the mode switching signal Smd in response to the assertion of the sudden load change detection signal Sdet, and waits for a fixed period after the sudden load change detection signal Sdet is changed from the assertion to the negation. Negate.
  • the predetermined period is a period required for the output voltage Vo to recover to a target value and to be in a stable state.
  • the mode selection circuit 28 selects one of the PWM signal Spwm or the PFM signal Spfm as the switching control signal Ssw according to the mode switching signal Smd, and outputs it. Specifically, the mode selection circuit 28 'selects the PWM signal Spwm in the negate period of the mode switching signal (that is, when the load LD is steady), and in the assertion period of the mode switching signal Smd (that is, when the load LD suddenly changes). The PFM signal Spfm is selected.
  • FIG. 13 is a timing chart showing an operation example of the power supply apparatus of FIG. 12 at the time of sudden load change.
  • mode switching signal Smd from mode switching control circuit MDC ' is at the negate level (here, low level)
  • mode selection circuit 28' uses PWM signal Spwm as switching control signal Ssw. It selects and outputs to the switching circuit SWU.
  • the switching elements SWh and SWl of the switching circuit SWU are on / off controlled by a switching control signal Ssw (that is, the PWM signal Spwm), and generate an output voltage Vo from an input voltage Vin.
  • Ssw that is, the PWM signal Spwm
  • the load sudden change detection circuit 30 detects the sudden load change when the output voltage Vo decreases below the load sharp threshold voltage.
  • the signal Sdet is changed to an asserted level (here, high level).
  • the generation circuit 31 changes the mode switching signal Smd to an asserted level (here, high level) for a predetermined period.
  • the mode selection circuit 28 'selects the PFM signal Spfm as the switching control signal Ssw and outputs it to the switching circuit SWU.
  • the switching elements SWh and SWl of the switching circuit SWU are on / off controlled by the switching control signal Ssw (ie, the PFM signal Spfm) to stabilize the output voltage Vo. As a result, the decrease of the output voltage Vo is recovered.
  • the sudden change in load detection circuit 30 changes the rapid change in load detection signal Sdet to a negate level (here, a low level) when the output voltage Vo exceeds the rapid load increase threshold.
  • the constant period generation circuit 31 'extends the assert period of the sudden load change detection signal Sdet by the constant period Ts until the output voltage Vo recovers to the voltage level (that is, the target value) at steady load and becomes stable.
  • the mode switching signal Smd is changed to the negate level after a predetermined period Ts by the generation circuit 31 '.
  • the mode selection circuit 28 ′ selects the PWM signal Spwm as the switching control signal Ssw and outputs it to the switching circuit SWU.
  • the switching elements SWh and SWl of the switching circuit SWU are controlled by the PWM signal Spwm to generate an output voltage Vo from the input voltage Vin.
  • FIG. 2 is a schematic diagram showing an example of configuration of a main part of the power supply device according to Embodiment 1 of the present invention.
  • the power supply device shown in FIG. 2 includes a switching circuit SWU and a switching control circuit SWC1, and supplies the generated output voltage Vo to an external load LD (for example, the microcomputer MCU in FIG. 1).
  • the configuration of switching circuit SWU is similar to that of FIG.
  • the switching control circuit SWC1 includes a PWM controller 25, a PFM controller 26, a mode selection circuit 28, a mode switching control circuit MDC, and a fixed level period generation circuit 27.
  • the PWM controller 25, the PFM controller 26, and the sudden load change detection circuit 30 have the same configuration as in FIG. 12, and the mode selection circuit 28 and the mode switching control circuit MDC have a slightly different configuration from that in FIG. .
  • the level fixed period generation circuit 27 is newly provided with respect to FIG.
  • the mode switching control circuit MDC asserts the mode switching signal Smd when the output voltage Vo deviates from the predetermined voltage range, recovers the output voltage Vo, and passes the predetermined period.
  • the switching signal Smd is negated.
  • the mode switching control circuit MDC negates the mode switching signal Smd at the selection timing after a predetermined period has elapsed. The selection timing is determined at the edge of the PFM signal Spfm.
  • the mode switching control circuit MDC includes a load sudden change detection circuit 30 and a generation circuit 31 for a fixed period.
  • the sudden load change detection circuit 30 has the same configuration as that of FIG.
  • the generation circuit 31 determines the timing (selection timing) when the mode switching signal Smd is negated to the edge of the PFM signal Spfm, unlike the case of FIG.
  • the level fixed period generation circuit (phase adjustment period setting circuit) 27 sets a level fixed period (phase adjustment period) whose start timing is the above-described selection timing. Specifically, the level fixed period generation circuit 27 generates the level fixed signal Slf which becomes one of the high level and the low level in the level fixed period and becomes the other of the high level and the low level in the period excluding the level fixed period.
  • the mode selection circuit 28 selects the PFM signal Spfm in the assert period of the mode switching signal Smd as the switching control signal Ssw, and selects the PWM signal Spwm in the negate period of the mode switching signal Smd. At this time, the mode selection circuit 28 selects the PWM signal Spwm instead of the PFM signal Spfm at the above-described selection timing based on the mode switching signal Smd. Then, unlike in the case of FIG. 12, mode selection circuit 28 forcibly sets the logic level between the selection timing in the switching control signal Ssw (that is, corresponding to the PWM signal Spwm) to the level fixed period based on the level fixed signal Slf. Control to a fixed logic level. ⁇ Operation of Power Supply Device (Embodiment 1) >>
  • FIG. 3 is a timing chart showing an operation example of the power supply device of FIG. 2 at the time of a sudden load change.
  • the operation in the period T1 in which the load current Io is in steady state is the same as that in the case of FIG.
  • the load sudden change detection circuit 30 detects the rapid load change detection signal Sdet when the output voltage Vo decreases below the load abrupt threshold voltage. Is changed to the assert level (here, high level).
  • the generation circuit 31 changes the mode switching signal Smd to an asserted level (here, high level) for a predetermined period.
  • the mode selection circuit 28 selects the PFM signal Spfm as the switching control signal Ssw and outputs it to the switching circuit SWU.
  • the switching elements SWh and SWl of the switching circuit SWU are on / off controlled by the switching control signal Ssw (ie, the PFM signal Spfm) to stabilize the output voltage Vo. As a result, the decrease of the output voltage Vo is recovered.
  • the sudden change in load detection circuit 30 changes the rapid change in load detection signal Sdet to a negate level (here, a low level) when the output voltage Vo exceeds the rapid load increase threshold.
  • the constant period generation circuit 31 extends the assert period of the sudden load change detection signal Sdet by the constant period Ts until the output voltage Vo recovers to the voltage level (that is, the target value) at the steady load time and becomes stable. After a predetermined period Ts, the generation circuit 31 changes the mode switching signal Smd to the negate level (here, low level) with the edge (falling edge in this example) of the PFM signal Spfm as the selection timing TMsl.
  • the mode selection circuit 28 selects the PWM signal Spwm as the switching control signal Ssw in response to the mode switching signal Smd, and outputs the selected signal to the switching circuit SWU.
  • the level fixed period generation circuit 27 receives the negate of the mode switching signal Smd and sets the level fixed signal (in this example, a low pulse signal) having a pulse width of the level fixed period (phase adjustment period) Tfx with the selection timing TMsl as the start timing. ) Generate Slf.
  • the mode selection circuit 28 forcibly controls the logic level of the selected switching control signal Ssw (that is, the PWM signal Spwm) to a fixed level (low level in this example) during this level fixed period Tfx. After the fixed level period Tfx, the switching control signal Ssw becomes equal to the PWM signal Spwm, and the steady operation in the PWM control mode is performed as in the case of FIG.
  • the minimum value of the fixed period Ts by the fixed period generation circuit 31 is determined by the time when the output voltage Vo recovers from the rapid increase threshold to the voltage level (target value) at the steady load condition on the assumption that the sudden change in load is largest. .
  • the minimum value of the fixed period Ts is calculated, for example, by simulation or the like.
  • the maximum value of the fixed period Ts is determined by the frequency of the sudden load change, and is determined by the minimum interval at which the sudden load change can occur, since it needs to be ended before the next sudden load change occurs.
  • the minimum interval at which this sudden change in load may occur can be determined based on the specifications of the microcomputer. For example, when the microcomputer operates at 1 MHz (1 ⁇ s cycle), the maximum value of the fixed period Ts is 1 ⁇ s. ⁇ Details of fixed level period >>
  • FIG. 4 and FIG. 5 are timing charts explaining the function of the level fixed period in FIG. As described in FIG. 13, FIG. 4 shows the worst condition in which the selection timing TMsl, the falling edge of the PFM signal Spfm, and the rising edge of the PWM signal Spwm coincide, and a maximum high pulse occurs.
  • the worst condition is relaxed by forcibly controlling the switching control signal Ssw to the low level during the level fixed period Tfx by the level fixed signal Slf.
  • the length of level fixed period Tfx is shorter than the pulse width Thf of a logic level (here, high level) different from the fixed logic level in PFM signal Spfm just before selection timing TMsl. Good.
  • the length of the level fixed period Tfx may be shorter than the pulse width Thw of the logic level (high level) different from the fixed logic level in the PWM signal Spwm immediately after the selection timing TMsl.
  • the length of the level fixed period Tfx may be about 1/2 (for example, in the range of 1/3 to 2/3) of the high pulse width Thw of the PWM signal Spwm.
  • the length of the level fixing period Tfx is excessively short, the increase in the inductor current IL can not be sufficiently suppressed, and the ripple reduction effect is weakened.
  • the length of level fixed period Tfx is excessively long, inductor current IL decreases excessively, and the output voltage Vo has a reverse polarity to that in the case [2]. It is because a big ripple may arise.
  • the length of the level fixed period Tfx is set to about 1/2 of the high pulse width Thw, as shown in case [1], the increase of the inductor current IL can be appropriately suppressed, and the ripple reduction effect is enhanced. Becomes possible.
  • FIG. 5 shows the worst condition in which the selection timing TMsl, the rising edge of the PFM signal Spfm, and the falling edge of the PWM signal Spwm coincide, and a maximum low pulse occurs.
  • the worst condition is alleviated by forcibly controlling the switching control signal Ssw to the high level during the level fixed period Tfx by the level fixed signal Slf.
  • the length of the level fixed period Tfx may be about 1/2 of the low pulse width Tlw of the PWM signal Spwm.
  • FIG. 6 (a) is a circuit diagram showing a configuration example of the constant period generation circuit in FIG. 2, and FIG. 6 (b) is a timing chart showing an operation example of FIG. 6 (a).
  • the fixed period generation circuit 31 of FIG. 6A includes a falling edge detection circuit 311, a delay circuit 312, SR latch circuits 313 and 315, and a D flip flop circuit 314.
  • the falling edge detection circuit 311 outputs a high pulse signal Sx having a pulse width determined by an internal delay circuit when a falling edge of the sudden load change detection signal Sdet occurs.
  • the delay circuit 312 is formed of, for example, inverter circuits in a plurality of stages, and delays the high pulse signal Sx from the falling edge detection circuit 311 by a predetermined time Ts.
  • the fixed time Ts is predetermined by simulation or the like as described in FIG.
  • the SR latch circuit 313 drives the output signal Sy to the set level (high level) in response to the high pulse signal from the delay circuit 312.
  • the D flip-flop circuit 314 latches the output signal Sy of the SR latch circuit 313 at the falling edge of the PFM signal Spfm. As a result, the D flip flop circuit 314 outputs the high level output signal Sz at the first falling edge of the PFM signal Spfm after the output signal Sy becomes high level (in other words, after a predetermined period Ts has passed). Output.
  • the SR latch circuit 315 drives the mode switching signal Smd to the set level (high level) in response to the assertion of the sudden load change detection signal Sdet, and switches the mode in response to the high level output signal Sz from the D flip flop circuit 314.
  • the signal Smd is driven to the reset level (low level).
  • the SR latch circuit 313 drives the output signal Sy to the reset level (low level) in response to the reset level (low level) of the mode switching signal Smd. Thereafter, the D flip flop circuit 314 returns the output signal Sz to the low level in response to the falling edge of the PFM signal Spfm.
  • the generation circuit 31 is not limited to such a circuit, and can be realized by various circuits. Further, as shown in FIG. 3, the sudden load change detection circuit 30 of FIG. 2 negates the rapid load change detection signal Sdet when the output voltage Vo recovers to the load rapid increase threshold, but has recovered to the target value. In this case, the sudden load change detection signal Sdet may be negated. In this case, the generation circuit 31 generates a waiting time for stabilizing the output voltage Vo recovered to the target value for a predetermined period.
  • FIG. 7 is a circuit diagram showing a configuration example of the level fixed period generation circuit in FIG.
  • the level fixed period generation circuit 27 shown in FIG. 7 includes a delay circuit 271 and a logic gate 272.
  • the delay circuit 271 is formed of, for example, inverter circuits in a plurality of stages, and delays the mode switching signal Smd by the level fixed period Tfx.
  • Logic gate 272 outputs the result of an OR operation of mode switching signal Smd and the inverted output signal of delay circuit 271 as level fixed signal Slf.
  • the delay time of the delay circuit 271 (that is, the level fixed period Tfx) can be fixed in advance. That is, for example, as shown in FIG. 1, when the input voltage Vin of the power supply device 11 is not the battery voltage Vbat but the output voltage of the DC / DC converter 10, the value of the input voltage Vin is substantially constant.
  • the power supply device 11 generates a constant output voltage Vo from a constant input voltage Vin. Therefore, the duty in the steady state can be predicted in advance with high accuracy.
  • the high pulse width Thw of the PWM signal Spwm shown in FIG. 4 can also be predicted with high accuracy.
  • FIG. 8 is a circuit diagram showing a configuration example of the mode selection circuit in FIG.
  • the mode selection circuit 28 shown in FIG. 8 includes a selection circuit 281 and a logic gate 282.
  • the selection circuit 281 selects the PWM signal Spwm when the mode switching signal Smd is at the negate level (low level), and selects the PFM signal Spfm when the mode switching signal Smd is at the assert level (high level).
  • the logic gate 282 outputs an AND operation result of the output of the selection circuit 281 and the level fixed signal Slf as the switching control signal Ssw.
  • the level fixed period Tfx is set to a fixed value.
  • the high pulse width Thw of the PWM signal Spwm in FIG. 4 may not be predicted with high accuracy. If the ratio between the high pulse width Thw and the level fixed period Tfx can not be maintained properly, as shown in FIG. 4, the ripple reduction effect is weakened.
  • FIG. 9 is a schematic diagram showing an example of a configuration of a main part of a power supply device according to Embodiment 2 of the present invention.
  • the power supply device shown in FIG. 9 is different from the power supply device shown in FIG. 2 in the configuration of the switching control circuit SWC2.
  • the switching control circuit SWC2 is slightly different in configuration of the level fixed period generating circuit 35 from the switching control circuit SWC1 of FIG. 2, and additionally includes a duty detection circuit 36.
  • the duty detection circuit 36 detects the duty of the PFM signal Spfm or the PWM signal Spwm in the fixed period Ts of the mode switching control circuit MDC shown in FIG. 3, reflects the duty, and outputs the fixed level period (phase adjustment period) Tfx. Variable control of the length. At this time, desirably, the duty detection circuit 36 recognizes the length of a period of a logic level (high level in FIG. 3) different from the level fixed period Tfx in the PWM signal Spwm based on the detection result of the duty. Then, the duty detection circuit 36 sets the level fixed period Tfx so that the recognized length and the length of the level fixed period Tfx maintain a predetermined ratio (for example, 2: 1 as in the case [1] of FIG. 4).
  • a predetermined ratio for example, 2: 1 as in the case [1] of FIG. 4
  • the duty detection circuit 36 recognizes a fixed period Ts based on the mode switching signal Smd and the sudden load change detection signal Sdet, and detects the duty of the PFM signal Spfm in the fixed period Ts. Since the duty of the PFM signal Spfm is stable during the fixed period Ts, the duty detection circuit 36 generates the PFM signal according to, for example, a predetermined duty of the predetermined PFM cycle or an average value of the duty of each PFM cycle. Detect the duty of Spfm. Then, the duty detection circuit 36 recognizes the length of the high level period of the PWM signal Spwm by reflecting the detected duty on the length of one cycle of the PWM signal Spwm determined in advance.
  • the fixed level period generation circuit 35 has, for example, a configuration in which the delay circuit 271 of FIG. 7 is changed to a variable delay circuit.
  • the delay time of the variable delay circuit is variably controlled by the duty detection circuit 36.
  • a circuit method of the duty detection circuit 36 of FIG. 9 a method of detecting the duty of the PFM signal Spfm and converting it to the length of the high level period in the PWM signal Spwm is used.
  • a method of directly detecting the duty of the signal Spwm may be used.
  • the duty of the PWM signal Spwm in the fixed period Ts may be unstable from the viewpoint of the response speed to the sudden change in load, so in this example, the method of detecting the duty of the PFM signal Spfm is used .
  • ⁇ Main effects of Embodiment 2 >>
  • the ripple may be further reduced. That is, even when there are various causes of variation, the length of the level fixed period Tfx can be appropriately maintained accordingly, and the ripple reduction effect can be enhanced.
  • the duty of the PWM signal Spwm may not converge to an appropriate value immediately after switching from the PFM signal Spfm to the PWM signal Spwm. That is, there is a possibility that deviation may occur between the PFM signal Spfm immediately before switching and the duty of the PWM signal Spwm immediately after switching. In this case, ripple may occur due to the improper duty of the PWM signal Spwm.
  • FIG. 10 is a schematic diagram showing an example of configuration of a main part of the power supply device according to Embodiment 3 of the present invention.
  • the power supply device shown in FIG. 10 is different from the power supply device shown in FIG. 2 in the configuration of the switching control circuit SWC3.
  • the switching control circuit SWC3 is different from the switching control circuit SWC1 of FIG. 2 in the configuration of the PWM controller 40, and further includes a duty detection circuit 41 having a configuration slightly different from that of FIG.
  • the PWM controller 40 stops the generation operation of the PWM signal Spwm in the level fixed period (phase adjustment period) Tfx, and restarts the generation operation of the PWM signal Spwm at the timing when the level fixed period Tfx ends.
  • the circuit system of the PWM controller 40 generates the PWM signal Spwm based on the comparison result of the triangular wave signal generated by the triangular wave generation circuit and the error signal.
  • the triangular wave generation circuit stops the generation operation of the triangular wave signal in the level fixed period Tfx, and resumes the generation operation at the timing when the level fixed period Tfx ends.
  • the circuit system of the PWM controller 40 periodically sets the SR latch circuit with the clock signal from the clock generation circuit, and generates the PWM signal Spwm by resetting the SR latch circuit at a timing based on the error signal. It is assumed that the method is In this case, the clock generation circuit stops the clock signal generation operation in the level fixed period Tfx, and resumes the generation operation at the timing when the level fixed period Tfx ends.
  • the duty detection circuit 41 detects the duty of the PFM signal Spfm in a fixed period of the mode switching control circuit MDC, and reflects the duty in the first cycle of the PWM signal Spwm from the PWM controller 40 which has resumed the generation operation. . ⁇ Operation of Power Supply Device (Third Embodiment) >>
  • FIG. 11 is a timing chart showing an operation example of the power supply apparatus of FIG. 10 at the time of a sudden load change.
  • the duty detection circuit 41 detects the duty of the PFM signal Spfm in a fixed period Ts in the period T2. Also, in the fixed level period Tfx after the selection timing TMsl, the PWM signal Spwm itself is fixed at the low level along with the stop of the generation operation of the PWM signal Spwm, and accordingly the switching control signal Ssw is also fixed at the 'L' level. Ru.
  • the ripple may be further reduced. That is, the duty of the PFM signal Spfm in the fixed period Ts has an appropriate value according to the load current Io, and this appropriate value can be reflected in the duty of the PWM signal Spwm immediately after switching. As a result, even if the response speed in the PWM control mode can not be sufficiently obtained, it is possible to reduce the ripple of the output voltage Vo.
  • the present invention is not limited to the above-mentioned embodiment, and can be variously changed in the range which does not deviate from the gist.
  • the above-described embodiments are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. .
  • the power supply apparatus of each embodiment is widely applicable as an apparatus for supplying power to a load having a large sudden change in load as well as an on-vehicle ECU.
  • SYMBOLS 1 electronic control device 11 power supply device 25 PWM controller 26 PFM controller 27 fixed level period generation circuit 28 mode selection circuit 36, 41 duty detection circuit MCU microcontroller MDC mode switching control circuit SWC switching control circuit SWU switching circuit SWh, SWl switching Element Slf level fixed signal Smd mode switching signal Spfm PFM signal Spwm PWM signal Ssw switching control signal Tfx fixed level period Ts fixed period Vo output voltage TMsl selection timing

