WO2019008699A1 - Charged particle beam device - Google Patents

Charged particle beam device Download PDF

Info

Publication number
WO2019008699A1
WO2019008699A1 PCT/JP2017/024650 JP2017024650W WO2019008699A1 WO 2019008699 A1 WO2019008699 A1 WO 2019008699A1 JP 2017024650 W JP2017024650 W JP 2017024650W WO 2019008699 A1 WO2019008699 A1 WO 2019008699A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
charged particle
sample
particle beam
irradiating
Prior art date
Application number
PCT/JP2017/024650
Other languages
French (fr)
Japanese (ja)
Inventor
宗史 設楽
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to PCT/JP2017/024650 priority Critical patent/WO2019008699A1/en
Priority to JP2019528259A priority patent/JP6811324B2/en
Publication of WO2019008699A1 publication Critical patent/WO2019008699A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube

Definitions

  • the present invention relates to a charged particle beam device.
  • the grain size and shape of the crystal grains in the crystalline sample are closely related to the material properties. For example, it is known that when the crystal grain is miniaturized in the metal wiring, the wiring resistance increases due to the increase of the grain boundary, and the strength changes depending on the shape of the crystal grain. Therefore, accurate understanding of the state of crystal grains is important in understanding material characteristics.
  • ECC electron channeling contrast
  • EBSD backscattered electron diffraction
  • Patent Document 1 discloses a method of accurately specifying the three-dimensional positional relationship and density distribution of the internal structure of a sample by using a signal generated from the sample. At this time, the sample or the electron beam is tilted to obtain a signal.
  • Patent Document 2 discloses a method capable of optimizing the ECC and optimizing the domain with high versatility by optimizing the deposition thickness of the conductive film and the observation conditions in the domain observation of a ferroelectric or the like. There is.
  • the grain size and shape of the crystal grains can be grasped by the ECC observation, depending on the crystal orientation, the ECC of the adjacent crystal grains may be low and the crystal grains may be overlooked. Therefore, in order to accurately grasp the crystal grains, it is necessary to change the electron diffraction conditions by changing the SEM conditions such as the acceleration voltage and the sample inclination angle to obtain a plurality of different ECC images. Specifically, a plurality of ECC images are acquired in the same field of view, and the acquired ECC images are compared.
  • the SEM conditions for example, the acceleration voltage is changed
  • the incident depth of the electron beam to the sample changes, so the generation depth of the reflected electrons changes and the particle size obtained from the ECC image changes.
  • the optical conditions are also changed, deviation of the observation position or the like occurs.
  • the sample tilt angle is changed, it is necessary to correct the magnification change due to the shift of the observation position or the tilt, and there is a concern that the accuracy may be reduced.
  • the throughput also decreases because it is necessary to move the stage.
  • Patent Document 1 describes the method of specifying the internal structure of a sample, it does not describe specifying the structure of the crystal grain in the sample surface.
  • the method described in Patent Document 2 may have low image contrast in adjacent domains and it may be difficult to accurately grasp crystal grains.
  • the present invention has been made in view of the above problems, and in a charged particle beam apparatus for observing a sample by irradiating the sample with a charged particle beam, crystal grains of a crystalline sample can be accurately measured. It provides technology that can be grasped.
  • a first image obtained by irradiating the sample with the charged particle beam in a first direction, and the charged particle beam with respect to the sample in the first direction A crystal grain is grasped
  • crystal grains can be accurately grasped in a crystalline sample.
  • FIG. 1 is a configuration diagram of a scanning electron microscope 100 according to Embodiment 1. It is a schematic diagram which shows the example of an ECC image. It is an example of the synthetic
  • FIG. 7 is a flowchart illustrating a procedure of analyzing the configuration of a sample 11 by a computer 27. FIG. It is an observation example in the similar part of the schematic diagram shown in FIG. It is an observation example in the similar part of the schematic diagram shown in FIG.
  • FIG. 1 is a block diagram of a scanning electron microscope 100 according to a first embodiment of the present invention.
  • the scanning electron microscope 100 is an apparatus for acquiring an observation image of the sample 11 by irradiating the sample 11 with the electron beam 2.
  • the scanning electron microscope 100 includes an electron microscope main body 70, a control unit 80, and an input / output unit 90.
  • the high voltage power supply control circuit 19 applies a high voltage to the electron gun 1.
  • the electron gun 1 emits an electron beam 2 when a high voltage is applied.
  • the electron beam 2 generated from the electron gun 1 is irradiated by the focusing lens 3 and the objective lens 6 so as to be focused on the sample 11 as a minute spot.
  • the focusing lens control circuit 20 controls the focusing lens 3, and the objective lens control circuit 23 controls the objective lens 6.
  • the electron beam 2 is two-dimensionally scanned on the sample 11 by the upper and lower scanning coils 4.
  • the scanning coil control circuit 21 controls the scanning coil 4.
  • the scanning coil control circuit 21 repeats line scanning. That is, after scanning in the + X direction from a certain position, the scanning in the + X direction is repeated shifting from the certain position in the 1-pixel Y direction. Furthermore, by using the gradient coil 5 and the focusing coil 7 in combination, the electron beam 2 can be tilted to be incident on the sample 11 from the first direction 9 or the second direction 10.
  • the gradient coil control circuit 22 controls the gradient coil 5.
  • the focusing coil control circuit 24 controls the focusing coil 7.
  • the first direction 9 and the second direction 10 referred to here are directions on the plane on which the sample 11 is placed.
  • the tilt angle of the electron beam 2 with respect to the same plane (or the tilt angle of the electron beam 2 with respect to the optical axis) is the same in both the first direction 9 and the second direction 10.
  • the computer 27 controls the scanning timing of the electron beam 2. By sequentially irradiating the non-tilt / first direction 9 / second direction 10 for each line, it is possible to obtain observation images corresponding to the respective incident directions.
  • Each control circuit can switch between the three types of beams at such a time interval that there is no sense of incongruity even when a human looks at three types of observation images generated from these three types of beams. All three of these beams can be illuminated for the same scan position within a time interval of, for example, about one second or less.
  • the sample 11 is fixed to the sample stage 12.
  • the upper surface (sample mounting surface) of the sample stage 12 can be configured to be parallel to the installation surface of the scanning electron microscope 100.
  • the sample stage 12 can move the sample 11 in the XYZ directions to rotate and tilt the sample mounting surface.
  • the sample stage control circuit 26 controls the sample stage 12.
  • the computer 27 includes a high voltage power supply control circuit 19, a focusing lens control circuit 20, a scanning coil control circuit 21, a gradient coil control circuit 22, an objective lens control circuit 23, a focusing coil control circuit 24, a signal input circuit 25, and a sample stage control circuit. It is connected to 26 etc. and controls these in an integrated manner.
  • the computer 27 is connected with an input device 30 such as a keyboard, a mouse, a trackball, and a control panel for changing the focus magnification. The user can set the acquisition condition of the observation image through the input device 30.
  • the signal detected by the X-ray detector 18 is sent to the computer 31 for elemental analysis.
  • the elemental analysis computer 31 specifies the constituent elements of the sample 11 using the signal.
  • the computer 31 for elemental analysis is connected to the computer 27 and can control the high voltage power control circuit 19 and the like in the same manner as the computer 27.
  • the elemental analysis computer 31 can further capture an observation image of the sample 11 and carry out elemental analysis and image analysis of the same field of view.
  • FIG. 2 is a schematic view showing an example of the ECC image.
  • a nickel alloy which is a crystalline sample was used as the sample 11.
  • the ECC image 201 is an observation image obtained by irradiating the electron beam 2 in the first direction 9.
  • the ECC image 202 is an observation image obtained by irradiating the electron beam 2 in the second direction 10.
  • the grain boundaries in the dotted line are blurred. This is because the angle at which the electron beam 2 is incident on the sample 11 differs in the first direction 9 and the second direction 10, so that the electron diffraction conditions change, and as a result, the amount of reflected electrons generated per ECC image Attributable to different things.
  • the computer 27 generates a composite image 203 by combining the ECC images 201 and 202.
  • a clear grain boundary image is obtained over the entire image by compensating the grain boundary portion which is unclear on any one of the ECC images by the other clear grain boundary portion. Therefore, crystal grains can be grasped with a single composite image 203 without comparing ECC images.
  • FIG. 3 shows an example of a composite image 203 synthesized after color arrangement.
  • the computer 27 can generate, for example, an image having only a red component for the ECC image 201 and generate an image having only a blue component for the ECC image 202. By combining these ECC images, it is possible to obtain a combined image 203 in which the red color arrangement and the blue color arrangement are mixed. Other color schemes may be used. The user can recognize crystal grain boundaries more clearly by synthesizing a plurality of color arrangements.
  • FIG. 4 is an example of a grain boundary extraction image.
  • the computer 27 extracts crystal grain boundaries from each of the ECC images 201 and 202, and superimposes the extracted crystal grain boundaries by, for example, a method such as pattern matching to generate a grain boundary extracted image as illustrated in FIG. can do.
  • the computer 27 may generate the composite image 203 and the grain boundary extraction image at the same time when the ECC images 201 and 202 are stored in the image memory 29, or after the ECC images 201 and 202 are once generated, they are off-line. These images may be created by processing.
  • the electron beam 2 irradiated in the first direction 9 and the electron beam 2 irradiated in the second direction 10 may be irradiated to different portions of the sample 11, respectively. In this case, the irradiation direction may be corrected by the gradient coil 5, or the corresponding areas may be superimposed by pattern matching or the like after the ECC image is once acquired.
  • FIG. 5 is the analysis result by EBSD.
  • the same composite image as FIG. 3 is shown at the top of FIG. 5 for comparison.
  • the lower part of FIG. 5 is an EBSD analysis result in the same visual field region. It can be seen that the composite image has obtained grain boundaries equivalent to the analysis result by EBSD.
  • the scanning electron microscope 100 generates the ECC image 201 by irradiating the electron beam 2 in the first direction 9, and generates the ECC image 202 by irradiating the electron beam 2 in the second direction 10. By combining these, a composite image 203 is obtained. Thereby, since the difference in electron channeling contrast caused by the incident direction of the electron beam 2 can be compensated by each ECC image, the crystal grain boundary of the crystalline sample 11 can be identified accurately.
  • the scanning electron microscope 100 switches the first direction 9 and the second direction 10 within a very short time interval.
  • the composite image 203 can be obtained in substantially real time, the user can efficiently search for the optimal observation conditions that can best identify the grain boundaries.
  • the scanning coil control circuit 21 (and the scanning coil 4) can also change the scanning direction by rotating the scanning direction of the electron beam 2 by an arbitrary angle (for example, 90 °). This function is called raster rotation.
  • an operation example using an ECC image acquired in the changed scanning direction will be described.
  • the configuration of the scanning electron microscope 100 is the same as that of the first embodiment.
  • FIG. 6 shows an example of the ECC images 204 and 205 acquired after changing the scanning direction of the electron beam 2 by 90 degrees.
  • the image is rotated by -90 degrees in order to align with FIG. 9 described later.
  • FIG. 6 it can be seen that an ECC image different from that of FIG. 9 is obtained. This is because the direction in which the electron beam 2 is incident on the sample 11 is rotated by 90 degrees from the first direction 9 and the second direction 10 by rotating the scanning direction.
  • the crystal grains can be analyzed more accurately and in detail.
  • the scanning direction may be rotated at an angle other than 90 degrees.
  • images similar to the ECC images 204 and 205 may be acquired after being acquired respectively in a plurality of scanning directions.