Abstract

The objective of the present invention is to provide a power supply device capable of achieving a reduction in ripple, and an electronic control device provided with the power supply device. To this end, a PWM controller 25 generates a PWM signal Spwm, and a PFM controller 26 generates a PFM signal Spfm having a phase that is independent from that of the PWM signal Spwm. A level fixing period generating circuit 27 sets a level fixing period having a start timing which is a selection timing determined by an edge of the PFM signal Spfm. A mode selecting circuit 28 selects the PWM signal Spwm instead of the PFM signal Spfm as a switching control signal Ssw at a selection timing, and controls a logic level to a fixed logic level during the level fixing period from the selection timing of the switching control signal Ssw.

Description

電源装置および電子制御装置Power supply unit and electronic control unit
 本発明は、電源装置および電子制御装置に関し、例えば、車載用のECU(Electronic Control Unit)に搭載される電源装置に関する。 The present invention relates to a power supply device and an electronic control device, and, for example, to a power supply device mounted on a vehicle-mounted ECU (Electronic Control Unit).
 特許文献1には、負荷の変動に迅速に応答可能な電源回路が示される。当該電源回路は、負荷の変動を検出した際にPWM信号の周波数を変更し、所定時間の経過後に当該周波数を元に戻す。この際に、当該電源回路は、周波数の変更に応じて、所定の信号を別途挿入したのち、実質的な周波数の変更を行っている。 Patent Document 1 shows a power supply circuit capable of quickly responding to load fluctuations. The power supply circuit changes the frequency of the PWM signal when a change in load is detected, and restores the frequency after a predetermined time has elapsed. At this time, the power supply circuit substantially changes the frequency after inserting a predetermined signal separately according to the change of the frequency.
特開2016-46893号公報JP, 2016-46893, A
 近年、カーエレクトロニクス分野では、パワートレイン制御、ボディー制御、安全走行制御など向けに数多くの電子制御装置(ECUと呼ばれる)が実用化されている。ECUは、通常、各種制御を担うマイクロコントローラ(マイコンと略す)と、マイコンの電源を生成する電源装置とを搭載している。電源装置は、例えば、バッテリ電源をもとに入力された直流電圧を異なる直流電圧に変換して出力するスイッチングレギュレータ方式のDC/DCコンバータである。 In recent years, in the field of car electronics, many electronic control units (referred to as ECUs) have been put to practical use for power train control, body control, safe traveling control, and the like. The ECU is usually equipped with a microcontroller (abbreviated as a microcomputer) responsible for various controls and a power supply device for generating a power supply of the microcomputer. The power supply device is, for example, a switching regulator type DC / DC converter that converts a DC voltage input based on a battery power supply into a different DC voltage and outputs the DC voltage.
 ECU向けのマイコンでは、制御対象の増大に伴い消費電流が増加しており、各制御対象の活性化・非活性化(例えば、スリープモードのオン・オフ)の切替等に伴い、単位時間あたりの消費電流の変化率も増加している。電源装置は、このようにマイコンの消費電流の変化率(電源装置から見た場合の負荷電流の急変率)が増加した場合であっても、マイコンの電源電圧変動(すなわち出力電圧のリップル)を要求範囲内に保つ必要がある。このため、電源装置には、負荷電流の急変(負荷急変と呼ぶ)に対する応答速度の向上が求められる。 In microcomputers for ECUs, current consumption increases as the number of control targets increases, and switching of activation / deactivation (for example, sleep mode ON / OFF) of each control target The rate of change of current consumption is also increasing. Even when the change rate of the consumption current of the microcomputer (the sudden change rate of the load current when viewed from the power supply device) increases in this manner, the power supply device changes the power supply voltage of the microcomputer (i.e., the ripple of the output voltage It is necessary to keep it within the required range. Therefore, the power supply apparatus is required to improve the response speed to a sudden change in load current (referred to as a sudden change in load).
 応答速度を向上させる方式として、負荷急変に応じてPWM(Pulse Width Modulation)制御とPFM(Pulse Frequency Modulation)制御とを切替る方式が考えられる。しかし、この場合、制御の切替時に、スイッチング素子に過大なオン期間またはオフ期間が生じ、リップルの増大を招く恐れがある。これは、位相が独立に制御される2個の信号(PWM信号とPFM信号)を切り替える場合、特許文献1のように1個のPWM信号の周波数を切替る場合と異なり、制御の切替時のパルス幅を十分に制御できないためである。 As a method of improving the response speed, there is considered a method of switching between PWM (Pulse Width Modulation) control and PFM (Pulse Frequency Modulation) control according to sudden load change. However, in this case, when the control is switched, an excessive on period or off period occurs in the switching element, which may cause an increase in ripple. This is different from the case of switching the frequency of one PWM signal as in Patent Document 1 when switching two signals (PWM signal and PFM signal) whose phases are controlled independently, when switching control. This is because the pulse width can not be sufficiently controlled.
 本発明は、このようなことに鑑みてなされたものであり、その目的の一つは、リップルの低減を実現可能な電源装置、および当該電源装置を備える電子制御装置を提供することにある。 The present invention has been made in view of the foregoing, and an object thereof is to provide a power supply capable of achieving a reduction in ripple, and an electronic control unit including the power supply.
 本発明の前記並びにその他の目的と新規な特徴は、本明細書の記述及び添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will be apparent from the description of the present specification and the accompanying drawings.
 本願において開示される実施の形態のうち代表的なものの概要を簡単に説明すれば下記の通りである。 The outline of representative ones of the embodiments disclosed in the present application will be briefly described as follows.
 一実施の形態による電源装置は、第1および第2の制御器と、位相調整期間設定回路と、モード選択回路と、スイッチング素子とを有する。第1の制御器は、第1の制御モードを用いて第1のスイッチング信号を生成し、第2の制御器は、第2の制御モードを用いて、第1のスイッチング信号とは独立した位相を備える第2のスイッチング信号を生成する。位相調整期間設定回路は、第2のスイッチング信号のエッジに定められる選択タイミングを開始タイミングとする位相調整期間を設定する。モード選択回路は、選択タイミングで第2のスイッチング信号の代わりに第1のスイッチング信号をスイッチング制御信号として選択し、当該スイッチング制御信号における選択タイミングから位相調整期間の間の論理レベルを固定の論理レベルに制御する。スイッチング素子は、モード選択回路からのスイッチング制御信号に基づきオン・オフが制御され、出力電圧を制御する。 A power supply device according to one embodiment includes first and second controllers, a phase adjustment period setting circuit, a mode selection circuit, and a switching element. A first controller generates a first switching signal using a first control mode, and a second controller uses a second control mode to phase independent of the first switching signal. To generate a second switching signal. The phase adjustment period setting circuit sets a phase adjustment period whose start timing is a selection timing determined at the edge of the second switching signal. The mode selection circuit selects the first switching signal as the switching control signal instead of the second switching signal at the selection timing, and the logic level between the selection timing and the phase adjustment period in the switching control signal is fixed at the logic level Control. The switching element is controlled on / off based on a switching control signal from the mode selection circuit to control an output voltage.
 本願において開示される発明のうち、代表的な実施の形態によって得られる効果を簡単に説明すると、リップルの低減を実現可能になる。 Among the inventions disclosed in the present application, the effects obtained by the representative embodiments can be briefly described to realize the reduction of ripples.
本発明の実施の形態1による電子制御装置の主要部の構成例を示す概略図である。It is the schematic which shows the structural example of the principal part of the electronic control unit by Embodiment 1 of this invention. 本発明の実施の形態1による電源装置の主要部の構成例を示す概略図である。It is the schematic which shows the structural example of the principal part of the power supply device by Embodiment 1 of this invention. 図2の電源装置における負荷急変時の動作例を示すタイミングチャートである。It is a timing chart which shows the operation example at the time of load sudden change in the power supply device of FIG. 図3におけるレベル固定期間の機能を説明するタイミングチャートである。It is a timing chart explaining the function of the level fixed period in FIG. 図3におけるレベル固定期間の機能を説明するタイミングチャートである。It is a timing chart explaining the function of the level fixed period in FIG. (a)は、図2における一定期間生成回路の構成例を示す回路図であり、(b)は、(a)の動作例を示すタイミングチャートである。(A) is a circuit diagram which shows the structural example of the fixed period production | generation circuit in FIG. 2, (b) is a timing chart which shows the operation example of (a). 図2におけるレベル固定期間生成回路の構成例を示す回路図である。FIG. 3 is a circuit diagram showing a configuration example of a level fixed period generation circuit in FIG. 2; 図2におけるモード選択回路の構成例を示す回路図である。FIG. 3 is a circuit diagram showing a configuration example of a mode selection circuit in FIG. 2; 本発明の実施の形態2による電源装置の主要部の構成例を示す概略図である。It is the schematic which shows the structural example of the principal part of the power supply device by Embodiment 2 of this invention. 本発明の実施の形態3による電源装置の主要部の構成例を示す概略図である。It is the schematic which shows the structural example of the principal part of the power supply device by Embodiment 3 of this invention. 図10の電源装置における負荷急変時の動作例を示すタイミングチャートである。It is a timing chart which shows the operation example at the time of load sudden change in the power supply device of FIG. 本発明の比較例として検討した電源装置の主要部の構成例を示す概略図である。It is the schematic which shows the structural example of the principal part of the power supply device examined as a comparative example of this invention. 図12の電源装置における負荷急変時の動作例を示すタイミングチャートである。It is a timing chart which shows the operation example at the time of load sudden change in the power supply device of FIG.
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。 In the following embodiments, when it is necessary for the sake of convenience, it will be described by dividing into a plurality of sections or embodiments, but unless specifically stated otherwise, they are not mutually unrelated, one is the other Some or all of the variations, details, supplementary explanations, etc. are in a relation. Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), it is particularly pronounced and clearly limited to a specific number in principle. Except for the specific number, it is not limited to the specific number, and may be more or less than the specific number.
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 Furthermore, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily essential unless explicitly stated or considered to be obviously essential in principle. Needless to say. Similarly, in the following embodiments, when referring to the shapes, positional relationships and the like of components etc., the shapes thereof are substantially the same unless particularly clearly stated and where it is apparently clearly not so in principle. It is assumed that it includes things that are similar or similar to etc. The same applies to the above numerical values and ranges.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
 (実施の形態1)
 《電子制御装置の概略》
Hereinafter, embodiments of the present invention will be described in detail based on the drawings. In all the drawings for describing the embodiments, the same reference numeral is attached to the same member in principle, and the repetitive description thereof will be omitted.
Embodiment 1
<< Outline of electronic control device >>
 図1は、本発明の実施の形態1による電子制御装置の主要部の構成例を示す概略図である。図1に示す電子制御装置1は、例えば、車載用のECUである。当該電子制御装置1は、DC/DCコンバータ10と、電源装置11と、入力インタフェース12と、マイクロコントローラ(マイコン)MCUと、ドライバ13とを備え、これらが配線基板に実装された構成となっている。DC/DCコンバータ10は、バッテリ電圧Vbat(例えば、12V等)を電源電圧Vin(例えば、5V等)に変換する。電源装置11は、このバッテリ電源Vbatをもとにした入力電圧(電源電圧)Vinを受けて、所定の出力電圧(電源電圧)Voを生成する。出力電圧Voは、例えば、1V等である。 FIG. 1 is a schematic view showing a configuration example of a main part of an electronic control unit according to a first embodiment of the present invention. The electronic control unit 1 shown in FIG. 1 is, for example, an on-vehicle ECU. The electronic control device 1 includes a DC / DC converter 10, a power supply device 11, an input interface 12, a microcontroller (microcomputer) MCU, and a driver 13, which are mounted on a wiring board. There is. The DC / DC converter 10 converts a battery voltage Vbat (e.g., 12 V) to a power supply voltage Vin (e.g., 5 V). The power supply device 11 receives an input voltage (power supply voltage) Vin based on the battery power supply Vbat, and generates a predetermined output voltage (power supply voltage) Vo. The output voltage Vo is, for example, 1 V or the like.
 マイコンMCUは、電源装置11の出力電圧Voを電源として動作する。マイコンMCUは、例えば、複数のMPUコア15[1]~15[n]、メモリ16、アナログディジタル変換器(ADC)17、および各種周辺回路18を備える。マイコンMCUは、入力インタフェース12を介して装置外部からの各種センサ信号Sinを受け、それに応じた各種制御信号Soutをプログラム処理等を用いて生成し、それをドライバ13を介して装置外部へ送信する。装置外部には、当該各種制御信号Soutを受けて動作する各種アクチュエータ等が設けられる。各種センサ信号Sinは、例えば、各種アクチュエータの動作状態の検出結果等である。 The microcomputer MCU operates using the output voltage Vo of the power supply device 11 as a power supply. The microcomputer MCU includes, for example, a plurality of MPU cores 15 [1] to 15 [n], a memory 16, an analog-to-digital converter (ADC) 17, and various peripheral circuits 18. The microcomputer MCU receives various sensor signals Sin from the outside of the apparatus through the input interface 12, generates various control signals Sout corresponding to the signals using program processing and the like, and transmits the control signals Sout to the outside of the apparatus through the driver 13. . Outside the apparatus, various actuators and the like that operate in response to the various control signals Sout are provided. The various sensor signals Sin are, for example, detection results of operating states of various actuators.
 近年、車両の高機能化が進む一方で、車両に搭載するECU数の削減等が求められている。このため、1個の電子制御装置1による制御対象は増大傾向にあり、消費電流も増加傾向にある。マイコンMCUは、このような消費電流の増加を抑制するため、必要な期間で必要な回路ブロック(例えば一部のMPUコア)のみを活性化し、不必要な回路ブロックをスリープモードに設定するような機能を備える場合がある。この場合、電源装置11から見た負荷電流(マイコンMCUの消費電流)の急変率が増加する。一方、マイコンMCUを正常に動作させるためには出力電圧Voの変動(すなわちリップル)を要求範囲内に保つ必要がある。このため、電源装置11には、負荷急変に対する応答速度の向上(ひいてはリップルの低減)が求められる。
 《電源装置(比較例)の構成および動作》
In recent years, while the advancement of vehicles has been advanced, reduction of the number of ECUs mounted on the vehicle, and the like are required. For this reason, the control target by one electronic control device 1 tends to increase, and the current consumption also tends to increase. In order to suppress such an increase in current consumption, the microcomputer MCU activates only necessary circuit blocks (for example, some MPU cores) in a necessary period, and sets unnecessary circuit blocks in the sleep mode. It may have a function. In this case, the rapid change rate of the load current (current consumption of the microcomputer MCU) viewed from the power supply device 11 increases. On the other hand, in order to operate the microcomputer MCU normally, it is necessary to keep the fluctuation (i.e., ripple) of the output voltage Vo within the required range. For this reason, the power supply device 11 is required to improve the response speed to sudden load change (and reduce the ripple).
<< Configuration and Operation of Power Supply Device (Comparative Example) >>
 図12は、本発明の比較例として検討した電源装置の主要部の構成例を示す概略図である。図12に示す電源装置は、スイッチング回路SWUと、スイッチング制御回路SWC’とを備え、生成した出力電圧Voを外部の負荷LD(例えば、図1のマイコンMCU)に供給する。スイッチング制御回路SWC’は、出力電圧Voを帰還入力として、出力電圧Voを一定に保つためのスイッチング制御信号Sswを生成する。 FIG. 12 is a schematic view showing a configuration example of main parts of a power supply device examined as a comparative example of the present invention. The power supply device shown in FIG. 12 includes a switching circuit SWU and a switching control circuit SWC ', and supplies the generated output voltage Vo to an external load LD (for example, the microcomputer MCU in FIG. 1). The switching control circuit SWC 'uses the output voltage Vo as a feedback input to generate a switching control signal Ssw for keeping the output voltage Vo constant.
 スイッチング回路SWUは、ドライバ21と、ハイサイドのスイッチング素子SWhおよびロウサイドのスイッチング素子SWlと、インダクタL1と、平滑用出力コンデンサC1とを備える。スイッチング素子SWhは、入力電圧Vinと出力ノードとの間に結合され、スイッチング素子SWlは、出力ノードと接地電源電圧GNDとの間に結合される。ドライバ21は、スイッチング制御信号Sswを受けて、ハイサイドのスイッチング素子SWhとロウサイドのスイッチング素子SWlのオン・オフを相補的に制御する。これによって、スイッチング素子SWh,SWlは、出力電圧Voを制御する。 The switching circuit SWU includes a driver 21, a high side switching element SWh and a low side switching element SW1, an inductor L1, and a smoothing output capacitor C1. Switching element SWh is coupled between input voltage Vin and the output node, and switching element SWl is coupled between the output node and ground power supply voltage GND. The driver 21 receives the switching control signal Ssw, and complementarily controls the on / off of the high side switching element SWh and the low side switching element SWl. Thus, the switching elements SWh and SWl control the output voltage Vo.
 具体的には、スイッチング制御信号Sswのハイレベル期間では、スイッチング素子SWhはオン、スイッチング素子SWlはオフとなる。この期間では、入力電圧Vinからの電力がインダクタL1に蓄積されると共に、負荷LDに供給される。一方、スイッチング制御信号Sswのロウレベル期間では、スイッチング素子SWhはオフ、スイッチング素子SWlはオンとなる。この期間では、インダクタL1に蓄積された電力が負荷LDに供給される。出力電圧Voは、このスイッチング制御信号Sswの1サイクル(ハイレベル期間とロウレベル期間の合計)におけるハイレベル期間の比率(すなわちデューティ)によって制御される。平滑用出力コンデンサC1は、出力電圧Voのリップルを抑制する機能を担う。 Specifically, in the high level period of the switching control signal Ssw, the switching element SWh is turned on and the switching element SWl is turned off. In this period, power from the input voltage Vin is accumulated in the inductor L1 and supplied to the load LD. On the other hand, in the low level period of the switching control signal Ssw, the switching element SWh is turned off and the switching element SWl is turned on. In this period, the power stored in the inductor L1 is supplied to the load LD. The output voltage Vo is controlled by the ratio (ie, the duty) of the high level period in one cycle (the sum of the high level period and the low level period) of the switching control signal Ssw. The smoothing output capacitor C1 has a function of suppressing the ripple of the output voltage Vo.
 スイッチング制御回路SWC’は、PWM制御器25と、PFM制御器26と、モード選択回路28’と、モード切替制御回路MDC’とを備える。PWM制御器25は、PWM制御モードを用いて、出力電圧Voからの帰還入力に応じて、周波数が一定でパルス幅が変化するPWM信号(スイッチング信号)Spwmを生成する。PWM制御器25は、図示は省略するが、様々な回路方式が知られており、そのいずれの回路方式を用いてもよい。代表的には、三角波(または鋸波)を直接生成して、当該三角波(鋸波)と出力電圧Voに基づく誤差信号とを比較することでPWM信号のデューティを定める方式や、三角波を、インダクタL1に流れるインダクタ電流ILを利用して生成する方式等が挙げられる。 The switching control circuit SWC 'includes a PWM controller 25, a PFM controller 26, a mode selection circuit 28' and a mode switching control circuit MDC '. The PWM controller 25 uses the PWM control mode to generate a PWM signal (switching signal) Spwm whose frequency is constant and the pulse width changes according to the feedback input from the output voltage Vo. Although the PWM controller 25 is not shown, various circuit systems are known, and any circuit system may be used. Typically, a method of determining the duty of the PWM signal by directly generating a triangular wave (or sawtooth wave) and comparing the triangular wave (sawtooth wave) with an error signal based on the output voltage Vo; A system etc. which are generated using inductor current IL which flows into L1 are mentioned.
 PFM制御器26は、PFM制御モードを用いて、出力電圧Voからの帰還入力に応じて、周波数が変化するPFM信号(スイッチング信号)Spfmを生成する。PFM制御器26も、図示は省略するが、様々な回路方式が知られており、そのいずれの回路方式を用いてもよい。代表的には、2個の閾値電圧を設定し、出力電圧Voが当該2個の閾値電圧の範囲に収まるようにPFM信号Spfmのハイレベル/ロウレベル期間を定める方式や、1個の閾値電圧を設定し、出力電圧Voが当該閾値電圧に達した際に固定パルス幅のハイパルスを出力する方式等が挙げられる。 The PFM controller 26 generates a PFM signal (switching signal) Spfm whose frequency changes according to the feedback input from the output voltage Vo using the PFM control mode. Although the PFM controller 26 is not shown, various circuit systems are known, and any circuit system may be used. Typically, a method of setting two threshold voltages and determining a high level / low level period of the PFM signal Spfm so that the output voltage Vo falls within the range of the two threshold voltages, or one threshold voltage There is a method of setting and outputting a high pulse of a fixed pulse width when the output voltage Vo reaches the threshold voltage.
 モード切替制御回路MDC’は、出力電圧Voが所定の電圧範囲から逸脱した際にモード切替信号Smdをアサートし、出力電圧Voが回復し、一定期間を経過した後にモード切替信号Smdをネゲートする。モード切替制御回路MDC’は、具体的には、負荷急変検出回路30と、一定期間生成回路31’とを備える。 The mode switching control circuit MDC 'asserts the mode switching signal Smd when the output voltage Vo deviates from the predetermined voltage range, recovers the output voltage Vo, and negates the mode switching signal Smd after a predetermined period has elapsed. Specifically, the mode switching control circuit MDC 'includes a load abrupt change detection circuit 30 and a generation circuit 31' for a fixed period.
 負荷急変検出回路30は、例えば、出力電圧Voが所定の電圧範囲から逸脱したか否かを検出する2個のコンパレータ回路を備える。一方のコンパレータ回路は、出力電圧Voよりも電圧レベルが低い閾値電圧(負荷急増閾値電圧)を用いて、出力電圧Voが当該閾値電圧よりも低下している期間で負荷急変検出信号Sdetをアサートする。すなわち、当該負荷急変検出信号Sdetのアサートは、負荷急増の検出を意味する。他方のコンパレータ回路は、出力電圧Voよりも電圧レベルが高い閾値電圧(負荷急減閾値電圧)を用いて、出力電圧Voが当該閾値電圧よりも上昇している期間で負荷急変検出信号Sdetをアサートする。すなわち、当該負荷急変検出信号Sdetのアサートは、負荷急減の検出を意味する。 The load sudden change detection circuit 30 includes, for example, two comparator circuits that detect whether the output voltage Vo deviates from a predetermined voltage range. One comparator circuit asserts the sudden load change detection signal Sdet in a period in which the output voltage Vo is lower than the threshold voltage, using a threshold voltage (load abrupt threshold voltage) whose voltage level is lower than the output voltage Vo. . That is, the assertion of the sudden load change detection signal Sdet means detection of a sudden increase in load. The other comparator circuit asserts the sudden load change detection signal Sdet in a period in which the output voltage Vo is higher than the threshold voltage, using a threshold voltage (a rapid load reduction threshold voltage) whose voltage level is higher than the output voltage Vo. . That is, the assertion of the sudden load change detection signal Sdet means detection of a sudden drop in load.
 一定期間生成回路31’は、負荷急変検出信号Sdetのアサートに応じてモード切替信号Smdをアサートし、負荷急変検出信号Sdetがアサートからネゲートに変更されてから一定期間待ったのちにモード切替信号Smdをネゲートする。当該一定期間は、出力電圧Voが目標値に回復し、安定状態となるのに必要とされる期間である。 The generation circuit 31 'asserts the mode switching signal Smd in response to the assertion of the sudden load change detection signal Sdet, and waits for a fixed period after the sudden load change detection signal Sdet is changed from the assertion to the negation. Negate. The predetermined period is a period required for the output voltage Vo to recover to a target value and to be in a stable state.
 モード選択回路28’は、モード切替信号Smdに応じて、PWM信号SpwmかPFM信号Spfmの一方をスイッチング制御信号Sswとして選択し、出力する。具体的には、モード選択回路28’は、モード切替信号のネゲート期間(すなわち負荷LDの定常時)でPWM信号Spwmを選択し、モード切替信号Smdのアサート期間(すなわち負荷LDの急変時)でPFM信号Spfmを選択する。 The mode selection circuit 28 'selects one of the PWM signal Spwm or the PFM signal Spfm as the switching control signal Ssw according to the mode switching signal Smd, and outputs it. Specifically, the mode selection circuit 28 'selects the PWM signal Spwm in the negate period of the mode switching signal (that is, when the load LD is steady), and in the assertion period of the mode switching signal Smd (that is, when the load LD suddenly changes). The PFM signal Spfm is selected.
 ここで、PWM制御モードでは、スイッチング周波数が固定であるため、負荷急変時の応答速度を向上させるためには、スイッチング周波数を高く設定する必要がある。しかし、この場合、電源装置のスイッチング損失が大きくなる(すなわち消費電力が増大する)ため、実際上、スイッチング周波数を高く設定することは容易でない。一方、PFM制御モードでは、負荷電流Ioによって周波数が変動するため、スイッチング損失をある程度抑制しつつ、負荷急変時の応答速度を速くすることができる。しかし、車載用の電源装置では、EMI(Electro Magnetic Interference)規格が厳しいため、PFM制御モードのみを適用することは容易でない。そこで、図12のように、負荷の定常時にはPWM制御モードを用い、負荷急変時にはPFM制御モードを用いるといったモード切替方式が有益となる。
 《電源装置(比較例)の動作》
Here, in the PWM control mode, since the switching frequency is fixed, it is necessary to set the switching frequency high in order to improve the response speed at the time of sudden load change. However, in this case, it is not easy to set the switching frequency high in practice because the switching loss of the power supply device is increased (i.e., the power consumption is increased). On the other hand, in the PFM control mode, the frequency fluctuates depending on the load current Io, so that it is possible to speed up the response speed when the load suddenly changes while suppressing the switching loss to some extent. However, in a vehicle-mounted power supply device, it is not easy to apply only the PFM control mode because the EMI (Electro Magnetic Interference) standard is strict. Therefore, as shown in FIG. 12, a mode switching method is useful in which the PWM control mode is used when the load is steady and the PFM control mode is used when the load suddenly changes.
<< Operation of power supply device (comparative example) >>
 図13は、図12の電源装置における負荷急変時の動作例を示すタイミングチャートである。負荷電流Ioの定常時となる期間T1では、モード切替制御回路MDC’からのモード切替信号Smdはネゲートレベル(ここではロウレベル)となり、モード選択回路28’は、PWM信号Spwmをスイッチング制御信号Sswとして選択し、スイッチング回路SWUへ出力する。スイッチング回路SWUのスイッチング素子SWh,SWlは、スイッチング制御信号Ssw(すなわちPWM信号Spwm)によってオン・オフが制御され、入力電圧Vinから出力電圧Voを生成する。 FIG. 13 is a timing chart showing an operation example of the power supply apparatus of FIG. 12 at the time of sudden load change. In period T1 in which load current Io is steady, mode switching signal Smd from mode switching control circuit MDC 'is at the negate level (here, low level), and mode selection circuit 28' uses PWM signal Spwm as switching control signal Ssw. It selects and outputs to the switching circuit SWU. The switching elements SWh and SWl of the switching circuit SWU are on / off controlled by a switching control signal Ssw (that is, the PWM signal Spwm), and generate an output voltage Vo from an input voltage Vin.
 その後、負荷電流Ioの急増時となる期間T2において、負荷急増に伴い出力電圧Voは低下し、負荷急変検出回路30は、出力電圧Voが負荷急増閾値電圧よりも低下した段階で、負荷急変検出信号Sdetをアサートレベル(ここではハイレベル)に変更する。これに応じて、一定期間生成回路31’は、モード切替信号Smdをアサートレベル(ここではハイレベル)に変更する。モード切替信号Smdのアサートに応じて、モード選択回路28’は、PFM信号Spfmをスイッチング制御信号Sswとして選択し、スイッチング回路SWUへ出力する。 Thereafter, in a period T2 in which the load current Io sharply increases, the output voltage Vo decreases as the load sharply increases, and the load sudden change detection circuit 30 detects the sudden load change when the output voltage Vo decreases below the load sharp threshold voltage. The signal Sdet is changed to an asserted level (here, high level). In response to this, the generation circuit 31 'changes the mode switching signal Smd to an asserted level (here, high level) for a predetermined period. In response to the assertion of the mode switching signal Smd, the mode selection circuit 28 'selects the PFM signal Spfm as the switching control signal Ssw and outputs it to the switching circuit SWU.