  • Embodiment 3 Since ECC is generated according to the crystal structure of the sample 11, it changes depending on the incident direction of the electron beam 2. On the other hand, the luminance value of the observation image may be different from that of the other portions due to the difference in the composition in each portion of the sample 11. Since all of these appear as differences in luminance values of pixels on the observation image, it is generally difficult to distinguish whether the differences in luminance values are caused by crystal structure or due to differences in composition. In the third embodiment of the present invention, a method of distinguishing these differences will be described. The configuration of the scanning electron microscope 100 is the same as that of the first embodiment.
  • FIG. 7 is a schematic view showing an example of an ECC image acquired for a portion where a carbon foreign matter 703 is present on a nickel alloy.
  • the ECC image 701 is acquired in the first direction 9, and the ECC image 702 is acquired in the second direction 10.
  • the luminance value of the grain boundary is lowered and blurred as shown by the dotted line, but the luminance value of the foreign matter 703 hardly changes in the ECC images 701 and 702. This is because the ECC relies on the incident direction of the electron beam 2 while the luminance value due to the composition has a small dependence on the incident direction.
  • this fact is used to distinguish whether the change in luminance value is caused by the composition or the crystal structure.
  • the generation rate of the backscattered electrons is about 0.3 when the incident angle of the electron beam is 0 degree (the electron beam is incident perpendicularly to the sample 11) Even if the electron beam 2 is inclined 50 degrees with respect to the optical axis, it is about 0.4. Even when the incident direction is changed instead of the incident angle, the same tendency is obtained. This indicates that the luminance value due to the difference in composition is less affected by the incident direction and the incident angle of the electron beam 2.
  • the computer 27 in the area where the luminance value differs by a predetermined threshold (for example, a relative ratio of 5%) or more between the ECC images 701 and 702, the computer 27 generates the luminance difference due to the ECC, and the luminance difference is a predetermined threshold. It is determined that the luminance difference is caused due to the composition for the area less than. Thereby, ECC and composition contrast can be distinguished. That is, it can be determined whether the cause of the luminance difference is due to the crystal orientation or the composition.
  • a predetermined threshold for example, a relative ratio of 5%
  • FIG. 8 is a flow chart for explaining the procedure of analyzing the configuration of the sample 11 by the computer 27. Each step of FIG. 8 will be described below.
  • Step S801 The operator inputs analysis conditions such as an analysis range and acceleration voltage via the input device 30.
  • the computer 27 receives the analysis condition specification.
  • Step S802 The operator specifies through the input device 30 whether the sample 11 is a crystalline sample.
  • the computer 27 receives the designation. If the sample 11 is a crystalline sample, the process proceeds to step S803. If the sample 11 is not a crystalline sample, the process proceeds to step S806. This step is provided to omit steps S803 to S805 when the sample 11 is an amorphous sample. Therefore, if it is not necessary to omit these steps, this step is not necessary either.
  • Step S803 The computer 27 acquires observation images in each of the first direction 9 and the second direction 10, and extracts crystal particles from the observation image.
  • Step S804 The operator selects, via the input device 30, whether the purpose of analysis is to extract the compositional contrast of the sample 11 or whether to aim at extracting others (that is, extracting crystal grains). If the purpose is to extract the composition contrast, the process advances to step S805; otherwise, the process advances to step S807.
  • Step S805 The computer 27 extracts a portion where the difference in luminance value is less than a predetermined threshold between the two observation images acquired in step S803. It can be estimated that the place where the luminance value does not change even if the incident direction of the electron beam 2 is changed is the place representing the composition of the sample 11.
  • Step S806 The computer 27 obtains an observation image by vertically impinging the electron beam 2 on the sample 11. Alternatively, observation images may be acquired in each of the first direction 9 and the second direction 10, and these may be combined. After this step, the process skips to step S808.
  • Step S 807 The computer 27 extracts a portion where the difference in luminance value is equal to or greater than a predetermined threshold (the same as the threshold in step S805) between the two observation images acquired in step S803.
  • a predetermined threshold the same as the threshold in step S805
  • ECC the luminance value change due to the crystal orientation
  • Step S808 The computer 27 performs particle identification such as shape recognition of particles and elemental analysis of the particles using the images acquired in steps S805 to S807. Since only the composition contrast or only the ECC is extracted in steps S805 and S807, particles and crystals can be accurately analyzed in this step.
  • Steps S809 to S810 The operator selects, via the input device 30, whether or not to end the particle analysis (S809). If it does not end, the process moves to the next view and returns to step S802 (S810). When the analysis is ended, this flowchart is ended.
  • ECC electrospray analysis
  • compositional contrast is particularly important in particle analysis.
  • Particle analysis is an analysis method of extracting particles such as inclusions and impurities from an image and specifying the shape, number, and composition thereof.
  • particle analysis is performed on a crystalline sample, crystal grains by ECC may be extracted as particles such as inclusions.
  • particle analysis is performed automatically by a computer, so it is not possible to determine composition contrast and ECC empirically by visual confirmation in the process of particle analysis.
  • the method of changing the diffraction condition of the electron beam 2 by inclining the sample 11 during particle analysis or EBSD analysis has disadvantages in terms of accuracy and throughput.
  • elemental analysis although the element type can be specified, it can not be determined whether the place where the element is specified is a crystal grain or a particle of the same composition.
  • the scanning electron microscope 100 distinguishes the composition contrast from the ECC by deflecting the incident direction of the electron beam 2 and acquiring a plurality of observation images, the sample 11 can be analyzed efficiently.
  • a portion where the luminance value changes by a threshold or more between the first direction 9 and the second direction 10 can be excluded from the analysis target.
  • the crystal grain distribution can be grasped by extracting only a portion where the luminance value has changed by a predetermined threshold or more and performing particle analysis on the portion.
  • FIG. 9 is an observation example at a similar part of the schematic view shown in FIG.
  • the ECC image 206 is an observation image acquired by irradiating the electron beam 2 from the first direction 9.
  • the ECC image 207 is an observation image obtained by irradiating the electron beam 2 in the second direction 10.
  • crystal grains in the arrow portion can be grasped, but in the ECC image 207, crystal grains in the arrow portion can not be grasped.
  • the crystal grain of the arrow head can not be grasped, but in the ECC image 207, the crystal grain of the arrow head can be grasped.
  • the generation amount of the backscattered electrons differs for each ECC image.
  • FIG. 10 is an observation example at a similar part of the schematic view shown in FIG.
  • the ECC image was acquired about the location where the foreign material 706 of carbon exists on a nickel alloy similarly to FIG.
  • the ECC image 704 is an observation image acquired by irradiating the electron beam 2 from the first direction 9.
  • the ECC image 705 is an observation image obtained by irradiating the electron beam 2 in the second direction 10.
  • the brightness value of the grain boundary is lowered as shown by the arrow portion, but the brightness value of the foreign material 706 hardly changes between the ECC images 704 and 705.
  • the change in the luminance value is different depending on which of the composition and the crystal structure results.
  • the present invention is not limited to the above embodiment, but includes various modifications.
  • the above-described embodiment is described in detail to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the described configurations.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • another configuration can be added to, deleted from, or replaced with a part of the configuration of each embodiment.
  • An anaglyph image is generated using the optical path difference of the electron beam 2 generated by the unevenness of the sample 11 while switching the observation image acquired in the first direction 9 and the observation image acquired in the second direction 10, and the surface of the sample 11
  • the ability to view 3D images is called the live stereo feature. Since this function is to observe the surface shape of the sample 11 using the secondary electrons 14, it can be used in combination with the method according to the present invention.
  • the method according to the present invention can be used to observe the crystal grains in the flat portion of the sample 11, and the live stereo function can be used to observe the three-dimensional shape of the uneven portion.
  • the method according to the present invention can also be used to detect minute crystal orientation changes such as crystal distortion and crystal defect observation.
  • minute crystal orientation changes such as crystal distortion and crystal defect observation.
  • semiconductors such as metals and InGaN
  • the number of fine orientation changes and the number of crystal defects are largely attributed to sample characteristics.
  • the contrast of crystal distortion and crystal defects can not be observed depending on the electron diffraction conditions. Therefore, it is considered that the method of the present invention which can easily grasp the change in orientation is useful.
  • the method of the present invention can also be used for a sample having poor conductivity and a charge-up phenomenon is likely to occur, or a sample whose sample shape is changed by an electron beam (for example, biological samples such as pearls and snail shells) .
  • EBSD analysis has the disadvantage of being susceptible to charge-up phenomena and sample damage, as it needs to be irradiated with a large amount of electron beams of high acceleration voltage in addition to low throughput and the need for expensive equipment.
  • the phenomenon is remarkable particularly in biological samples such as metal and snail shells molded into a blank.
  • the approach of the present invention can be used under conditions in which an ECC image is generally observed, so there is no need to use high acceleration large current conditions like EBSD analysis. Therefore, it is easy to suppress the charge up phenomenon and the electron beam damage.
  • the computer 27 has been described to display the analysis result as an image on the display device 28.
  • other output formats can be used.
  • data describing the position of grain boundaries can be output to an appropriate medium such as a storage device or a communication network, or can be output or printed on a medium such as paper by a printer or a camera.
  • data describing which one of the composition contrast and the ECC has been determined can be output together with the coordinates of the determined portion.
  • Other suitable output formats may be used.
  • the scanning electron microscope 100 has been described as an example of a charged particle beam device, but in other types of charged particle beam devices, crystals of a crystalline sample can be obtained by applying the same method as the present invention. Grain boundaries can be identified accurately.
  • Electron gun 2 Electron beam 3: Focusing lens 4: Scanning coil 5: Tilting coil 6: Objective lens 7: Focusing coil 8: Reflected electron detector 9: First direction 10: Second direction 11: Sample 12: Sample stage 13: reflection electron 14: secondary electron 15: X-ray 16: reflection electron detector 17: secondary electron detector 18: X-ray detector 19: high voltage power supply control circuit 20: Focusing lens control circuit 21: Scanning coil control circuit 22: gradient coil control circuit 23: objective lens control circuit 24: focus adjustment coil control circuit 25: signal input circuit 26: sample stage control circuit 27: computer 28: display device 29: image memory 30: input device 31: for elemental analysis Computer 70: electron microscope main body 80: control unit 90: input / output unit 100: scanning electron microscope

Abstract

The present invention provides a technology whereby a charged particle beam device that observes a sample by irradiating a charged particle beam on the sample is capable of accurately ascertaining crystal grains in a crystalline sample. This charged particle beam device uses a first image and a second image and ascertains crystal grains, said first image being obtained by irradiating a charged particle beam on the sample from a first direction and said second image being obtained by irradiating the charged particle beam on the sample from a second direction different from the first direction.