 スイッチング回路SWUのスイッチング素子SWh,SWlは、スイッチング制御信号Ssw(すなわちPFM信号Spfm)によってオン・オフが制御され、出力電圧Voを安定化する。その結果、出力電圧Voの低下分が回復する。負荷急変検出回路30は、出力電圧Voが負荷急増閾値を超えた段階で、負荷急変検出信号Sdetをネゲートレベル(ここではロウレベル)に変更する。一定期間生成回路31’は、負荷急変検出信号Sdetのアサート期間を、出力電圧Voが負荷定常時の電圧レベル(すなわち目標値)に回復し、かつ安定状態となるまで一定期間Tsだけ延ばす。 The switching elements SWh and SWl of the switching circuit SWU are on / off controlled by the switching control signal Ssw (ie, the PFM signal Spfm) to stabilize the output voltage Vo. As a result, the decrease of the output voltage Vo is recovered. The sudden change in load detection circuit 30 changes the rapid change in load detection signal Sdet to a negate level (here, a low level) when the output voltage Vo exceeds the rapid load increase threshold. The constant period generation circuit 31 'extends the assert period of the sudden load change detection signal Sdet by the constant period Ts until the output voltage Vo recovers to the voltage level (that is, the target value) at steady load and becomes stable.
 モード切替信号Smdは、一定期間生成回路31’による一定期間Tsの経過後にネゲートレベルに変更される。その結果、期間T3において、モード選択回路28’は、PWM信号Spwmをスイッチング制御信号Sswとして選択し、スイッチング回路SWUへ出力する。スイッチング回路SWUのスイッチング素子SWh,SWlは、PWM信号Spwmによって制御され、入力電圧Vinから出力電圧Voを生成する。
 《電源装置(比較例)の問題点》
The mode switching signal Smd is changed to the negate level after a predetermined period Ts by the generation circuit 31 '. As a result, in the period T3, the mode selection circuit 28 ′ selects the PWM signal Spwm as the switching control signal Ssw and outputs it to the switching circuit SWU. The switching elements SWh and SWl of the switching circuit SWU are controlled by the PWM signal Spwm to generate an output voltage Vo from the input voltage Vin.
<< Problems of power supply (comparative example) >>
 しかし、図12の電源装置では、図13に示されるように、期間T2(PFM制御モード)から期間T3(PWM制御モード)への切り替え時に、出力電圧Voに大きなリップルが生じる恐れがある。具体的には、当該切り替えのタイミングと、PFM信号Spfmの立ち下がりエッジと、PWM信号Spwmの立ち上がりエッジとが偶発的に一致するワースト条件が生じ得る。当該ワースト条件では、PFM信号Spfmのハイパルス幅とPWM信号Spwmのハイパルス幅とを合計した最大のハイパルスが生じるため、出力電圧Voに大きなリップルが生じる。 However, in the power supply device of FIG. 12, as shown in FIG. 13, when switching from the period T2 (PFM control mode) to the period T3 (PWM control mode), large ripple may occur in the output voltage Vo. Specifically, a worst condition may occur in which the timing of the switching, the falling edge of the PFM signal Spfm, and the rising edge of the PWM signal Spwm accidentally coincide. Under the worst condition, a maximum high pulse which is the sum of the high pulse width of the PFM signal Spfm and the high pulse width of the PWM signal Spwm occurs, and a large ripple occurs in the output voltage Vo.
 例えば、特許文献1のように、1個のPWM信号の周波数を切り替えるような方式では、このようなワースト条件は生じないが、図12および図13のように位相が独立に制御される2個の信号(PWM信号SpwmとPFM信号Spfm)を切り替えるような方式では、その位相関係によってワースト条件が生じ得る。なお、ワースト条件は、図13の場合に限らず、切り替えのタイミングと、PFM信号Spfmの立ち上がりエッジと、PWM信号Spwmの立ち下がりエッジとが偶発的に一致する場合にも生じ得る。この場合、最大のロウパルスが生じることになる。また、ここでは、負荷急増の場合を例としたが、負荷急減の場合も同様の問題が生じる恐れがある。
 《電源装置(実施の形態1)の構成》
For example, in the method of switching the frequency of one PWM signal as in Patent Document 1, such a worst condition does not occur, but two in which the phases are independently controlled as in FIGS. 12 and 13 In such a scheme that switches the signal (PWM signal Spwm and the PFM signal Spfm) of the above, the worst condition may occur depending on the phase relationship. The worst condition may occur not only in the case of FIG. 13 but also when the switching timing, the rising edge of the PFM signal Spfm, and the falling edge of the PWM signal Spwm accidentally coincide. In this case, the maximum low pulse will occur. Moreover, although the case of a load surge is taken as an example here, the same problem may occur in the case of a load drop.
<< Configuration of Power Supply Device (Embodiment 1) >>
 図2は、本発明の実施の形態1による電源装置の主要部の構成例を示す概略図である。図2に示す電源装置は、スイッチング回路SWUと、スイッチング制御回路SWC1とを備え、生成した出力電圧Voを外部の負荷LD(例えば、図1のマイコンMCU)に供給する。スイッチング回路SWUの構成は、図12の場合と同様である。 FIG. 2 is a schematic diagram showing an example of configuration of a main part of the power supply device according to Embodiment 1 of the present invention. The power supply device shown in FIG. 2 includes a switching circuit SWU and a switching control circuit SWC1, and supplies the generated output voltage Vo to an external load LD (for example, the microcomputer MCU in FIG. 1). The configuration of switching circuit SWU is similar to that of FIG.
 スイッチング制御回路SWC1は、PWM制御器25と、PFM制御器26と、モード選択回路28と、モード切替制御回路MDCと、レベル固定期間生成回路27とを備える。PWM制御器25、PFM制御器26および負荷急変検出回路30は、図12の場合と同様の構成を備え、モード選択回路28およびモード切替制御回路MDCは、図12の場合と若干異なる構成を備える。レベル固定期間生成回路27は、図12に対して新たに設けられる。 The switching control circuit SWC1 includes a PWM controller 25, a PFM controller 26, a mode selection circuit 28, a mode switching control circuit MDC, and a fixed level period generation circuit 27. The PWM controller 25, the PFM controller 26, and the sudden load change detection circuit 30 have the same configuration as in FIG. 12, and the mode selection circuit 28 and the mode switching control circuit MDC have a slightly different configuration from that in FIG. . The level fixed period generation circuit 27 is newly provided with respect to FIG.
 モード切替制御回路MDCは、図12の場合と同様に、出力電圧Voが所定の電圧範囲から逸脱した際にモード切替信号Smdをアサートし、出力電圧Voが回復し、一定期間を経過した後にモード切替信号Smdをネゲートする。ただし、モード切替制御回路MDCは、図12の場合とは異なり、一定期間を経過した後の選択タイミングでモード切替信号Smdをネゲートする。当該選択タイミングは、PFM信号Spfmのエッジに定められる。 As in the case of FIG. 12, the mode switching control circuit MDC asserts the mode switching signal Smd when the output voltage Vo deviates from the predetermined voltage range, recovers the output voltage Vo, and passes the predetermined period. The switching signal Smd is negated. However, unlike the case of FIG. 12, the mode switching control circuit MDC negates the mode switching signal Smd at the selection timing after a predetermined period has elapsed. The selection timing is determined at the edge of the PFM signal Spfm.
 モード切替制御回路MDCは、具体的には、負荷急変検出回路30と、一定期間生成回路31とを備える。負荷急変検出回路30は、図12の場合と同様の構成を備える。一定期間生成回路31は、図12の場合と異なり、PFM信号Spfmが入力されることで、モード切替信号Smdをネゲートする際のタイミング(選択タイミング)をPFM信号Spfmのエッジに定める。 Specifically, the mode switching control circuit MDC includes a load sudden change detection circuit 30 and a generation circuit 31 for a fixed period. The sudden load change detection circuit 30 has the same configuration as that of FIG. Unlike the case of FIG. 12, the generation circuit 31 determines the timing (selection timing) when the mode switching signal Smd is negated to the edge of the PFM signal Spfm, unlike the case of FIG.
 レベル固定期間生成回路(位相調整期間設定回路)27は、前述した選択タイミングを開始タイミングとするレベル固定期間(位相調整期間)を設定する。具体的には、レベル固定期間生成回路27は、レベル固定期間でハイレベルおよびロウレベルの一方となり、レベル固定期間を除く期間でハイレベルおよびロウレベルの他方となるレベル固定信号Slfを生成する。 The level fixed period generation circuit (phase adjustment period setting circuit) 27 sets a level fixed period (phase adjustment period) whose start timing is the above-described selection timing. Specifically, the level fixed period generation circuit 27 generates the level fixed signal Slf which becomes one of the high level and the low level in the level fixed period and becomes the other of the high level and the low level in the period excluding the level fixed period.
 モード選択回路28は、図12の場合と同様に、スイッチング制御信号Sswとして、モード切替信号Smdのアサート期間でPFM信号Spfmを選択し、モード切替信号Smdのネゲート期間でPWM信号Spwmを選択する。この際に、モード選択回路28は、モード切替信号Smdに基づき、前述した選択タイミングでPFM信号Spfmの代わりにPWM信号Spwmを選択する。そして、モード選択回路28は、図12の場合と異なり、レベル固定信号Slfに基づき、当該スイッチング制御信号Ssw(すなわちPWM信号Spwmに相当)における選択タイミングからレベル固定期間の間の論理レベルを、強制的に固定の論理レベルに制御する。
 《電源装置(実施の形態1)の動作》
As in the case of FIG. 12, the mode selection circuit 28 selects the PFM signal Spfm in the assert period of the mode switching signal Smd as the switching control signal Ssw, and selects the PWM signal Spwm in the negate period of the mode switching signal Smd. At this time, the mode selection circuit 28 selects the PWM signal Spwm instead of the PFM signal Spfm at the above-described selection timing based on the mode switching signal Smd. Then, unlike in the case of FIG. 12, mode selection circuit 28 forcibly sets the logic level between the selection timing in the switching control signal Ssw (that is, corresponding to the PWM signal Spwm) to the level fixed period based on the level fixed signal Slf. Control to a fixed logic level.
<< Operation of Power Supply Device (Embodiment 1) >>
 図3は、図2の電源装置における負荷急変時の動作例を示すタイミングチャートである。図3において、負荷電流Ioの定常時となる期間T1での動作は、図13の場合と同様である。負荷電流Ioの急増時となる期間T2において、負荷急増に伴い出力電圧Voは低下し、負荷急変検出回路30は、出力電圧Voが負荷急増閾値電圧よりも低下した段階で、負荷急変検出信号Sdetをアサートレベル(ここではハイレベル)に変更する。これに応じて、一定期間生成回路31は、モード切替信号Smdをアサートレベル(ここではハイレベル)に変更する。モード切替信号Smdのアサートに応じて、モード選択回路28は、PFM信号Spfmをスイッチング制御信号Sswとして選択し、スイッチング回路SWUへ出力する。 FIG. 3 is a timing chart showing an operation example of the power supply device of FIG. 2 at the time of a sudden load change. In FIG. 3, the operation in the period T1 in which the load current Io is in steady state is the same as that in the case of FIG. In a period T2 in which the load current Io increases rapidly, the output voltage Vo decreases as the load increases rapidly, and the load sudden change detection circuit 30 detects the rapid load change detection signal Sdet when the output voltage Vo decreases below the load abrupt threshold voltage. Is changed to the assert level (here, high level). In response to this, the generation circuit 31 changes the mode switching signal Smd to an asserted level (here, high level) for a predetermined period. In response to the assertion of the mode switching signal Smd, the mode selection circuit 28 selects the PFM signal Spfm as the switching control signal Ssw and outputs it to the switching circuit SWU.
 スイッチング回路SWUのスイッチング素子SWh,SWlは、スイッチング制御信号Ssw(すなわちPFM信号Spfm)によってオン・オフが制御され、出力電圧Voを安定化する。その結果、出力電圧Voの低下分が回復する。負荷急変検出回路30は、出力電圧Voが負荷急増閾値を超えた段階で、負荷急変検出信号Sdetをネゲートレベル(ここではロウレベル)に変更する。一定期間生成回路31は、負荷急変検出信号Sdetのアサート期間を、出力電圧Voが負荷定常時の電圧レベル(すなわち目標値)に回復し、かつ安定状態となるまで一定期間Tsだけ延ばす。一定期間生成回路31は、一定期間Tsを経過後、PFM信号Spfmのエッジ(この例では立ち下がりエッジ)を選択タイミングTMslとしてモード切替信号Smdをネゲートレベル(ここではロウレベル)に変更する。 The switching elements SWh and SWl of the switching circuit SWU are on / off controlled by the switching control signal Ssw (ie, the PFM signal Spfm) to stabilize the output voltage Vo. As a result, the decrease of the output voltage Vo is recovered. The sudden change in load detection circuit 30 changes the rapid change in load detection signal Sdet to a negate level (here, a low level) when the output voltage Vo exceeds the rapid load increase threshold. The constant period generation circuit 31 extends the assert period of the sudden load change detection signal Sdet by the constant period Ts until the output voltage Vo recovers to the voltage level (that is, the target value) at the steady load time and becomes stable. After a predetermined period Ts, the generation circuit 31 changes the mode switching signal Smd to the negate level (here, low level) with the edge (falling edge in this example) of the PFM signal Spfm as the selection timing TMsl.
 モード選択回路28は、モード切替信号Smdをネゲートに応じて、PWM信号Spwmをスイッチング制御信号Sswとして選択し、スイッチング回路SWUへ出力する。一方、レベル固定期間生成回路27は、モード切替信号Smdのネゲートを受けて、選択タイミングTMslを開始タイミングとしてレベル固定期間(位相調整期間)Tfxのパルス幅を備えるレベル固定信号(この例ではロウパルス信号)Slfを生成する。モード選択回路28は、選択したスイッチング制御信号Ssw(すなわちPWM信号Spwm)の論理レベルを、このレベル固定期間Tfxの間、強制的に固定レベル(この例ではロウレベル)に制御する。レベル固定期間Tfxの経過後、スイッチング制御信号Sswは、PWM信号Spwmに等しくなり、図13の場合と同様に、PWM制御モードによる定常動作が行われる。 The mode selection circuit 28 selects the PWM signal Spwm as the switching control signal Ssw in response to the mode switching signal Smd, and outputs the selected signal to the switching circuit SWU. On the other hand, the level fixed period generation circuit 27 receives the negate of the mode switching signal Smd and sets the level fixed signal (in this example, a low pulse signal) having a pulse width of the level fixed period (phase adjustment period) Tfx with the selection timing TMsl as the start timing. ) Generate Slf. The mode selection circuit 28 forcibly controls the logic level of the selected switching control signal Ssw (that is, the PWM signal Spwm) to a fixed level (low level in this example) during this level fixed period Tfx. After the fixed level period Tfx, the switching control signal Ssw becomes equal to the PWM signal Spwm, and the steady operation in the PWM control mode is performed as in the case of FIG.
 なお、一定期間生成回路31による一定期間Tsの最小値は、負荷急変が最も大きい場合を前提として、出力電圧Voが負荷急増閾値から負荷定常時の電圧レベル(目標値)に回復する時間によって決まる。この一定期間Tsの最小値は、例えば、シミュレーション等によって算出される。一定期間Tsの最大値は、負荷急変の頻度によって決まり、次の負荷急変が生じる前に終了している必要があるため、負荷急変が生じ得る最小間隔によって決まる。この負荷急変が生じ得る最小間隔は、マイコンの仕様に基づき定めることができる。例えば、マイコンが1MHz(1μs周期)で動作する場合、一定期間Tsの最大値は1μsとなる。
 《レベル固定期間の詳細》
The minimum value of the fixed period Ts by the fixed period generation circuit 31 is determined by the time when the output voltage Vo recovers from the rapid increase threshold to the voltage level (target value) at the steady load condition on the assumption that the sudden change in load is largest. . The minimum value of the fixed period Ts is calculated, for example, by simulation or the like. The maximum value of the fixed period Ts is determined by the frequency of the sudden load change, and is determined by the minimum interval at which the sudden load change can occur, since it needs to be ended before the next sudden load change occurs. The minimum interval at which this sudden change in load may occur can be determined based on the specifications of the microcomputer. For example, when the microcomputer operates at 1 MHz (1 μs cycle), the maximum value of the fixed period Ts is 1 μs.