Description

荷電粒子線装置Charged particle beam device
 本発明は、荷電粒子線装置に関するものである。 The present invention relates to a charged particle beam device.
 結晶性試料における結晶粒の粒径や形状は、材料特性と密接に関係している。例えば金属配線において結晶粒が微細化すると、結晶粒界の増加に起因して配線抵抗が増加することや、結晶粒の形状によって強度が変化することが知られている。そのため、結晶粒の状態を正確に把握することは、材料特性を知る上で重要である。 The grain size and shape of the crystal grains in the crystalline sample are closely related to the material properties. For example, it is known that when the crystal grain is miniaturized in the metal wiring, the wiring resistance increases due to the increase of the grain boundary, and the strength changes depending on the shape of the crystal grain. Therefore, accurate understanding of the state of crystal grains is important in understanding material characteristics.
 走査電子顕微鏡(Scanning Electron Microscope:SEM)を用いて結晶粒を観察する際には、試料に電子ビームを照射することにより発生した反射電子から得られる電子チャンネリングコントラスト(Electron Channeling Contrast:ECC)観察が広く用いられている。ECC観察によって得られたコントラストは結晶方位に起因しているので、結晶粒の形状や転位などの結晶欠陥を観察することができる。 When observing crystal grains using a scanning electron microscope (SEM), electron channeling contrast (ECC) observation obtained from reflected electrons generated by irradiating the sample with an electron beam Is widely used. Since the contrast obtained by the ECC observation is attributed to the crystal orientation, crystal defects such as the shape of crystal grains and dislocation can be observed.
 ECC観察以外に結晶粒を把握する方法としては、後方散乱電子回折(Electron BackScatter Diffraction:EBSD)法がある。EBSD法は原理上、測定時間が長く、試料を70度傾斜する必要があるので、スループットが悪い。また高額な専用検出器を用いる必要がある。 As a method of grasping a crystal grain other than ECC observation, there is a backscattered electron diffraction (EBSD) method. In principle, the EBSD method has a long measurement time and requires a sample to be inclined at 70 degrees, so the throughput is poor. In addition, it is necessary to use an expensive dedicated detector.
 下記特許文献1は、試料から発生した信号によって、試料内部構造の3次元位置関係や密度分布を正確に特定する手法について開示している。その際に、試料もしくは電子ビームを傾斜させて信号を得ている。下記特許文献2は、強誘電体などのドメイン観察において、導電性膜の蒸着膜厚や観察条件を最適化することによりECCを最適化し、汎用性高くドメイン観察することができる手法を開示している。 Patent Document 1 below discloses a method of accurately specifying the three-dimensional positional relationship and density distribution of the internal structure of a sample by using a signal generated from the sample. At this time, the sample or the electron beam is tilted to obtain a signal. Patent Document 2 below discloses a method capable of optimizing the ECC and optimizing the domain with high versatility by optimizing the deposition thickness of the conductive film and the observation conditions in the domain observation of a ferroelectric or the like. There is.
特開2016-103387号公報JP, 2016-103387, A 特開2010-197269号公報Unexamined-Japanese-Patent No. 2010-197269
 ECC観察によって結晶粒の粒径や形状を把握することができるが、結晶方位によっては、隣り合う結晶粒のECCが低くなり、結晶粒を見落とす可能性がある。したがって正確に結晶粒を把握するためには、加速電圧や試料傾斜角度などのSEM条件を変更することにより電子の回折条件を変化させ、複数の異なるECC像を得る必要がある。具体的には、同一視野において複数のECC像を取得し、得られたECC像を比較する。 Although the grain size and shape of the crystal grains can be grasped by the ECC observation, depending on the crystal orientation, the ECC of the adjacent crystal grains may be low and the crystal grains may be overlooked. Therefore, in order to accurately grasp the crystal grains, it is necessary to change the electron diffraction conditions by changing the SEM conditions such as the acceleration voltage and the sample inclination angle to obtain a plurality of different ECC images. Specifically, a plurality of ECC images are acquired in the same field of view, and the acquired ECC images are compared.
 SEM条件を変更した場合(例えば加速電圧を変更する)、試料に対する電子ビームの入射深さが変化するので、反射電子の発生深さが変化し、ECC像から得られる粒径が変化してしまう。また光学条件も変更されるので、観察位置のずれなども発生する。試料傾斜角度を変更した場合は、観察位置のずれや傾斜による倍率変化を補正する必要があり、精度が低下する可能性が懸念される。またステージを移動させる必要があるので、スループットも低下する。 When the SEM conditions are changed (for example, the acceleration voltage is changed), the incident depth of the electron beam to the sample changes, so the generation depth of the reflected electrons changes and the particle size obtained from the ECC image changes. . In addition, since the optical conditions are also changed, deviation of the observation position or the like occurs. When the sample tilt angle is changed, it is necessary to correct the magnification change due to the shift of the observation position or the tilt, and there is a concern that the accuracy may be reduced. The throughput also decreases because it is necessary to move the stage.
 上記特許文献1は、試料の内部構造を特定する手法を記載しているが、試料表面における結晶粒の構成を特定することについては記載していない。上記特許文献2が記載している手法は、上述のようにスループットが低いことに加え、隣り合うドメインの画像コントラストが低く結晶粒を正確に把握することが困難である場合がある。 Although the said patent document 1 describes the method of specifying the internal structure of a sample, it does not describe specifying the structure of the crystal grain in the sample surface. In addition to the low throughput as described above, the method described in Patent Document 2 may have low image contrast in adjacent domains and it may be difficult to accurately grasp crystal grains.
 本発明は、上記のような課題に鑑みてなされたものであり、試料に対して荷電粒子線を照射することにより前記試料を観察する荷電粒子線装置において、結晶性試料の結晶粒を正確に把握することができる技術を提供するものである。 The present invention has been made in view of the above problems, and in a charged particle beam apparatus for observing a sample by irradiating the sample with a charged particle beam, crystal grains of a crystalline sample can be accurately measured. It provides technology that can be grasped.
 本発明に係る荷電粒子線装置は、記試料に対して荷電粒子線を第1方向から照射することにより得られる第1画像と、前記試料に対して前記荷電粒子線を前記第1方向とは異なる第2方向から照射することにより得られる第2画像とを用いて、結晶粒を把握する。 In the charged particle beam device according to the present invention, a first image obtained by irradiating the sample with the charged particle beam in a first direction, and the charged particle beam with respect to the sample in the first direction A crystal grain is grasped | ascertained using the 2nd image obtained by irradiating from a different 2nd direction.
 本発明に係る荷電粒子線装置によれば、結晶性試料において正確に結晶粒を把握することができる。上記した以外の課題、構成、および効果は、以下の実施形態の説明により明らかにされる。 According to the charged particle beam device of the present invention, crystal grains can be accurately grasped in a crystalline sample. Problems, configurations, and effects other than those described above will be made clear by the description of the embodiments below.
実施形態1に係る走査電子顕微鏡100の構成図である。FIG. 1 is a configuration diagram of a scanning electron microscope 100 according to Embodiment 1. ECC像の例を示す模式図である。It is a schematic diagram which shows the example of an ECC image. 配色した上で合成した合成像203の例である。It is an example of the synthetic | combination image 203 compounded after color arrangement. 結晶粒界抽出像の例である。It is an example of a grain boundary extraction image. EBSDによる分析結果である。It is the analysis result by EBSD. 電子ビーム2の走査方向を90度変更した後に取得した、ECC像204と205の例である。It is an example of the ECC images 204 and 205 acquired after changing the scanning direction of the electron beam 2 by 90 degrees. ニッケル合金上に炭素の異物703が存在する個所について取得したECC像の例を示す模式図である。It is a schematic diagram which shows the example of the ECC image acquired about the location where the foreign material 703 of carbon exists on a nickel alloy. コンピュータ27が試料11の構成を解析する手順を説明するフローチャートである。FIG. 7 is a flowchart illustrating a procedure of analyzing the configuration of a sample 11 by a computer 27. FIG. 図2で示した模式図の、類似個所における観察例である。It is an observation example in the similar part of the schematic diagram shown in FIG. 図7で示した模式図の類似個所における観察例である。It is an observation example in the similar part of the schematic diagram shown in FIG.
<実施の形態1>
 図1は、本発明の実施形態1に係る走査電子顕微鏡100の構成図である。走査電子顕微鏡100は、試料11に対して電子ビーム2を照射することにより試料11の観察画像を取得する装置である。走査電子顕微鏡100は、電子顕微鏡本体70、制御部80、入出力部90を備える。
Embodiment 1
FIG. 1 is a block diagram of a scanning electron microscope 100 according to a first embodiment of the present invention. The scanning electron microscope 100 is an apparatus for acquiring an observation image of the sample 11 by irradiating the sample 11 with the electron beam 2. The scanning electron microscope 100 includes an electron microscope main body 70, a control unit 80, and an input / output unit 90.
 高圧電源制御回路19は、電子銃1に対して高電圧を印加する。電子銃1は、高電圧が印加されると電子ビーム2を出射する。電子銃1から発生した電子ビーム2は、集束レンズ3と対物レンズ6によって、試料11に微小スポットとして集束するように照射される。集束レンズ制御回路20は集束レンズ3を制御し、対物レンズ制御回路23は対物レンズ6を制御する。 The high voltage power supply control circuit 19 applies a high voltage to the electron gun 1. The electron gun 1 emits an electron beam 2 when a high voltage is applied. The electron beam 2 generated from the electron gun 1 is irradiated by the focusing lens 3 and the objective lens 6 so as to be focused on the sample 11 as a minute spot. The focusing lens control circuit 20 controls the focusing lens 3, and the objective lens control circuit 23 controls the objective lens 6.
 電子ビーム2は、上段と下段の走査コイル4によって、試料11上において2次元的に走査される。走査コイル制御回路21は、走査コイル4を制御する。走査コイル制御回路21は、ライン走査を繰り返す。すなわち、ある位置から+X方向に走査した後、ある位置から1画素-Y方向にずれ、また+X方向に走査することを繰り返す。さらに、傾斜コイル5と焦点調整コイル7を併せて用いることにより電子ビーム2を傾斜させて、第1方向9や第2方向10から試料11に対して入射させることができる。傾斜コイル制御回路22は、傾斜コイル5を制御する。焦点調整コイル制御回路24は、焦点調整コイル7を制御する。 The electron beam 2 is two-dimensionally scanned on the sample 11 by the upper and lower scanning coils 4. The scanning coil control circuit 21 controls the scanning coil 4. The scanning coil control circuit 21 repeats line scanning. That is, after scanning in the + X direction from a certain position, the scanning in the + X direction is repeated shifting from the certain position in the 1-pixel Y direction. Furthermore, by using the gradient coil 5 and the focusing coil 7 in combination, the electron beam 2 can be tilted to be incident on the sample 11 from the first direction 9 or the second direction 10. The gradient coil control circuit 22 controls the gradient coil 5. The focusing coil control circuit 24 controls the focusing coil 7.
 ここでいう第1方向9と第2方向10は、試料11を載置している平面上における方向のことである。同平面に対する電子ビーム2の傾斜角(または電子ビーム2の光軸に対する傾斜角)は、第1方向9と第2方向10いずれにおいても同一である。 The first direction 9 and the second direction 10 referred to here are directions on the plane on which the sample 11 is placed. The tilt angle of the electron beam 2 with respect to the same plane (or the tilt angle of the electron beam 2 with respect to the optical axis) is the same in both the first direction 9 and the second direction 10.
 コンピュータ27は、電子ビーム2の走査タイミングを制御する。1ラインごとに、傾斜なし/第1方向9/第2方向10を順次照射することにより、それぞれの入射方向に対応する観察画像を得ることができる。各制御回路は、これら3種類のビームから生成される3種類の観察画像を人間が目視しても違和感がない程度の時間間隔で、これら3種類のビームを切り替えることができる。例えば約1秒以下の時間間隔内でこれら3種類のビーム全てを同じ走査位置に対して照射することができる。 The computer 27 controls the scanning timing of the electron beam 2. By sequentially irradiating the non-tilt / first direction 9 / second direction 10 for each line, it is possible to obtain observation images corresponding to the respective incident directions. Each control circuit can switch between the three types of beams at such a time interval that there is no sense of incongruity even when a human looks at three types of observation images generated from these three types of beams. All three of these beams can be illuminated for the same scan position within a time interval of, for example, about one second or less.
 試料11は、試料ステージ12に固定されている。試料ステージ12の上面(試料載置面)は、走査電子顕微鏡100の設置面に対して平行になるように構成することができる。試料ステージ12は、XYZ方向に試料11を移動させ、試料載置面を回転・傾斜させることができる。試料ステージ制御回路26は、試料ステージ12を制御する。 The sample 11 is fixed to the sample stage 12. The upper surface (sample mounting surface) of the sample stage 12 can be configured to be parallel to the installation surface of the scanning electron microscope 100. The sample stage 12 can move the sample 11 in the XYZ directions to rotate and tilt the sample mounting surface. The sample stage control circuit 26 controls the sample stage 12.
 試料11に対して電子ビーム2が照射されると、2次電子14、反射電子13、X線15が発生し、それぞれ2次電子検出器17、反射電子検出器16、X線検出器18によって検出される。2次電子検出器17と反射電子検出器16が検出した信号は、信号入力回路25を介してコンピュータ27に取り込まれる。コンピュータ27は、表示装置28上で試料11の観察画像を表示する。第1方向9と第2方向10によって得られた観察画像を画像メモリ29に記憶し、後述するようにこれら画像を合成して表示装置28上に表示することもできる。 When the sample 11 is irradiated with the electron beam 2, secondary electrons 14, reflected electrons 13 and X-rays 15 are generated, which are respectively generated by the secondary electron detector 17, the reflected electron detector 16 and the X-ray detector 18. It is detected. Signals detected by the secondary electron detector 17 and the backscattered electron detector 16 are taken into the computer 27 via the signal input circuit 25. The computer 27 displays the observation image of the sample 11 on the display device 28. The observation image obtained by the first direction 9 and the second direction 10 can be stored in the image memory 29, and these images can be combined and displayed on the display device 28 as described later.
 コンピュータ27は、高圧電源制御回路19、集束レンズ制御回路20、走査コイル制御回路21、傾斜コイル制御回路22、対物レンズ制御回路23、焦点調整コイル制御回路24、信号入力回路25、試料ステージ制御回路26などに接続され、これらを統括的に制御する。コンピュータ27には、キーボード、マウス、トラックボール、フォーカス倍率を変更する制御パネルなどの入力装置30が接続されている。ユーザは入力装置30を介して、観察画像の取得条件を設定することができる。 The computer 27 includes a high voltage power supply control circuit 19, a focusing lens control circuit 20, a scanning coil control circuit 21, a gradient coil control circuit 22, an objective lens control circuit 23, a focusing coil control circuit 24, a signal input circuit 25, and a sample stage control circuit. It is connected to 26 etc. and controls these in an integrated manner. The computer 27 is connected with an input device 30 such as a keyboard, a mouse, a trackball, and a control panel for changing the focus magnification. The user can set the acquisition condition of the observation image through the input device 30.
 X線検出器18が検出した信号は、元素分析用コンピュータ31に送られる。元素分析用コンピュータ31は、その信号を用いて試料11の構成元素を特定する。元素分析用コンピュータ31は、コンピュータ27と接続されており、高圧電源制御回路19などをコンピュータ27と同様に制御することができる。元素分析用コンピュータ31はさらに、試料11の観察画像を取り込み、同一視野の元素分析や画像解析を実施することもできる。 The signal detected by the X-ray detector 18 is sent to the computer 31 for elemental analysis. The elemental analysis computer 31 specifies the constituent elements of the sample 11 using the signal. The computer 31 for elemental analysis is connected to the computer 27 and can control the high voltage power control circuit 19 and the like in the same manner as the computer 27. The elemental analysis computer 31 can further capture an observation image of the sample 11 and carry out elemental analysis and image analysis of the same field of view.
 図2は、ECC像の例を示す模式図である。ここでは結晶性試料であるニッケル合金を試料11として用いた。ECC像201は、第1方向9から電子ビーム2を照射することにより取得した観察画像である。ECC像202は、第2方向10から電子ビーム2を照射することにより取得した観察画像である。各ECC像において、点線部分の結晶粒界が不鮮明になっている。これは、第1方向9と第2方向10は電子ビーム2が試料11に対して入射する角度が異なるので、電子の回折条件が変化し、その結果として反射電子の発生量がECC像ごとに異なることに起因する。 FIG. 2 is a schematic view showing an example of the ECC image. Here, a nickel alloy which is a crystalline sample was used as the sample 11. The ECC image 201 is an observation image obtained by irradiating the electron beam 2 in the first direction 9. The ECC image 202 is an observation image obtained by irradiating the electron beam 2 in the second direction 10. In each ECC image, the grain boundaries in the dotted line are blurred. This is because the angle at which the electron beam 2 is incident on the sample 11 differs in the first direction 9 and the second direction 10, so that the electron diffraction conditions change, and as a result, the amount of reflected electrons generated per ECC image Attributable to different things.
 コンピュータ27は、ECC像201と202を合成することにより、合成像203を生成する。合成像203においては、いずれかのECC像上で不鮮明であった結晶粒界部分を他方の鮮明な結晶粒界部分によって補うことにより、画像全体にわたって鮮明な結晶粒界画像が得られている。したがって、ECC像を比較することなく、単一の合成像203をもって結晶粒を把握することができる。 The computer 27 generates a composite image 203 by combining the ECC images 201 and 202. In the composite image 203, a clear grain boundary image is obtained over the entire image by compensating the grain boundary portion which is unclear on any one of the ECC images by the other clear grain boundary portion. Therefore, crystal grains can be grasped with a single composite image 203 without comparing ECC images.
 図3は、配色した上で合成した合成像203の例である。コンピュータ27は、例えばECC像201については赤色成分のみを有する画像として生成し、ECC像202については青色成分のみを有する画像として生成することができる。これらECC像を合成することにより、赤配色と青配色が混合した合成像203を得ることができる。その他の配色を用いてもよい。複数の配色を合成することにより、ユーザは結晶粒界をより鮮明に認識することができる。 FIG. 3 shows an example of a composite image 203 synthesized after color arrangement. The computer 27 can generate, for example, an image having only a red component for the ECC image 201 and generate an image having only a blue component for the ECC image 202. By combining these ECC images, it is possible to obtain a combined image 203 in which the red color arrangement and the blue color arrangement are mixed. Other color schemes may be used. The user can recognize crystal grain boundaries more clearly by synthesizing a plurality of color arrangements.
 図4は、結晶粒界抽出像の例である。コンピュータ27は、ECC像201と202からそれぞれ結晶粒界を抽出し、抽出した結晶粒界を例えばパターンマッチングなどの手法で重ね合わせることにより、図4に例示するような結晶粒界抽出像を生成することができる。 FIG. 4 is an example of a grain boundary extraction image. The computer 27 extracts crystal grain boundaries from each of the ECC images 201 and 202, and superimposes the extracted crystal grain boundaries by, for example, a method such as pattern matching to generate a grain boundary extracted image as illustrated in FIG. can do.
 コンピュータ27は、ECC像201と202が画像メモリ29内に格納されるのと同時に合成像203や結晶粒界抽出像を生成してもよいし、ECC像201と202をいったん作成した後、オフライン処理によりこれら画像を作成してもよい。第1方向9において照射される電子ビーム2と第2方向10において照射される電子ビーム2が、それぞれ試料11の異なる部分に対して照射される場合もある。この場合は、傾斜コイル5によって照射方向を補正してもよいし、いったんECC像を取得した後にパターンマッチングなどによって対応する領域を重ね合わせてもよい。 The computer 27 may generate the composite image 203 and the grain boundary extraction image at the same time when the ECC images 201 and 202 are stored in the image memory 29, or after the ECC images 201 and 202 are once generated, they are off-line. These images may be created by processing. The electron beam 2 irradiated in the first direction 9 and the electron beam 2 irradiated in the second direction 10 may be irradiated to different portions of the sample 11, respectively. In this case, the irradiation direction may be corrected by the gradient coil 5, or the corresponding areas may be superimposed by pattern matching or the like after the ECC image is once acquired.
 図5は、EBSDによる分析結果である。比較のため図3と同じ合成像を図5上段に示した。図5下段は同じ視野領域におけるEBSD分析結果である。合成像はEBSDによる分析結果と同等の結晶粒界を得ていることが分かる。 FIG. 5 is the analysis result by EBSD. The same composite image as FIG. 3 is shown at the top of FIG. 5 for comparison. The lower part of FIG. 5 is an EBSD analysis result in the same visual field region. It can be seen that the composite image has obtained grain boundaries equivalent to the analysis result by EBSD.
<実施の形態1:まとめ>
 本実施形態1に係る走査電子顕微鏡100は、第1方向9から電子ビーム2を照射することによりECC像201を生成し、第2方向10から電子ビーム2を照射することによりECC像202を生成し、これらを合成することにより合成像203を得る。これにより、電子ビーム2の入射方向に起因する電子チャネリングコントラストの違いを各ECC像によって補うことができるので、結晶性の試料11の結晶粒界を正確に特定することができる。
<Embodiment 1: Summary>
The scanning electron microscope 100 according to the first embodiment generates the ECC image 201 by irradiating the electron beam 2 in the first direction 9, and generates the ECC image 202 by irradiating the electron beam 2 in the second direction 10. By combining these, a composite image 203 is obtained. Thereby, since the difference in electron channeling contrast caused by the incident direction of the electron beam 2 can be compensated by each ECC image, the crystal grain boundary of the crystalline sample 11 can be identified accurately.
 本実施形態1に係る走査電子顕微鏡100は、ごく短い時間間隔のなかで第1方向9と第2方向10を切り替える。これにより、ほぼリアルタイムで合成像203を得ることができるので、ユーザは結晶粒界を最もよく特定することができる最適な観察条件を効率的に探索することができる。 The scanning electron microscope 100 according to the first embodiment switches the first direction 9 and the second direction 10 within a very short time interval. As a result, since the composite image 203 can be obtained in substantially real time, the user can efficiently search for the optimal observation conditions that can best identify the grain boundaries.
<実施の形態2>
 走査コイル制御回路21(および走査コイル4)は、電子ビーム2を走査する方向を任意角度(例えば90°)回転させることにより、走査方向を変更することもできる。この機能はラスターローテーションなどと呼ばれている。本発明の実施形態2では、変更後の走査方向において取得したECC像を用いる動作例について説明する。走査電子顕微鏡100の構成は実施形態1と同様である。
Second Embodiment
The scanning coil control circuit 21 (and the scanning coil 4) can also change the scanning direction by rotating the scanning direction of the electron beam 2 by an arbitrary angle (for example, 90 °). This function is called raster rotation. In the second embodiment of the present invention, an operation example using an ECC image acquired in the changed scanning direction will be described. The configuration of the scanning electron microscope 100 is the same as that of the first embodiment.
 図6は、電子ビーム2の走査方向を90度変更した後に取得した、ECC像204と205の例である。後述する図9と方向を合わせるため、画像を-90度回転させている。図6によれば、図9と異なるECC像が得られていることがわかる。これは走査方向を回転させることにより、電子ビーム2が試料11に対して入射する方向が、第1方向9と第2方向10それぞれから90度回転していることによる。 FIG. 6 shows an example of the ECC images 204 and 205 acquired after changing the scanning direction of the electron beam 2 by 90 degrees. The image is rotated by -90 degrees in order to align with FIG. 9 described later. According to FIG. 6, it can be seen that an ECC image different from that of FIG. 9 is obtained. This is because the direction in which the electron beam 2 is incident on the sample 11 is rotated by 90 degrees from the first direction 9 and the second direction 10 by rotating the scanning direction.