<< Details of fixed level period >>
 図4および図5は、図3におけるレベル固定期間の機能を説明するタイミングチャートである。図4には、図13で述べたように、選択タイミングTMslと、PFM信号Spfmの立ち下がりエッジと、PWM信号Spwmの立ち上がりエッジとが一致し、最大のハイパルスが生じるワースト条件が示される。この場合、レベル固定信号Slfによって、スイッチング制御信号Sswをレベル固定期間Tfxの間、強制的にロウレベルに制御することで、ワースト条件が緩和される。その結果、ハイパルスに伴うインダクタ電流ILの増加を抑制でき、出力電圧Voのリップルを低減することが可能になる。 FIG. 4 and FIG. 5 are timing charts explaining the function of the level fixed period in FIG. As described in FIG. 13, FIG. 4 shows the worst condition in which the selection timing TMsl, the falling edge of the PFM signal Spfm, and the rising edge of the PWM signal Spwm coincide, and a maximum high pulse occurs. In this case, the worst condition is relaxed by forcibly controlling the switching control signal Ssw to the low level during the level fixed period Tfx by the level fixed signal Slf. As a result, it is possible to suppress the increase of the inductor current IL accompanying the high pulse and to reduce the ripple of the output voltage Vo.
 このワースト条件を緩和する観点で、レベル固定期間Tfxの長さは、選択タイミングTMsl直前のPFM信号Spfmにおける固定の論理レベルとは異なる論理レベル(ここではハイレベル)のパルス幅Thfよりも短ければよい。または、レベル固定期間Tfxの長さは、選択タイミングTMsl直後のPWM信号Spwmにおける固定の論理レベルとは異なる論理レベル(ハイレベル)のパルス幅Thwよりも短ければよい。 From the viewpoint of relaxing the worst condition, if the length of level fixed period Tfx is shorter than the pulse width Thf of a logic level (here, high level) different from the fixed logic level in PFM signal Spfm just before selection timing TMsl. Good. Alternatively, the length of the level fixed period Tfx may be shorter than the pulse width Thw of the logic level (high level) different from the fixed logic level in the PWM signal Spwm immediately after the selection timing TMsl.
 ただし、望ましくは、レベル固定期間Tfxの長さは、PWM信号Spwmのハイパルス幅Thwの1/2程度(例えば1/3~2/3の範囲等)であるとよい。これは、ケース[2]に示されるように、レベル固定期間Tfxの長さが過剰に短いと、インダクタ電流ILの増加を十分に抑制できず、リップルの低減効果が弱まるためである。また、ケース[3]に示されるように、レベル固定期間Tfxの長さが過剰に長いと、インダクタ電流ILが過剰に減少し、出力電圧Voに、ケース[2]の場合とは逆極性の大きなリップルが生じ得るためである。そこで、レベル固定期間Tfxの長さをハイパルス幅Thwの1/2程度に設定すると、ケース[1]に示されるように、インダクタ電流ILの増加を適度に抑制でき、リップルの低減効果を高めることが可能になる。 However, desirably, the length of the level fixed period Tfx may be about 1/2 (for example, in the range of 1/3 to 2/3) of the high pulse width Thw of the PWM signal Spwm. This is because, as shown in case [2], if the length of the level fixing period Tfx is excessively short, the increase in the inductor current IL can not be sufficiently suppressed, and the ripple reduction effect is weakened. Also, as shown in case [3], when the length of level fixed period Tfx is excessively long, inductor current IL decreases excessively, and the output voltage Vo has a reverse polarity to that in the case [2]. It is because a big ripple may arise. Therefore, if the length of the level fixed period Tfx is set to about 1/2 of the high pulse width Thw, as shown in case [1], the increase of the inductor current IL can be appropriately suppressed, and the ripple reduction effect is enhanced. Becomes possible.
 図5には、図4の場合と異なり、選択タイミングTMslと、PFM信号Spfmの立ち上がりエッジと、PWM信号Spwmの立ち下がりエッジとが一致し、最大のロウパルスが生じるワースト条件が示される。この場合、レベル固定信号Slfによって、スイッチング制御信号Sswをレベル固定期間Tfxの間、強制的にハイレベルに制御することで、ワースト条件が緩和される。その結果、ロウパルスに伴うインダクタ電流ILの減少を抑制でき、出力電圧Voのリップルを低減することが可能になる。この場合も、図4の場合と同様に、レベル固定期間Tfxの長さは、PWM信号Spwmのロウパルス幅Tlwの1/2程度であるとよい。 Unlike the case of FIG. 4, FIG. 5 shows the worst condition in which the selection timing TMsl, the rising edge of the PFM signal Spfm, and the falling edge of the PWM signal Spwm coincide, and a maximum low pulse occurs. In this case, the worst condition is alleviated by forcibly controlling the switching control signal Ssw to the high level during the level fixed period Tfx by the level fixed signal Slf. As a result, it is possible to suppress the reduction of the inductor current IL accompanying the low pulse, and to reduce the ripple of the output voltage Vo. Also in this case, as in the case of FIG. 4, the length of the level fixed period Tfx may be about 1/2 of the low pulse width Tlw of the PWM signal Spwm.
 このように、選択タイミングTMslが一定期間生成回路31によってPFM信号Spfmの立ち下がりエッジに予め定められる場合、レベル固定期間Tfxに伴う固定の論理レベルは、図4に示されるようにロウレベルとなる。一方、選択タイミングTMslが一定期間生成回路31によってPFM信号Spfmの立ち上がりエッジに予め定められる場合、レベル固定期間Tfxに伴う固定の論理レベルは、図5に示されるようにハイレベルとなる。
 《主要な回路の詳細》
As described above, when the selection timing TMsl is predetermined at the falling edge of the PFM signal Spfm by the generation circuit 31 for a certain period, the fixed logic level accompanying the level fixed period Tfx becomes the low level as shown in FIG. On the other hand, when the selection timing TMsl is predetermined at the rising edge of the PFM signal Spfm by the generation circuit 31 for a fixed period, the fixed logic level accompanying the level fixed period Tfx becomes the high level as shown in FIG.
<< Details of Main Circuits>
 図6(a)は、図2における一定期間生成回路の構成例を示す回路図であり、図6(b)は、図6(a)の動作例を示すタイミングチャートである。図6(a)の一定期間生成回路31は、立ち下がりエッジ検出回路311と、遅延回路312と、SRラッチ回路313,315と、Dフリップフロップ回路314とを備える。立ち下がりエッジ検出回路311は、負荷急変検出信号Sdetの立ち下がりエッジが生じた際に、内部の遅延回路によって定められるパルス幅のハイパルス信号Sxを出力する。 6 (a) is a circuit diagram showing a configuration example of the constant period generation circuit in FIG. 2, and FIG. 6 (b) is a timing chart showing an operation example of FIG. 6 (a). The fixed period generation circuit 31 of FIG. 6A includes a falling edge detection circuit 311, a delay circuit 312, SR latch circuits 313 and 315, and a D flip flop circuit 314. The falling edge detection circuit 311 outputs a high pulse signal Sx having a pulse width determined by an internal delay circuit when a falling edge of the sudden load change detection signal Sdet occurs.
 遅延回路312は、例えば、複数段のインバータ回路等によって構成され、立ち下がりエッジ検出回路311からのハイパルス信号Sxを一定時間Tsだけ遅延させる。一定時間Tsは、図3で述べたように、シミュレーション等によって予め定められる。SRラッチ回路313は、遅延回路312からのハイパルス信号に応じて出力信号Syをセットレベル(ハイレベル)に駆動する。 The delay circuit 312 is formed of, for example, inverter circuits in a plurality of stages, and delays the high pulse signal Sx from the falling edge detection circuit 311 by a predetermined time Ts. The fixed time Ts is predetermined by simulation or the like as described in FIG. The SR latch circuit 313 drives the output signal Sy to the set level (high level) in response to the high pulse signal from the delay circuit 312.
 Dフリップフロップ回路314は、SRラッチ回路313の出力信号SyをPFM信号Spfmの立ち下がりエッジでラッチする。その結果、Dフリップフロップ回路314は、出力信号Syがハイレベルになった後(言い換えれば、一定期間Tsを経過した後)のPFM信号Spfmの最初の立ち下がりエッジでハイレベルの出力信号Szを出力する。 The D flip-flop circuit 314 latches the output signal Sy of the SR latch circuit 313 at the falling edge of the PFM signal Spfm. As a result, the D flip flop circuit 314 outputs the high level output signal Sz at the first falling edge of the PFM signal Spfm after the output signal Sy becomes high level (in other words, after a predetermined period Ts has passed). Output.
 SRラッチ回路315は、負荷急変検出信号Sdetのアサートに応じて、モード切替信号Smdをセットレベル(ハイレベル)に駆動し、Dフリップフロップ回路314からのハイレベルの出力信号Szに応じてモード切替信号Smdをリセットレベル(ロウレベル)に駆動する。また、SRラッチ回路313は、モード切替信号Smdのリセットレベル(ロウレベル)に応じて出力信号Syをリセットレベル(ロウレベル)に駆動する。その後、Dフリップフロップ回路314は、PFM信号Spfmの立ち下がりエッジに応じて出力信号Szをロウレベルに戻す。 The SR latch circuit 315 drives the mode switching signal Smd to the set level (high level) in response to the assertion of the sudden load change detection signal Sdet, and switches the mode in response to the high level output signal Sz from the D flip flop circuit 314. The signal Smd is driven to the reset level (low level). The SR latch circuit 313 drives the output signal Sy to the reset level (low level) in response to the reset level (low level) of the mode switching signal Smd. Thereafter, the D flip flop circuit 314 returns the output signal Sz to the low level in response to the falling edge of the PFM signal Spfm.
 なお、一定期間生成回路31は、勿論、このような回路に限らず、様々な回路で実現することが可能である。また、図2の負荷急変検出回路30は、ここでは、図3に示したように、出力電圧Voが負荷急増閾値まで回復した際に負荷急変検出信号Sdetをネゲートしたが、目標値まで回復した際に負荷急変検出信号Sdetをネゲートしてもよい。この場合、一定期間生成回路31は、目標値まで回復した出力電圧Voを安定させるための待ち時間を生成する。 Of course, the generation circuit 31 is not limited to such a circuit, and can be realized by various circuits. Further, as shown in FIG. 3, the sudden load change detection circuit 30 of FIG. 2 negates the rapid load change detection signal Sdet when the output voltage Vo recovers to the load rapid increase threshold, but has recovered to the target value. In this case, the sudden load change detection signal Sdet may be negated. In this case, the generation circuit 31 generates a waiting time for stabilizing the output voltage Vo recovered to the target value for a predetermined period.
 図7は、図2におけるレベル固定期間生成回路の構成例を示す回路図である。図7に示すレベル固定期間生成回路27は、遅延回路271と、論理ゲート272とを備える。遅延回路271は、例えば、複数段のインバータ回路等によって構成され、モード切替信号Smdをレベル固定期間Tfxだけ遅延させる。論理ゲート272は、モード切替信号Smdと、遅延回路271の反転出力信号とのオア演算結果をレベル固定信号Slfとして出力する。 FIG. 7 is a circuit diagram showing a configuration example of the level fixed period generation circuit in FIG. The level fixed period generation circuit 27 shown in FIG. 7 includes a delay circuit 271 and a logic gate 272. The delay circuit 271 is formed of, for example, inverter circuits in a plurality of stages, and delays the mode switching signal Smd by the level fixed period Tfx. Logic gate 272 outputs the result of an OR operation of mode switching signal Smd and the inverted output signal of delay circuit 271 as level fixed signal Slf.
 ここで、遅延回路271の遅延時間(すなわちレベル固定期間Tfx)は、予め固定的に定めることが可能である。すなわち、例えば、図1に示したように、電源装置11の入力電圧Vinを、バッテリ電圧VbatではなくDC/DCコンバータ10の出力電圧とする場合、入力電圧Vinの値はほぼ一定となる。電源装置11は、一定の入力電圧Vinから一定の出力電圧Voを生成する。このため、定常時におけるデューティを予め高精度に予測することができ、例えば、図4に示したPWM信号Spwmのハイパルス幅Thwも高精度に予測することができる。 Here, the delay time of the delay circuit 271 (that is, the level fixed period Tfx) can be fixed in advance. That is, for example, as shown in FIG. 1, when the input voltage Vin of the power supply device 11 is not the battery voltage Vbat but the output voltage of the DC / DC converter 10, the value of the input voltage Vin is substantially constant. The power supply device 11 generates a constant output voltage Vo from a constant input voltage Vin. Therefore, the duty in the steady state can be predicted in advance with high accuracy. For example, the high pulse width Thw of the PWM signal Spwm shown in FIG. 4 can also be predicted with high accuracy.
 図8は、図2におけるモード選択回路の構成例を示す回路図である。図8に示すモード選択回路28は、選択回路281と、論理ゲート282とを備える。選択回路281は、モード切替信号Smdがネゲートレベル(ロウレベル)の場合にはPWM信号Spwmを選択し、モード切替信号Smdがアサートレベル(ハイレベル)の場合にはPFM信号Spfmを選択する。論理ゲート282は、選択回路281の出力と、レベル固定信号Slfとのアンド演算結果をスイッチング制御信号Sswとして出力する。 FIG. 8 is a circuit diagram showing a configuration example of the mode selection circuit in FIG. The mode selection circuit 28 shown in FIG. 8 includes a selection circuit 281 and a logic gate 282. The selection circuit 281 selects the PWM signal Spwm when the mode switching signal Smd is at the negate level (low level), and selects the PFM signal Spfm when the mode switching signal Smd is at the assert level (high level). The logic gate 282 outputs an AND operation result of the output of the selection circuit 281 and the level fixed signal Slf as the switching control signal Ssw.
 なお、図6(a)、図7および図8では、選択タイミングTMslをPFM信号Spfmの立ち下がりエッジに定める場合を例としたが、立ち上がりエッジに定める場合も同様である。この場合、例えば、図6(a)におけるDフリップフロップ回路314を立ち上がりエッジトリガの構成に変更し、図7におけるレベル固定信号Slfの極性を反転し、図8の論理ゲート282をオアゲートに変更すればよい。
 《実施の形態1の主要な効果》
In FIGS. 6A, 7 and 8, although the case where the selection timing TMsl is determined to be the falling edge of the PFM signal Spfm is taken as an example, the same applies to the case where it is determined to be the rising edge. In this case, for example, D flip-flop circuit 314 in FIG. 6A is changed to a rising edge trigger configuration, the polarity of level fixing signal Slf in FIG. 7 is inverted, and logic gate 282 in FIG. Just do it.
<< Main effects of Embodiment 1 >>
 以上、実施の形態1の電源装置および電子制御装置を用いることで、位相が独立に制御される2個の信号を切り替えることによるワースト条件を緩和でき、リップルの低減が実現可能になる。その結果、例えば、車載用の電子制御装置において、制御対象の拡大等が図れる。なお、ここでは、負荷急増の場合を例としたが、負荷急減の場合にも同様に適用可能である。
 (実施の形態2)
 《前提となる問題点》
As described above, by using the power supply device and the electronic control device according to the first embodiment, it is possible to alleviate the worst condition by switching two signals whose phases are controlled independently, and to realize the reduction of the ripple. As a result, for example, in the on-vehicle electronic control device, the control object can be expanded. Here, although the case of a sudden increase in load is taken as an example, the same applies to the case of a sudden decrease in load.
Second Embodiment
問題 Prerequisite problems》
 前述した実施の形態1では、図7で説明したように、レベル固定期間Tfxを固定値に定めた。しかし、例えば、図1において、電源装置11にバッテリ電圧Vbatを直接入力するような場合や、電源装置11の使用環境が大きく変化する場合や、各回路の特性ばらつきが生じるような場合には、図4のPWM信号Spwmのハイパルス幅Thwを高精度に予測できない恐れがある。当該ハイパルス幅Thwとレベル固定期間Tfxとの比率を適切に保てない場合、図4に示したように、リップルの低減効果が弱まることになる。
 《電源装置(実施の形態2)の構成および動作》
In the first embodiment described above, as described with reference to FIG. 7, the level fixed period Tfx is set to a fixed value. However, for example, in FIG. 1, when the battery voltage Vbat is directly input to the power supply 11, when the use environment of the power supply 11 changes significantly, or when characteristic variations of each circuit occur, The high pulse width Thw of the PWM signal Spwm in FIG. 4 may not be predicted with high accuracy. If the ratio between the high pulse width Thw and the level fixed period Tfx can not be maintained properly, as shown in FIG. 4, the ripple reduction effect is weakened.