 ECC像201と202に加えてECC像204と205を合成することにより、結晶粒をさらに正確かつ詳細に分析することができる。また90度以外の角度で走査方向を回転させてもよい。さらには、ECC像204、205と同様の画像を、複数の走査方向においてそれぞれ取得した上で合成してもよい。 By combining the ECC images 204 and 205 in addition to the ECC images 201 and 202, the crystal grains can be analyzed more accurately and in detail. The scanning direction may be rotated at an angle other than 90 degrees. Furthermore, images similar to the ECC images 204 and 205 may be acquired after being acquired respectively in a plurality of scanning directions.
<実施の形態3>
 ECCは試料11の結晶構造に応じて生じるので、電子ビーム2の入射方向に依拠して変化する。他方で試料11の各部分における組成の違いにより、観察画像の輝度値が他の部分とは異なる場合もある。これらはいずれも観察画像上の画素の輝度値の違いとして現れるので、その輝度値の違いが結晶構造によって生じたのか、それとも組成の違いによって生じたのかを区別するのは、一般に困難である。本発明の実施形態3では、これらの違いを区別する手法について説明する。走査電子顕微鏡100の構成は実施形態1と同様である。
Embodiment 3
Since ECC is generated according to the crystal structure of the sample 11, it changes depending on the incident direction of the electron beam 2. On the other hand, the luminance value of the observation image may be different from that of the other portions due to the difference in the composition in each portion of the sample 11. Since all of these appear as differences in luminance values of pixels on the observation image, it is generally difficult to distinguish whether the differences in luminance values are caused by crystal structure or due to differences in composition. In the third embodiment of the present invention, a method of distinguishing these differences will be described. The configuration of the scanning electron microscope 100 is the same as that of the first embodiment.
 図7は、ニッケル合金上に炭素の異物703が存在する個所について取得したECC像の例を示す模式図である。ECC像701は第1方向9において取得したものであり、ECC像702は第2方向10において取得したものである。ECC像702においては、点線に示すように結晶粒界の輝度値が低下して不鮮明になっているが、異物703の輝度値はECC像701と702においてほとんど変化していない。これは、ECCが電子ビーム2の入射方向に依拠するのに対して、組成に起因する輝度値は入射方向に対する依存度が小さいからである。本実施形態3では、このことを利用して、輝度値の変化が組成に起因するのかそれとも結晶構造に起因するのかを区別する。 FIG. 7 is a schematic view showing an example of an ECC image acquired for a portion where a carbon foreign matter 703 is present on a nickel alloy. The ECC image 701 is acquired in the first direction 9, and the ECC image 702 is acquired in the second direction 10. In the ECC image 702, the luminance value of the grain boundary is lowered and blurred as shown by the dotted line, but the luminance value of the foreign matter 703 hardly changes in the ECC images 701 and 702. This is because the ECC relies on the incident direction of the electron beam 2 while the luminance value due to the composition has a small dependence on the incident direction. In the third embodiment, this fact is used to distinguish whether the change in luminance value is caused by the composition or the crystal structure.
 例えば鉄に対して加速電圧30kVの電子ビームを入射した場合、反射電子の発生率は、電子ビームの入射角度が0度(試料11に対して垂直に電子ビームが入射)において約0.3であり、電子ビーム2を光軸に対して50度傾けても約0.4である。入射角度に代えて入射方向を変更した場合であっても、同様の傾向がある。このことは、組成の違いに起因する輝度値は電子ビーム2の入射方向や入射角度による影響が少ないことを示している。 For example, when an electron beam with an acceleration voltage of 30 kV is incident on iron, the generation rate of the backscattered electrons is about 0.3 when the incident angle of the electron beam is 0 degree (the electron beam is incident perpendicularly to the sample 11) Even if the electron beam 2 is inclined 50 degrees with respect to the optical axis, it is about 0.4. Even when the incident direction is changed instead of the incident angle, the same tendency is obtained. This indicates that the luminance value due to the difference in composition is less affected by the incident direction and the incident angle of the electron beam 2.
 そこでコンピュータ27は、ECC像701と702との間で輝度値が所定閾値(例えば相対比5%)以上異なる領域についてはその輝度差がECCによって生じたものであり、輝度値の差分が所定閾値未満である領域についてはその輝度差が組成に起因して生じたと判断する。これにより、ECCと組成コントラストを区別することができる。すなわち、輝度差の発生要因が結晶方位によるのか、それとも組成によるのかを判断することができる。 Therefore, in the area where the luminance value differs by a predetermined threshold (for example, a relative ratio of 5%) or more between the ECC images 701 and 702, the computer 27 generates the luminance difference due to the ECC, and the luminance difference is a predetermined threshold. It is determined that the luminance difference is caused due to the composition for the area less than. Thereby, ECC and composition contrast can be distinguished. That is, it can be determined whether the cause of the luminance difference is due to the crystal orientation or the composition.
 図8は、コンピュータ27が試料11の構成を解析する手順を説明するフローチャートである。以下図8の各ステップについて説明する。 FIG. 8 is a flow chart for explaining the procedure of analyzing the configuration of the sample 11 by the computer 27. Each step of FIG. 8 will be described below.
(図8:ステップS801)
 オペレータは入力装置30を介して、分析範囲や加速電圧などの分析条件を入力する。コンピュータ27はその分析条件指定を受け取る。
(FIG. 8: Step S801)
The operator inputs analysis conditions such as an analysis range and acceleration voltage via the input device 30. The computer 27 receives the analysis condition specification.
(図8:ステップS802)
 オペレータは入力装置30を介して、試料11が結晶性試料であるか否かを指定する。コンピュータ27はその指定を受け取る。試料11が結晶性試料である場合はステップS803へ進み、結晶性試料でなければステップS806へ進む。本ステップは、試料11が非結晶性試料である場合において、ステップS803~S805を省略するために設けたものである。したがってこれらのステップを省略する必要がなければ、本ステップも必要ない。
(FIG. 8: Step S802)
The operator specifies through the input device 30 whether the sample 11 is a crystalline sample. The computer 27 receives the designation. If the sample 11 is a crystalline sample, the process proceeds to step S803. If the sample 11 is not a crystalline sample, the process proceeds to step S806. This step is provided to omit steps S803 to S805 when the sample 11 is an amorphous sample. Therefore, if it is not necessary to omit these steps, this step is not necessary either.
(図8:ステップS803)
 コンピュータ27は、第1方向9と第2方向10それぞれにおける観察画像を取得し、その観察画像から結晶粒子を抽出する。
(FIG. 8: Step S803)
The computer 27 acquires observation images in each of the first direction 9 and the second direction 10, and extracts crystal particles from the observation image.
(図8:ステップS804)
 オペレータは入力装置30を介して、解析の目的が試料11の組成コントラストを抽出することであるのか、それ以外(すなわち結晶粒を抽出する)を目的とするのかを選択する。組成コントラストを抽出することが目的である場合はステップS805へ進み、それ以外であればステップS807へ進む。
(FIG. 8: Step S804)
The operator selects, via the input device 30, whether the purpose of analysis is to extract the compositional contrast of the sample 11 or whether to aim at extracting others (that is, extracting crystal grains). If the purpose is to extract the composition contrast, the process advances to step S805; otherwise, the process advances to step S807.
(図8:ステップS805)
 コンピュータ27は、ステップS803において取得した2つ観察画像間で輝度値の差分が所定閾値未満である箇所を抽出する。電子ビーム2の入射方向を変えても輝度値が変化しない箇所は、試料11の組成を表している箇所であると推定することができる。
(FIG. 8: Step S805)
The computer 27 extracts a portion where the difference in luminance value is less than a predetermined threshold between the two observation images acquired in step S803. It can be estimated that the place where the luminance value does not change even if the incident direction of the electron beam 2 is changed is the place representing the composition of the sample 11.
(図8:ステップS806)
 コンピュータ27は、電子ビーム2を試料11に対して垂直に入射することにより、観察画像を取得する。あるいは第1方向9と第2方向10それぞれにおいて観察画像を取得し、これらを合成してもよい。本ステップの後はステップS808へスキップする。
(FIG. 8: Step S806)
The computer 27 obtains an observation image by vertically impinging the electron beam 2 on the sample 11. Alternatively, observation images may be acquired in each of the first direction 9 and the second direction 10, and these may be combined. After this step, the process skips to step S808.
(図8:ステップS807)
 コンピュータ27は、ステップS803において取得した2つ観察画像間で輝度値の差分が所定閾値(ステップS805の閾値と同じ)以上である箇所を抽出する。電子ビーム2の入射方向を変えることにより輝度値が大きく変化する場合、その輝度値変化はECC(すなわち結晶方位に起因する輝度値変化)であると推定できる。本ステップの後はステップS808へ進む。
(FIG. 8: Step S 807)
The computer 27 extracts a portion where the difference in luminance value is equal to or greater than a predetermined threshold (the same as the threshold in step S805) between the two observation images acquired in step S803. When the luminance value is largely changed by changing the incident direction of the electron beam 2, it can be estimated that the luminance value change is ECC (that is, the luminance value change due to the crystal orientation). After this step, the process proceeds to step S808.
(図8:ステップS808)
 コンピュータ27は、ステップS805~S807において取得した画像を用いて、粒子の形状認識やその粒子の元素分析などの粒子特定を実施する。ステップS805やS807において、組成コントラストのみまたはECCのみを抽出しているので、本ステップにおいて粒子や結晶を正確に解析することができる。
(FIG. 8: Step S808)
The computer 27 performs particle identification such as shape recognition of particles and elemental analysis of the particles using the images acquired in steps S805 to S807. Since only the composition contrast or only the ECC is extracted in steps S805 and S807, particles and crystals can be accurately analyzed in this step.
(図8:ステップS809~S810)
 オペレータは入力装置30を介して、粒子解析を終了するか否かを選択する(S809)。終了しない場合は次の視野に移動し、ステップS802に戻る(S810)。解析を終了する場合は本フローチャートを終了する。
(FIG. 8: Steps S809 to S810)
The operator selects, via the input device 30, whether or not to end the particle analysis (S809). If it does not end, the process moves to the next view and returns to step S802 (S810). When the analysis is ended, this flowchart is ended.
<実施の形態3:まとめ>
 一般にECCと組成コントラストを区別するためには、(a)形状などから経験的に判断する、(b)元素分析やEBSD分析を実施する、(c)試料11を傾斜させることにより電子ビーム2の回折条件を変更して複数枚の画像を取得し、これらを比較する、などの方法を用いる。しかしいずれの方法においても、以下に説明するようにスループットが低いなどのデメリットが生じる。
<Embodiment 3: Summary>
Generally, in order to distinguish ECC from composition contrast, (a) judging empirically from the shape etc., (b) performing elemental analysis or EBSD analysis, (c) tilting the sample 11 to make the electron beam 2 A method is used such as changing a diffraction condition, acquiring a plurality of images, and comparing them. However, each method has disadvantages such as low throughput as described below.
 ECCと組成コントラストを区別することは、特に粒子解析において重要となる。粒子解析は、画像から介在物や不純物などの粒子を抽出し、その形状、個数、組成を特定する分析手法である。結晶性試料において粒子解析を実施すると、ECCによる結晶粒を介在物などの粒子として抽出してしまう場合がある。一般に粒子解析はコンピュータによって自動的に実施されるので、粒子解析の過程において目視確認により組成コントラストとECCを経験的に判断することはできない。粒子解析中に試料11を傾斜させることにより電子ビーム2の回折条件を変更する方法や、EBSD分析は、精度やスループットの観点からデメリットがある。元素分析を用いる場合は、元素種別を特定することはできるものの、元素を特定した箇所が結晶粒なのか、それとも同一組成の粒子なのかを判断することができない。 The distinction between ECC and compositional contrast is particularly important in particle analysis. Particle analysis is an analysis method of extracting particles such as inclusions and impurities from an image and specifying the shape, number, and composition thereof. When particle analysis is performed on a crystalline sample, crystal grains by ECC may be extracted as particles such as inclusions. Generally, particle analysis is performed automatically by a computer, so it is not possible to determine composition contrast and ECC empirically by visual confirmation in the process of particle analysis. The method of changing the diffraction condition of the electron beam 2 by inclining the sample 11 during particle analysis or EBSD analysis has disadvantages in terms of accuracy and throughput. When elemental analysis is used, although the element type can be specified, it can not be determined whether the place where the element is specified is a crystal grain or a particle of the same composition.
 本実施形態3に係る走査電子顕微鏡100は、電子ビーム2の入射方向を偏向させて複数の観察画像を取得することにより、組成コントラストとECCを区別するので、効率的に試料11を解析することができる。例えば、第1方向9と第2方向10の間で輝度値が閾値以上変化した箇所を解析対象から除外することができる。さらには、輝度値が所定閾値以上変化した箇所のみを抽出し、その箇所に対して粒子解析を実施することにより、結晶粒分布を把握することができる。 Since the scanning electron microscope 100 according to the third embodiment distinguishes the composition contrast from the ECC by deflecting the incident direction of the electron beam 2 and acquiring a plurality of observation images, the sample 11 can be analyzed efficiently. Can. For example, a portion where the luminance value changes by a threshold or more between the first direction 9 and the second direction 10 can be excluded from the analysis target. Furthermore, the crystal grain distribution can be grasped by extracting only a portion where the luminance value has changed by a predetermined threshold or more and performing particle analysis on the portion.
<実施の形態4>
 図9は、図2で示した模式図の、類似個所における観察例である。試料11は、図2と同じくニッケル合金を用いた。ECC像206は、第1方向9から電子ビーム2を照射することにより取得した観察画像である。ECC像207は、第2方向10から電子ビーム2を照射することにより取得した観察画像である。ECC像206においては、矢印部の結晶粒を把握できるが、ECC像207においては、矢印部の結晶粒を把握できない。一方、ECC像206においては、矢頭部の結晶粒を把握できないが、ECC像207においては、矢頭部の結晶粒を把握できる。このように実際の観察においても、反射電子の発生量がECC像ごとに異なることを確認できる。
Fourth Preferred Embodiment
FIG. 9 is an observation example at a similar part of the schematic view shown in FIG. The sample 11 used the nickel alloy similarly to FIG. The ECC image 206 is an observation image acquired by irradiating the electron beam 2 from the first direction 9. The ECC image 207 is an observation image obtained by irradiating the electron beam 2 in the second direction 10. In the ECC image 206, crystal grains in the arrow portion can be grasped, but in the ECC image 207, crystal grains in the arrow portion can not be grasped. On the other hand, in the ECC image 206, the crystal grain of the arrow head can not be grasped, but in the ECC image 207, the crystal grain of the arrow head can be grasped. As described above, also in the actual observation, it can be confirmed that the generation amount of the backscattered electrons differs for each ECC image.
 図10は、図7で示した模式図の類似個所における観察例である。図7と同じくニッケル合金上に炭素の異物706が存在する個所について、ECC像を取得した。ECC像704は、第1方向9から電子ビーム2を照射することにより取得した観察画像である。ECC像705は、第2方向10から電子ビーム2を照射することにより取得した観察画像である。ECC像705においては、矢印部に示すように、結晶粒界の輝度値が低下しているが、異物706の輝度値は、ECC像704と705との間でほとんど変化していない。このように実際の観察においても、組成と結晶構造のどちらに起因するかにより、輝度値の変化がことなることを確認できる。 FIG. 10 is an observation example at a similar part of the schematic view shown in FIG. The ECC image was acquired about the location where the foreign material 706 of carbon exists on a nickel alloy similarly to FIG. The ECC image 704 is an observation image acquired by irradiating the electron beam 2 from the first direction 9. The ECC image 705 is an observation image obtained by irradiating the electron beam 2 in the second direction 10. In the ECC image 705, the brightness value of the grain boundary is lowered as shown by the arrow portion, but the brightness value of the foreign material 706 hardly changes between the ECC images 704 and 705. As described above, also in the actual observation, it can be confirmed that the change in the luminance value is different depending on which of the composition and the crystal structure results.
<本発明の変形例について>
 本発明は上記実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換える事が可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について他の構成の追加・削除・置換をすることができる。
<About the modification of the present invention>
The present invention is not limited to the above embodiment, but includes various modifications. For example, the above-described embodiment is described in detail to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the described configurations. In addition, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. In addition, another configuration can be added to, deleted from, or replaced with a part of the configuration of each embodiment.
 第1方向9において取得した観察画像と第2方向10において取得した観察画像を切り替えながら、試料11の凹凸によって発生する電子ビーム2の光路差を利用してアナグリフ画像を生成し、試料11の表面の3D画像を観察する機能は、ライブステレオ機能と呼ばれる。この機能は、2次電子14を用いて試料11の表面形状を観察するものであるので、本発明に係る手法と併用することができる。例えば、試料11の平坦部分の結晶粒を観察するために本発明に係る手法を用い、凹凸部分の3次元形状を観察するためにライブステレオ機能を用いることができる。 An anaglyph image is generated using the optical path difference of the electron beam 2 generated by the unevenness of the sample 11 while switching the observation image acquired in the first direction 9 and the observation image acquired in the second direction 10, and the surface of the sample 11 The ability to view 3D images is called the live stereo feature. Since this function is to observe the surface shape of the sample 11 using the secondary electrons 14, it can be used in combination with the method according to the present invention. For example, the method according to the present invention can be used to observe the crystal grains in the flat portion of the sample 11, and the live stereo function can be used to observe the three-dimensional shape of the uneven portion.
 本発明に係る手法は、結晶歪や結晶欠陥観察などのような、微小の結晶方位変化を検出するために用いることもできる。特に金属やInGaNなどの半導体において、微細な方位変化や結晶欠陥の個数は、試料特性に大きく起因する。特に結晶歪や結晶欠陥のコントラストは、電子の回折条件によっては、観察できない場合が多く存在する。したがって、簡便に方位変化を把握できる本発明の手法は、有用であると考えられる。 The method according to the present invention can also be used to detect minute crystal orientation changes such as crystal distortion and crystal defect observation. In particular, in semiconductors such as metals and InGaN, the number of fine orientation changes and the number of crystal defects are largely attributed to sample characteristics. In particular, there are many cases where the contrast of crystal distortion and crystal defects can not be observed depending on the electron diffraction conditions. Therefore, it is considered that the method of the present invention which can easily grasp the change in orientation is useful.
 本発明の手法は、導電性が乏しくチャージアップ現象が発生しやすい試料や、電子ビームによって試料形態が変化してしまう試料(例えば真珠やカタツムリの殻などの生体試料)に対して用いることもできる。EBSD分析は、スループットが低く高額装置が必要であることに加え、高加速電圧の電子ビームを多量に照射する必要があるので、チャージアップ現象や試料ダメージが発生しやすいというデメリットがある。特に絶面物にモールドされた金属やカタツムリの殻などの生体試料において、その現象は顕著である。本発明の手法は、一般的にECC像が観察される条件で使用できるので、EBSD分析のような高加速大電流条件を用いる必要がない。したがって、チャージアップ現象や電子ビームダメージを抑制しやすい。 The method of the present invention can also be used for a sample having poor conductivity and a charge-up phenomenon is likely to occur, or a sample whose sample shape is changed by an electron beam (for example, biological samples such as pearls and snail shells) . EBSD analysis has the disadvantage of being susceptible to charge-up phenomena and sample damage, as it needs to be irradiated with a large amount of electron beams of high acceleration voltage in addition to low throughput and the need for expensive equipment. The phenomenon is remarkable particularly in biological samples such as metal and snail shells molded into a blank. The approach of the present invention can be used under conditions in which an ECC image is generally observed, so there is no need to use high acceleration large current conditions like EBSD analysis. Therefore, it is easy to suppress the charge up phenomenon and the electron beam damage.
 以上の実施形態において、コンピュータ27は解析結果を表示装置28上に画像として表示することを説明したが、その他の出力形式を用いることもできる。例えば結晶粒界の位置を記述したデータを記憶装置や通信ネットワークなどの適当な媒体に対して出力したり、プリンターやカメラなどで紙などの媒体に出力や印刷したりすることができる。あるいは組成コントラストとECCのいずれであると判定したのかを記述したデータを、その判定箇所の座標とともに出力することもできる。その他適当な出力形式を用いてもよい。 In the above embodiment, the computer 27 has been described to display the analysis result as an image on the display device 28. However, other output formats can be used. For example, data describing the position of grain boundaries can be output to an appropriate medium such as a storage device or a communication network, or can be output or printed on a medium such as paper by a printer or a camera. Alternatively, data describing which one of the composition contrast and the ECC has been determined can be output together with the coordinates of the determined portion. Other suitable output formats may be used.
 以上の実施形態においては、走査電子顕微鏡100を荷電粒子線装置の例として説明したが、その他タイプの荷電粒子線装置においても、本発明と同様の手法を適用することにより、結晶性試料の結晶粒界を正確に特定することができる。 In the above embodiment, the scanning electron microscope 100 has been described as an example of a charged particle beam device, but in other types of charged particle beam devices, crystals of a crystalline sample can be obtained by applying the same method as the present invention. Grain boundaries can be identified accurately.
1:電子銃
2:電子ビーム
3:集束レンズ
4:走査コイル
5:傾斜コイル
6:対物レンズ
7:焦点調整コイル
8:反射電子検出器
9:第1方向
10:第2方向
11:試料
12:試料ステージ
13:反射電子
14:2次電子
15:X線
16:反射電子検出器
17:2次電子検出器
18:X線検出器
19:高圧電源制御回路 
20:集束レンズ制御回路 
21:走査コイル制御回路 
22:傾斜コイル制御回路
23:対物レンズ制御回路
24:焦点調整コイル制御回路
25:信号入力回路
26:試料ステージ制御回路
27:コンピュータ
28:表示装置
29:画像メモリ
30:入力装置
31:元素分析用コンピュータ
70:電子顕微鏡本体
80:制御部
90:入出力部
100:走査電子顕微鏡
1: Electron gun 2: Electron beam 3: Focusing lens 4: Scanning coil 5: Tilting coil 6: Objective lens 7: Focusing coil 8: Reflected electron detector 9: First direction 10: Second direction 11: Sample 12: Sample stage 13: reflection electron 14: secondary electron 15: X-ray 16: reflection electron detector 17: secondary electron detector 18: X-ray detector 19: high voltage power supply control circuit
20: Focusing lens control circuit
21: Scanning coil control circuit
22: gradient coil control circuit 23: objective lens control circuit 24: focus adjustment coil control circuit 25: signal input circuit 26: sample stage control circuit 27: computer 28: display device 29: image memory 30: input device 31: for elemental analysis Computer 70: electron microscope main body 80: control unit 90: input / output unit 100: scanning electron microscope