<< Configuration and Operation of Power Supply Device (Second Embodiment) >>
 図9は、本発明の実施の形態2による電源装置の主要部の構成例を示す概略図である。図9に示す電源装置は、図2に示した電源装置と比較して、スイッチング制御回路SWC2の構成が異なっている。当該スイッチング制御回路SWC2は、図2のスイッチング制御回路SWC1と比較して、レベル固定期間生成回路35の構成が若干異なり、さらに、デューティ検出回路36を新たに備えている。 FIG. 9 is a schematic diagram showing an example of a configuration of a main part of a power supply device according to Embodiment 2 of the present invention. The power supply device shown in FIG. 9 is different from the power supply device shown in FIG. 2 in the configuration of the switching control circuit SWC2. The switching control circuit SWC2 is slightly different in configuration of the level fixed period generating circuit 35 from the switching control circuit SWC1 of FIG. 2, and additionally includes a duty detection circuit 36.
 デューティ検出回路36は、図3に示したモード切替制御回路MDCの一定期間TsにおけるPFM信号SpfmまたはPWM信号Spwmのデューティを検出し、当該デューティを反映してレベル固定期間(位相調整期間)Tfxの長さを可変制御する。この際に、望ましくは、デューティ検出回路36は、デューティの検出結果に基づきPWM信号Spwmにおけるレベル固定期間Tfxとは異なる論理レベル(図3ではハイレベル)の期間の長さを認識する。そして、デューティ検出回路36は、当該認識した長さとレベル固定期間Tfxの長さとが所定の比率(例えば、図4のケース[1]のように2:1)を保つようにレベル固定期間Tfxを制御する。この場合、例えば、図3において、一定期間TsにおけるPFM信号Spfmのハイパルス期間(ひいてはPWM信号Spwmのハイパルス期間)が長くなれば、ロウレベルのレベル固定期間Tfxも長くなる。 The duty detection circuit 36 detects the duty of the PFM signal Spfm or the PWM signal Spwm in the fixed period Ts of the mode switching control circuit MDC shown in FIG. 3, reflects the duty, and outputs the fixed level period (phase adjustment period) Tfx. Variable control of the length. At this time, desirably, the duty detection circuit 36 recognizes the length of a period of a logic level (high level in FIG. 3) different from the level fixed period Tfx in the PWM signal Spwm based on the detection result of the duty. Then, the duty detection circuit 36 sets the level fixed period Tfx so that the recognized length and the length of the level fixed period Tfx maintain a predetermined ratio (for example, 2: 1 as in the case [1] of FIG. 4). Control. In this case, for example, if the high pulse period of the PFM signal Spfm (and the high pulse period of the PWM signal Spwm) in the fixed period Ts in FIG. 3 becomes long, the low level level fixed period Tfx also becomes long.
 図9の例では、デューティ検出回路36は、モード切替信号Smdと負荷急変検出信号Sdetに基づき一定期間Tsを認識し、当該一定期間TsでPFM信号Spfmのデューティを検出している。一定期間Tsでは、PFM信号Spfmのデューティは安定しているため、デューティ検出回路36は、例えば、予め定めた所定のPFMサイクルのデューティや、または、各PFMサイクルのデューティの平均値等によってPFM信号Spfmのデューティを検出する。そして、デューティ検出回路36は、予め定まっているPWM信号Spwmの1サイクルの長さに、当該検出したデューティを反映させることで、PWM信号Spwmにおけるハイレベル期間の長さを認識する。 In the example of FIG. 9, the duty detection circuit 36 recognizes a fixed period Ts based on the mode switching signal Smd and the sudden load change detection signal Sdet, and detects the duty of the PFM signal Spfm in the fixed period Ts. Since the duty of the PFM signal Spfm is stable during the fixed period Ts, the duty detection circuit 36 generates the PFM signal according to, for example, a predetermined duty of the predetermined PFM cycle or an average value of the duty of each PFM cycle. Detect the duty of Spfm. Then, the duty detection circuit 36 recognizes the length of the high level period of the PWM signal Spwm by reflecting the detected duty on the length of one cycle of the PWM signal Spwm determined in advance.
 レベル固定期間生成回路35は、例えば、図7の遅延回路271を可変遅延回路に変更したような構成を備える。当該可変遅延回路の遅延時間は、デューティ検出回路36によって可変制御される。なお、ここでは、図9のデューティ検出回路36の回路方式として、PFM信号Spfmのデューティを検出し、それをPWM信号Spwmにおけるハイレベル期間の長さに換算する方式を用いたが、勿論、PWM信号Spwmのデューティを直接検出する方式を用いてもよい。ただし、負荷急変に対する応答速度の観点から、一定期間TsにおけるPWM信号Spwmのデューティは不安定となっている可能性があるため、この例では、PFM信号Spfmのデューティを検出する方式を用いている。
 《実施の形態2の主要な効果》
The fixed level period generation circuit 35 has, for example, a configuration in which the delay circuit 271 of FIG. 7 is changed to a variable delay circuit. The delay time of the variable delay circuit is variably controlled by the duty detection circuit 36. Here, as a circuit method of the duty detection circuit 36 of FIG. 9, a method of detecting the duty of the PFM signal Spfm and converting it to the length of the high level period in the PWM signal Spwm is used. A method of directly detecting the duty of the signal Spwm may be used. However, the duty of the PWM signal Spwm in the fixed period Ts may be unstable from the viewpoint of the response speed to the sudden change in load, so in this example, the method of detecting the duty of the PFM signal Spfm is used .
<< Main effects of Embodiment 2 >>
 以上、実施の形態2の電源装置および電子制御装置を用いることで、実施の形態1の場合と同様の効果が得られることに加えて、リップルの更なる低減が図れる場合がある。すなわち、各種ばらつき要因があった場合でも、それに応じてレベル固定期間Tfxの長さを適切に保つことができ、リップルの低減効果を高めることができる。
 (実施の形態3)
 《前提となる問題点》
As described above, by using the power supply device and the electronic control device according to the second embodiment, in addition to the same effect as obtained in the first embodiment can be obtained, the ripple may be further reduced. That is, even when there are various causes of variation, the length of the level fixed period Tfx can be appropriately maintained accordingly, and the ripple reduction effect can be enhanced.
Third Embodiment
問題 Prerequisite problems》
 実施の形態1および2では、PWM制御モードの応答速度によっては、PFM信号SpfmからPWM信号Spwmに切り替えた直後で、PWM信号Spwmのデューティが適正な値に収束していない場合がある。すなわち、切り替え直前のPFM信号Spfmとデューティと、切り替え直後のPWM信号Spwmのデューティとの間に乖離が生じる恐れがある。この場合、PWM信号Spwmの不適正なデューティに起因して、リップルが生じ得る。
 《電源装置(実施の形態3)の構成》
In the first and second embodiments, depending on the response speed in the PWM control mode, the duty of the PWM signal Spwm may not converge to an appropriate value immediately after switching from the PFM signal Spfm to the PWM signal Spwm. That is, there is a possibility that deviation may occur between the PFM signal Spfm immediately before switching and the duty of the PWM signal Spwm immediately after switching. In this case, ripple may occur due to the improper duty of the PWM signal Spwm.
<< Configuration of Power Supply Device (Third Embodiment) >>
 図10は、本発明の実施の形態3による電源装置の主要部の構成例を示す概略図である。図10に示す電源装置は、図2に示した電源装置と比較して、スイッチング制御回路SWC3の構成が異なっている。当該スイッチング制御回路SWC3は、図2のスイッチング制御回路SWC1と比較して、PWM制御器40の構成が若干異なり、さらに、図9の場合とは構成が若干異なるデューティ検出回路41を備えている。 FIG. 10 is a schematic diagram showing an example of configuration of a main part of the power supply device according to Embodiment 3 of the present invention. The power supply device shown in FIG. 10 is different from the power supply device shown in FIG. 2 in the configuration of the switching control circuit SWC3. The switching control circuit SWC3 is different from the switching control circuit SWC1 of FIG. 2 in the configuration of the PWM controller 40, and further includes a duty detection circuit 41 having a configuration slightly different from that of FIG.
 PWM制御器40は、レベル固定期間(位相調整期間)TfxでPWM信号Spwmの生成動作を停止し、レベル固定期間Tfxが終了するタイミングでPWM信号Spwmの生成動作を再開するような動作を行う。具体的には、例えば、PWM制御器40の回路方式が、三角波生成回路で生成した三角波信号と誤差信号との比較結果に基づいてPWM信号Spwmを生成するような方式である場合を想定する。この場合、三角波生成回路は、レベル固定期間Tfxで三角波信号の生成動作を停止し、レベル固定期間Tfxが終了するタイミングで生成動作を再開する。 The PWM controller 40 stops the generation operation of the PWM signal Spwm in the level fixed period (phase adjustment period) Tfx, and restarts the generation operation of the PWM signal Spwm at the timing when the level fixed period Tfx ends. Specifically, for example, it is assumed that the circuit system of the PWM controller 40 generates the PWM signal Spwm based on the comparison result of the triangular wave signal generated by the triangular wave generation circuit and the error signal. In this case, the triangular wave generation circuit stops the generation operation of the triangular wave signal in the level fixed period Tfx, and resumes the generation operation at the timing when the level fixed period Tfx ends.
 また、PWM制御器40の回路方式が、クロック生成回路からのクロック信号でSRラッチ回路を定期的にセットし、誤差信号に基づくタイミングでSRラッチ回路をリセットすることでPWM信号Spwmを生成するような方式である場合を想定する。この場合、クロック生成回路は、レベル固定期間Tfxでクロック信号の生成動作を停止し、レベル固定期間Tfxが終了するタイミングで生成動作を再開する。デューティ検出回路41は、モード切替制御回路MDCの一定期間におけるPFM信号Spfmのデューティを検出し、当該デューティを、生成動作を再開したPWM制御器40からのPWM信号Spwmの最初の1サイクルに反映させる。
 《電源装置(実施の形態3)の動作》
Also, the circuit system of the PWM controller 40 periodically sets the SR latch circuit with the clock signal from the clock generation circuit, and generates the PWM signal Spwm by resetting the SR latch circuit at a timing based on the error signal. It is assumed that the method is In this case, the clock generation circuit stops the clock signal generation operation in the level fixed period Tfx, and resumes the generation operation at the timing when the level fixed period Tfx ends. The duty detection circuit 41 detects the duty of the PFM signal Spfm in a fixed period of the mode switching control circuit MDC, and reflects the duty in the first cycle of the PWM signal Spwm from the PWM controller 40 which has resumed the generation operation. .
<< Operation of Power Supply Device (Third Embodiment) >>
 図11は、図10の電源装置における負荷急変時の動作例を示すタイミングチャートである。図11では、図3の場合と異なり、期間T2内の一定期間Tsにおいて、デューティ検出回路41がPFM信号Spfmのデューティを検出している。また、選択タイミングTMsl後のレベル固定期間Tfxにおいて、PWM信号Spwmの生成動作の停止に伴いPWM信号Spwm自体がロウレベルに固定され、これに応じて、スイッチング制御信号Sswも‘L’レベルに固定される。 FIG. 11 is a timing chart showing an operation example of the power supply apparatus of FIG. 10 at the time of a sudden load change. In FIG. 11, unlike in the case of FIG. 3, the duty detection circuit 41 detects the duty of the PFM signal Spfm in a fixed period Ts in the period T2. Also, in the fixed level period Tfx after the selection timing TMsl, the PWM signal Spwm itself is fixed at the low level along with the stop of the generation operation of the PWM signal Spwm, and accordingly the switching control signal Ssw is also fixed at the 'L' level. Ru.
 その後、レベル固定期間Tfxを経過すると、PWM信号Spwmの生成動作が再開される。この再開されたPWM信号Spwmの最初の1サイクルのデューティは、デューティ検出回路41によって検出されたPFM信号Spfmのデューティと同じ値に設定される。その結果、図3の場合と比較して、期間T3の初期段階における出力電圧Voのリップルを低減可能になる。
 《実施の形態3の主要な効果》
Thereafter, when the level fixed period Tfx elapses, the generation operation of the PWM signal Spwm is resumed. The duty of the first cycle of the restarted PWM signal Spwm is set to the same value as the duty of the PFM signal Spfm detected by the duty detection circuit 41. As a result, compared to the case of FIG. 3, it is possible to reduce the ripple of the output voltage Vo at the initial stage of the period T3.
<< Main effects of Embodiment 3 >>
 以上、実施の形態3の電源装置および電子制御装置を用いることで、実施の形態1の場合と同様の効果が得られることに加えて、リップルの更なる低減が図れる場合がある。すなわち、一定期間TsにおけるPFM信号Spfmのデューティは、負荷電流Ioに応じた適正な値となっており、この適正な値を、切り替え直後のPWM信号Spwmのデューティに反映させることができる。その結果、PWM制御モードの応答速度が十分に得られない場合であっても、出力電圧Voのリップルを低減することが可能になる。 As described above, by using the power supply device and the electronic control device according to the third embodiment, in addition to the same effect as that of the first embodiment can be obtained, the ripple may be further reduced. That is, the duty of the PFM signal Spfm in the fixed period Ts has an appropriate value according to the load current Io, and this appropriate value can be reflected in the duty of the PWM signal Spwm immediately after switching. As a result, even if the response speed in the PWM control mode can not be sufficiently obtained, it is possible to reduce the ripple of the output voltage Vo.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、前述した実施の形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 As mentioned above, although the invention made by the present inventor was concretely explained based on an embodiment, the present invention is not limited to the above-mentioned embodiment, and can be variously changed in the range which does not deviate from the gist. For example, the above-described embodiments are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. . In addition, with respect to a part of the configuration of each embodiment, it is possible to add, delete, and replace other configurations.
 例えば、各実施の形態の電源装置は、車載用のECUに限らず、負荷急変が大きい負荷に電源を供給する装置として広く適用可能である。 For example, the power supply apparatus of each embodiment is widely applicable as an apparatus for supplying power to a load having a large sudden change in load as well as an on-vehicle ECU.
 1 電子制御装置
 11 電源装置
 25 PWM制御器
 26 PFM制御器
 27 レベル固定期間生成回路
 28 モード選択回路
 36,41 デューティ検出回路
 MCU マイクロコントローラ
 MDC モード切替制御回路
 SWC スイッチング制御回路
 SWU スイッチング回路
 SWh,SWl スイッチング素子
 Slf レベル固定信号
 Smd モード切替信号
 Spfm PFM信号
 Spwm PWM信号
 Ssw スイッチング制御信号
 Tfx レベル固定期間
 Ts 一定期間
 Vo 出力電圧
 TMsl 選択タイミング
DESCRIPTION OF SYMBOLS 1 electronic control device 11 power supply device 25 PWM controller 26 PFM controller 27 fixed level period generation circuit 28 mode selection circuit 36, 41 duty detection circuit MCU microcontroller MDC mode switching control circuit SWC switching control circuit SWU switching circuit SWh, SWl switching Element Slf level fixed signal Smd mode switching signal Spfm PFM signal Spwm PWM signal Ssw switching control signal Tfx fixed level period Ts fixed period Vo output voltage TMsl selection timing