Claims (10)

  1.  試料に対して荷電粒子線を照射する荷電粒子線装置であって、
     前記荷電粒子線を照射する荷電粒子線源、
     前記荷電粒子線が前記試料に対して照射される角度を偏向させる偏向器、
     前記荷電粒子線を前記試料に対して照射することにより前記試料から反射される反射電子を検出してその強度を表す検出信号を出力する検出器、
     前記検出信号を用いて前記試料の観察画像を生成する画像生成部、
     を備え、
     前記画像生成部は、前記試料に対して前記荷電粒子線を第1方向から照射することにより得られる第1画像と、前記試料に対して前記荷電粒子線を前記第1方向とは異なる第2方向から照射することにより得られる第2画像とを合成することにより、前記試料から反射した反射電子による電子チャネリングコントラストを強調した前記観察画像を生成する
     ことを特徴とする荷電粒子線装置。
    A charged particle beam apparatus for irradiating a sample with charged particle beams, comprising:
    A charged particle beam source for irradiating the charged particle beam,
    A deflector for deflecting an angle at which the charged particle beam is irradiated to the sample;
    A detector which detects the reflected electrons reflected from the sample by irradiating the charged particle beam to the sample, and outputs a detection signal representing the intensity thereof.
    An image generation unit that generates an observation image of the sample using the detection signal;
    Equipped with
    The image generation unit is configured to: a first image obtained by irradiating the sample with the charged particle beam in a first direction; and a second image in which the charged particle beam with respect to the sample is different from the first direction. A charged particle beam device, characterized in that the observation image in which electron channeling contrast is enhanced by reflected electrons reflected from the sample is generated by synthesizing a second image obtained by irradiating from a direction.
  2.  前記画像生成部は、前記第1画像のなかに含まれる結晶粒界を表す部分を抽出するとともに、前記第2画像のなかに含まれる結晶粒界を表す部分を抽出し、
     前記画像生成部は、前記第1画像と前記第2画像それぞれから抽出した結晶粒界部分を重ね合わせることにより、前記試料の結晶粒界を強調した結晶粒界画像を生成する
     ことを特徴とする請求項1記載の荷電粒子線装置。
    The image generation unit extracts a portion representing grain boundaries included in the first image, and extracts a portion representing grain boundaries included in the second image,
    The image generation unit generates a grain boundary image in which the grain boundaries of the sample are emphasized by superposing the grain boundary portions extracted from each of the first image and the second image. The charged particle beam device according to claim 1.
  3.  前記画像生成部は、前記第1画像を第1配色で生成するとともに、前記第2画像を前記第1配色とは異なる第2配色で生成し、
     前記画像生成部は、前記第1画像と前記第2画像を合成することにより、前記第1配色と前記第2配色が混合された前記観察画像を生成する
     ことを特徴とする請求項1記載の荷電粒子線装置。
    The image generation unit generates the first image in a first color arrangement, and generates the second image in a second color arrangement different from the first color arrangement.
    The image generation unit generates the observation image in which the first color arrangement and the second color arrangement are mixed by combining the first image and the second image. Charged particle beam equipment.
  4.  前記荷電粒子線装置はさらに、前記試料を載置する試料ステージを備え、
     前記試料ステージの上面は、前記荷電粒子線装置の設置面に対して平行となるように構成されている
     ことを特徴とする請求項1記載の荷電粒子線装置。
    The charged particle beam apparatus further includes a sample stage on which the sample is placed;
    The charged particle beam apparatus according to claim 1, wherein an upper surface of the sample stage is configured to be parallel to an installation surface of the charged particle beam apparatus.
  5.  前記偏向器は、前記第1方向から前記荷電粒子線を前記試料に対して照射させる際と、前記第2方向から前記荷電粒子線を前記試料に対して照射させる際の双方において、前記荷電粒子線の光軸に対して同じ傾斜角で前記荷電粒子線が前記試料に対して入射するように前記荷電粒子線を偏向させる
     ことを特徴とする請求項1記載の荷電粒子線装置。
    The deflector is configured to irradiate the charged particle beam to the sample from the first direction and to irradiate the charged particle beam to the sample from the second direction. The charged particle beam device according to claim 1, wherein the charged particle beam is deflected such that the charged particle beam is incident on the sample at the same inclination angle with respect to the optical axis of the line.
  6.  前記荷電粒子線装置はさらに、前記観察画像を表示画像として画面表示する表示部を備え、
     前記画像生成部は、時間間隔ごとに繰り返し前記観察画像を生成することにより、前記表示部が画面表示する前記表示画像を更新し、
     前記偏向器は、前記試料に対して前記荷電粒子線が前記第1方向から照射されるように前記荷電粒子線を偏向させる第1動作と、前記試料に対して前記荷電粒子線が前記第2方向から照射されるように前記荷電粒子線を偏向させる第2動作とを、前記時間間隔ごとに少なくとも1回切り替える
     ことを特徴とする請求項1記載の荷電粒子線装置。
    The charged particle beam apparatus further includes a display unit for displaying the observation image as a display image on the screen,
    The image generation unit updates the display image displayed on the screen by the display unit by generating the observation image repeatedly for each time interval.
    The deflector is a first operation of deflecting the charged particle beam so that the charged particle beam is irradiated from the first direction to the sample, and the charged particle beam is transmitted to the sample with respect to the sample. The charged particle beam device according to claim 1, wherein the second operation of deflecting the charged particle beam so as to be irradiated from the direction is switched at least once at each time interval.
  7.  前記画像生成部は、前記試料に対して前記荷電粒子線を第3方向から照射することにより得られる第3画像と、前記試料に対して前記荷電粒子線を前記第3方向とは異なる第4方向から照射することにより得られる第4画像とを、前記第1画像と前記第2画像に対して合成することにより、前記観察画像を生成する
     ことを特徴とする請求項1記載の荷電粒子線装置。
    The image generation unit may be configured to generate a third image obtained by irradiating the sample with the charged particle beam in a third direction, and a fourth image in which the charged particle beam with respect to the sample is different from the third direction. The charged particle beam according to claim 1, wherein the observation image is generated by combining a fourth image obtained by irradiating from a direction with the first image and the second image. apparatus.
  8.  試料に対して荷電粒子線を照射する荷電粒子線装置であって、
     前記荷電粒子線を照射する荷電粒子線源、
     前記荷電粒子線が前記試料に対して照射される角度を偏向させる偏向器、
     前記荷電粒子線を前記試料に対して照射することにより前記試料から反射される反射電子を検出してその強度を表す検出信号を出力する検出器、
     前記検出信号を用いて前記試料の観察画像を生成する画像生成部、
     前記荷電粒子線装置の動作を制御する制御部、
     を備え、
     前記画像生成部は、前記試料に対して前記荷電粒子線を第1方向から照射することにより得られる第1画像と、前記試料に対して前記荷電粒子線を前記第1方向とは異なる第2方向から照射することにより得られる第2画像とを生成し、
     前記制御部は、前記第1画像と前記第2画像を比較することにより、前記試料の組成を特定し、その特定結果を記述したデータを出力する
     ことを特徴とする荷電粒子線装置。
    A charged particle beam apparatus for irradiating a sample with charged particle beams, comprising:
    A charged particle beam source for irradiating the charged particle beam,
    A deflector for deflecting an angle at which the charged particle beam is irradiated to the sample;
    A detector which detects the reflected electrons reflected from the sample by irradiating the charged particle beam to the sample, and outputs a detection signal representing the intensity thereof.
    An image generation unit that generates an observation image of the sample using the detection signal;
    A control unit that controls the operation of the charged particle beam device;
    Equipped with
    The image generation unit is configured to: a first image obtained by irradiating the sample with the charged particle beam in a first direction; and a second image in which the charged particle beam with respect to the sample is different from the first direction. Generating a second image obtained by irradiating from the direction
    The charged particle beam device, wherein the control unit specifies the composition of the sample by comparing the first image and the second image, and outputs data describing the specified result.
  9.  前記制御部は、前記第1画像の画素の第1輝度値と、前記第2画像の画素の第2輝度値との間の差分に基づき、前記試料の組成を特定する
     ことを特徴とする請求項8記載の荷電粒子線装置。
    The control unit specifies the composition of the sample based on a difference between a first luminance value of a pixel of the first image and a second luminance value of a pixel of the second image. Item 9. The charged particle beam device according to Item 8.
  10.  前記制御部は、前記差分が判定閾値以上である場合は、前記試料の結晶方位に起因する輝度差が生じていると判定し、
     前記制御部は、前記差分が前記判定閾値未満である場合は、前記試料の組成に起因する輝度差が生じていると判定する
     ことを特徴とする請求項9記載の荷電粒子線装置。
    If the difference is equal to or greater than a determination threshold, the control unit determines that a brightness difference due to the crystal orientation of the sample is generated.
    The charged particle beam device according to claim 9, wherein the control unit determines that a luminance difference due to a composition of the sample is generated when the difference is less than the determination threshold.
PCT/JP2017/024650 2017-07-05 2017-07-05 Charged particle beam device WO2019008699A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/024650 WO2019008699A1 (en) 2017-07-05 2017-07-05 Charged particle beam device
JP2019528259A JP6811324B2 (en) 2017-07-05 2017-07-05 Charged particle beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/024650 WO2019008699A1 (en) 2017-07-05 2017-07-05 Charged particle beam device