Claims (15)

  1.  第1の制御モードを用いて第1のスイッチング信号を生成する第1の制御器と、
     第2の制御モードを用いて、前記第1のスイッチング信号とは独立した位相を備える第2のスイッチング信号を生成する第2の制御器と、
     前記第2のスイッチング信号のエッジに定められる選択タイミングを開始タイミングとする位相調整期間を設定する位相調整期間設定回路と、
     前記選択タイミングで前記第2のスイッチング信号の代わりに前記第1のスイッチング信号をスイッチング制御信号として選択し、前記スイッチング制御信号における前記選択タイミングから前記位相調整期間の間の論理レベルを固定の論理レベルに制御するモード選択回路と、
     前記モード選択回路からの前記スイッチング制御信号に基づきオン・オフが制御され、前記出力電圧を制御するスイッチング素子と、
    を有する電源装置。
    A first controller generating a first switching signal using a first control mode;
    A second controller generating a second switching signal having a phase independent of the first switching signal using a second control mode;
    A phase adjustment period setting circuit that sets a phase adjustment period whose start timing is a selection timing determined at an edge of the second switching signal;
    The first switching signal is selected as the switching control signal instead of the second switching signal at the selection timing, and the logic level between the selection timing in the switching control signal and the phase adjustment period is fixed at the logic level Mode selection circuit to control
    A switching element which is controlled on / off based on the switching control signal from the mode selection circuit to control the output voltage;
    Power supply device.
  2.  請求項1記載の電源装置において、
     前記第1の制御モードは、固定周波数のPWM(Pulse Width Modulation)制御モードであり、
     前記第2の制御モードは、可変周波数のPFM(Pulse Frequency Modulation)制御モードである、
    電源装置。
    In the power supply device according to claim 1,
    The first control mode is a fixed frequency PWM (Pulse Width Modulation) control mode,
    The second control mode is a variable frequency PFM (Pulse Frequency Modulation) control mode.
    Power supply.
  3.  請求項1記載の電源装置において、
     前記位相調整期間設定回路は、前記位相調整期間でハイレベルおよびロウレベルの一方となり、前記位相調整期間を除く期間でハイレベルおよびロウレベルの他方となるレベル固定信号を生成する、
    電源装置。
    In the power supply device according to claim 1,
    The phase adjustment period setting circuit generates a level fixed signal which becomes one of high level and low level in the phase adjustment period and becomes the other of high level and low level in the period except the phase adjustment period.
    Power supply.
  4.  請求項1記載の電源装置において、
     前記固定の論理レベルは、前記選択タイミングが前記第2のスイッチング信号の立ち下がりエッジに予め定められる場合には、ロウレベルであり、前記第2のスイッチング信号の立ち上がりエッジに予め定められる場合には、ハイレベルである、
    電源装置。
    In the power supply device according to claim 1,
    The fixed logic level is a low level when the selection timing is predetermined to the falling edge of the second switching signal, and is predetermined to the rising edge of the second switching signal. High level,
    Power supply.
  5.  請求項4記載の電源装置において、
     前記位相調整期間は、前記選択タイミング直前の前記第2のスイッチング信号における前記固定の論理レベルとは異なる論理レベルのパルス幅よりも短いか、または、前記選択タイミング直後の前記第1のスイッチング信号における前記固定の論理レベルとは異なる論理レベルのパルス幅よりも短い、
    電源装置。
    In the power supply device according to claim 4,
    The phase adjustment period is shorter than a pulse width of a logic level different from the fixed logic level in the second switching signal immediately before the selection timing, or in the first switching signal immediately after the selection timing. Shorter than the pulse width of the logic level different from the fixed logic level,
    Power supply.
  6.  請求項4記載の電源装置において、
     さらに、前記出力電圧が所定の電圧範囲から逸脱した際にモード切替信号をアサートし、前記出力電圧が回復し、一定期間を経過した後の前記選択タイミングで前記モード切替信号をネゲートするモード切替制御回路を有し、
     前記モード選択回路は、前記モード切替信号のアサート期間で前記第2のスイッチング信号を選択し、前記モード切替信号のネゲート期間で前記第1のスイッチング信号を選択する、
    電源装置。
    In the power supply device according to claim 4,
    Furthermore, a mode switching control is performed to assert a mode switching signal when the output voltage deviates from a predetermined voltage range, recover the output voltage, and negate the mode switching signal at the selection timing after a predetermined period has elapsed. Have a circuit,
    The mode selection circuit selects the second switching signal in an assert period of the mode switching signal, and selects the first switching signal in a negate period of the mode switching signal.
    Power supply.
  7.  請求項6記載の電源装置において、
     さらに、前記モード切替制御回路の前記一定期間における前記第1のスイッチング信号または前記第2のスイッチング信号のデューティを検出し、当該デューティを反映して前記位相調整期間の長さを可変制御するデューティ検出回路を有する、
    電源装置。
    In the power supply device according to claim 6,
    Furthermore, a duty detection that detects the duty of the first switching signal or the second switching signal during the predetermined period of the mode switching control circuit, and variably controls the length of the phase adjustment period by reflecting the duty. With circuit,
    Power supply.
  8.  請求項7記載の電源装置において、
     前記デューティ検出回路は、前記デューティの検出結果に基づき前記第1のスイッチング信号における前記固定の論理レベルとは異なる論理レベルの期間の長さを認識し、当該認識した長さと前記位相調整期間の長さとが所定の比率を保つように前記位相調整期間を制御する、
    電源装置。
    In the power supply device according to claim 7,
    The duty detection circuit recognizes the length of a period of a logic level different from the fixed logic level in the first switching signal based on the detection result of the duty, and recognizes the recognized length and the length of the phase adjustment period. Control the phase adjustment period so as to maintain the predetermined ratio.
    Power supply.
  9.  請求項6記載の電源装置において、
     前記第1の制御器は、前記位相調整期間で前記第1のスイッチング信号の生成動作を停止し、前記位相調整期間が終了するタイミングで前記第1のスイッチング信号の生成動作を再開する、
    電源装置。
    In the power supply device according to claim 6,
    The first controller stops the generation operation of the first switching signal in the phase adjustment period, and resumes the generation operation of the first switching signal at a timing when the phase adjustment period ends.
    Power supply.
  10.  請求項9記載の電源装置において、
     前記第1の制御モードは、固定周波数のPWM(Pulse Width Modulation)制御モードであり、
     前記第2の制御モードは、可変周波数のPFM(Pulse Frequency Modulation)制御モードであり、
     前記電源装置は、さらに、前記モード切替制御回路の前記一定期間における前記第2のスイッチング信号のデューティを検出し、当該デューティを前記生成動作を再開した前記第1の制御器からの前記第1のスイッチング信号の最初の1サイクルに反映させるデューティ検出回路を有する、
    電源装置。
    In the power supply device according to claim 9,
    The first control mode is a fixed frequency PWM (Pulse Width Modulation) control mode,
    The second control mode is a variable frequency PFM (Pulse Frequency Modulation) control mode,
    The power supply device further detects the duty of the second switching signal in the fixed period of the mode switching control circuit, and resumes the duty from the first controller from the first controller. Has a duty detection circuit that reflects the first cycle of the switching signal,
    Power supply.
  11.  バッテリ電源をもとに所定の出力電圧を生成する電源装置と、
     前記電源装置の前記出力電圧を電源として動作するマイクロコントローラと、
    を有する電子制御装置であって、
     前記電源装置は、
     第1の制御モードを用いて第1のスイッチング信号を生成する第1の制御器と、
     第2の制御モードを用いて、前記第1のスイッチング信号とは独立した位相を備える第2のスイッチング信号を生成する第2の制御器と、
     前記第2のスイッチング信号のエッジに定められる選択タイミングを開始タイミングとする位相調整期間を設定する位相調整期間設定回路と、
     前記選択タイミングで前記第2のスイッチング信号の代わりに前記第1のスイッチング信号をスイッチング制御信号として選択し、前記スイッチング制御信号における前記選択タイミングから前記位相調整期間の間の論理レベルを固定の論理レベルに制御するモード選択回路と、
     前記モード選択回路からの前記スイッチング制御信号に基づきオン・オフが制御され、前記出力電圧を制御するスイッチング素子と、
    を有する電子制御装置。
    A power supply device that generates a predetermined output voltage based on a battery power supply;
    A microcontroller operating with the output voltage of the power supply as a power supply;
    An electronic control device having
    The power supply device
    A first controller generating a first switching signal using a first control mode;
    A second controller generating a second switching signal having a phase independent of the first switching signal using a second control mode;
    A phase adjustment period setting circuit that sets a phase adjustment period whose start timing is a selection timing determined at an edge of the second switching signal;
    The first switching signal is selected as the switching control signal instead of the second switching signal at the selection timing, and the logic level between the selection timing in the switching control signal and the phase adjustment period is fixed at the logic level Mode selection circuit to control
    A switching element which is controlled on / off based on the switching control signal from the mode selection circuit to control the output voltage;
    An electronic control unit having
  12.  請求項11記載の電子制御装置において、
     前記第1の制御モードは、固定周波数のPWM(Pulse Width Modulation)制御モードであり、
     前記第2の制御モードは、可変周波数のPFM(Pulse Frequency Modulation)制御モードである、
    電子制御装置。
    In the electronic control unit according to claim 11,
    The first control mode is a fixed frequency PWM (Pulse Width Modulation) control mode,
    The second control mode is a variable frequency PFM (Pulse Frequency Modulation) control mode.
    Electronic control unit.
  13.  請求項11記載の電子制御装置において、
     前記固定の論理レベルは、前記選択タイミングが前記第2のスイッチング信号の立ち下がりエッジに予め定められる場合には、ロウレベルであり、前記第2のスイッチング信号の立ち上がりエッジに予め定められる場合には、ハイレベルである、
    電子制御装置。
    In the electronic control unit according to claim 11,
    The fixed logic level is a low level when the selection timing is predetermined to the falling edge of the second switching signal, and is predetermined to the rising edge of the second switching signal. High level,
    Electronic control unit.
  14.  請求項13記載の電子制御装置において、
     前記電源装置は、さらに、前記出力電圧が所定の電圧範囲から逸脱した際にモード切替信号をアサートし、前記出力電圧が回復し、一定期間を経過した後の前記選択タイミングで前記モード切替信号をネゲートするモード切替制御回路を有し、
     前記モード選択回路は、前記モード切替信号のアサート期間で前記第2のスイッチング信号を選択し、前記モード切替信号のネゲート期間で前記第1のスイッチング信号を選択する、
    電子制御装置。
    In the electronic control unit according to claim 13,
    The power supply apparatus further asserts a mode switching signal when the output voltage deviates from a predetermined voltage range, the output voltage recovers, and the mode switching signal is selected at the selection timing after a predetermined period has elapsed. Have a mode switching control circuit to negate
    The mode selection circuit selects the second switching signal in an assert period of the mode switching signal, and selects the first switching signal in a negate period of the mode switching signal.
    Electronic control unit.
  15.  請求項14記載の電子制御装置において、
     前記電源装置は、さらに、前記モード切替制御回路の前記一定期間における前記第1のスイッチング信号または前記第2のスイッチング信号のデューティを検出し、当該デューティを反映して前記位相調整期間の長さを可変制御するデューティ検出回路を有する、
    電子制御装置。
    In the electronic control unit according to claim 14,
    The power supply device further detects the duty of the first switching signal or the second switching signal in the fixed period of the mode switching control circuit, reflects the duty, and determines the length of the phase adjustment period. Having a duty detection circuit that performs variable control,
    Electronic control unit.
PCT/JP2018/016526 2017-07-07 2018-04-24 Power supply device and electronic control device WO2019008873A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/619,001 US11050345B2 (en) 2017-07-07 2018-04-24 Power supply apparatus and electronic control unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-133263 2017-07-07
JP2017133263A JP6779182B2 (en) 2017-07-07 2017-07-07 Power supply and electronic control