Publications (1)

Publication Number Publication Date
WO2019008699A1 true WO2019008699A1 (en) 2019-01-10

Family

ID=64950753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024650 WO2019008699A1 (en) 2017-07-05 2017-07-05 Charged particle beam device

Country Status (2)

Country Link
JP (1) JP6811324B2 (en)
WO (1) WO2019008699A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171445A (en) * 1983-03-18 1984-09-27 Hitachi Ltd Stereoscopic scanning electron microscope
JP2013143364A (en) * 2012-01-13 2013-07-22 Hitachi High-Technologies Corp Charged particle beam device for observing internal construction of sample
JP2016015315A (en) * 2014-06-30 2016-01-28 エフ イー アイ カンパニFei Company Calculation scanning microscope having improved resolution

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125043A (en) * 1984-07-13 1986-02-03 Hitachi Ltd Crystal-orientation determining method by scanning electron microscope and scanning electron microscope employed
JPS62172649A (en) * 1986-01-23 1987-07-29 Jeol Ltd Focusing ion beam device
JPH03289551A (en) * 1990-04-06 1991-12-19 Hitachi Ltd Crystal-orientation observing apparatus utilizing converged ion beam
JPH08148111A (en) * 1994-11-25 1996-06-07 Hitachi Ltd Scanning electron microscope having automatic foreign matter search device
JP4738610B2 (en) * 2001-03-02 2011-08-03 株式会社トプコン Contamination evaluation method for substrate surface, contamination evaluation apparatus and semiconductor device manufacturing method
JP4022512B2 (en) * 2003-11-14 2007-12-19 Tdk株式会社 Crystal analysis method and crystal analysis apparatus
JP6525189B2 (en) * 2014-02-28 2019-06-05 学校法人関西学院 The standard sample for scanning electron microscopes, its manufacturing method, the evaluation method of a scanning electron microscope, and the evaluation method of a SiC substrate.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171445A (en) * 1983-03-18 1984-09-27 Hitachi Ltd Stereoscopic scanning electron microscope
JP2013143364A (en) * 2012-01-13 2013-07-22 Hitachi High-Technologies Corp Charged particle beam device for observing internal construction of sample
JP2016015315A (en) * 2014-06-30 2016-01-28 エフ イー アイ カンパニFei Company Calculation scanning microscope having improved resolution

Also Published As

Publication number Publication date
JP6811324B2 (en) 2021-01-13
JPWO2019008699A1 (en) 2020-05-21

Similar Documents

Publication Publication Date Title
JP4426871B2 (en) Image noise removal of FIB / SEM combined device
JP5164754B2 (en) Scanning charged particle microscope apparatus and processing method of image acquired by scanning charged particle microscope apparatus
JP4611755B2 (en) Scanning electron microscope and imaging method thereof
KR102408912B1 (en) A computer program stored in an inclination angle amount calculating device, a sample stage, a scanning electron microscope, and a computer-readable storage medium
US9824853B2 (en) Electron microscope device and imaging method using same
JP2005310602A (en) Charged particle beam adjustment method and charged particle beam device
US20080283744A1 (en) Charged Particle Beam Device
JP3101114B2 (en) Scanning electron microscope
JP2017003266A (en) Charged particle beam device
US10510508B2 (en) Charged particle beam apparatus
JP2001210263A (en) Scanning electron microscope, its dynamic focus control method and shape identifying method for semiconductor device surface and cross section
WO2019058440A1 (en) Charged particle beam device
JP6811324B2 (en) Charged particle beam device
JP6716026B2 (en) Charged particle beam device and condition setting method in charged particle beam device
JP4133458B2 (en) Pattern inspection method and pattern inspection apparatus
JP2007220615A (en) Charged particle beam device and charged particle beam picture formation method
JP4431624B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
JP2004271270A (en) Pattern inspection method and pattern inspection device
JPH10162766A (en) Focusing ion beam work observing device
JP2016033857A (en) Image quality enhancement method and device for scanning charged particle microscope image
JP2007287561A (en) Charged particle beam device
JP5237836B2 (en) Electron beam apparatus and method of operating electron beam apparatus
JP6920539B2 (en) Scanning electron microscope and its imaging method
JP5500868B2 (en) Scanning electron microscope and image display method in scanning electron microscope
JP2006049161A (en) Scanning electron microscope and three-dimensional image display method using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916939

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019528259

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916939

Country of ref document: EP

Kind code of ref document: A1