Publications (1)

Publication Number Publication Date
WO2019008873A1 true WO2019008873A1 (en) 2019-01-10

Family

ID=64950769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016526 WO2019008873A1 (en) 2017-07-07 2018-04-24 Power supply device and electronic control device

Country Status (3)

Country Link
US (1) US11050345B2 (en)
JP (1) JP6779182B2 (en)
WO (1) WO2019008873A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020125384A (en) 2019-02-01 2020-08-20 株式会社デンソー Heat transportation medium, and heat management system for vehicle
CN112600069B (en) * 2021-03-03 2021-11-23 中科慧远视觉技术(北京)有限公司 Constant-current driving circuit of multi-step laser and control method
KR102561778B1 (en) * 2021-05-28 2023-07-31 울산과학기술원 Apparatus for dc-dc buck converter with pwm/pfm dual mode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258245A (en) * 2000-03-14 2001-09-21 Nec Eng Ltd Converter
JP2010068671A (en) * 2008-09-12 2010-03-25 Ricoh Co Ltd Dc-dc converter
JP2011024345A (en) * 2009-07-15 2011-02-03 Rohm Co Ltd Switching regulator and electronic apparatus using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7173404B2 (en) * 2004-08-11 2007-02-06 Niko Semiconductor Co., Ltd. Auto-switching converter with PWM and PFM selection
CN101356719B (en) * 2005-08-23 2012-06-27 联发科技股份有限公司 Improving transient behavior while switching between control loops in a switching voltage regulator
JP2007202273A (en) * 2006-01-25 2007-08-09 Ricoh Co Ltd Switching regulator
TWI408885B (en) * 2009-07-31 2013-09-11 Orise Technology Co Ltd Dc-dc converter with auto-switching between pwm and pfm
TWI410033B (en) * 2010-04-06 2013-09-21 Anpec Electronics Corp Current mode buck converter with fixed pwm/pfm boundary
KR101877552B1 (en) * 2011-10-12 2018-07-12 한국전자통신연구원 DC-DC Converter
JP6203688B2 (en) 2014-08-21 2017-09-27 株式会社東芝 Power supply circuit and control method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258245A (en) * 2000-03-14 2001-09-21 Nec Eng Ltd Converter
JP2010068671A (en) * 2008-09-12 2010-03-25 Ricoh Co Ltd Dc-dc converter
JP2011024345A (en) * 2009-07-15 2011-02-03 Rohm Co Ltd Switching regulator and electronic apparatus using the same

Also Published As

Publication number Publication date
JP6779182B2 (en) 2020-11-04
US11050345B2 (en) 2021-06-29
JP2019017186A (en) 2019-01-31
US20210126527A1 (en) 2021-04-29

Similar Documents

Publication Publication Date Title
US7804285B2 (en) Control of operation of switching regulator to select PWM control or PFM control based on phase comparison
US7876081B2 (en) DC-DC converter with substantially constant on-time and constant switching frequency
US20150091536A1 (en) Semiconductor device and control method thereof
US10141850B2 (en) Comparator circuit, power supply control IC, and switching power supply device
US10075078B2 (en) Control circuit for maintaining a switching frequency for constant on time converter
JP2008206239A (en) Semiconductor device
US9000735B2 (en) DC-DC controller and operation method thereof
WO2019008873A1 (en) Power supply device and electronic control device
JP6013036B2 (en) Power supply device, and in-vehicle device and vehicle using the same
JP2014082919A (en) Controller and system having controller
US9559579B2 (en) Circuit and power supply circuit with output that transitions between capacitor stored voltage and predetermined voltage
US9071134B2 (en) Power supply controller having selectable PWM and RPM modes and method therefor
JP2014003812A (en) Power supply device, and on-vehicle apparatus and vehicle using the same
US20220239228A1 (en) Control circuit and control method of dc/dc converter, power management circuit
US8963520B1 (en) System and method to soft-start synchronous buck converters
US10236771B1 (en) Methods and systems of detecting failure modes of DC to DC power converters
JP3892333B2 (en) PFM control switching regulator control circuit
JP2014003814A (en) Power supply device, and on-vehicle apparatus and vehicle using the same
JP6101439B2 (en) Power supply device, and in-vehicle device and vehicle using the same
JP2002209377A (en) Dc-dc converter circuit
US11289998B2 (en) Current limiting technique for buck converters
JP2018129908A (en) Dc/dc converter and control circuit thereof, control method, and on-vehicle electrical apparatus
JP5993786B2 (en) DC / DC converter circuit module and DC / DC converter
WO2019138623A1 (en) Power supply device and electronic control device
JP7260392B2 (en) Power supply controller and switching power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828392

Country of ref document: EP

Kind code of ref document: A1